(完整版)线性代数行列式第一章练习题答案
第1章行列式自测题(答案)
内容提要:一、行列式的定义1、2阶和3阶行列式2112221122211211a a a a a a a a D -==312312322113332211333231232221131211a a a a a a a a a a a a a a a a a a ++= 322311332112312213a a a a a a a a a ---2、排列与逆序定义 由n ,,3,2,1 组成的一个有序数组称为一个n 阶排列. 3、n 阶行列式定义定义 称∑-==nn n p p p np p p p p p nnn n nn a a a a a a a a a a a a D21212121)(212222111211)1(τ )det(ij a =为n 阶行列式,记作D 或n D .也记作)det(ij a .4、三角形行列式:主对角线元素的乘积。
二、行列式的性质 性质1 D D ='.性质2 互换行列式的某两行(或列),行列式仅变符号. 推论 若行列式中某两行(或列)相同,则行列式为零.性质3 行列式某行(列)的各元素乘以k ,等于用数k 乘以行列式.推论 行列式的某行(或列)各元素的公因子可以提到行列式符号外面相乘. 推论 若行列式的某两行(或列)的对应成元素成比例,则行列式为零.性质4 nnn n in i i nnnn n in i i n nnn n in in i i i i n a a a a a a a a a a a a a a a a a a21211121121211121121221111211βββαααβαβαβα+=+++性质5 将行列式的某行(或列)各元素乘以数k 加到另一行(或列)的对应元素上,行列式的值不变.三、行列式的展开定理定义 在n D 中划掉ij a 所在的行和列(即第i 行和第j 列),余下的元素按原来的相对位置构成一个(1-n )阶行列式,称为ij a 的余子式,记作ij M .ij j i ij M A +-=)1( ——ij a 的代数余子式定理1 in in i i i i A a A a A a D +++= 2211 (n i ,,2,1 =) →按第i 行展开 或 ni ni i i i i A a A a A a D +++= 2211 (n i ,,2,1 =) →按第i 列展开 推论 02211=+++jn in j i j i A a A a A a (j i ≠) 或 02211=+++nj ni j i j i A a A a A a (j i ≠) 四、Cramer 规则⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212********* (1) 定理 当0≠D 时,方程组(1)有唯一解D D x 11=,D Dx 22=,……,DD x n n =.推论 齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++000221122221211212111n nn n n nn n n x a x a x a x a x a x a x a x a x a (01=x ,02=x ,……,0=n x 显然是方程组的解,称为零解)1)0≠D ⇒仅有零解. 2)有非零解⇒0=D .《线性代数》单元自测题答案第一章 行列式一、填空题:1.设j i a a a a a 54435231是五阶行列式中带有负号的项,则i =________;j =_________。
线性代数第一章习题答案
线性代数第一章习题答案第一章:行列式答案第一节A 类题1 –42 3333c b a abc ---3 404 1 第二节A 类题 1 .(1) 7 (2) 4 (3)11 (4) (1)2n n -2.(1) i=8,j=3 (2) i=6,j=8B 类题1. (1)2n n -2. (1)n n -3.(1)2n n T --第三节A 类题1 (1)-3 ( 2)4433211244322311a a a a a a a a -- (3)45x (4)!)1(n n -2 (1)1123344255112335425414233142551423354251152331425 41523344251;;;;;a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a ---(2)5244312513a a a a a ;5441322513a a a a a ;5142342513a a a a a (3)负号“—” 3 0==b a 4 -2第五节A 类题1 (1)0 (2)-312(3)22x y (4)[]1(1)()n a n b a b -+-- (5) 2--n n a a(6) ∏∑==???? ?-ni i ni i a a a 1101 (7) 12 ()2'6x x F =3 δ33-=-ihgf e dc b aB 类题1把第n-1列的-1倍加到第n 列,第n-2列的-1倍加到第n-1列,----第一列的-1倍加到第二列,直接化为三角形行列式n 22)n 1-n 1+-)(()(2. ()∏∑==-??? ??+ni i ni i a x a x 113. 12122111)2(2122112121110)2(2--≥--=--+--≥-∑n n j ji n n c c i r r D .第六节A 类题1(1)1(2)44a b -(3)()()()()a b c b a c a c b ++---(4)按第一列展开()n n n y x 11+-+2 34M ,()61122112=-=+M A3.0B 类题1 31234()a a a a x x ++++2 按第n 行展开,即可,n n n n n n x x a x a x a x a a ++++++----11222213 ∏≥≥≥++-11121j i n j j i i n n n na b a b a a a第七节A 类题1()313,4,32;2=-==++=c b a c bx ax x f 2满足01113111121111=-=ba a D 的4)1+=a b ( 3 利用范德蒙德行列式计算,解是 4 -6 4 -1B 类题111112222333344440a b c d a b c d a b c d a b c d =章节测试题一选择题1D 2D 3A 4C 5c 二填空121D D D --= 2 –5 3 –3 4 2d 5 ()()n n n a a 1211--三计算1-∑=ni i n a a a a 10112()()()121+---n x x x3、将前n 列加到最后一列,再按最后一列展开得 n n n a a a n D 211)1)(1(-+=+.4 122123112154314321321------=n n n n n n n n nn D n =12212311215431432111112)1(-----+n n n n n nn n n n(各列加到第一列提取公因子=12212311215431432111112)1(-----+n n n n n nn n n n(从第n 行开始减去他的前一行)= 111111111111131111200012)1(nn n n n n n n -----+(按第一列展开)11111111111111112)1( nn n n n n ----+=21)1(12)1(+---n n n n n 四.解方程组(每题10分,共20分)1. 1,1,1;2,2,2,021531211113211321==-====-=≠=-=x x DDx D D D D2.21λ=或。
线性代数第1章行列式试卷及答案
第一章 行列式一、单项选择题1.行列式D 非零的充分条件是( D )(A) D 的所有元素非零 (B) D 至少有n 个元素非零 (C) D 的任何两行元素不成比例(D)以D 为系数矩阵的非齐次线性方程组有唯一解 2.二阶行列式1221--k k ≠0的充分必要条件是( C )A .k ≠-1B .k ≠3C .k ≠-1且k ≠3D .k ≠-1或≠3 3.已知2阶行列式2211b a b a =m ,2211c b c b =n ,则222111c a b c a b ++=( B )+n (m+n )4.设行列式==1111034222,1111304z y x zy x 则行列式( A ) A.32D.38 5.下列行列式等于零的是(D )A .100123123- B. 031010300- C . 100003010- D . 261422613-6.行列式111101111011110------第二行第一列元素的代数余子式21A =( B )A .-2B .-1C .1D .28.如果方程组⎪⎩⎪⎨⎧=+=-=-+0404033232321kx x x x x kx x 有非零解,则 k =( B )9.(考研题)行列式0000000a b abc d c d=( B ) A.()2ad bc -B.()2ad bc --C.2222a d b c -D.2222b c a d -二、填空题1.四阶行列式中带负号且含有因子12a 和21a 的项为 44332112a a a a 。
2. 行列式1112344916中(3,2)元素的代数余子式A 32=___-2___.3. 设7343690211118751----=D ,则5A 14+A24+A 44=_______。
解答:5A 14+A 24+A 44=1501343090211115751-=---4.已知行列式011103212=-a ,则数a =____3______.5.若a ,b 是实数,则当a =___且b =___时,有=---10100a b b a 0。
线性代数行列式习题+答案
