单项式乘多项式.ppt
合集下载
单项式与多项式相乘课件(共17张PPT)
上面的等式提供了单项式与多项式相 乘的方法.
p pa
pb
pc
a
b
c
14.1.4.2 单项式与多项式相乘 根据乘法的分配律
p (a + b+ c)
归纳总结
pa + pb + pc
单项式乘多项式的乘法法则 单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得 的积相加.
14.1.4.2 单项式与多项式相乘
解:(-2x)2·(3x2 - mx - 6) - 3x3 + x2 = 4x2·(3x2 - mx - 6) - 3x3 + x2 =12x4-4mx3-24x2 - 3x3 + x2 =12x4 - (4m + 3)x3 - 23x2.
∵原式不含x3项,所以4m + 3 = 0. ∴m = 3 .
随堂练习
1. 如果一个三角形的底边长为 2x2y + xy - y2,高为 6xy,则这个三角形 的面积是 ( A ) A. 6x3y2 + 3x2y2 - 3xy3 B. 6x3y2 + 3xy - 3xy3 C. 6x3y2 + 3x2y2 - y2 D. 6x3y + 3x2y2
14.1.4.2 单项式与多项式相乘
14.1.4.2 单项式与多项式相乘
例3 如图,一块长方形基地用来种植A、B、C 3种不同的蔬菜,求这块
地的面积. 解:由图得,
3a+2b
2a-b
4a[(3a+2b)+(2a-b)]
=4a(5a+b) =4a·5a+4a·b =20a2+4ab.
B
4a
单项式与多项式相乘(课件)
作业布置
课本 P17 练习题 P17 习题1.7
4
4
新知讲解
【想一想】 ab·(abc+2x)及c2 ·(m+n-p )等于什么? 你是怎样计算的?
ab·(abc+2x) =ab·abc+ab·2x =a2b2c+2abx
(乘法分配律 ) (单项式乘单项式 )
新知讲解
【想一想】 ab·(abc+2x)及c2 ·(m+n-p )等于什么? 你是怎样计算的? c2 ·(m+n-p ) =c2·m+c2·n-c2·p
(1) 2x2-x-1; (2)-3x2+ 2x+3.
2x2-x-1中的项分别是: 2x2,-x,-1; -3x2+ 2x+3中的项分别是: -3x2, 2x,3
新知讲解
【思考】 宁宁也作了一幅画,所用纸大小如图所示,她在纸的左、右两边 各留了 1 xm的空白, 这幅画的画面面积是多少?
8
新知讲解
m ·(a+ b + c ) = ma + mb + mc(m、a、b、c都是单项式)
新知讲解
【例】 计算:
(1) 2ab(5ab2+3a2b);
(2)(2 ab2 2ab)• 1 ab;
Байду номын сангаас
3
2
(3) 5m2n(2n + 3m-n2); (4) 2(x+y2z + xy2z3)·xyz .
【解】(1) 2ab(5ab2+3a2b)
1.下列运算正确的是( D ). A.-2(3x-1)=-6x-1 B.-2(3x-1)=-6x+1 C.-2(3x-1)=-6x-2 D.-2(3x-1)=-6x+2
单项式乘单项式和单项式乘多项式 (优质课)获奖课件
班主任: 我觉得何旋今天取得这样的成绩, 我觉得,很重要的是,何旋是土生土长的北京 二中的学生,二中的教育理念是综合培养学生 的素质和能力。我觉得何旋,她取得今天这么 好的成绩,一个来源于她的扎实的学习上的基 础,还有一个非常重要的,我觉得特别想提的, 何旋是一个特别充满自信,充满阳光的这样一 个女孩子。在我印象当中,何旋是一个最爱笑 的,而且她的笑特别感染人的。所以我觉得她 很阳光,而且充满自信,这是她突出的这样一 个特点。所以我觉得,这是她今天取得好成绩 当中,心理素质非常好,是非常重要的。
二、探究新知 问题:光的速度约为3×105千米/秒,太阳光照射到地球上需 要的时间大约是5×102秒,你知道地球与太阳的距离约是多少 千米? 注:从实际的问题导入,让学生自己动手试一试,主动探索, 在自己的实践中获得知识,从而构建新的知识体系. 地 球 与 太 阳 的 距 离 约 为 (3×105)×(5×102) 千 米 . 问 题 是 (3×105)×(5×102)等于多少呢?学生提出运用乘法交换律和结 合律可以解决: (3×105)×(5×102)=(3×5)×(105×102)=15×107(为什么?) 在此处再问学生更加规范的书写是什么?应该是地球与太阳 的距离约为1.5×108千米.
