(极坐标与参数方程)教学案( 4 )
选修4-4极坐标与参数方程教材分析与教学建议
选修4-4“极坐标与参数方程”教材分析与教学建议房山教师进修学校中学数学教研室张吉一、地位与作用选修专题4-4的《坐标系与参数方程》作为选修系列的二个可选专题安排在高三上学习,这是平面解析几何初步、平面向量、三角函数等内容的综合应用和进一步深化,要求学生通过本专题的学习,掌握极坐标和参数方程的基本概念,了解曲线的多种表现形式,体会从实际问题中抽象出数学问题的过程,对培养学生探究数学问题的兴趣和能力,体会数学在实际中的应用价值,提高应用意识和实践能力具有重要的意义。
这两个专题是解析几何内容的延续。
从上述安排可见,“课标”构建的解析几何课程体系,是以坐标法为核心,依“直线与方程——圆与方程——圆锥曲线与方程——极坐标系与参数方程”为顺序,螺旋上升、循序渐进地展开内容。
二、“课标”对参数方程、极坐标内容的安排选修4-4的《坐标系与参数方程》:1.第一讲坐标系(1)回顾在平面直角坐标系中刻画点的位置的方法,体会坐标系的作用。
(2)通过具体例子,了解在平面直角坐标系伸缩变换下平面图形的变化情况。
(3)能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化。
(4)能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)的方程。
2.第二讲参数方程(1)通过分析抛物运动中时间与运动物体位置的关系,写出抛物运动轨迹的参数方程,体会参数的意义。
(2)分析直线、圆和圆锥曲线的几何性质,选择适当的参数写出它们的参数方程。
(3)举例说明某些曲线用参数方程表示比用普通方程表示更方便,感受参数方程的优越性。
(4)完成一个学习总结报告。
报告应包括三方面内容:1)知识的总结。
对本专题整体结构和内容的理解,进一步认识数形结合思想,思考本专题与高中其他内容之间的关系。
2)拓展。
通过查阅资料、调查研究、访问求教、独立思考,进一步探讨参数方程、摆线的应用。
3)学习本专题的感受、体会。
高中数学 第21课 极坐标与参数方程(综合训练4)学案 新人教A版选修4-4
第21课极坐标与参数方程(综合训练4)一、学习要求1.掌握极坐标与直角坐标互化公式,并能熟练地进行坐标互化;2.能熟练地进行极坐标方程与直角坐标方程的互化;并能把极坐标问题转化为直角坐标问题来解决。
3.掌握直线、圆、椭圆的参数方程及简单应用,并能熟练地把它们的参数方程化为普通方程;4.能利用直线的参数方程中的参数的意义解决求两点间的距离、弦长等问题。
二、问题探究■合作探究例1.设,分别为椭圆:(为参数)的左、右焦点.(1)若椭圆上的点到,的距离之和为4,写出椭圆的方程和焦点坐标;(2)设是(1)中椭圆的动点,求线段的中点的轨迹参数方程,并写出它的普通方程。
解:(1)∵点到,的距离之和为4,∴,即;∵点在椭圆上,∴,解得,∴,∴;∴椭圆的方程为;焦点坐标为,。
(2)由(1)知椭圆的参数方程为,设,,则,,∴线段的中点的轨迹参数方程为;由,得,两式两边平方相加,得线段的中点的普通方程为。
三、问题过关1. 已知动点P ,Q 都在曲线C :2cos 2sin x t y t=⎧⎨=⎩(t 为参数)上,对应参数分别为t α=与2t α=(02απ<<),M 为PQ 的中点。
(Ⅰ)求M 的轨迹的参数方程;(Ⅱ)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点。
【解】(Ⅰ)依题意有(2cos ,2sin )P αα,(2cos 2,2sin 2)Q αα,∴(cos cos 2,sin sin 2)M αααα++,∴M 的轨迹的参数方程为: cos cos 2sin sin 2x y αααα=+⎧⎨=+⎩(α为参数,02απ<<)。
(Ⅱ)M 到坐标原点的距离:d ==∵当απ=时,0d =,∴M 的轨迹过坐标原点。
2.已知曲线1C 的参数方程为45cos 55sin x t y t=+⎧⎨=+⎩ (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2sin ρθ=。
极坐标与参数方程数学讲义
极坐标与参数方程一、考纲要求1.理解参数方程的概念,了解某些常用参数方程中参数的几何意义或物理意义,掌握参数方 程与普通方程的互化方法.会根据所给出的参数,依据条件建立参数方程.2.理解极坐标的概念.会正确进行点的极坐标与直角坐标的互化.会正确将极坐标方程化为 直角坐标方程,会根据所给条件建立直线、圆锥曲线的极坐标方程. 二、知识结构1.参数方程的概念在平面直角坐标系中,如果曲线上任意一点的坐标y x ,都是某个变数t 的函数⎩⎨⎧==),(),(t g y t f x 并且对于t 的每一个允许值,由这个方程所确定的点),(y x M 都在这条曲线上,那么这个方程就叫做这条曲线的参数方程,联系变数y x ,的变数t 叫做参变数,简称参数。
相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。
常见的曲线的参数方程2.直线的参数方程(1)标准式 过点Po(x 0,y 0),倾斜角为α的直线l 的参数方程是⎩⎨⎧+=+=a t y y at x x sin cos 00 (t 为参数,其几何意义是.....PM ..的数量...) (2)一般式 过定点P 0(x 0,y 0)斜率k=tg α=ab的直线的参数方程是 ⎩⎨⎧+=+=bt y y at x x 00(t 为参数,1tan t α=) ② 3.圆锥曲线的参数方程(1)圆 圆心在(a,b),半径为r 的圆的参数方程是⎩⎨⎧+=+=ϕϕsin cos r b y r a x (φ是参数)(2)椭圆 椭圆12222=+by a x (a >b >0)的参数方程是⎩⎨⎧==ϕϕsin cos b y a x (φ为参数)椭圆12222=+by a y (a >b >0)的参数方程是⎩⎨⎧==ϕϕsin cos a y b x (φ为参数) (3)抛物线 抛物线px y 22=的参数方程为()为参数t pt y pt x ⎩⎨⎧==2224.极坐标极坐标系 在平面内取一个定点O ,从O 引一条射线Ox ,选定一个单位长度以及计算角度的正 方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系,O 点叫做极点,射线Ox 叫 做极轴.①极点;②极轴;③长度单位;④角度单位和它的正方向,构成了极坐标系的四要素,缺一不可.点的极坐标 设M 点是平面内任意一点,用ρ表示线段OM 的长度,θ表示射线Ox 到OM 的角度 ,那么ρ叫做M 点的极径,θ叫做M 点的极角,有序数对(ρ,θ)叫做M 点的极坐标.注意:①点),(θρP 与点),(1θρ-P 关于极点中心对称;②点),(θρP 与点),(2πθρ+-P 是同一个点;③如果规定0,02ρθπ>≤<,那么除极点外,平面内的点可用唯一的极坐标),(θρ表示(即一一对应的关系);同时,极坐标),(θρ表示的点也是唯一确定的。
极坐标与参数方程资料
选修4-4坐标系与参数方程资料极坐标与参数方程知识点(一)伸缩变换设点P (x,y )是平面直角坐标系中的任意一点,在变换⎩⎨⎧>⋅='>⋅='),0(,),0(,:μμλλϕy y x x 的作用下,点P(x,y)对应到点),(y x P ''',ϕ为平面直角坐标系中的坐标伸缩变换 (二)极坐标系的建立在平面上取一个定点O ,自点O 引一条射线OX ,同时确定一个单位长度和计算角度的正方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系。
(其中O 称为极点,射线OX 称为极轴。
) (三)极坐标系内一点的极坐标的规定对于平面上任意一点M ,用 ρ 表示线段OM 的长度,用 θ 表示从OX 到OM 的角度,ρ 叫做点M 的极径, θ叫做点M 的极角,有序数对(ρ,θ)就叫做M 的极坐标。
特别强调:由极径的意义可知ρ≥0;当极角θ的取值范围是[0,2π)时,平面上的点(除去极点)就与极坐标(ρ,θ)建立一一对应的关系 .们约定,极点的极坐标是极径ρ=0,极角是任意角. (四)负极径的规定在极坐标系中,极径ρ允许取负值,极角θ也可以去任意的正角或负角 当ρ<0时,点M (ρ,θ)位于极角终边的反向延长线上,且OM=ρ。
M (ρ,θ)也可以表示为))12(,()2,(πθρπθρ++-+k k 或 )(z k ∈(五)如果规定πθρ20,0<≤>,那么除极点外,平面内的点可用唯一的极坐标),(θρ表示,同时,极坐标),(θρ表示的点也是唯一确定的。
(六) 极坐标与直角坐标的互化(1) 互化的前提:①极点与直角坐标的原点重合;②极轴与X 轴的正方向重合;③两种坐标系中取相同的长度单位。
(2)互化公式⎩⎨⎧==θρθρsin cos y x ⎪⎩⎪⎨⎧≠=+=0,tan 222x x y y x θρ。