第一章习题1-1.计算下列行列式(1)713501163.(2)4321651005311021.(3)222111ab c a b c . (4)2010411063143211111.(5)49362516362516925169416941.1-2.计算行列式abcdb a dc cd a b d c b a.1-3.计算n 阶行列式(1)n321332122211111.(2)14321432113213121321n nnn nn n n---.(3)21111121111211112------. 1-4. 证明:(1)2221112222221111112c b a c b a c b a b a a c c b b a a c c b b a a c cb =+++++++++.(2)321321321332321332321332321c c c b b b a a a c mc c lc kc c b mb b lb kb b a ma a la ka a =+++++++++.(3)222244441111a b c d a b c d a b c d ()()()()()()()b a c a d a c b d b d c a b c d =------+++.1-5.计算行列式xyy x y x y x 0000000000.1-6.计算4阶行列式112233440000000a b a b b a b a . 1-7. 如果行列式∆=nnn n nna a a a a a a a a212222111211,试用∆表示行列式nnn n n nn a a a a a a a a a a a a 11211213323122221的值. 1-8.利用克莱姆法则解线性方程组⎪⎪⎩⎪⎪⎨⎧=+-+-=+-=--=+-+067452296385243214324214321x x x x x x x x x x x x x x . 1-9. 问λ取何值时,齐次线性方程组可能有非零解?12120x x x x λλ+=⎧⎨+=⎩ 1-10.已知()413571200=10301004ij D a =,求11121314A A A A +++.第一章习题解答1-1.计算下列行列式(1)713501163(2)4321651005311021(3)2010411063143211111(4)49362516362516925169416941(5)222111a b c a b c .(1)解一 由三阶行列式定义得71350116330765311110335161709010154234.=⨯⨯+⨯⨯+⨯⨯-⨯⨯-⨯⨯-⨯⨯=++---=解二2331123361105105105361056317317018r r r r r r --↔==--23325105105018018340560034r r r r ↔-=-=-=-.(2)解213241120112011201135001510151015601560007123400330033r r r r r r -----==34120101512100330007r r ↔-==.(3)解43433232211111111111111234012301231361001360013141020014100014r r r r r r r r r r -----==4311110123100130001r r -==.(4)解43433232211491614916149164916253579357909162536579112222162536497911132222r r r r r r r r r r -----===.(5)解 222111()()()ab c c b c a b a a b c =---. 1-2.计算行列式abcdb a dc cd a b d c b a.解12341111()r r r r ab c d b a d c b a d c a b c d c d a b c d a bdcba dcba+++=+++41322110()c c c c c c b a bd a c b a b c d c d c a d b c dc db ca d------=+++------()a b d ac b a b cd d c a db c c db ca d---=+++------ 3221()000r r r r a b d a c b a b c d a b c da b c da b c d++---=+++--++--+--21()()(1)d a c b a b c d a b c d a b c da b c d+--=+++--+-+--+--[]()()()()()()()()().a b c d a b c d a b c d d a c b a b c d a b c d a b c d a b c d =-+++--++-----=+++--++---+-1-3.计算n 阶行列式(1)n321332122211111.(2)143214321132********n nn n nn n n---.(3)21111121111211112------.(1)解 1122111111111122201111123300111230001n n n n r r r r r r n------==. (2)解12123112312131113123111311(1)22341134123411341nc c c n n n n n n n n n n n n n n n n n n+++------+=2131112310100001200(1)2112001111n r r r r r r n n n n n n------+=--10001200(1)113021111n n n--+=--1(1)!(1).2n n -+=-(3)解 21111111112111021111211012111111210112n D +--+==---+-----+--, 按第一列展开成两个行列式得111111111211021111210121111112112n D -=+--------213111111032200320003n nr r r r r r n D +++-=+ 112122122333333n n n n n n n D D D -------=+=++=++++12212221333333512n n n n ----=++++=++++-12213313333111132n n n n ---+=++++++=+=-.1-4. 证明:(1)2221112222221111112c b a c b a c b a b a a c c b b a a c c b b a a c cb =+++++++++.证11111111111111112222222222222222b cc a a b b c a a b c c a a b b c c a a b b c a a b c c a a b b c c a a b b c a a b c c a a b ++++++++++=++++++++++++左= 1111111122222222b c a a c a a b b c a a c a a b b c a a c a a b ++=+++++111111222222bc a c a b b c a c a b b c a c a b =+1112222a b c a b c a b c ==右. (2)321321321332321332321332321c c c b b b a a a c mc c lc kc c b mb b lb kb b a ma a la ka a =+++++++++. 证 1323123233122312323312231232331223c lc c mc a ka la a ma a a ka a a b kb lb b mb b b kb b b c kc lc c mc c c kc c c --+++++++=+++++左=12123123123c kc a a a b b b c c c -==右. (3)222244441111a b c d abcda b c d ()()()()()()()b a c a d a c b d b d c a b c d =------+++.证 243322122224444222222222111111110=()()()0()()()r a r r ar r ar a b c d b a c a d a a b c d b b a c c a d d a a b c d b b a c c a d d a ------=------左222222222()()()()()()b ac ad a b b a c c a d d a b b a c c a d d a ---=------222111()()()()()()b ac ad a bcdb b ac c ad d a =---+++21222111()()()()()()r ar b a c a d a b ac ad ab b ac c ad d a +=---++++++23121()2222111()()()00()()()()r b r r b a r b a c a d a c bd bc b c ad b d a --+=------+-+2222()()()()()()()c bd bb ac ad a c b c a d b d a --=----+-+[]222211()()()()()()()()()()()()()()()()()()()()()()()()()()()()(b a c a d a c b d b c b c a d b d a b a c a d a c b d b d b d a c b c a b a c a d a c b d b d ad bd ab c ac bc ab b a c a d a c b d b d ad bd c ac bc b a =-----++++=-----++-++⎡⎤=-----+++----⎣⎦⎡⎤=-----++---⎣⎦=-)()()()()()()c a d a c b d b d c a b c d -----+++=右.1-5.