一、复习导入 1.知识回顾: 回忆幂的运算性质: am·an=am+n(m,n都是正整数), 即同底数幂相乘,底数不变,指数相加. (am)n=amn(m,n都是正整数), 即幂的乘方,底数不变,指数相乘. (ab)n=anbn(n为整数), 即积的乘方,等于把积的每一个因式分别乘方,再把所得的 幂相乘. 口答: 幂的三个运算性质是学习单项式与单项式、单项式与多项式 乘法的基础,所以先组织学生对上述的内容作复习.
11.2 与三角形有关的角
单项式乘以多项式课件
运算示例
$(a+b) times x = ax + bx$
注意事项
乘法交换律在单项式乘以多项式的运算中可以简 化计算,但需要注意符号的变化。
03
单项式乘以多项式的实例 解析
实例一:单项式与二项式相乘
01
02
总结词:简单易懂
详细描述:通过具体的单项式与二项式相乘的例子,展示乘法的基本 规则和运算步骤,帮助学生理解单项式乘以多项式的计算方法。
单项式乘以多项式课件
目录
• 单项式与多项式的定义 • 单项式乘以多项式的运算规则 • 单项式乘以多项式的实例解析
目录
• 单项式乘以多项式的运算技巧 • 单项式乘以多项式的应用
01
单项式与多项式的定义
单项式的定义
总结词
单项式是数学中基本的代数表达式之一,由数字、变量和它们的幂次通过乘法运算连接 而成。
在物理中的应用
力学分析
在力学分析中,单项式乘 以多项式可以用于计算物 体的运动轨迹、速度和加 速度等物理量。
电磁学
在电磁学中,单项式乘以 多项式可以用于计算电场 、磁场等物理量的分布和 变化规律。
热力学
在热力学中,单项式乘以 多项式可以用于计算温度 、压力等物理量的变化规 律。
在日常生活中的应用
详细描述
单项式和多项式通常用数学符号表示,其中幂次表示变量的次数。单项式的表示方法为数字系数与变 量及其幂次的乘积,如 $ax^n$ 表示 $a$ 与 $x$ 的 $n$ 次幂的乘积。多项式的表示方法为若干个单 项式的和,如 $ax^n + bx^m + c$ 表示一个多项式,其中 $a$、$b$ 和 $c$ 是系数,$x^n$、 $x^m$ 是幂次。
$(a+b) times x = ax + bx$
注意事项
乘法交换律在单项式乘以多项式的运算中可以简 化计算,但需要注意符号的变化。
03
单项式乘以多项式的实例 解析
实例一:单项式与二项式相乘
01
02
总结词:简单易懂
详细描述:通过具体的单项式与二项式相乘的例子,展示乘法的基本 规则和运算步骤,帮助学生理解单项式乘以多项式的计算方法。
单项式乘以多项式课件
目录
• 单项式与多项式的定义 • 单项式乘以多项式的运算规则 • 单项式乘以多项式的实例解析
目录
• 单项式乘以多项式的运算技巧 • 单项式乘以多项式的应用
01
单项式与多项式的定义
单项式的定义
总结词
单项式是数学中基本的代数表达式之一,由数字、变量和它们的幂次通过乘法运算连接 而成。
在物理中的应用
力学分析
在力学分析中,单项式乘 以多项式可以用于计算物 体的运动轨迹、速度和加 速度等物理量。
电磁学
在电磁学中,单项式乘以 多项式可以用于计算电场 、磁场等物理量的分布和 变化规律。
热力学
在热力学中,单项式乘以 多项式可以用于计算温度 、压力等物理量的变化规 律。
在日常生活中的应用
详细描述
单项式和多项式通常用数学符号表示,其中幂次表示变量的次数。单项式的表示方法为数字系数与变 量及其幂次的乘积,如 $ax^n$ 表示 $a$ 与 $x$ 的 $n$ 次幂的乘积。多项式的表示方法为若干个单 项式的和,如 $ax^n + bx^m + c$ 表示一个多项式,其中 $a$、$b$ 和 $c$ 是系数,$x^n$、 $x^m$ 是幂次。