(ρ≥0,0≤θ≤π2)(七) 常见的曲线极坐标方程(1)圆心在C(a ,0),半径为a 的圆的方程:ρ=2acos θ (2)圆心在(a,π/2),半径为a 的圆的方程;ρ=2asin θ(3)圆心在C(a ,θ0),半径为a 的圆的方程;0cos()a ρθθ-=2(4)圆心在极点,半径为r 的圆的方程:ρ=r(5)过点(a ,0)且垂直于极轴的直线方程:ρcos θ=a (6)过点(a , π/2)且平行于极轴的直线方程:ρsin θ=a (7)过极点且倾斜角为ϕ的直线方程:θ=ϕ(八)曲线的参数方程在取定的坐标系中,如果曲线上任意一点的坐标x,y 都是某个变数t 的函数,⎩⎨⎧==)()(t g y t f x (1) 并且对于t 的每一个允许值,由方程组(1)所确定的点M(x,y)都在这条曲线上,那么方程组(1)叫做这条曲线的参数方程.联系x 、y 之间关系的变数叫做参变数,简称参数. (九) 求曲线的参数方程 求曲线参数方程一般程序:(1) 设点:建立适当的直角坐标系,用(x,y)表示曲线上任意一点M 的坐标; (2) 选参:选择合适的参数;(3) 表示:依据题设、参数的几何或物理意义,建立参数与x ,y 的关系 式,并由此分别解出用参数表示的x 、y 的表达式. (4) 结论:用参数方程的形式表示曲线的方程 (十) 曲线的普通方程相对与参数方程来说,把直接确定曲线C 上任一点的坐标(x,y )的方程F (x,y )=0叫做曲线C 的普通方程. (十一) 参数方程的几个基本问题 (1) 消去参数,把参数方程化为普通方程. (2) 由普通方程化为参数方程. (3) 利用参数求点的轨迹方程. (4) 常见曲线的参数方程.(十二) 几种常见曲线的参数方程 1. 直线的参数方程(ⅰ)过点P 0(00,y x ),倾斜角为α的直线的参数方程是⎩⎨⎧+=+=ααs i n c o s 00t y y t x x (t 为参数)t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,)为直线上任意一点.(ⅱ)过点P 0(00,y x ),斜率为a bk =的直线的参数方程是⎩⎨⎧+=+=bty y at x x 00 (t 为参数)(2)圆的参数方程(ⅰ)圆222r y x =+的参数方程为⎩⎨⎧==ϕϕsin cos r y r x (ϕ为参数)ϕ的几何意义为“圆心角”(ⅱ)圆22020)()(r y y x x =-+-的参数方程是⎩⎨⎧+=+=ϕϕsin cos 00r y y r x x (ϕ为参数)ϕ的几何意义为“圆心角” (3)椭圆的参数方程(ⅰ)椭圆12222=+b y a x (0>>b a ) 的参数方程为⎩⎨⎧==ϕϕsin cos b y a x (ϕ为参数)(ⅱ)椭圆1)()(220220=-+-by y a x x (0>>b a )的参数方程是⎩⎨⎧+=+=ϕϕsin cos 00b y y a x x (ϕ为参数)ϕ的几何意义为“离心角” (4)双曲线的参数方程(ⅰ)双曲线12222=-b y a x 的参数方程为⎩⎨⎧==ϕϕbtg y a x sec (ϕ为参数)(ⅱ)双曲线1)()(220220=---b y y a x x 的参数方程是⎩⎨⎧+=+=ϕϕbtg y y a x x 00sec (ϕ为参数)ϕ的几何意义为“离心角”(5) 抛物线的参数方程px y 22= (p>0) 的参数方程为⎩⎨⎧==pty pt x 222(t 为参数) 其中t 的几何意义是抛物线上的点与原点连线的斜率的倒数(顶点除外).极坐标与参数方程练习题一.选择题[C]A .(2,-7)B .(1,0)A .20°B .70°C .110°D .160°[C]A .相切B .相离C .直线过圆心D .相交但直线不过圆心A .椭圆B .双曲线C .抛物线D .圆B[A ]C.5 D.66.设椭圆的参数方程为()πθθθ≤≤⎩⎨⎧==sincosbyax,()11,yxM,()22,yxN是椭圆上两点,M,N对应的参数为21,θθ且21xx<,则 [B]A.21θθ< B.21θθ> C.21θθ≥ D.21θθ≤7.直线:3x-4y-9=0与圆:⎩⎨⎧==θθsin2cos2yx,(θ为参数)的位置关系是[ D ]A.相切B.相离C.直线过圆心D.相交但直线不过圆心8.经过点M(1,5)且倾斜角为3π的直线,以定点M到动点P的位移t为参数的参数方程是[ A ]A.⎪⎪⎩⎪⎪⎨⎧-=+=tytx235211B.⎪⎪⎩⎪⎪⎨⎧+=-=tytx235211C.⎪⎪⎩⎪⎪⎨⎧-=-=tytx235211D.⎪⎪⎩⎪⎪⎨⎧+=+=tytx2352119.参数方程⎪⎩⎪⎨⎧-=+=21yttx (t为参数)所表示的曲线是[ B ]A.一条射线B.两条射线C.一条直线D.两条直线10.已知曲线C的参数方程为)(1232为参数ttytx⎩⎨⎧+==则点)4,5(),1,0(21MM与曲线C的位置关系是[ A ]A.1M在曲线C上,但2M不在。
高二数学 4-4第一章坐标系全部教案
表示方法?(3)、坐标不唯一是由谁引起的?(4)、不同的极坐标是否可以写出统一
表达式。约定:极点的极坐标是 =0, 可以取任意角。
变式训练 :在极坐标系里描出下列各点
A(3,0) B(6,2 )C(3, )D(5, 4 )E(3, 5 )F(4, )G(6, 5 )
2
3
6
3
例 2 在极坐标系中,
特别强调:由极径的意义可知 ≥0;当极角 的取值范围是[0,2 )时,平面上的 点(除去极点)就与极坐标(,)建立一一对应的关系 .们约定,极点的极坐标是极 径 =0,极角是任意角. 3、负极径的规定:在极坐标系中,极径 允许取负值,极角 也可以去任意的正角 或负角,当 <0 时,点 M (,)位于极角终边的反向延长线上,且 OM= 。
(1)如果图形有对称中心,可以选对称中心为坐标原点;
(2)如果图形有对称轴,可以选择对称轴为坐标轴;
(3)使图形上的特殊点尽可能多的在坐标轴上。
(二)、平面直角坐标轴中的伸缩变换
1、在平面直角坐标系中进行伸缩变换,即改变 x 轴或 y 轴的单位长度,将会对图形
产生影响。
2、探究:(1)在正弦曲线 y=sinx 上任取一点 P(x,y),保持纵坐标不变,将横坐标 x
π 3
<0,解得 k=-1,
= 3
-2 =- 5 , 点 A 的坐标为(5,- 5 ).
3
3
变式训练:1、若 ABC的的三个顶点为 A(5, 5 ), B(8, 5 ),C(3, 7 ),判断三角形的形状.
2
6
6
答案:正三角形。2、若 A、B 两点的极坐标为 (1,1), (2 ,2 ) 求 AB 的长以及 AOB 的 面积。(O 为极点)
参数方程与极坐标教学案
参数方程与极坐标教学案一、引言参数方程与极坐标是高中数学教学中的重要内容,它们在解决几何问题和计算问题中具有广泛的应用。
本教学案主要介绍参数方程与极坐标的概念、性质和应用,旨在帮助学生深入理解和掌握这两种坐标系的特点和使用方法。
二、参数方程的概念与性质1.1 参数方程的定义参数方程是以参数为自变量,通过参数与变量之间的对应关系描述曲线的一种坐标系表示方法。
1.2 参数方程的性质(1)参数方程可以表示平面曲线上的任意一点。
(2)参数方程描述的曲线不一定是函数图像。
(3)参数方程能够简化一些复杂的曲线方程的求解过程。
三、参数方程与几何图形2.1 直线的参数方程(1)斜率存在时的参数方程:设直线的斜率为k,过点P(x₁, y₁),则直线的参数方程为:x = x₁ + ty = y₁ + kt其中t为参数,表示直线上任意一点的坐标。
(2)斜率不存在时的参数方程:设直线垂直于x轴,交点为(x₀, y₁),则直线的参数方程为:x = x₀y = y₁ + t其中t为参数,表示直线上任意一点的坐标。
2.2 曲线的参数方程(1)椭圆的参数方程:椭圆的参数方程可以表示为:x = a*cos(t)y = b*sin(t)其中a和b分别为椭圆的两个半轴长度。
(2)抛物线的参数方程:抛物线的参数方程可以表示为:x = at²y = 2at其中a为抛物线的参数和焦点到准线的距离。
四、极坐标的概念与性质3.1 极坐标的定义极坐标是以极径和极角为坐标的一种表示方法,其中极径表示点到原点的距离,极角表示点与正半轴的夹角。
3.2 极坐标的性质(1)极坐标中的极径和极角是有序对,唯一确定一点的。
(2)同一点在极坐标和直角坐标系中的表示不同。
五、极坐标的转化与应用4.1 直角坐标转极坐标已知点P(x, y),其极坐标就可以表示为:r = √(x² + y²)θ = arctan(y/x)4.2 极坐标转直角坐标已知点P(r, θ),其直角坐标可以表示为:x = r*cos(θ)y = r*sin(θ)六、参数方程与极坐标的应用5.1 参数方程在运动学中的应用通过用参数方程描述物体的运动轨迹,可以更方便地计算物体的位置、速度和加速度等运动学问题。
极坐标与参数方程教学设计
极坐标与参数方程教学设计教学目标:1.了解极坐标和参数方程的概念和特点。
2.掌握极坐标和参数方程的转换关系。
3.能够利用极坐标和参数方程描述和绘制简单的图形。
教学内容:1.极坐标的引入极坐标是一种用极径和极角表示平面上点的坐标系统。
极坐标中,每个点由它到极点的距离和与极轴的夹角确定。
极点是坐标轴的原点,极轴是一条从极点到无穷远处的射线。
极径通常用正数表示,极角用角度或弧度表示。
2.参数方程的引入参数方程是一种用参数表示物体的坐标方程。
在参数方程中,坐标值都是由参数决定的表达式,用来描述一个曲线或曲面的运动或变化。
3.极坐标和参数方程的转换方法(1)极坐标转参数方程:已知点P的极坐标(r,θ),则其对应的参数方程为x = rcosθ,y = rsinθ。
(2)参数方程转极坐标:已知参数方程x = f(t),y = g(t),则其对应的极坐标为r =√(f(t)²+g(t)²),θ = tan^(-1)(g(t)/f(t))。
4.极坐标和参数方程的应用利用极坐标和参数方程可以描述和绘制很多有趣的图形,如圆、椭圆、心形线等。