计算行列式xyy x y x y x 0000000000.解 记000000000n x y x y D x y y x=,当1n =时,1D x =;当2n ≥时,按第1列展开得000000000000000n x y x y x y xyD x x y xyx==100000(1)0000n y x y y y xy++-1(1)n n n x y +=+-.1-6.计算4阶行列式1122334400000000a b a b b a b a . 解11222222111413313333444400000(1)0(1)000a b a b a b a b a b a b b a b a a b b a ++=-+- 2222333114143333(1)(1)a b a b a a b b b a b a ++=⨯--⨯-()()142323142323a a a a b b bb a a b b =---14142323()()a a b b a a b b =--.1-7. 如果行列式∆=nnn n nna a a a a a a a a212222111211,试用∆表示行列式nnn n n nn a a a a a a a a a a a a 11211213323122221的值.解112212122211121313232122211121211121(1)(1)n n n n r r n r r n n r r n n n n n nn n n nnna a a a a a a a a a a a a a a a a a a a a ---↔↔↔--=-=-∆.1-8.利用克莱姆法则解线性方程组⎪⎪⎩⎪⎪⎨⎧=+-+-=+-=--=+-+067452296385243214324214321x x x x x x x x x x x x x x .解 方程组的系数行列式2151130627002121476D ---==≠--,181********52120476D ---==---,2285119061080512176D --==----,321811396270252146D --==--,4215813092702151470D --==---,方程组的解为12343,4,1,1x x x x ==-=-=.1-9. 问λ取何值时,齐次线性方程组可能有非零解?12120x x x x λλ+=⎧⎨+=⎩解 方程组的系数行列式211(1)(1)1D λλλλλ==-=+-,当1λ=或1λ=-时,0D =,方程组可能有非零解.1-10. 已知()413571200=10301004ij D a =,求11121314A A A A +++.解 1234411122341112131411111111112000200==103000301004004k c c c c k A A A A =----+++∑=-2.。
线性代数第一章习题参考答案
解:4234231142342311)1342(4432231144322311)1324()1()1(a a a a a a a a a a a a a a a a =--=-ττ4.计算abcdef abcdef abcdef abcdef efcf bfde cd bdae ac ab r r r r c c c r f r d r a c ec c c b 420020111111111111111111111)1(12133213213211,1,11,1,1-=--=--=---=-----++5.求解下列方程10132301311113230121111112121)1(12322+-++-++=+-++-+=+-+-+++x x x x x x x x x x x x c c r r 1132104201)3(113210111)3(21+-+--++=+-+-++=-x x x x x x x x x r r 3,3,30)3)(3(11421)3(3212-==-==-+=+---++=x x x x x x x x x 得二列展开cx b x a x b c a c a b x c x b x a c b a x c b a x c b a x ====------=32133332222,,0))()()()()((1111)2(得四阶范得蒙行列式6.证明322)(11122)1(b a b b a a b ab a -=+右左证明三行展开先后=-=-=-----=----=+=+--323322222)(11)()()()1(100211122)1(:2132b a b a b a ba ba b a b b a a b b a b a b b ab ab a b b a ab ab ac c c c1432222222222222222222222222(1)(2)(3)(1)2369(1)(2)(3)(1)2369(3))(1)(2)(3)(1)2369(1)(2)(3)(1)2369c c c ca a a a a a a ab b b b b b b b cc c c cc c cd d d d d d d d --++++++++++++==++++++++++++二三列成比例))()()()()()((1111)4(44442222d c b a d c d b c b d a c a b a d c b a dcbad c b a D +++------==44444333332222211111)(x d c b a xdcbax d c b a x d c b a x f 五阶范得蒙行列式解考虑函数=(5)))()()()()()(())()()()()()(()()())()()()()()()()()((454545453453d c d b c b d a c a b a d c b a A M D d c d b c b d a c a b a d c b a A ,A x x f ,Mx x f D a b b c a b c d b d a d d x c x b x a x ------+++-==------+++-=----------=于是的系数是中而对应的余子式中是(5)n n a a a a a xx x x 12101000000000100001----解:nn n n n n n n n n nn x a x a a x a x a a a a a a a xx x x D +++=-++--+--=---=+++-++++-10)1()1(1211110121)1()1()1()1()1(1000000000100001按最后一行展开7、设n 阶行列式)det(ij a D =把D 的上下翻转、或逆时针旋转090、或依副对角线翻转、依次得111131111211111,,a a a a D a a a a D a a a a D n n nn n nn n nnnn=== 证明D D D D D n n =-==-32)1(21,)1(证明:将D 上下翻转,相当于将对D 的行进行)1(21-n n 相邻对换得1D ,故D D n nn 2)1(1)1(--=将D 逆时针旋转090相当于将T D 上下翻转,故D n n D n n D T 2)1(2)1(2-=-=D 依副对角线翻转相当于将D 逆时针旋转090变为2D , 然后再2D 左右翻转变为3D ,故D D D D n n n n n n =--=-=---2)1(2)1(22)1(3)1()1()1(8、计算下列行列式(k D 为k 阶行列式)(1)aa D n 11=,其中对角线上元素都是a ,未写出的元素都是0;解:)1()1(0100)1(1122211111-=-+=-+==--++-+a a a a a aa a a D n n n n n n n n n n 列展开按行展开按(2)x a a a x a a a x D n=解:xaa x a a a n x x a aa x a a a x D nc c c n111])1([21-+==+++12)]()1([0001])1([1--≥--+=---+=n r r k a x a n x ax a x a a a n x k(3)111111)()1()1()()1()1(11111n a n a a a n a n a a a n a n a a a D n n n n n nnm n -+---+---+--=----+解:11111(1)(1)22111111(1)(1)()(1)(1)()111111111111()()()((1)(1)()(1)(1)()n nnn n n n n n n n n n n j i n n n n mnnna a a n a n a a a n a n D a a a n a n a a a n a n j i a a a n a n a a a n a n ----++++≥>≥------+---+-=--+---+-=-=--=--+---+-∏上下翻11)n j i i j +≥>≥-∏(4)n n nnn d c d c b a b a D11112=(未写出的均为0)解:)1(2)1(211112)(02232--↔↔-===n n n n n n n nnn r r c c nnnnn D c b d a D d c b a d c d c b a b a D mn得递推公式)1(22)(--=n n n n n n D c b d a D ,而11112c b d a D -=递归得∏=-=ni i i i i n c b d a D 12)((5)det(),||n ij ij D a a i j ==-解111,2,,1120121111110121111210311111230123010001200(1)(1)211201231i i j r r n i n c c n n n n D n n n n n n n n n n n n +-=-+-------==-------------==---------解:11211*222,3,,1111111(6)1111111111101111000111100:01111i n nr r n i n nna a D a a a a a D D a a -=+++=++-+-===+-解111211121,2,,12111(1)1110001(1)0000i inc c na n i ni ina a a a a a a a a a ++==++++==+∑9.设3351110232152113-----=D ,D 的),(j i 元的代数余子式为ij A ,求44333231223A A A A +-+解:24335122313215211322344333231=-----=+-+A A A A。