《单项式乘多项式》课件
《单项式乘多项式》ppt课件
• 引言 • 单项式乘多项式的定义与性质 • 单项式乘多项式的计算方法 • 单项式乘多项式的应用 • 练习与巩固 • 总结与回顾
01
引言
主题介绍
01
02
03
单项式乘多项式
理解单项式与多项式相乘 的规则和步骤。
数学表达式的简化
掌握如何将单项式与多项 式相乘后的结果进行简化 。
。
计算步骤与示例
列出多项式中的每一项,并确定单项 式的系数、字母因数和常数因数。
将相乘的结果按多项式的排列顺序组 合,得到最终的乘积。
将单项式的系数、字母因数和常数因 数分别与多项式的每一项相乘。
示例:计算2x^2y(x+3y),首先将 2x^2y分别与x和3y相乘,得到 2x^3y和6x^2y^2,然后将两项相加 得到2x^3y + 6x^2y^2。
实际应用
了解单项式乘多项式在日 常生活和科学计算中的应 用。
学习目标
01
02
03
04
掌握单项式与多项式相乘的基 本规则。
能够正确计算单项式与多项式 相乘的结果。
理解简化数学表达式的意义和 方法。
能够在实际问题中运用单项式 乘多项式的知识。
02
单项式乘多项式的定义与性质
单项式的定义与性质
定义
单项式是只包含一个项的代数式 ,通常表示为字母、数字和字母 的积。
ห้องสมุดไป่ตู้
通过练习和巩固,提 高了自己的计算能力 和数学思维能力。
理解了单项式乘多项 式的实际应用,如代 数式求值、解方程等 。
下节课预告
主题
《多项式乘多项式》
内容提要
掌握多项式乘多项式的计算方法,理解其实际应 用,如代数式求值、解方程等。
• 引言 • 单项式乘多项式的定义与性质 • 单项式乘多项式的计算方法 • 单项式乘多项式的应用 • 练习与巩固 • 总结与回顾
01
引言
主题介绍
01
02
03
单项式乘多项式
理解单项式与多项式相乘 的规则和步骤。
数学表达式的简化
掌握如何将单项式与多项 式相乘后的结果进行简化 。
。
计算步骤与示例
列出多项式中的每一项,并确定单项 式的系数、字母因数和常数因数。
将相乘的结果按多项式的排列顺序组 合,得到最终的乘积。
将单项式的系数、字母因数和常数因 数分别与多项式的每一项相乘。
示例:计算2x^2y(x+3y),首先将 2x^2y分别与x和3y相乘,得到 2x^3y和6x^2y^2,然后将两项相加 得到2x^3y + 6x^2y^2。
实际应用
了解单项式乘多项式在日 常生活和科学计算中的应 用。
学习目标
01
02
03
04
掌握单项式与多项式相乘的基 本规则。
能够正确计算单项式与多项式 相乘的结果。
理解简化数学表达式的意义和 方法。
能够在实际问题中运用单项式 乘多项式的知识。
02
单项式乘多项式的定义与性质
单项式的定义与性质
定义
单项式是只包含一个项的代数式 ,通常表示为字母、数字和字母 的积。
ห้องสมุดไป่ตู้
通过练习和巩固,提 高了自己的计算能力 和数学思维能力。
理解了单项式乘多项 式的实际应用,如代 数式求值、解方程等 。
下节课预告
主题
《多项式乘多项式》
内容提要
掌握多项式乘多项式的计算方法,理解其实际应 用,如代数式求值、解方程等。
《单项式与单项式、多项式相乘》优质课件(2套)
方法总结:在做乘法计算时,一定要注意单项式的 符号和多项式中每一项的符号,不要搞错.