教学步骤:步骤一:导入1.引出极坐标和参数方程的概念和特点。
2.通过示例和图示介绍极坐标和参数方程的基本表示方法。
步骤二:极坐标和参数方程的转换关系1.介绍极坐标和参数方程的转换关系,包括极坐标转参数方程和参数方程转极坐标的方法。
2.通过示例演示转换过程,让学生理解和掌握转换的思路和方法。
步骤三:极坐标和参数方程的绘制1.引导学生利用极坐标和参数方程描述和绘制简单的图形,如圆、椭圆、心形线等。
2.通过实例演示和练习让学生掌握绘制图形的方法和技巧。
步骤四:综合应用1.引导学生利用极坐标和参数方程解决实际问题,如天文学中的行星运动、工程中的曲线绘制等。
2.通过实例和讨论,激发学生的兴趣和创造力,培养学生的实际应用能力。
步骤五:总结和拓展1.对极坐标和参数方程的知识进行总结归纳。
一道极坐标与参数方程高考题的教学设计
一道极坐标与参数方程高考题的教学设计*广东省韶关市仁化县仁化中学(512300) 尹杰杰 刘雨旳摘要 针对2019年全国I 卷第22题“极坐标与参数方程”进行例题教学设计.首先通过一题多解的方式,让学生理 解知识的横向联系和纵向发散;其次,通过改编原题,知识点逆向考查和引入参数,培养学生逆向思维,了解学生对例题 知识点的掌握效果,增强学生数学能力和探究意识.最后,通过变式列举了 3道类似知识点的高考题,给学生提供良好的 探究情境,促进学生主动学习,启发学生理解数学本质,提升学生数学核心素养.关键词 极坐标与参数方程;教学设计;一题多解;核心 素养1引言极坐标与参数方程在历年全国卷中是选做题,分值10 分,属于中档题.设置两小问,第一问5分,一般为极直互化或参数方程与普通方程互化,属于简单题.第二问5分,一般 考查以下几种类型:第一,极径p 的几何意义与应用.例如:微课短片的制作方式方法很多,经历了一段时间的实践, 总结几个常用的选材:①本节课程中所插入的微课源微课;②教师课程中精讲的内容,制作成录播微课;③课程的重难点小结内容制作成微课;①优秀学生的解题模板展示制作成PPT 翻页微课.①典例和考点的解题技巧的学法指导制作成微课短片.通过“微信班群” “QQ 班群”等互联网工具直接布置观 看短片任务,打破地域、时空的枷锁,进一步完善巩固复习环 节.微课回放既能指导学生学法,又能达到“温故而知新”的效果,甚至制作的微课极大程度成了下一个线上课程的开场课题引入.微课在数学线上课程中“保驾护航”的操作架构:这个操作架构可以扫除线上课程的复习环节上的学习障碍:(1) 通过知识点归纳总结的微课短片进行巩固复习,可以扫除同学们在课堂上没理解的概念和知识点.(2) 通过学法指导微课短片和优秀学生解题模板,可以解决学生在家自主学习时无人指教,无题可参的困境,促进 无师自通的自主学习;(3)任务驱动的复习模式,纠正学子自主复习时杂乱无章的节奏,有助于加深学生对重点难点的认识.综上所述,微课在数学线上课程中,像雨后春笋般实践成长.我们要充分利用庞大的网络资源,乘载“大数据”的信 息教学之舟.我们依然可以把线上教学及远程教学所用到的微课教学模式迁移到返校的面授教学中,让微课为新时代教学多元化授课夯基铺路.微课既然能驾驭线上课程,也理所 当然能批判继承其优劣点助力我们复课后的多元化教学.让我们深入探究微课走起,让微课促进教师业务水平和教研能力的提高.让我们的莘莘学子得以“人人能学、处处能学、时时能学”.“停课不停学”轻轻地走了,也正如它悄悄地来,作别教师们忙碌敲打键盘的声音.留下那一个个微课里那教师的美丽身影.寄望着新冠一去不返,微课伴我行,祖国花朵依旧随 风飘摇.(特别鸣谢“洋葱数学”制作团队给学生们带来精彩 的微课)参考文献[1] 徐燕京.初中数学微课助学的意义[J].教育-教学科研,2015, (3).[2] 杨丽娟.“微课”让初中数学课堂“翻转”出高效率[J].中小学教师培训,2015, (2).[3] 彭伟坚.微课在初中数学教学中的应用[J].中学数学研究,2014, (9).'本文是韶关市教育科研课题《基于核心素养下高中生数学建模能力培养的策略研究》(立项编号:sgjky19408)2015年全国I 卷,2015年全国II 卷,2016年全国II 卷,2017年全国III 卷;第二,参数的几何意义与应用.例如:2018年全国II 卷、2018年全国III 卷;第三,直线与曲线的位置关系,利 用点参法求最值.例如2016年全国III 卷、2017年全国I 卷、2019年全国I 卷;第四,利用极坐标或者参数方程求曲线的轨迹方程.例如2017年全国II 卷、2019年全国II 卷;第五,利用分类讨论思想求解.例如:2018年全国I 卷、2019年全 国III 卷.下面笔者通过对2019年数学全国I 卷第22题“极坐标与参数方程”进行例题教学设计及例题改编与变式.2例题教学设计例题(2019全国I 卷)在直角坐标系xOy 中,曲线C 的( 1 一 t 2x =-------参数方程为{ 1 +t t (t 为参数).以坐标原点O 为极I y =L点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为 2p cos 0 + sin 0 + 11 = 0.(1) 求C 和l 的直角坐标方程;(2) 求C 上的点到l 距离的最小值.师:这是一个什么问题?第一问主要考查什么知识点?解题的基本程序是什么?(极参问题是学生掌握较好的题型,原因是模型单一,学生熟悉,旨在引导学生将解题思路调控进入自己熟悉的区域,也想进一步巩固极坐标、参数方程、直角坐标方程的转化的 解题程序.)生1:这是一道极坐标与参数方程的题目,第一问主要是 考查坐标系转化和消参.首先通过x 的等式,求岀x 的范围,然后通过代入消元法消去参数t,化简得到了缺了一个点的椭圆方程,然后利用公式对直线l 的极坐标方程,转化为直角坐标方程即可.都是1 + t 2,而分子是1 - t 2,4t, 一个二次,一个一次,我们有 等式(1 + t 2)2 - (1 - t 2)2 — 4t 2,故而可以想到通过平方的形式构造岀与分母相关的完全平方式即可.生2解法:(平方消参法)因为-1 < 帛 Q 1,且x 2 +=(帛)+4t 2 y 21,所以C 的直角坐标方程为x 2 +务一1(x —(1+ t 2)2-1).师:此法是通过观察式子特征,构造平方,从而大大减少了计算量,但是此法对学生核心素养要求较高,大多数学生 无法想到.那我们是否还有它法求解呢?(学生激烈讨论中)师:通过生2的观察法,是否发现曲线C 的参数方程和某一类公式很像?(小部分同学说岀答案)师:再看看x 的取值范围,和哪个函数的取值范围很像?生3:三角函数,曲线C 的参数方程结构很像万能公式. 师:很好,是通过万能公式进行代换,请写岀你们的解答过程,生3板演过程.生3解法:(万能公式法)(x = 1 - t 2因为-1 <x < 1,令 t — tan 詈,代入("1 +t t2 '[y = L '” n x — cos a,化简得<I y — 2 sin a,所以评析本问题的三种解法各有特色.代入消元法,思路清晰,容易落笔,但过程繁杂,计算量大;平方消参法,过程简短, 计算量小,但素养要求过高,学生思维定势,不易想到;万能生1解法:(代入消元法)对于曲线C,由题意知x 21- t 2公式法,是此类题型的通法,但教学过程中,由于大纲要求不高,故而对此法讲解较少,学生掌握不熟练,易岀现计算失误.2— =—1----------1 +12 1+ 1 +12'21+12,因为y = 2t - l ,所以y 代入到”.—4t 有1+12,有一 1 < x W 1,所以x 十1=2(x +1),把 t = 2(x +1),代入到 y 4 x 2-y -) 22(x +” 2,化简得 x 2 + y = 1,-1 <x < 1.易24师:下面进行第二问,主要考查什么知识点,我们应该从哪里入手得到 t y =—1 +y2(x + 1) _知l 的直角坐标方程为2x + a /S ” + 11 = 0.生4:主要考查直线与曲线的位置关系,求曲线上的点到 直线的距离最小值,利用点参法与点到直线的距离公式,然 后通过辅助角公式,转化正弦型函数求最值即可.生4解法:(点参法)师:对于曲线C,除了代入消元法,还有其他方法吗?曲 线C 的结构有什么特征?(旨在引导学生观察式子特征,并联想到平方公式.)直线l 的极坐标方程转化为直角坐标方程为2pcos 0 +sin 0 + 11x = cos 0y — 2 sin 0= 0, 将 曲 线 C 化 成 参 数 方 程 形 式 为:(0为参数,-n < 0 < n ),则曲线C 上的生2:可以通过观察法,看岀x,y 式子的特征,发现分母点可以设为M (cos 0, 2 sin 0),所以由点到直线的距离公式可得:|2cos e + 2^3sin 0 + 11| |4sin (° +彳)+n d =不= 不 '因为-n<e<n,所以一竽<e + n <耳,所以当且仅当6 6 6e + n = — n ,此时 e =—竽,有 d m in = V 7.6 2 3师:生4主要通过点到直线的距离公式,进行求解.是否还有其他解法?生5:可通过设岀与直线l 平行且与曲线C 相切的直线11,然后联立曲线C 与l i ,利用判别式求解即可.生5解法:(判别式法)设与直线l 平行的直线方程为l i : 2x + V 3y + m = 0,故由题可知,当且仅当直线l i 与曲线相切时,切点到直线的!2x + Wy + m = 0,y 2x 2 + 务=化简可得 4y 2 + 2 J3my + m 2 — 4 = 0,由△ =(2 J3m )2 —4 X 4 x (m 2 - 4)= 0,得 m = ±4.