线性代数课后习题1-4作业答案(高等教育出版社)
第一章 行列式1. 利用对角线法则计算下列三阶行列式: (1)381141102---;解 381141102---=2⨯(-4)⨯3+0⨯(-1)⨯(-1)+1⨯1⨯8 -0⨯1⨯3-2⨯(-1)⨯8-1⨯(-4)⨯(-1) =-24+8+16-4=-4. (3)222111c b a c b a ; 解 222111c b a c b a=bc 2+ca 2+ab 2-ac 2-ba 2-cb 2 =(a -b )(b -c )(c -a ).4. 计算下列各行列式:(1)71100251020214214; 解 7110251020214214010014231020211021473234-----======c c c c 34)1(143102211014+-⨯---= 143102211014--=01417172001099323211=-++======c c c c .(2)2605232112131412-;解 2605232112131412-260503212213041224--=====c c 041203212213041224--=====r r 000003212213041214=--=====r r . (3)efcf bf de cd bd aeac ab ---;解 ef cf bf de cd bd ae ac ab ---e c b e c b ec b adf ---=abcdef adfbce 4111111111=---=.(4)dc b a 100110011001---. 解d c b a 100110011001---dc b aab ar r 10011001101021---++===== dc a ab 101101)1)(1(12--+--=+01011123-+-++=====cd c ada ab dc ccdad ab +-+--=+111)1)(1(23=abcd +ab +cd +ad +1. 6. 证明:(1)1112222b b a a b ab a +=(a -b )3;证明1112222b b a a b ab a +00122222221213a b a b a a b a ab a c c c c ------=====ab a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--==(a -b )3 . (2)y x z x z y zy x b a bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax )(33+=+++++++++;证明bzay by ax bx az by ax bx az bz ay bxaz bz ay by ax +++++++++bz ay by ax x by ax bx az z bxaz bz ay y b bz ay by ax z by ax bx az y bx az bz ay x a +++++++++++++=bz ay y x by ax x z bxaz z y b y by ax z x bx az y z bz ay x a +++++++=22z y x y x z xz y b y x z x z y z y x a 33+=y x z x z y zy x b y x z x z y z y x a 33+=yx z x z y zy x b a )(33+=.8. 计算下列各行列式(D k 为k 阶行列式): (1)aa D n 1 1⋅⋅⋅=, 其中对角线上元素都是a , 未写出的元素都是0; 解aa a a a D n 0 0010 000 00 000 0010 00⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=(按第n 行展开) )1()1(10 000 00 000 0010 000)1(-⨯-+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=n n n aa a )1()1(2 )1(-⨯-⋅⋅⋅⋅-+n n n a a an n n nn a a a+⋅⋅⋅-⋅-=--+)2)(2(1)1()1(=a n -a n -2=a n -2(a 2-1).(2)xa a a x a a a xD n ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= ; 解 将第一行乘(-1)分别加到其余各行, 得 ax x a ax x a a x x a a a a x D n --⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--⋅⋅⋅--⋅⋅⋅=000 0 00 0, 再将各列都加到第一列上, 得ax ax a x aaa a n x D n -⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-+=0000 0 0000 )1(=[x +(n -1)a ](x -a )n 第二章 矩阵及其运算 1. 计算下列乘积:(5)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ;解⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x=(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=.2. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B , 求3AB -2A 及A TB .解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503, ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T . 3.已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x ,⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y , 求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换.解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z ,所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .4.设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问: (1)AB =BA 吗? 解 AB ≠BA .因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA .(3)(A +B )(A -B )=A 2-B 2吗? 解 (A +B )(A -B )≠A 2-B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A ,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A ,而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A ,故(A +B )(A -B )≠A 2-B 2.5. 举反列说明下列命题是错误的: (1)若A 2=0, 则A =0;解 取⎪⎭⎫ ⎝⎛=0010A , 则A 2=0, 但A ≠0. (2)若A 2=A , 则A =0或A =E ;解 取⎪⎭⎫ ⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y .解 取⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y ,则AX =AY , 且A ≠0, 但X ≠Y .7. 设⎪⎪⎭⎫⎝⎛=λλλ001001A , 求A k .解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫⎝⎛=222002012λλλλλ,⎪⎪⎭⎫⎝⎛=⋅=3232323003033λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=43423434004064λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=545345450050105λλλλλλA A A ,⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=kA kk kk k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫. 