例5 如果(-3x)2(x2-2nx+2)的展开式中不含x3 项,求n的值.
解:(-3x)2(x2-2nx+2) =9x2(x2-2nx+2) =9x4-18nx3+18x2.
∵展开式中不含x3项,∴n=0.
方法总结:在整式乘法的混合运算中,要注意运算 顺序.注意当要求多项式中不含有哪一项时,则表示 这一项的系数为0.
(3×105)×(5×102) (3×105)×(5×102)等于多少呢?
利用乘法交换律和结合律有:
(3×105)×(5×102)=(3×5)×(105×102)=15×107 这种书写规范吗? 不规范,应为1.5×108.
问题的推广:如果将上式中的数字改为字母,即 ac5•bc2,如何计算?
ac5•bc2 =(a•c5)•(b•c2) =(a•b)•(c5•c2) =abc5+2 =abc7
方法总结:(1)在计算时,应先进行符号运算,积 的系数等于各因式系数的积;(2)注意按顺序运算; (3)不要漏掉只在一个单项式里含有的字母因式; (4)此性质对于多个单项式相乘仍然成立.
针对训练
计算: (1) 3x2 ·5x3 ; (3) (-3x)2 ·4x2 ;
(2)4y ·(-2xy2); (4)(-2a)3(-3a)2.
单项式与多项式相乘:就是用单项式去乘多项 式的每一项,再把所得的积相加。 即:m(a+b+c)= ma+mb+mc
例1 计算:
(1)(-4x)·(2x2+3x-1);
解: (-4x)·(2x2+3x-1)
= (-4x)·(2x2) + (-4x)·3x +(-4x)·(-1)
例5 如果(-3x)2(x2-2nx+2)的展开式中不含x3 项,求n的值.
解:(-3x)2(x2-2nx+2) =9x2(x2-2nx+2) =9x4-18nx3+18x2.
∵展开式中不含x3项,∴n=0.
方法总结:在整式乘法的混合运算中,要注意运算 顺序.注意当要求多项式中不含有哪一项时,则表示 这一项的系数为0.
(3×105)×(5×102) (3×105)×(5×102)等于多少呢?
利用乘法交换律和结合律有:
(3×105)×(5×102)=(3×5)×(105×102)=15×107 这种书写规范吗? 不规范,应为1.5×108.
问题的推广:如果将上式中的数字改为字母,即 ac5•bc2,如何计算?
ac5•bc2 =(a•c5)•(b•c2) =(a•b)•(c5•c2) =abc5+2 =abc7
方法总结:(1)在计算时,应先进行符号运算,积 的系数等于各因式系数的积;(2)注意按顺序运算; (3)不要漏掉只在一个单项式里含有的字母因式; (4)此性质对于多个单项式相乘仍然成立.
针对训练
计算: (1) 3x2 ·5x3 ; (3) (-3x)2 ·4x2 ;
(2)4y ·(-2xy2); (4)(-2a)3(-3a)2.