显然可知,当 m = —4时,直线l i 与曲线相切的切点到直线l 的距离最大,故d max = I 4厂111 = 15彳,所以当 m = 4时,直线l i 与曲线“7 7相切的切点到直线l 的距离最小,故dmrn = |4~<!11 = 77V7师:本问是否还有其他解法呢?师:当我们对曲线的参数方程无从下手时,我们可以如何求解曲线上的点到直线的最小值呢?我们是否可以不用化 简的参数方程求解呢?生6:硬解.师:是的,很好!本问题还有一个暴力解法,就是直接将 曲线c 上的点设为(,厂+臣),然后通过点到直线2x + V 3y + 11 = 0的距离公式,变为一个关于参数t 的式子,然后转化为二次一次方程,利用判别式求岀参数t 的范 围,进而求岀最小值.生6解法:(暴力硬解法)设曲线C 上的点M 的坐标为(!+£,厂+茬),则点 M 到直线2x + V 3y + 11 = 0的距离为2 X 舟 + 73 X 令 + 11d旳+(网22 —2t 2 +4j3t+ 11V7 =—2 (1 + t 2) +4 + 4临 + 111 + t 21 + t 24+ 5 +9令 A = 11++t 31,则可知 At 2 - 73t + (A - 1)=0 至少 13有一个解,所以 4 = 3 - 4A (A 一 1) > 0,解得 一 < A < ,1 + t 2 = 4 护 1 1 + 阿 977 = —11 +12 + 4所以 d min =学| — 2 + 4 = 77.师:通过以上解法,我们可以发现,本题主要体现了哪几个数学核心素养?(同时引导学生总结以上方法.)生:(齐答)数学运算和直观想象.评析本问一个是几何法,两个是代数法.几何法过程简 洁,代数法,通法运算量大,但思路清晰,尤其在学习了解析几何后,部分学生更热衷于通过联立方程求解.本题主要考查学生对极坐标、参数方程与直角坐标方程的转化,和利用椭圆的参数方程解决“距离”问题,难点在于参数方程的消参,对于分式消参,大多数学生方法掌握不熟 练和运算能力不强,以致于对难度较小的第二问没有作答, 从而导致失分严重.高考试题一般是来源于教材,又高于教材.大多是依据 课本例题、课后习题、探究问题等进行加工重组改编,由浅入 深,循序渐进.本题中曲线C 的参数方程就是人教B 版选修4-4第二章第二节的课本里练习原题,这也透露岀我们在备考过程中,不能忽视教材中的重点例题、练习、探究问题的复 习回顾.为了让学生更好的掌握本题知识点,下面笔者对本题进行了适当改编.改编1在其他条件不变的前提下,把第二问改为求直 线上的点的坐标到曲线C 的最小值.设计意图:原题求点距值最小值,改编之后,求取到点距 最小值时点的坐标,这样主要是让学生更直观清楚的知道点的具体位置,能更好的理解本题考查知识点,检验学生对例题的掌握程度.解:(点参法)直线l 的极坐标方程为2pcos e + 73p sin e + 11 = 0,化 为直角坐标方程为2x + 73y + 11 = 0,将曲线C 化成参数{x cos e (e 为参数,—n < e < n ),则曲y = 2 sin e线C 上的点可以设为M (cose, 2 Sine ),所以由点到直线的距离公式可得:|2cose + 273sine + 11| ]4sin (e + 6) + 叫d =77= 77 '因为—n<e<n,所以一竽<e + n < 7n ,所以当 且仅当e + 6 = -£,此时e =-警,m (-1, —73)有d min = a /7-改编2在其他条件不变的前提下,直线l的极坐标方程改为2p cos0+sin0+a—0,且C上的点到l的距离的最小值为护,求a.设计意图:本题的改编与2017年全国理科I卷第22题极为相似,通过逆向思维设问,引入参数a,考查分类讨论思想与数形结合思想,可以很好的提升学生数学核心素养.解:(点参法)直线l的极坐标方程为2pcos0+^3^sin0+a—0,化为直角坐标方程为2x+73y+a—0,将曲线C化成参数方{x—cos0=(0为参数,-n<0<n),则曲线y—2sin0C上的点可以设为M(cos0,2sin0),所以由点到直线的距离公式可得:d|2cos0+2皿sin0+a||4sin(0++a|厉d min=F=V7•所以"sin(0+彳)+a]—7,故当a>0时,有|一4+a|=7有,解得a—11,或a—-3(舍去).当a<0时,有|4+a|—7有,解得a—-11,或a—3(舍去).综上可知,当a—11,或a—-11时,C上的点到l距离的最小值为茁.下面再看三个与2019年全国1卷相似度极高的变式练习.变式1(2017江苏)在平面坐标系xOy中,已知直线l{x—-8+t t(t为参数),曲线C的参数方y=2{x=2s2(s为参数).设P为曲线C上的动点,求y—2血s点P到直线l的距离的最小值.变式2(2017全国I卷)在直角坐标系xOy中,曲线Cf x3cos0(0为参数),直线l的参数方y—sin0f x—a+4t,(t为参数).y—1-1(1)若a—-1,求C与l的交点坐标;⑵若C上的点到l距离的最大值为冈,求a.变式3(2016年全国III卷)在直角坐标系xOy中,曲线f x—\13cos a(a为参数),以坐标原点y—sin a为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为p sin(0+4)—2^2.(I)写岀C i的普通方程和C2的直角坐标方程;(II)设点P在C i上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标.评析通过历年高考题,我们不难发现在高考题中极参题目考查的知识点与题型相识度极高,由于篇幅有限仅列岀以上三道高考真题,所以研究历年高考题是我们一线教师把握高考动态方向最有效的方法.改编l主要是让学生更直观清楚的知道点的具体位置,能更好的理解本题考查知识点,检验学生对例题的掌握程度.改编2引入参数a,其目的是使学生掌握分类讨论思想,引导学生巧用椭圆的参数方程解决“距离问题”.增强数学能力和探究意识.提高学生数学核心素养.两个改编,三个变式层层深入,这无疑是本节课的一个亮点,给学生提供了良好的探究情境,促进学生主动学习.通过以上改编和变式,我们可以启发学生理解数学本质,掌握数学思想.因为在学生的“最近发展区”设计恰当的具有针对性、符合本节课程要求的改编题目,并给给学生提供了探究和交流的机会,让学生在自主探究、合作交流的过程中提升数学核心素养.3总结与反思本节课例题第一问主要是极参与直角系转化问题,第二问主要是直线与椭圆的位置关系问题求距离.一方面考查了学生对极坐标与参数方程的基础知识掌握程度,另一方面考查了学生数学运算与逻辑推理素养,培养了学生数学问题的探究意识.例题的难点主要体现在消参与参数范围的确定.所以本例题的教学设计思路也是根据学生的最近发展区,引导学生思考,循序渐进、层层深入,强化学生的基础知识和基本技能,培养学生系统归纳知识的能力,增强探究问题的意识,符合学生的思维发生发展过程.在教学过程中,与学生交流互动,为学生创设轻松的学习环境,通过设问的形式,对数学的思想方法进行了适当的引导,使得学生在解题的过程中,能发散思维,一题多解,帮助学生理解知识的横向联系、纵向发散.通过在多解中求简、在修正中优化,能够让学生体验解决问题的思维过程,将能力的提高落到实处,可以很好地提升学生的数学核心素养.本节课在引导学生思考时,既从代数法,又从几何法两个方面着手,学生有章可循,这样能够激发学生的学习热情,拓展学生的思维,提高教学效率.同样,本节课也存在以下几点需要改进的地方:第一,课堂容量较大,难以关注到全体学生的习得情况;第二,引导较多,可采用互助学习小组合作讨论的方式进行部分数学活动等.纵观整堂课,虽然存在个别不足之处,但是整体来说,亮点较多,同时能很好的培养学生的数学核心素养,所以仍是一堂非常成功的课.。
高三数学专题复习--极坐标与参数方程
五、考点练习:
1
在极坐标系中,已知
A2,π6
,B2,-π6
,求
A,B
两点
间的距离.
2.将参数方程xy==1-+24+co4ssitn,t(t 为参数,0≤t≤π )化为普通方程,并
说明方程表示的曲线.
3
将方程x=
t+1, (t 为参数)化为普通方程.
y=1-2 t
2、高考出现的题型:
(1)、求曲线的极坐标方程、参数方程; (2)、极坐标方程、参数方程与普通方程间的相互转化; (3)、解决与极坐标方程、参数方程研究有关的距离、 最值、交点等问题。
三、(1)
x y
= =
x0 y0
+ t cos + t sin
a a
, (t
为参数
)
类似地 过原点倾斜角为a的直线l的参数方程为:
解:(1)曲线C化为直角坐标方程为
x1 2 +(y
2
3) =1
,
它表示圆心为C(1, 3 ),半径r=1的圆。
∵ d = co 1(+
3) 2 = 2 >1,
∴点O在圆的外部,
当动点与O、C三点在同一直线上时,动点到原点O的距离最小。
d ∴
= d r =2-1=1,
m in
即圆心C上动点到原点O的距离最小值为1。
链接高考2014
以直角坐标系的原点为极点,轴非负半轴为极轴,在两种坐标系
中取相同单位的长度. 已知直线L的方程为
,
曲线C的参数方程为
,点M是曲线C上的一动点.
(Ⅰ)求线段OM的中点P的轨迹方程;
(Ⅱ) 求曲线C上的点到直线L的距离的最小值.