用数学归纳法证明: 当k =2时, 显然成立. 假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A⎪⎪⎪⎪⎭⎫⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ,由数学归纳法原理知:⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121.8. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵.证明 因为A T =A , 所以(B T AB )T =B T (B T A )T =B T A T B =B T AB , 从而B T AB 是对称矩阵. 11. 求下列矩阵的逆矩阵:(1)⎪⎭⎫ ⎝⎛5221; 解 ⎪⎭⎫ ⎝⎛=5221A . |A |=1, 故A -1存在. 因为 ⎪⎭⎫⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A ,故 *||11A A A =-⎪⎭⎫ ⎝⎛--=1225. (3)⎪⎪⎭⎫⎝⎛---145243121; 解 ⎪⎪⎭⎫⎝⎛---=145243121A . |A |=2≠0, 故A -1存在. 因为⎪⎪⎭⎫⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A ,所以 *||11A A A =-⎪⎪⎪⎭⎫ ⎝⎛-----=1716213213012.(4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n ≠0) .解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021, 由对角矩阵的性质知 ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 . 12. 利用逆矩阵解下列线性方程组: (1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为 ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x ,故 ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x ,从而有 ⎪⎩⎪⎨⎧===001321x x x .19.设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11. 解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A =P Λ11P -1.|P |=3, ⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P ,而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=Λ11111120 012001,故 ⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731. 20. 设AP =P Λ, 其中⎪⎪⎭⎫⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511, 求ϕ(A )=A 8(5E -6A +A 2). 解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)] =diag(1,1,58)diag(12,0,0)=12diag(1,0,0). ϕ(A )=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ⎪⎪⎭⎫ ⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫⎝⎛=1111111114.21. 设A k =O (k 为正整数), 证明(E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1. 证明 因为A k =O , 所以E -A k =E . 又因为 E -A k =(E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1), 所以 (E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E , 由定理2推论知(E -A )可逆, 且 (E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A )-1(E -A ).另一方面, 由A k =O , 有E =(E -A )+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(A k -1-A k ) =(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ), 故 (E -A )-1(E -A )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ), 两端同时右乘(E -A )-1, 就有(E -A )-1(E -A )=E +A +A 2+⋅ ⋅ ⋅+A k -1.22. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E )-1.证明 由A 2-A -2E =O 得 A 2-A =2E , 即A (A -E )=2E , 或 E E A A =-⋅)(21,由定理2推论知A 可逆, 且)(211E A A -=-.由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E )(A -3E )=-4E , 或 E A E E A =-⋅+)3(41)2(由定理2推论知(A +2E )可逆, 且)3(41)2(1A E E A -=+-.证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得 |A 2-A |=2, 即 |A ||A -E |=2, 故 |A |≠0,所以A 可逆, 而A +2E =A 2, |A +2E |=|A 2|=|A |2≠0, 故A +2E 也可逆. 由 A 2-A -2E =O ⇒A (A -E )=2E⇒A -1A (A -E )=2A -1E ⇒)(211E A A -=-,又由 A 2-A -2E =O ⇒(A +2E )A -3(A +2E )=-4E ⇒ (A +2E )(A -3E )=-4 E ,所以 (A +2E )-1(A +2E )(A -3E )=-4(A +2 E )-1, )3(41)2(1A E E A -=+-.第三章 矩阵的初等变换与线性方程组 1. 把下列矩阵化为行最简形矩阵:(1)⎪⎪⎭⎫⎝⎛--340313021201;解 ⎪⎪⎭⎫⎝⎛--340313021201(下一步: r 2+(-2)r 1, r 3+(-3)r 1. )~⎪⎪⎭⎫⎝⎛---020*********(下一步: r 2÷(-1), r 3÷(-2). )~⎪⎪⎭⎫⎝⎛--010*********(下一步: r 3-r 2. )~⎪⎪⎭⎫⎝⎛--300031001201(下一步: r 3÷3. )~⎪⎪⎭⎫⎝⎛--100031001201(下一步: r 2+3r 3. )~⎪⎪⎭⎫⎝⎛-100001001201(下一步: r 1+(-2)r 2, r 1+r 3. )~⎪⎪⎭⎫⎝⎛100001000001.(3)⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311; 解 ⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311(下一步: r 2-3r 1, r 3-2r 1, r 4-3r 1. )~⎪⎪⎪⎭⎫⎝⎛--------1010500663008840034311(下一步: r 2÷(-4), r 3÷(-3) , r 4÷(-5). )~⎪⎪⎪⎭⎫⎝⎛-----22100221002210034311(下一步: r 1-3r 2, r 3-r 2, r 4-r 2. )~⎪⎪⎪⎭⎫⎝⎛---00000000002210032011. 3. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x ,⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y , 求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换.解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z ,所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .4. 试利用矩阵的初等变换, 求下列方阵的逆矩阵:(1)⎪⎪⎭⎫⎝⎛323513123;解 ⎪⎪⎭⎫ ⎝⎛100010001323513123~⎪⎪⎭⎫⎝⎛---101011001200410123~⎪⎪⎭⎫ ⎝⎛----1012002110102/102/3023~⎪⎪⎭⎫⎝⎛----2/102/11002110102/922/7003~⎪⎪⎭⎫⎝⎛----2/102/11002110102/33/26/7001故逆矩阵为⎪⎪⎪⎪⎭⎫ ⎝⎛----21021211233267.