单项式与多项式相乘:就是用单项式去乘多项 式的每一项,再把所得的积相加。 即:m(a+b+c)= ma+mb+mc
例1 计算:
(1)(-4x)·(2x2+3x-1);
解: (-4x)·(2x2+3x-1)
= (-4x)·(2x2) + (-4x)·3x +(-4x)·(-1)
单项式与多项式相乘公开课课件
乘法分配律的运用
乘法分配律是数学中的一个基本定律,它指出一个数乘以 两个数的和等于这个数分别乘以这两个数再求和。在单项 式与多项式相乘时,乘法分配律是非常重要的。
例如,单项式$a^3$与多项式$b + c$相乘时,可以运用 乘法分配律进行计算:$(a^3)(b+c) = a^3b + a^3c$。 这样可以简化计算过程,提高计算效率。
单项式与多项式相乘公开课课件
contents
目录
• 单项式与多项式简介 • 单项式与多项式相乘的法则 • 单项式与多项式相乘的运算实例 • 单项式与多项式相乘的注意事项 • 习题与解答
01
单项式与多项式简介
单项式的定义与性质
定义
单项式是只包含一个项的代数式 ,通常表示为数字、字母的积。
性质
单项式具有加法封闭性、乘法交 换律和结合律等基本性质。
单项式的几何意义
在数轴上,单项式可以表示一个点或一个单位长度。例如,$3x$表示在x轴上, 每移动一个单位长度,坐标增加3。
多项式的几何意义
多项式可以表示一条曲线或曲面。例如,$y = x^2$表示一个开口向上的抛物线 。
02
单项式与多项式相乘的法则
单项式乘以多项式的法则
单项式乘以多项式的运算法则,是将单项式中的每一个因子 与多项式中的每一个项分别相乘,然后将所得的积相加。
多项式的定义与性质
定义
多项式是由有限个单项式通过加法运 算组成的代数式,表示为$P(x) = a_n x^n + a_{n-1} x^{n-1} + cdots + a_1换律 和结合律等基本性质,还具有分配律 和幂的运算法则等特殊性质。
单项式与多项式的几何意义
初二数学14.1.4单项式乘以多项式式课件
②单项式的乘法运算。
() 1 2ab(5ab 例:计算:
2
3a b)
2
解: 原式=2ab×5ab2+2ab×3a2b
=10a2b3+6a3b2
(2)( 2 xy 5 x y 7 x )( 3 xy )
2 2 3 2
解:原式= -2xy 2 × -3xy 2 + 5x2y × -3xy 2 + -7x3 × -3xy 2
单项式乘以多项式
复习提问: 1. 请说出单项式与单项式相乘的法则: 单项式相乘,把它们的系数、相同字母分 别相乘,对于只在一个单项式里含有的字母, 则连同它的指数作为积的一个因式。
2. 什么叫多项式? 几个单项式的和叫做多项式。
3. 什么叫多项式的项? 在多项式中,每个单项式叫做多项式的项。
说出多项式 2x2+3x-1的项和各项的系数
非常简捷。
如何进行单项式与多项式乘法运算?
1.已知 ab 2 6 求 ab ( a 2b 5 ab 3 b ) 的值
2.先化简,再求值 2 2 2 9 2 3 2a b (2ab 1) ( a b )(3a a b ) 3 2 1 其中a , b 3 3
3 2 3
求值问题,方法不是惟一 的,可以直接把字母的值代入 原式,但计算繁琐易出错,应 先化简,再代入求值,就显得
想一想
如何进行单项式的乘法运算? 单项式的系数? 相同字母的幂?
只在一个单项式里含有的字母?
(系数×系数)×(同字母幂相乘)×单独的幂
计算 1. ( 2a2b3c) (-3ab)
2.
3 5 2 12× + 3 4 6
=
=-
6a3b4c
《单项式乘单项式和单项式乘多项式》课件
6.用科学记数法表示(2×102)(16×106)的结果应为_3_.2_×__1_0_9_. 7.若□×6xy=3x3y2,则□内应填的单项式是__12_x_2_y__.
8.一个三角形的底为 4a,高为12a2,它的面积为__a_3_.
9.计算: (1)(-5x2y)(-4x3y2); 解:原式=20x5y3
4.下列计算中,不正确的是( D ) A.(-3a2b)(-2ab2)=6a3b3 B.(2×10n)(25×10n)=45×102n C.(-2×102)(-8×103)=1.6×106 D.(-3x)·2xy+x2y=7x2y 5.计算:(2x2y)(-xy3)=_-__2_x_3_y_4__; (-12x2y)3·(-3xy2)2=__-__98_x_8y_7___.