第04讲-直线参数t的几何意义-2020届一轮复习数学套路之极坐标与参数方程(解析版)
第四讲 直线参数t 的几何意义1.直线的参数方程(1)过点M 0(x 0,y 0),倾斜角为α的直线l 的参数为00cos (sin x x t t y y t αα=+⎧⎪⎨=+⎪⎩为参数)(2)由α为直线的倾斜角知α∈[0,π)时,sin α≥0. 2.直线参数方程中参数t 的几何意义参数t 的绝对值表示参数t 所对应的点M 到定点M 0的距离.(1)当0M M u u u u u r与e (直线的单位方向向量)同向时,t 取正数.(2)当0M M u u u u u r与e 反向时,t 取负数,(3)当M 与M 0重合时,t =0.3.经过点P (x 0,y 0),倾斜角为α的直线l 的参数方程为为参数)t t y y t x x (sin cos 00⎩⎨⎧+=+=αα若A ,B 为直线l 上两点,其对应的参数分别为t 1,t 2,线段AB 的中点为M ,点M 所对应的参数为t 0,则以下结论在解题中经常用到: (1)t 0=t 1+t 22; (2)|PM |=|t 0|=t 1+t 22; (3)|AB |=|t 2-t 1|; (4)|PA |·|PB |=|t 1·t 2|(5)212121212121212()4,0,0t t t t t t t t PA PB t t t t t t ⎧-=+-<⎪+=+=⎨+>⎪⎩当当(注:记住常见的形式,P 是定点,A 、B 是直线与曲线的交点,P 、A 、B 三点在直线上) 【特别提醒】(1)直线的参数方程中,参数t 的系数的平方和为1时,t 才有几何意义且其几何意义为:|t |是直线上任一点M (x ,y )到M 0(x 0,y 0)的距离,即|M 0M |=|t |.(2)直线与圆锥曲线相交,交点对应的参数分别为12,t t ,则弦长12l t t =-;知识解读考向一 参数t 的系数的平方和为1【例1】已知在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+4cos θ,y =2+4sin θ(θ为参数),直线l 经过定点P (3,5),倾斜角为π3.(1)写出直线l 的参数方程和曲线C 的标准方程;(2)设直线l 与曲线C 相交于A ,B 两点,求|PA |·|PB |的值.【答案】(1)见解析 (2)3【解析】(1)曲线C :(x -1)2+(y -2)2=16,直线l :⎩⎪⎨⎪⎧x =3+12t ,y =5+32t(t 为参数).(2)将直线l 的参数方程代入圆C 的方程可得t 2+(2+33)t -3=0,设t 1,t 2是方程的两个根,则t 1t 2=-3,所以|PA ||PB |=|t 1||t 2|=|t 1t 2|=3. 学科&网【举一反三】1.已知曲线C 1的极坐标方程为2sin 4cos ρθθ=, C 2的参数方程为32(32x t t y t ⎧=-⎪⎪⎨⎪=+⎪⎩为参数)(1)将曲线C 1与C 2的方程化为直角坐标系下的普通方程; (2)若C 1与C 2相交于A 、B 两点,求AB .【答案】(1)曲线C 1的普通方程y 2=4x ,C 2的普通方程x+y-6=0 ;(2)AB 【解析】(1)曲线C 1的普通方程为y 2=4x , 曲线C 2的普通方程为x+y-6=0(2)将C 2的参数方程代入C 1的方程y 2=4x,得23=43-+()()整理可得260t +-=,由韦达定理可得12126t t t t +=-=-12AB t t =-==2.已知曲线C 的极坐标方程是4sin 0ρθ-=,以极点为原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线l 过点M (1,0),倾斜角为34π. (Ⅰ)求曲线C 的直角坐标方程与直线l 的参数方程; (Ⅱ)设直线l 与曲线C 交于A 、B 两点,求MA MB +的值. 【答案】(Ⅰ)曲线C 的直角坐标方程为:x 2+(y-2)2=4,直线l的参数方程为1(x t y ⎧=-⎪⎪⎨⎪=⎪⎩为参数)(Ⅱ).【解析】(Ⅰ)因为曲线C 的极坐标方程是4sin 0ρθ-=即曲线C 的直角坐标方程为:x 2+(y-2)2=4直线l 的参数方程31+t cos 4(3sin 4x t y t ππ⎧=⎪⎪⎨⎪=⎪⎩为参数)即1(x t y ⎧=-⎪⎪⎨⎪=⎪⎩为参数)(Ⅱ)设点A 、B 对应的参数分别为t 1,t 2将直线l 的参数方程代入曲线C的直角坐标方程得22(1)2)4-+-=整理,得210t -+=,由韦达定理得12121t t t t +== 因为t 1t 2>0,所以1212MA MB t t t t +=+=+=考向二 t 系数平方和不等于1【例2】在平面直角坐标系xOy 中,已知曲线1C 的参数方程为12{22x t y t=+=-(t 为参数),以O 为极点, x 轴的非负半轴为极轴,曲线2C 的极坐标方程为: 22cos sin θρθ=. (Ⅰ)将曲线1C 的方程化为普通方程;将曲线2C 的方程化为直角坐标方程; (Ⅱ)若点()1,2P ,曲线1C 与曲线2C 的交点为A B 、,求PA PB +的值.【答案】(Ⅰ) 12:30,:C x y C +-= 22y x =;(Ⅱ).【解析】(Ⅰ) 1:3C x y +=,即: 30x y +-=;222:sin 2cos C ρθρθ=,即: 22y x =(Ⅱ)方法一:由t 的几何意义可得C 1的参数方程为12(t 22x ty t ⎧=-⎪⎪⎨⎪=+⎪⎩为参数)代入22:2C y x =得26240t t ++=∴1262t t +=-,∴1262PA PB t t +=+=. 方法二:把1:3C x y +=代入22:2C y x =得2890x x -+=所以128x x +=, 129x x = 所以()221212*********PA PB x x x x +=+-++-=⨯-+-()()1221128262x x =⨯-+-=⨯-=【举一反三】1.在平面直角坐标系xOy 中,直线的参数方程为3(3x tt y t⎧=⎪⎨⎪=-⎩为参数)数),以坐标原点为极点,x 轴正半轴为极轴,建立极坐标系,已知曲线C 的极坐标方程为cos ρθ=. (1)求直线l 的普通方程与曲线C 的直角坐标方程;(2)设点3,0),直线l 与曲线C 交于不同的两点A 、B ,求MA MB ⋅的值. 【答案】(1)直线l 330x y +-=,【总结套路】直线参数t 几何意义运用最终版套路 第一步--化:曲线化成普通方程,直线化成参数方程;第二步--查:检查直线参数t 的系数平方和是否为1,如果是,进行第三步;如果否,则先化1.2202200022(t a b y t a x x t x x at a b t y y bt b y y t a b ±+⎧=+⎪=+⎧+⎪⎪−−−−−→⎨⎨=+⎪⎪⎩=+⎪+⎩前的系数同时除以保证中的的系数为正数为参数) 第三步--代:将直线的参数方程代入曲线的普通方程,整理成关于t 的一元二次方程:02=++c bt at第四步--写:写出韦达定理:a c t t a b t t =-=+2121,曲线C 的直角坐标方程(x-2)2+y 2=4; (2)3MA MB ⋅=-【解析】(1)直线l30y +-= 因为曲线C 的极坐标方程为cos ρθ=. 所以曲线C 的直角坐标方程(x-2)2+y 2=4;(2)点在直线l 上,且直线l 的倾斜角为120°,可设直线的参数方程为:12(x t t y ⎧=⎪⎪⎨⎪=⎪⎩为参数)代入到曲线C 的方程得:30t +-=,由韦达定理得12122,t t t t +==-由参数的几何意义知123MA MB t t ⋅==。
《志鸿优化设计》2022年高考数学人教A版理科一轮复习教学案:4-4坐标系与参数方程
《志鸿优化设计》2022年高考数学人教A 版理科一轮复习教学案:4-4坐标系与参数方程 考纲要求1.明白得坐标系的作用.2.了解在平面直角坐标系伸缩变换作用下平面图形的变化情形.3.能在极坐标系中用极坐标表示点的位置,明白得在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标与直角坐标的互化.4.能在极坐标系中给出简单图形的方程,通过比较这些图形在极坐标系与直角坐标系中的方程,明白得用方程表示平面图形时选择适当坐标系的意义.5.了解参数方程,了解参数的含义.6.能选择适当的参数写出直线、圆和椭圆的参数方程.1.极坐标系在平面内取一个定点O ,叫做____;自极点O 引一条射线Ox ,叫做____;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),如此就建立了一个极坐标系.设M 是平面内一点,极点O 与点M 的距离|OM|叫做点M 的____,记为ρ;以极轴Ox 为始边,射线O M 为终边的角xOM 叫做点M 的极角,记为θ,有序数对(ρ,θ)叫做点M 的极坐标,记作________.极坐标系的四要素:(1)极点;(2)极轴;(3)长度单位;(4)角度单位和它的正方向,四者缺一不可.由极径的意义知ρ≥0,当极角θ的取值范畴是[0,2π)时,平面上的点(除去极点)与极坐标(ρ,θ)(ρ≠0)建立________关系,约定极点的极坐标是极径______,极角可取任意角.2.直角坐标与极坐标的互化把直角坐标系的原点作为极点,x 轴正半轴作为极轴,并在两坐标系中取相同的长度单位.设M 是平面内的任意一点,它的直角坐标、极坐标分别为(x ,y)和(ρ,θ),则x =ρcos θ,y =ρsin θ;也可化为关系式ρ2=x2+y2,tan θ=y x(x ≠0).3.直线的参数方程(1)过点P0(x0,y0),倾斜角为α的直线l 的参数方程是⎩⎪⎨⎪⎧x =x0+tcos α,y =y0+tsin α(t 为参数),通常称该方程为直线l 的参数方程的标准形式,其中t 表示P0(x0,y0)到l 上一点P(x ,y)的有向线段P0P →的数量.t >0时,P0P →的方向向上;t <0时,P0P →的方向向下;t =0时,P 与P0重合. (2)直线l 的参数方程的一样形式是⎩⎪⎨⎪⎧x =x0+at ,y =y0+bt (t 为参数),该直线倾斜角α的正切为tan α=b a (α=0°或α=90°时例外).