(2)⎪⎪⎪⎭⎫ ⎝⎛-----1210232112201023.解 ⎪⎪⎪⎭⎫ ⎝⎛-----10000100001000011210232112201023~⎪⎪⎪⎭⎫ ⎝⎛----00100301100001001220594012102321~⎪⎪⎪⎭⎫ ⎝⎛--------20104301100001001200110012102321~⎪⎪⎪⎭⎫ ⎝⎛-------106124301100001001000110012102321 ~⎪⎪⎪⎭⎫⎝⎛----------10612631110`1022111000010000100021 ~⎪⎪⎪⎭⎫⎝⎛-------106126311101042111000010000100001 故逆矩阵为⎪⎪⎪⎭⎫⎝⎛-------10612631110104211. 5. (2)设⎪⎪⎭⎫ ⎝⎛---=433312120A , ⎪⎭⎫ ⎝⎛-=132321B , 求X 使XA =B . 解 考虑A T X T =B T . 因为⎪⎪⎭⎫ ⎝⎛----=134313*********) ,(T T B A ⎪⎪⎭⎫⎝⎛---411007101042001 ~r ,所以 ⎪⎪⎭⎫⎝⎛---==-417142)(1T T T B A X ,从而 ⎪⎭⎫ ⎝⎛---==-4741121BA X . 9. 求作一个秩是4的方阵, 它的两个行向量是(1, 0, 1, 0, 0), (1, -1, 0, 0, 0).解 用已知向量容易构成一个有4个非零行的5阶下三角矩阵:⎪⎪⎪⎪⎭⎫ ⎝⎛-0000001000001010001100001, 此矩阵的秩为4, 其第2行和第3行是已知向量.12. 设⎪⎪⎭⎫⎝⎛----=32321321k k k A , 问k 为何值, 可使(1)R (A )=1; (2)R (A )=2; (3)R (A )=3.解 ⎪⎪⎭⎫ ⎝⎛----=32321321k k k A ⎪⎪⎭⎫ ⎝⎛+-----)2)(1(0011011 ~k k k k k r . (1)当k =1时, R (A )=1; (2)当k =-2且k ≠1时, R (A )=2; (3)当k ≠1且k ≠-2时, R (A )=3. P106/ 1.已知向量组A : a 1=(0, 1, 2, 3)T , a 2=(3, 0, 1, 2)T , a 3=(2, 3, 0, 1)T ;B : b 1=(2, 1, 1, 2)T , b 2=(0, -2, 1, 1)T , b 3=(4, 4, 1, 3)T , 证明B 组能由A 组线性表示, 但A 组不能由B 组线性表示.证明 由 ⎪⎪⎪⎭⎫⎝⎛-=312123111012421301402230) ,(B A ⎪⎪⎪⎭⎫ ⎝⎛-------971820751610402230421301~r ⎪⎪⎪⎭⎫⎝⎛------531400251552000751610421301 ~r ⎪⎪⎪⎭⎫ ⎝⎛-----000000531400751610421301~r 知R (A )=R (A , B )=3, 所以B 组能由A 组线性表示.由⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛-=000000110201110110220201312111421402~~r r B 知R (B )=2. 因为R (B )≠R (B , A ), 所以A 组不能由B 组线性表示. 4. 判定下列向量组是线性相关还是线性无关: (1) (-1, 3, 1)T , (2, 1, 0)T , (1, 4, 1)T ; (2) (2, 3, 0)T , (-1, 4, 0)T , (0, 0, 2)T .解 (1)以所给向量为列向量的矩阵记为A . 因为⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=000110121220770121101413121~~r r A ,所以R (A )=2小于向量的个数, 从而所给向量组线性相关. (2)以所给向量为列向量的矩阵记为B . 因为022200043012||≠=-=B ,所以R (B )=3等于向量的个数, 从而所给向量组线性相无关.5. 问a 取什么值时下列向量组线性相关? a 1=(a , 1, 1)T , a 2=(1, a , -1)T , a 3=(1, -1, a )T . 解 以所给向量为列向量的矩阵记为A . 由)1)(1(111111||+-=--=a a a aa a A知, 当a =-1、0、1时, R (A )<3, 此时向量组线性相关.9.设b 1=a 1+a 2, b 2=a 2+a 3, b 3=a 3+a 4, b 4=a 4+a 1, 证明向量组b 1, b 2, b 3, b 4线性相关.证明 由已知条件得a 1=b 1-a 2, a 2=b 2-a 3, a 3=b 3-a 4, a 4=b 4-a 1,于是 a 1 =b 1-b 2+a 3 =b 1-b 2+b 3-a 4 =b 1-b 2+b 3-b 4+a 1, 从而 b 1-b 2+b 3-b 4=0,这说明向量组b 1, b 2, b 3, b 4线性相关.11.(1) 求下列向量组的秩, 并求一个最大无关组:(1)a 1=(1, 2, -1, 4)T , a 2=(9, 100, 10, 4)T , a 3=(-2, -4, 2, -8)T ; 解 由⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛----=000000010291032001900820291844210141002291) , ,(~~321r r a a a , 知R (a 1, a 2, a 3)=2. 因为向量a 1与a 2的分量不成比例, 故a 1, a 2线性无关, 所以a 1, a 2是一个最大无关组.12.利用初等行变换求下列矩阵的列向量组的一个最大无关组:(1)⎪⎪⎪⎭⎫⎝⎛4820322513454947513253947543173125;解 因为⎪⎪⎪⎭⎫ ⎝⎛482032251345494751325394754317312513121433~r r r r r r ---⎪⎪⎪⎭⎫ ⎝⎛531053103210431731253423~rr r r --⎪⎪⎪⎭⎫ ⎝⎛00003100321043173125, 所以第1、2、3列构成一个最大无关组.(2)⎪⎪⎪⎭⎫⎝⎛---140113*********12211. 解 因为⎪⎪⎪⎭⎫ ⎝⎛---1401131302151201221113142~rr r r --⎪⎪⎪⎭⎫ ⎝⎛------222001512015120122112343~rr r r +↔⎪⎪⎪⎭⎫ ⎝⎛---00000222001512012211, 所以第1、2、3列构成一个最大无关组. 13. 设向量组(a , 3, 1)T , (2, b , 3)T , (1, 2, 1)T , (2, 3, 1)T的秩为2, 求a , b .解 设a 1=(a , 3, 1)T , a 2=(2, b , 3)T , a 3=(1, 2, 1)T , a 4=(2, 3, 1)T . 因为⎪⎪⎭⎫ ⎝⎛----⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=52001110311161101110311131********) , , ,(~~2143b a a b a b a r r a a a a ,而R (a 1, a 2, a 3, a 4)=2, 所以a =2, b =5. 20.求下列齐次线性方程组的基础解系: (1)⎪⎩⎪⎨⎧=-++=-++=++-02683054202108432143214321x x x x x x x x x x x x ;解 对系数矩阵进行初等行变换, 有⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛---=00004/14/3100401 2683154221081~r A ,于是得⎩⎨⎧+=-=43231)4/1()4/3(4x x x x x .取(x 3, x 4)T =(4, 0)T , 得(x 1, x 2)T =(-16, 3)T ; 取(x 3, x 4)T =(0, 4)T , 得(x 1, x 2)T =(0, 1)T . 因此方程组的基础解系为ξ1=(-16, 3, 4, 0)T , ξ2=(0, 1, 0, 4)T .(2)⎪⎩⎪⎨⎧=-++=-++=+--03678024530232432143214321x x x x x x x x x x x x .解 对系数矩阵进行初等行变换, 有⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛----=000019/719/141019/119/201 367824531232~r A ,于是得⎩⎨⎧+-=+-=432431)19/7()19/14()19/1()19/2(x x x x x x .取(x 3, x 4)T =(19, 0)T , 得(x 1, x 2)T =(-2, 14)T ; 取(x 3, x 4)T =(0, 19)T , 得(x 1, x 2)T =(1, 7)T . 因此方程组的基础解系为ξ1=(-2, 14, 19, 0)T , ξ2=(1, 7, 0, 19)T .26. 求下列非齐次方程组的一个解及对应的齐次线性方程组的基础解系:(1)⎪⎩⎪⎨⎧=+++=+++=+3223512254321432121x x x x x x x x x x ;解 对增广矩阵进行初等行变换, 有⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛=2100013011080101 322351211250011~r B . 与所给方程组同解的方程为⎪⎩⎪⎨⎧=+=--=213 843231x x x x x . 当x 3=0时, 得所给方程组的一个解η=(-8, 13, 0, 2)T . 与对应的齐次方程组同解的方程为⎪⎩⎪⎨⎧==-=043231x x x x x . 当x 3=1时, 得对应的齐次方程组的基础解系ξ=(-1, 1, 1, 0)T .(2)⎪⎩⎪⎨⎧-=+++-=-++=-+-6242163511325432143214321x x x x x x x x x x x x . 解 对增广矩阵进行初等行变换, 有⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-----=0000022/17/11012/17/901 6124211635113251~r B . 与所给方程组同解的方程为⎩⎨⎧--=++-=2)2/1((1/7)1)2/1()7/9(432431x x x x x x . 当x 3=x 4=0时, 得所给方程组的一个解η=(1, -2, 0, 0)T .与对应的齐次方程组同解的方程为⎩⎨⎧-=+-=432431)2/1((1/7))2/1()7/9(x x x x x x . 分别取(x 3, x 4)T =(1, 0)T , (0, 1)T , 得对应的齐次方程组的基础解系ξ1=(-9, 1, 7, 0)T . ξ2=(1, -1, 0, 2)T .。