方法技能: 1.单项式乘以单项式的结果仍然是单项式. 2.积的系数等于各项系数的积,先确定积的符号,再计算积的绝对 值. 3.相同字母相乘,按同底数幂的乘法计算. 4.只在一个单项式里含有的字母,连同它的指数写在积里,注意不 要遗漏. 5.对于三个及以上的单项式相乘,此法则同样适用. 易错提示: 对单项式的乘法法则理解不透而出错.
知识点:单项式与多项式相乘 1.计算2x(3x2+1)的结果是( C ) A.5x3+2x B.6x3+1 C.6x3+2x D.6x2+2x 2.计算x(2x-1)-x2(2-x)的结果是( B ) A.-x3-x B.x3-x C.-x2-1 D.x3-1 3.下列计算正确的是( D ) A.(-4x)(2x2+3x-1)=-8x3-12x2-4x B.(6xy2-4x2y)·3xy=6xy2-12x3y2 C.(-x)(2x+x2-1)=-x3-2x2+1 D.(-3x2y)(-2xy+3yz+1)=6x3y2-9x2y2z-3x2y
单项式乘单项式单项式乘多项式公开课PPT课件
= 15a3b
=[8×(-5)](x3•x)y2
=-40x4y2
第11页/共28页
判断下面的计算是否正确?如果 不对,怎样改正?
⑴5a2 2a3 1100aa65 ⑵2x 3x4 56x55
?
⑶ 3s 2s7 66ss78
⑷ 2 a3 a26a3 ⑸ 28 2a3 29 a3
路程=速度×时间
(3×105 ) ×(5×102)
第6页/共28页
一、单项式乘单项式
(3×105
)
×(5×102)
利用乘法的交换律和 结合律,把各个因式
和因数分类,具有相
=(3×5)×(105×102)同 常
字 数
母 项
的 归
分 为
为 一
一类 类
,
=15×107
=1.5×108
第7页/共28页
一、单项式乘单项式
-3a4 - 6a3 + 3a2
第23页/共28页
先化简再求值:
x2 (x2 x 1) x(x3 x2 x 5),其中x 1 . 25
解:原式 x4 x3 x2 x4 x3 x2 5x
5x
当x 1 时 25
原式 5 1 1 25 5
第24页/共28页
解方程
7x-(x–3)x–3x(2–x)=(2x+1)x+6
事实上,多项式乘单项式=单项式乘多项式 (乘法交换律)
第21页/共28页
⑴ 2x(x 1) 3x
2x x 2x (1) 3x
⑵a(a 1) a2
a a a (1) a2
2x2 2x 3x
a2 a a2
2x2 5x
a
⑶p( p2 5) p2 ( p 5) 5 p( p 1)
单项式与多项式相乘ppt课件
字母表达式:m(a+b+c)=__
__.
变式训练 12.2.2 单项式与多项式相乘 例 2 [课本练习第 2 题变式题] 先化简,再求值: x2(3-x)+x(x2-2x)+1,其中 x=2.
解:原式=3x2-x3+x3-2x2+1=x2+1. 当 x=2 时,原式=22+1=5.
[归纳总结] 解这一类问题的关键在于先化简,把算式按 照运算顺序法则化为最简形式后再代入求值.
完整最新版课件
11
总结归纳
法则:单项式与多项式相乘,将单项式分别 乘以多项式的每一项,再将所得的积相加.
字母表达式:m(a+b+c)=ma+mb+mc
(1)注意积的式的项数与因式中的多项式的项数相同,
在运算过程中,不要漏乘.
(3)在混合运算中,要严格按运算顺序进行,
完整最新版课件
9
12.2.2 单项式与多项式相乘
解:观察图形发现,这块长方形的长为[(3a+2b)+(2a-b)] 米,宽为 4a 米,所以其面积为 4a·[(3a+2b)+(2a-b)]= 4a·(5a +b)= 4a·5a+4a·b=(20a2+4ab)(平方米).