当且仅当a2+b 2=1且b >0时,上式中的t 才具有(1)中的t 所具有的几何意义. 4.圆的参数方程圆心在M0(x0,y0),半径为r 的圆的参数方程为______________________.[来源:1]5.椭圆的参数方程椭圆x2a2+y2b2=1的参数方程为__________________. 1.若直线⎩⎪⎨⎪⎧ x =1-2t ,y =2+3t (t 为参数)与直线4x +ky =1垂直,求常数k 的值. 2.已知直线l :⎩⎪⎨⎪⎧x =a +4t ,y =-1-2t (t 为参数),圆C 的极坐标方程为ρ=22cos ⎝⎛⎭⎪⎫θ+π4. (1)求圆心C 到直线l 的距离;(2)若直线l 被圆C 截得的弦长为655,求a 的值.3.已知圆O1和圆O2的极坐标方程分别为ρ=2,ρ2-22ρcos ⎝⎛⎭⎪⎫θ-π4=2. (1)把圆O1和圆O2的极坐标方程化为直角坐标方程; (2)求通过两圆交点的直线的极坐标方程.一、平面直角坐标系下的伸缩变换【例1】 在同一直角坐标系中,将直线x -2y =2变成直线2x ′-y ′=4,求满足图象变换的伸缩变换.方法提炼求满足图象变换的伸缩变换,可先求出变换公式,分清新旧坐标,代入对应的曲线方程,然后比较系数可得变换规则.请做演练巩固提升1二、如何求曲线的极坐标方程【例2】过原点的一动直线交圆x2+(y-1)2=1于点Q,在直线OQ上取一点P,使P到直线y=2的距离等于|PQ|.用极坐标法求动直线绕原点一周时P点的轨迹方程.方法提炼求曲线极坐标方程的差不多步骤是:(1)建立适当的极坐标系;(2)在曲线上任取一点P(ρ,θ);(3)依照曲线上的点所满足的条件写出等式;(4)用极坐标ρ,θ表示上述等式,并化简得极坐标方程;(5)证明所得的方程是曲线的极坐标方程.请做演练巩固提升2三、极坐标方程的应用【例3】已知极坐标系的极点是直角坐标系的原点,极轴与直角坐标系中x轴的正半轴重合.曲线C的极坐标方程为ρ=2cos θ-2sin θ,曲线l的极坐标方程是ρ(cos θ-2sin θ)=2.(1)求曲线C和l的直角坐标方程并画出草图;(2)设曲线C和l相交于A,B两点,求|AB|.方法提炼1.极坐标与直角坐标互化公式:x=ρcos θ,y=ρsin θ成立的条件是直角坐标的原点为极点,x轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位.2.用极坐标法可使几何中的一些问题得出更直截了当、简单的解法,但解题的关键是选取适当极坐标系,如此能够简化运算过程,转化为直角坐标时也容易一些.专门提醒:极坐标与直角坐标的区别有:多值性:在直角坐标系中,点与直角坐标是“一对一”的关系.在极坐标系中,由于终边相同的角有许多个,即点的极角不唯独,因此点与极坐标是“一对多”的关系.但不同的极坐标能够写出统一的表达式.假如(ρ,θ)是点M 的极坐标,那么(ρ,θ+2k π)或(-ρ,θ+(2k +1)π)(k ∈Z)都能够作为点M 的极坐标.请做演练巩固提升3四、参数方程及其应用 【例4】在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧ x =1+45t ,y =-1-35t (t 为参数),若以O 为极点,x 轴正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为ρ=2cos ⎝ ⎛⎭⎪⎫θ+π4,求直线l 被曲线C 所截得的弦长. 方法提炼1.直线的参数方程的应用专门广泛,要紧用来解决直线与圆锥曲线的位置关系问题.在解决这类问题时,充分利用直线参数方程中参数t 的几何意义,能够幸免通过解方程组找交点等繁琐的运算,使问题得到简化.直线的参数方程有多种形式,只有标准式中的参数才具有明确的几何意义.2.把参数方程化为一般方程,消参数的方法有:代入消去法、加减消去法、恒等式(三角的或代数的)消去法等.一般方程化为参数方程:关键是如何引入参数.若动点坐标x ,y 与旋转角有关时,通常选择角为参数;与运动有关的问题,通常选择时刻为参数等.在参数方程与一般方程的互化中,必须使x ,y 的取值范畴保持一致.提醒:将曲线的参数方程化为一般方程要紧消去参数,简称为“消参”.把参数方程化为一般方程后,专门容易改变变量的取值范畴,从而使得两种方程所表示的曲线不一致,因此我们要注意参数方程与一般方程的等价性.请做演练巩固提升4极坐标与参数方程的综合应用【典例】 (10分)已知曲线C 的极坐标方程是ρ=1,以极点为原点,极轴为x 轴的正半轴建立平面直角坐标系,直线l 的参数方程为⎩⎨⎧x =1+t 2,y =2+32t(t 为参数). (1)写出直线l 与曲线C 的直角坐标方程; (2)若将曲线C 上任意一点保持纵坐标不变,横坐标缩为原先的12后,得到曲线C ′,设曲线C ′上任一点为M(x ,y),求x +2y 的最小值.规范解答:(1)直线l 的直角坐标方程为3x -y -3+2=0,曲线C 的一般方程为x2+y2=1.(4分)(2)曲线C ′的一般方程为4x2+y2=1.令x =12cos θ,y =sin θ,∴x +2y =12cos θ+2sin θ=172sin(θ+φ).(8分)[来源:学,科,网]∴x +2y 的最小值为-172.(10分)答题指导:1.研究含有极坐标方程和参数方程的题目时,可先将它们同时化为直角坐标方程,再借助于直角坐标方程研究它们的性质.2.本题第(2)问还可利用线性规划及直线与椭圆相切等知识来解决. 1.设平面上的伸缩变换的坐标表达式为⎩⎨⎧x ′=12x ,y ′=3y ,求在这一坐标变换下正弦曲线y =sin x 的方程. 2.将极坐标系的极轴与直角坐标系的x 轴的非负半轴重合,并取相同的单位长度和角度,求过曲线ρcos θ+ρsin θ=1和曲线⎩⎪⎨⎪⎧y =t +1,x =t (t 为参数)的交点且与极轴平行的直线的极坐标方程. 3.已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系的x 轴的正半轴重合,且两个坐标系的单位长度相同,已知直线l 的参数方程为⎩⎪⎨⎪⎧ x =-1+tcos α,y =1+tsin α(t 为参数),曲线C 的极坐标方程为ρ=4cos θ. (1)若直线l 的斜率为-1,求直线l 与曲线C 交点的极坐标;(2)若直线l 与曲线C 相交弦长为23,求直线l 的参数方程. 4.已知直线l 的参数方程为⎩⎨⎧x =12t ,y =2+32t (t 为参数),曲线C 的极坐标方程为ρ=sin θ1-sin2θ,以极点为原点,极轴为x 轴正半轴建立直角坐标系,M 点坐标为(0,2),直线l 与曲线C 交于A ,B 两点. (1)写出直线l 的一般方程与曲线C 的直角坐标方程;(2)线段MA ,MB 长度分别记|MA|,|MB|,求|MA|·|MB|的值.参考答案基础梳理自测知识梳理1.极点 极轴 极径 M(ρ,θ) 一一对应 ρ=0 4.⎩⎪⎨⎪⎧ x =x0+rcos θ,y =y0+rsin θ(θ为参数) 5.⎩⎪⎨⎪⎧ x acos θ,y =bsin θ(θ为参数) 基础自测 1.解:将⎩⎪⎨⎪⎧x =1-2t ,y =2+3t 化为一般方程y =-32x +72,该直线的斜率为k 1=-32;当k ≠0时,直线4x +ky =1的斜率为k2=-4k ,由k1·k2=-1,得k =-6.当k =0时,明显不成立. 2.解:(1)把⎩⎪⎨⎪⎧x =a +4t ,y =-1-2t 化为一般方程为x +2y +2-a =0,把ρ=22cos ⎝ ⎛⎭⎪⎫θ+π4化为一般方程为x2+y2-2x +2y =0, ∴圆心到直线的距离为5|1-a|5. (2)由已知,⎝ ⎛⎭⎪⎫352+⎝ ⎛⎭⎪⎫|a -1|52=(2)2, ∴a2-2a =0,a =0或a =2. 3.解:(1)∵ρ=2,∴ρ2=4,即x2+y2=4.∵ρ2-22ρcos ⎝ ⎛⎭⎪⎫θ-π4=2, ∴ρ2-22ρ⎝ ⎛⎭⎪⎫cos θcos π4+sin θsin π4=2. ∴x2+y2-2x -2y -2=0.(2)将两圆的直角坐标方程相减,得通过两圆交点的直线方程为x +y =1.化为极坐标方程为ρcos θ+ρsin θ=1,即ρsin ⎝⎛⎭⎪⎫θ+π4= 22. 考点探究突破【例1】 解:设伸缩变换为⎩⎪⎨⎪⎧ x ′=λ·x ,λ>0,y ′=μ·y ,μ>0,可将其代入第二个方程,得2λx -μy =4,把x -2y =2化为2x -4y =4,比较系数得λ=1,μ=4. 现在,⎩⎪⎨⎪⎧ x ′=x ,y ′=4y ,即把直线x -2y =2图象上所有点的横坐标不变,纵坐标扩大到原先的4倍可得到直线2x ′-y ′=4.【例2】 解:以O 为极点,Ox 为极轴,建立极坐标系,如图所示,过P 作PR 垂直直线y =2,[来源:学,科,网]则|PQ|=|PR|. 设P(ρ,θ),Q(ρ0,θ),则有ρ0=2sin θ.∵|PR|=|PQ|,∴|2-ρsin θ|=|ρ-2sin θ|.[来源:Z,xx,k ]∴ρ=±2或sin θ=±1.即为点P 的轨迹的极坐标方程,化为直角坐标方程为x2+y2=4或x =0.【例3】 解:(1)由ρcos θ=x ,ρsin θ=y ,得曲线C 直角坐标方程(x -1)2+(y +1)2=2,l 的直角坐标方程x -2y -2=0.(2)设圆C 的圆心C(1,-1)到直线l 的距离为d , 则d =|1-2×(-1)-2|5=55, 因此|AB|=2(2)2-⎝ ⎛⎭⎪⎫552=655. 【例4】 解:将方程⎩⎪⎨⎪⎧x =1+45t ,y =-1-35t (t 为参数)化为一般方程3x +4y +1=0,将方程ρ=2cos ⎝ ⎛⎭⎪⎫θ+π4化为一般方程x2+y2-x +y =0,此圆的圆心为⎝ ⎛⎭⎪⎫12,-12,半径为22,则圆心到直线的距离d =110,弦长=2r2-d2=212-1100=75. 