(完整版)线性代数课后习题答案第1——5章习题详解
第一章 行列式4.计算下列各行列式:(1)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢7110025*********4; (2)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢-265232112131412; (3)⎥⎥⎦⎥⎢⎢⎣⎢---ef cf bf de cd bd ae ac ab ; (4)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢---d c b a100110011001解(1)7110025102021421434327c c c c --0100142310202110214---=34)1(143102211014+-⨯---=143102211014-- 321132c c c c ++1417172001099-=0(2)2605232112131412-24c c -2605032122130412-24r r -0412032122130412- 14r r -0000032122130412-=0(3)ef cf bf de cd bd ae ac ab ---=ec b e c b ec b adf ---=111111111---adfbce =abcdef 4(4)d c b a 100110011001---21ar r +dc b a ab 100110011010---+=12)1)(1(+--dc a ab 10111--+23dc c +010111-+-+cd c ada ab =23)1)(1(+--cdadab +-+111=1++++ad cd ab abcd5.证明: (1)1112222b b a a b ab a +=3)(b a -; (2)bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax +++++++++=y x z x z y z y x b a )(33+;(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ;(4)444422221111d c b a d c b a d c b a ))()()()((d b c b d a c a b a -----=))((d c b a d c +++-⋅;(5)1221100000100001a x a a a a x x x n n n +-----n n n n a x a x a x ++++=--111 . 证明(1)00122222221312a b a b a a b a ab a c c c c ------=左边a b a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--=右边=-=3)(b a(2)bz ay by ax z by ax bx az y bx az bz ay x a ++++++分开按第一列左边bzay by ax x by ax bx az z bxaz bz ay y b +++++++ ++++++002y by ax z x bx az y z bz ay x a 分别再分bzay y x by ax x z bxaz z y b +++z y x y x z x z y b y x z x z y z y x a 33+分别再分右边=-+=233)1(yx z x z y zy x b y x z x z y z y x a(3) 2222222222222222)3()2()12()3()2()12()3()2()12()3()2()12(++++++++++++++++=d d d d d c c c c c b b b b b a a a a a 左边9644129644129644129644122222141312++++++++++++---d d d d c c c c b b b b a a a a c c c c c c 964496449644964422222++++++++d d d d c c c c b b b b a a a a 分成二项按第二列964419644196441964412222+++++++++d d d c c c b b b a a a 949494949464222224232423d d c c b b a a c c c c c c c c ----第二项第一项06416416416412222=+ddd c c c bb b a a a (4) 444444422222220001ad a c a b a ad a c a b a ad a c a b a ---------=左边=)()()(222222222222222a d d a c c a b b a d a c a b ad a c a b --------- =)()()(111))()((222a d d a c c a b b a d a c ab a d ac a b ++++++--- =⨯---))()((ad a c a b )()()()()(00122222a b b a d d a b b a c c a b b bd b c a b +-++-++--+ =⨯-----))()()()((b d b c a d a c a b )()()()(112222b d a b bd d b c a b bc c ++++++++=))()()()((d b c b d a c a b a -----))((d c b a d c +++-(5) 用数学归纳法证明.,1,2212122命题成立时当a x a x a x a x D n ++=+-==假设对于)1(-n 阶行列式命题成立,即 ,122111-----++++=n n n n n a x a x a x D:1列展开按第则n D1110010001)1(11----+=+-x xa xD D n n n n 右边=+=-n n a xD 1 所以,对于n 阶行列式命题成立.6.设n 阶行列式)det(ij a D =,把D 上下翻转、或逆时针旋转 90、或依副对角线翻转,依次得n nn n a a a a D 11111 =, 11112n nn n a a a a D = ,11113a a a a D n nnn =,证明D D D D D n n =-==-32)1(21,)1(.证明 )det(ij a D =nnn n nn n nn n a a a a a a a a a a D 2211111111111)1(--==∴ =--=--nnn n nnn n a a a a a a a a 331122111121)1()1( nnn n n n a a a a 111121)1()1()1(---=--D D n n n n 2)1()1()2(21)1()1(--+-+++-=-=同理可证nnn n n n a a a a D 11112)1(2)1(--=D D n n T n n 2)1(2)1()1()1(---=-= D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(7.计算下列各行列式(阶行列式为k D k ):(1)a aD n 11=,其中对角线上元素都是a ,未写出的元素都是0;(2)xaaax aa a x D n=; (3) 1111)()1()()1(1111n a a a n a a a n a a a D n n n n n n n ------=---+; 提示:利用范德蒙德行列式的结果. (4) nnnnn d c d c b a b a D000011112=; (5)j i a a D ij ij n -==其中),det(;(6)nn a a a D +++=11111111121 ,021≠n a a a 其中.