答:这块长方形土地的面积为(20a2+4ab)平方米.
完整最新版课件
10
单项式乘以多项式的图形意义
例 如图121.22- .2 2单-项5式,与由多一 项式个相边乘长为 a 的小正方形与两个 长、宽分别为 a,b 的小长方形拼成长方形 ABCD,则整个 图 形可 表达 出一 些 有关 单项 式 与多 项式 相乘 的 公式 ,写 出 其中任意三个等式.
· (3) -12ab 23ab2-2ab+43b.
[解析] 要分清多项式的项,其每一项都应包括它前面 的符号;按乘法分配律,每两项之间用加号.
8.2.2 单项式与多项式相乘 (第2课时)课件(15张PPT)2023-2024学年沪科版七年级数
第 8 章 整式乘法与因式分解 8.2 整式乘法
8.2.2 单项式与多项式相乘 第2课时
学习导航
学习目标 新课导入 合作探究 当堂检测 课堂总结
一、学习目标
1.由单项式与多项式的乘法性质,探究多项式与单项式的除法; 2.能熟练运用多项式除以单项式的运算法则进行运算.(重点)
二、新课导入
复习回顾 1.单项式与多项式相乘,就是用单项式去 乘多项式的每一项 , 再把所得的 积 相加.
解: (1)原式=6a2b÷a + 3a÷a (2)原式=4x3y2÷(-2x2y)-x2y2÷(-2x2y)
=6ab + 3.
=-2xy +
1 2
y.
(3)(20m4n3-12m3n3+3m2n) ÷(-4m2n);
(3)原式=20m4n3÷(-4m2n)-12m3n3÷(-4m2n)+3m2n÷(-4m2n) =-5m2n2+3mn2 - 3 .
结论:多项式除以单项式,所得的商仍然是多项式,并且商的项数和原多项 式的项数相同.
三、合作探究
(4)如果某次多项式除以单项式计算得出的商乘以原单项式,得出的结果不 是原多项式,这次计算是否正确? 小技巧:多项式除以单项式与单项式乘以多项式是互逆运算,因此可用单项 式乘以多项式来验证多项式除以单项式的结果是否正确. (5)如何计算[4(x+y)7+6(x+y)6]÷2(x+y)3呢?谈谈你的思路. 把(x+y)看作一个整体,再利用多项式除以单项式法则进行计算. 拓展:多项式除以单项式的法则,可用公式(am+bm+cm)÷m=a+b+c表示. 当这里的m表示一个多项式时,同样也能套用公式计算.
8.2.2 单项式与多项式相乘 第2课时
学习导航
学习目标 新课导入 合作探究 当堂检测 课堂总结
一、学习目标
1.由单项式与多项式的乘法性质,探究多项式与单项式的除法; 2.能熟练运用多项式除以单项式的运算法则进行运算.(重点)
二、新课导入
复习回顾 1.单项式与多项式相乘,就是用单项式去 乘多项式的每一项 , 再把所得的 积 相加.
解: (1)原式=6a2b÷a + 3a÷a (2)原式=4x3y2÷(-2x2y)-x2y2÷(-2x2y)
=6ab + 3.
=-2xy +
1 2
y.
(3)(20m4n3-12m3n3+3m2n) ÷(-4m2n);
(3)原式=20m4n3÷(-4m2n)-12m3n3÷(-4m2n)+3m2n÷(-4m2n) =-5m2n2+3mn2 - 3 .
结论:多项式除以单项式,所得的商仍然是多项式,并且商的项数和原多项 式的项数相同.