演练巩固提升 1.解:由⎩⎨⎧ x ′=12x ,y ′=3y ,得⎩⎨⎧x =2x ′,y =13y ′.将其代入y =sin x ,得13y ′=sin 2x ′,即y ′=3sin 2x ′. 2.解:曲线ρcos θ+ρsin θ=1在直角坐标系下的方程为x +y =1,曲线⎩⎪⎨⎪⎧y =t +1,x =t 的一般方程为y =x +1,两直线的交点坐标为⎩⎪⎨⎪⎧y =x +1,y =-x +1,即得(0,1),与极轴平行的方程为y =1,则该直线的极坐标方程为ρsin θ=1. 3.解:(1)直线l 的方程:y -1=-1(x +1),即y =-x , C :ρ=4cos θ,即x2+y2-4x =0,联立方程得2x2-4x =0,∴A(0,0),B(2,-2);极坐标为A(0,0),B ⎝ ⎛⎭⎪⎫22,7π4. (2)d =r2-⎝ ⎛⎭⎪⎫2322=1, C :(x -2)2+y2=4,[来源:Z&xx&k ]设直线l 的方程为kx -y +k +1=0,∴|2k +k +1|k2+1=1. ∴k =0或k =-34. ∴l :⎩⎪⎨⎪⎧ x =-1+t ,y =1(t 为参数)或⎩⎪⎨⎪⎧ x =-1-45t ,y =1+35t (t 为参数).4.解:(1)直线l 的一般方程为3x -y +2=0. ∵ρcos2θ=sin θ,∴ρ2cos2θ=ρsin θ.∴曲线C 的直角坐标方程为y =x2. (2)将⎩⎨⎧ x =12t ,y =2+32t 代入y =x2得t2-23t -8=0, 由参数t 的几何意义知|MA|·|MB|=|t1t2|=8.。
参数方程教案设计
参数方程教案设计引言在高中数学中,参数方程是必修内容之一,不仅能够帮助学生理解和掌握向量的基本知识,而且在物理、化学和工程等领域中应用广泛,被广泛地应用和发挥价值。
本篇文章将以一节高中数学课程中的参数方程为例,讨论如何设计一种针对学生的教学方案,以最大程度地实现教育资源的优化和学生知识的全面提升。
一. 教学目标1)能够理解什么是参数方程,其含义以及在物理上的应用。
2)学生能够掌握如何通过给定的参数方程,绘制出对应的图形,以及阅读已知图形的参数方程。
3)能够解决基本的参数方程及其相关问题,包括定义域和值域、对称性、极值、渐进线等等。
4)能够实践应用参数方程解决计算问题,例如弹道轨迹问题等等。
二. 教学策略此次教学将遵循“启发式教学”为基本思路,此方法提供了实验、观察、比较、分析和反思的渐进过程。
在此过程中,学生将有机会利用听觉,视觉甚至触觉等多个感官来获取和领会知识。
孩子将成为自己的“知道家”,而不仅仅是老师的“知识输出器”。
而具体教学策略包括:a.启发发现在课堂上,引导学生通过询问和实践来做出各种推断,使他们发现模式和规律,进而通过现有的知识来对新知识进行推断,培养学生自主学习和创新的能力。
b.强化链接将课程各个环节进行有机链接,保证学生顺畅掌握知识,在课堂中可以呼之即来,使学生能够理解思感和使用技能,从而顺利地解决问题。
c.交互式学习使学生在小组内协同学习,提高互动和合作意识,并通过互动和交流来吸收知识和展开思考。
d.综合应用在此过程中,提倡将学生所学到的具体数学知识融入到现实中,在实践中理解参数方程,从而明白理论与实践的真正联系。
三. 教学设计本节课以“参数方程学习”为主题,将分为以下七个部分:a.引入通过实际案例的引入,向学生展现参数方程的应用场景,以此引起学生兴趣,提高其学习的积极性。
b.观察视频以一个竖直抛射物为例,在屏幕上放映一段视频,慢慢解释和演示如何制作一个竖直抛射方程。
并请学习者自己推导出公式。
2020版新高考复习理科数学教学案:坐标系与参数方程 含答案
将直线l的参数方程代入曲线C的直角坐标方程整理.得t2+(2 sinα+2cosα)t-5=0.
因为Δ=(2 sinα+2cosα)2+20>0.所以可设该方程的两个根分别为t1.t2.
则t1+t2=-(2 sinα+2cosα).t1t2=-5.
【例2】[20xx·全国卷Ⅱ]在极坐标系中.O为极点.点M(ρ0.θ0)(ρ0>0)在曲线C:ρ=4sinθ上.直线l过点A(4,0)且与OM垂直.垂足为P.
(1)当θ0= 时.求ρ0及l的极坐标方程;
(2)当M在C上运动且P在线段OM上时.求P点轨迹的极坐标方程.
解:(1)因为M(ρ0.θ0)在C上.当θ0= 时.
(1)求A.B两点间的距离;
(2)求点B到直线l的距离.
解:(1)设极点为O.在△OAB中.A .B .由余弦定理.得
AB= = .
(2)因为直线l的方程为ρsin =3.
则直线l过点 .倾斜角为 .
又B .所以点B到直线l的距离为
(3 - )×sin =2.
■模拟演练——————————————
1.[20xx·南昌二模]已知在平面直角坐标系xOy中.直线l的参数方程为 (t为参数).以坐标原点为极点.x轴非负半轴为极轴建立极坐标系.曲线C的极坐标方程为ρ2-2ρcosθ-2=0.点P的极坐标是 .
所以点P的直角坐标为(1,1).
(2)解法一:将 代入 +y2=1.并整理得41t2+110t+25=0.
Δ=1102-4×41×25=8 000>0.
故可设方程的两根为t1.t2.
则t1.t2为A.B对应的参数.且t1+t2=- .
依题意.点M对应的参数为 .
高中数学_极坐标与参数方程教学设计学情分析教材分析课后反思
教学设计【教学目标】1、知识目标:(1)掌握极坐标的意义,会把极坐标转化一般方程(2)掌握参数方程与一般方程的转化(3)会极坐标与参数方程的简单应用2、能力目标:通过对公式的应用,提高学生分析问题和解决问题的能力,多方面考虑事物,培养他们的创新精神和思维严谨性.3、情感目标:培养学生数形结合方法,转化思想,参数思想的思想方法.【教学重点】1、极坐标方程、一般坐标、参数方程的相互转化2、极坐标系与直角坐标系的简单应用【教学难点】极坐标ρ的几何意义和直角坐标中t的几何意义的应用及极坐标系中的运算【考点分析】坐标系与参数方程和绝对值不等式在全国一卷高考中为二者选一考,一般是10分的比较容易的题,知识相对比较独立,与其他章节联系不大,容易拿分.绝对值这道题一般是第一问解绝对值不等式,第二问解决含参问题(解不等式讨论,恒成立问题,面积问题等).高考出现的题目往往是求曲线的极坐标方程、参数方程以及极坐标方程、参数方程与普通方程间的相互转化,并用极坐标方程、参数方程研究有关的距离问题,交点问题和位置关系的判定.【教学过程】一、两个坐标系三种方程的相互转换(提问形式回顾)这一部分刚上节课刚讲完,所以只回顾。
二、应用(1)求极坐标方程π),半径R,例1 在极坐标系中,已知圆C的圆心坐标为C(2,求圆C的极坐标方程.【解析】方法一、将线与点都转化为直角坐标,然后利用直角坐标系的结论写出圆的方程,最后将圆的直角坐标方程转化极坐标方程。
体现了转化思想(这道题让学生展示,最后总结)*此处易错方法二、直接法这种方法学生比较生,也不知如何下手,所以老师来点拨:建立极坐标系,设p(ρ,θ),在△OPC中利用余弦定理,建立ρ,θ的方程。
关键是用好ρ的几何意义。
(给学生留时间整理)(2)ρ的几何意义的应用练习:在直角坐标系xOy 中,曲线C 1的参数方程为2cos 22sin x y αα=⎧⎨=+⎩(α为参数)M 是C 1上的动点,P 点满足2OP OM =,P 点的轨迹为曲线C 2(Ⅰ)求C 2的方程(Ⅱ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3πθ=与C 1的异于极点的交点为A ,与C 2的异于极点的交点为B ,求AB .【解析】(1)主要是练习例1求轨迹方程 (学生黑板展示) 总结:相关点法求轨迹方程,注意等价转化(2)学生讲(用的是例1的方法1)再度体现了转换思想 师讲:直接法ρ的几何意义的应用AB =ρA -ρB 这道题后紧跟两道变式,练习ρ的几何意义的应用。
极坐标与参数方程带答案(教师版)
选修4-4 坐标系与参数方程第一节 坐 标 系1.平面直角坐标系中的伸缩变换设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎪⎨⎪⎧x ′=λ·x (λ>0),y ′=μ·y (μ>0)的作用下,点P (x ,y )对应点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。
2.极坐标的概念 (1)极坐标系:如图所示,在平面内取一个定点O ,叫做极点,从O 点引一条射线Ox ,叫做极轴,选定一个单位长度和角及其正方向(通常取逆时针方向),这样就确定了一个平面极坐标系,简称为极坐标系。
(2)极坐标:对于平面内任意一点M ,用ρ表示线段OM 的长,θ表示以Ox 为始边、OM 为终边的角度,ρ叫做点M 的极径,θ叫做点M 的极角,有序实数对(ρ,θ)叫做点M 的极坐标,记作M (ρ,θ)。
当点M 在极点时,它的极径ρ=0,极角θ可以取任意值。
(3)点与极坐标的关系:平面内一点的极坐标可以有无数对,当k ∈Z 时,(ρ,θ),(ρ,θ+2k π),(-ρ,θ+(2k +1)π)表示同一个点,而用平面直角坐标表示点时,每一个点的坐标是唯一的。
如果规定ρ>0,0≤θ<2π,或者-π<θ≤π,那么,除极点外,平面内的点和极坐标就一一对应了。
3.极坐标和直角坐标的互化(1)互化背景:把平面直角坐标系的原点作为极点,x 轴的正半轴作为极轴,建立极坐标系,并在两种坐标系中取相同的单位长度,如图所示。
(2)互化公式:设M 是坐标平面内任意一点,它的直角坐标是(x ,y ),极坐标是(ρ,θ)(ρ>0,θ∈[0,2π)),于是极坐标与直角坐标的互化公式如表:⎩⎪⎨⎪⎧x =ρcos θy =ρsin θ4.常见曲线的极坐标方程1.明辨两个坐标伸缩变换关系式⎩⎪⎨⎪⎧x ′=λx (λ>0),y ′=μy (μ>0),点(x ,y )在原曲线上,点(x ′,y ′)在变换后的曲线上,因此点(x ,y )的坐标满足原来的曲线方程,点(x ′,y ′)的坐标满足变换后的曲线方程。
选修4-4坐标系与参数方程
建立联系.