三、合作探究
(4)如果某次多项式除以单项式计算得出的商乘以原单项式,得出的结果不 是原多项式,这次计算是否正确? 小技巧:多项式除以单项式与单项式乘以多项式是互逆运算,因此可用单项 式乘以多项式来验证多项式除以单项式的结果是否正确. (5)如何计算[4(x+y)7+6(x+y)6]÷2(x+y)3呢?谈谈你的思路. 把(x+y)看作一个整体,再利用多项式除以单项式法则进行计算. 拓展:多项式除以单项式的法则,可用公式(am+bm+cm)÷m=a+b+c表示. 当这里的m表示一个多项式时,同样也能套用公式计算.
八年级数学单项式乘以多项式优秀课件
南充五中 上官潇潇
八年级 数学
第十四章 整式的乘法
知识 & 回顾 ☞
单项式与单项式相乘: 单×单=(系数×系数)(同底数幂×同底数幂)(单独的幂)
口答计算结果:
2a5a3 1 0 a 4
3x2yn(2xy3) 6 x 3 y n 3
1 2
x(4x2
y)
2x3
y
[5(xy)2][2(xy)3] 1 0 ( x y ) 5
方法总结:在做乘法计算时,一定要注意单项式的 符号和多项式中每一项的符号,不要搞错.
练习3 化简求值:
例4: 如果(-3x)2(x2-2nx+2)的展开式中不含 x3项,求n的值.
解:(-3x)2(x2-2nx+2)
=9x2 (x2-2nx+2) =9x4-18nx3+18x2. ∵展开式中不含x3项,∴-18n=0. 即 n=0 方法总结:在整式乘法的混合运算中,要注意运算 顺序。注意当要求多项式中不含有哪一项时,那么 表示这一项的系数为0。
知识运用
如图,一块长方形地用来建造住宅、广场、商厦,求这块
地的面积。
解:4a[(3a+2b)+(2a-b)] =4a(5a+b) =4a·5a+4a·b =20a2+4ab, 答:这块地的面积为 4a
3a+2b 住宅用地
2a-b 人民广场 3a
20a2+4ab.
商业用地
课堂小结
整式 乘法
单项式× 单项式
类似的:
单项式与多项式相乘的法那么:
2a2(3单a项2-5式b与)=多2项a2式.3a相2乘+2,就a2是.(-用5单b)项=6式a分4-1别0a2b
(-2a2去)(乘3a多b2项-5式b的)=每(-一2a项2),再.3a把b所2 +得(的-2积a2相).加(-5. b)
八年级 数学
第十四章 整式的乘法
知识 & 回顾 ☞
单项式与单项式相乘: 单×单=(系数×系数)(同底数幂×同底数幂)(单独的幂)
口答计算结果:
2a5a3 1 0 a 4
3x2yn(2xy3) 6 x 3 y n 3
1 2
x(4x2
y)
2x3
y
[5(xy)2][2(xy)3] 1 0 ( x y ) 5
方法总结:在做乘法计算时,一定要注意单项式的 符号和多项式中每一项的符号,不要搞错.
练习3 化简求值:
例4: 如果(-3x)2(x2-2nx+2)的展开式中不含 x3项,求n的值.
解:(-3x)2(x2-2nx+2)
=9x2 (x2-2nx+2) =9x4-18nx3+18x2. ∵展开式中不含x3项,∴-18n=0. 即 n=0 方法总结:在整式乘法的混合运算中,要注意运算 顺序。注意当要求多项式中不含有哪一项时,那么 表示这一项的系数为0。
知识运用
如图,一块长方形地用来建造住宅、广场、商厦,求这块
地的面积。
解:4a[(3a+2b)+(2a-b)] =4a(5a+b) =4a·5a+4a·b =20a2+4ab, 答:这块地的面积为 4a
3a+2b 住宅用地
2a-b 人民广场 3a
20a2+4ab.
商业用地
课堂小结
整式 乘法
单项式× 单项式
类似的:
单项式与多项式相乘的法那么:
2a2(3单a项2-5式b与)=多2项a2式.3a相2乘+2,就a2是.(-用5单b)项=6式a分4-1别0a2b
(-2a2去)(乘3a多b2项-5式b的)=每(-一2a项2),再.3a把b所2 +得(的-2积a2相).加(-5. b)