Y=byb>0
(2)已知变换后的曲线方程 f(x,y)=0,一般都要改写为方程 f(X,Y)=0,再利用换元法确定伸缩变换公式.
能力练通
抓应用体验的“得”与“失”
x′=3x,
1,-2
1.在同一平面直角坐标系中,已知伸缩变换φ:
求点 A 3
经过φ变换所得的点 A′的坐标.
2y′=y.
第 1 页 共 22 页
解析:设曲线 C′上任意一点 P′(x′,y′),
x=1x′, 由题意,将 3
y=2y′
代入 x2- y2 =1 64
得x′2-4y′2=1,化简得x′2-y′2=1,
9 64
9 16
即x2- y2 =1 为曲线 C′的方程,可见经变换后的曲线仍是双曲线, 9 16
则所求焦点坐标为 F1(-5,0),F2(5,0).
选修 4-4 坐标系与参数方程
第一节 坐 标 系
本节主要包括 2 个知识点: 1.平面直角坐标系下图形的伸缩变换; 2.极坐标系.
突破点(一) 平面直角坐标系下图形的伸缩变换
基础联通
抓主干知识的“源”与“流”
x′=λ·xλ>0,
设点 P(x,y)是平面直角坐标系中的任意一点,在变换φ:
的作用下,点 P(x,y)对应到点
4.将圆 x2+y2=1 变换为椭圆x2+y2=1 的一个伸缩变换公式为φ: X=axa>0, 求 a,b 的值.
94
Y=byb>0,
X=ax, 解y=1Y, b
代入 x2+y2=1 中得Xa22+Yb22=1,所以 a2=9,b2=4,即 a=3,b=2.
突破点(二) 极坐标系
(2)直线 C3 的极坐标方程为θ=α0,其中α0 满足 tan α0=2,若曲线 C1 与 C2 的公共点都在 C3 上,求 a. 解析:(1)消去参数 t 得到 C1 的普通方程为 x2+(y-1)2=a2,
极坐标系教学设计
极坐标系教学设计导入(一)创设情境、导入新课对于坐标系,我们曾经研究过平面直角坐标系(进行知识的回顾)。
在某些时候,直角坐标系并不方便,例如:在战斗中对危险所在位置的判断,根据一位天气预报播音员所说的话判断位置?(生活实例引入,引起学生兴趣,让学生感受极坐标思想,并能够根据原有知识自主解决)。
其实以上所采用的就是我们日常生活中常用的刻画位置的方法,它体现了极坐标的思想。
而我们这节课所要共同探讨的内容就是——极坐标系。
(板书)学生思考、回答问题。
通过学生熟悉的直角坐标系和生活实例,引起学生兴趣,调动其学习的积极性,引导学生做类比、比较。
课程展开(二)初步探索,直观感知启发学生思考、归纳上述问题的解决过程中哪些地方需要注意?得到:抓住关键点(出发点,方向,距离)学生思考、回答利用原有的常识学生很容易得到答案,从中先让通过自身原有的常识解答,从中直观感知了“极坐标”的思想。
此时抓住契机,抛出问题,大家自己建立一个合理的坐标系来表达你们刚刚解决问题的想法。
总结和思考极坐标系如何建立?(三)循序渐进,延伸拓展1.极坐标系的建立由上个思考,先由学生自主探究如何合理的建立一个极坐标系。
学生方案重视课堂的生成,针对现场,从合理性(参照方向只需一个)及简洁的角度出发对上述学生的方案作调整。
一个个问题引导学生最终得到我们规定的极坐标系的建立,展示如下:(板书上述建系过程)分组讨论,选代表回答他们直观感知了“极坐标”的思想。
感受数学来源于生活,为后面归纳得到极坐标系的建立铺垫。
由学生的模糊知识来催促知识的生成,过程中体现自主建立的极坐标系的合理性,简洁性。
2.极坐标系内一点的极坐标的规定类比直角坐标系,建立极坐标系是为了表示平面内的点的位置,因此我们要表示极坐标系中点的极坐标,如何表示?(板书)直接展示如下:抓住极径,极角构成的有序数对表示点的极坐标,特别注意极角为以极轴ox为始边,射线OM为终边的角xOM。
提出疑问:已知一个点,如何求出它的极坐标;反过来,已知一个点的极坐标,如何描出这个点?3.例题讲解由于比较简单,请2-3个同学口答,不足再补充。
第二讲 坐标系与参数方程(选修4-4)
2.圆的极坐标方程 若圆心为M(ρ0,θ0),半径为r的圆方程为:
2 ρ2-2ρ0ρcos(θ-θ0)+ρ2 0-r =0.
几个特殊位置的圆的极坐标方程 (1)当圆心位于极点,半径为r:ρ=r; (2)当圆心位于M(r,0),半径为r:ρ=2rcosθ;
【标准解答】
(1)设(x1,y1)为圆上的点,在已知变换
x=x1 下变为C上点(x,y),依题意,得 y=2y1
2 y y 2 2 2 2 由x 1 +y 2 1 =1得x +( ) =1,即曲线C的方程为x + = 2 4
1.
x=cost 故C的参数方程为 y=2sint
π π 3 3 故D的直角坐标为(1+cos3,sin3),即(2, 2 ).
类题通法
对于同时含有极坐标方程和参数方程的题可考虑同时 化为普通方程再求解.
x=-2t-1, 5.已知直线l: y=t-1
(t为参数)与曲线C:ρ= )
π 4 2sin(θ+ ),则直线l和曲线C的位置关系为( 4 A.相交 C.相离 B.相切 D.相交或相切
ห้องสมุดไป่ตู้例3】
(2014· 新课标卷Ⅱ)在直角坐标系xOy中,以
坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C π 的极坐标方程为ρ=2cosθ,θ∈[0, ]. 2 (1)求C的参数方程; (2)设点D在C上,C在D处的切线与直线l:y= 3 x+2
垂直,根据(1)中你得到的参数方程,确定D的坐标.
解:将曲线C1的参数方程化为普通方程,曲线C2的极 坐标方程化为参数方程后求解. (1)由曲线C1的参数方程可得曲线C1的普通方程为y= x2(x≠0),由曲线C2的极坐标方程可得曲线C2的直角坐标方 程为x+y-1=0,则曲线C2的参数方程为 x=-1- 2t, 2 2 y=2+ 2 t 得t2+ 2t-2=0,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学 (极坐标与参数方程)教学案( 4 )
常见曲线的极坐标方程
一、课前自主预习
1.将下列极坐标方程化为直角坐标方程
⑴5=ρ, ⑵sin 2ρθ=, ⑶πθ4
3
=,
2.写出下列特殊图形的直线方程
图3
图1
_________________ _________________
____________________
图5
图4
______________ ________________
3.写出下列特殊图形圆的极坐标方程
.
图3
图2
图1
O
____________________ ________________
________________________
图5
图4
_____________________ ____________________
4. 若直线过点00(,)M ρθ,且极轴到此直线的角为α,则它的方程为:_____________
若圆心为00(,)M ρθ,半径为r 的圆方程为:__________________________________
二、课堂合作探究
例1:按下列条件写出它的极坐标方程:
⑴求过极点,倾角为π/4的射线的极坐标方程.⑵求过极点, 倾角为π/4的直线的极坐标方程.⑶求过极点及⎪⎭⎫ ⎝⎛6,
6πA 的直线方程.⑷求过点⎪⎭
⎫
⎝⎛6,6πA 平行于极轴的直线⑸求过点⎪⎭
⎫
⎝⎛6,6πA 且倾斜角为32π的直线方程..
例2、:按下列条件写出圆的极坐标方程: (1)以()0,3A 为圆心,且过极点的圆(2)以⎪⎭
⎫
⎝⎛2,
8πB 为圆心,且过极点的圆 (3)以极点O 与点()0,4-C 连接的线段为直径的圆(4)圆心在极轴上,且过极点与点⎪⎭⎫ ⎝
⎛
6,32πD 的圆
例3、自极点O 作射线与直线4=θρsos 相交于点M,在OM 上取一点P,使得OM ·OP=12,求点P 的轨迹方程.
高二数学解析几何作业 ( 4 )
1.求过极点,倾角为π/6的射线的极坐标方程_____________直角坐标方程___________
2.求过点A(2, π/6),且垂直于极轴的直线L 的极坐标方程____________
3. 求过点A(2, π/2),且平行于极轴的直线L 的极坐标方程____________
4 (1)以极点O 与点()4,C π-连接的线段为直径的圆
(2)圆心在极轴上,且过极点与点76
D π⎛⎫
⎪⎝
⎭
的圆
5. 方程26sin =⎪⎭
⎫
⎝
⎛-πθρ的直角坐标方程______________________
6. 在极坐标系中,已知圆C 的圆心)6
,
3(π
C ,半径3=r , (1)求圆C 的极坐标方程。
(2)若Q 点在圆C 上运动,P 在OQ 的延长线上,且2:3:=OP OQ ,求动点P 的轨迹方程
7. 已知直线l :y=k(x+2)0)(2≠k 与圆O :x 2
+y 2
=4相交于A,B 两点,O 为坐标原点,△AOB 的面积为S 。
试将S 表示为k 的函数S(k),并求出它的义域;求S 的最大值,并求出此时的k 值。