解(1) aa a a a D n 00010000000000001000 =按最后一行展开)1()1(100000000000010000)1(-⨯-+-n n n aa a)1)(1(2)1(--⋅-+n n na aa(再按第一行展开)n n n nn a a a+-⋅-=--+)2)(2(1)1()1(2--=n n a a )1(22-=-a a n(2)将第一行乘)1(-分别加到其余各行,得ax x a ax x a a x x a aa a x D n ------=0000000 再将各列都加到第一列上,得ax ax a x aaa a n x D n ----+=000000000)1( )(])1([1a x a n x n --+=- (3) 从第1+n 行开始,第1+n 行经过n 次相邻对换,换到第1行,第n 行经)1(-n 次对换换到第2行…,经2)1(1)1(+=++-+n n n n 次行交换,得 nn n n n n n n n n a a a n a a a n a a aD )()1()()1(1111)1(1112)1(1-------=---++此行列式为范德蒙德行列式∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏∏≥>≥+++-++≥>≥++-•-•-=---=111)1(2)1(112)1()][()1()1()]([)1(j i n n n n n j i n n n j i j i∏≥>≥+-=11)(j i n j i(4) nn nnn d c d c b a b a D 011112=nn n n n nd d c d c b a b a a 0000000011111111----展开按第一行0000)1(1111111112c d c d c b a b a b nn n n n nn ----+-+2222 ---n n n n n n D c b D d a 都按最后一行展开由此得递推公式:222)(--=n n n n n n D c b d a D即 ∏=-=ni i i iin D c b da D 222)(而 111111112c b d a d c b a D -==得 ∏=-=ni i i i i n c b d a D 12)((5)j i a ij -=432140123310122210113210)det( --------==n n n n n n n n a D ij n ,3221r r r r --0432111111111111111111111 --------------n n n n,,141312c c c c c c +++152423210222102210002100001---------------n n n n n =212)1()1(----n n n(6)nn a a D a +++=11111111121,,433221c c c c c c ---n n n n a a a a a a a a a a +-------10000100010000100010001000011433221 展开(由下往上)按最后一列))(1(121-+n n a a a a nn n a a a a a a a a a --------00000000000000000000000000022433221 nn n a a a a a a a a ----+--000000000000000001133221 ++ nn n a a a a a a a a -------000000000000000001143322n n n n n n a a a a a a a a a a a a 322321121))(1(++++=---)11)((121∑=+=ni in a a a a8.用克莱姆法则解下列方程组:⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++;01123,2532,242,5)1(4321432143214321x x x x x x x x x x x x x x x x ⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=++=++=++=+.15,065,065,065,165)2(5454343232121x x x x x x x x x x x x x解 (1)11213513241211111----=D 8120735032101111------=145008130032101111---=1421420005410032101111-=---= 112105132412211151------=D 11210513290501115----=1121023313090509151------=2331309050112109151------=1202300461000112109151-----=14200038100112109151----=142-=112035122412111512-----=D 811507312032701151-------=3139011230023101151-=2842840001910023101151-=----=426110135232422115113-=----=D ; 14202132132212151114=-----=D1,3,2,144332211-========∴DDx D D x D D x D D x (2) 510006510006510006510065=D 展开按最后一行61000510065100655-'D D D ''-'=65 D D D ''-'''-''=6)65(5D D '''-''=3019D D ''''-'''=1146566551141965=⨯-⨯=(,11的余子式中为行列式a D D ',11的余子式中为a D D ''''类推D D ''''''',) 51001651000651000650000611=D 展开按第一列6510065100650006+'D 46+'=D 460319+''''-'''=D 1507=51010651000650000601000152=D 展开按第二列5100651006500061-6510065000610005-365510651065⨯-= 1145108065-=--=51100650000601000051001653=D 展开按第三列51006500061000516500061000510065+6100510656510650061+= 703114619=⨯+=51000601000051000651010654=D 展开按第四列61000510065100655000610005100651--51065106565--=395-= 110051000651000651100655=D 展开按最后一列D '+10005100651006512122111=+= 665212;665395;665703;6651145;665150744321=-==-==∴x x x x x . 9.齐次线性方程组取何值时问,,μλ⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解?解 μλμμμλ-==12111113D , 齐次线性方程组有非零解,则03=D即 0=-μλμ 得 10==λμ或不难验证,当,10时或==λμ该齐次线性方程组确有非零解.10.齐次线性方程组取何值时问,λ⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ 有非零解?解λλλ----=111132421D λλλλ--+--=101112431)3)(1(2)1(4)3()1(3λλλλλ-------+-=3)1(2)1(23-+-+-=λλλ 齐次线性方程组有非零解,则0=D得 32,0===λλλ或不难验证,当32,0===λλλ或时,该齐次线性方程组确有非零解.第二章 矩阵及其运算1. 已知线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x ,求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换.解 由已知:⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x , 故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y , ⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y .2. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x , ⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y , 求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换.解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z , 所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .3. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B , 求3AB -2A 及A T B . 解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB ⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503, ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T . 4. 计算下列乘积:(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134; 解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫ ⎝⎛=49635. (2)⎪⎪⎭⎫⎝⎛123)321(; 解 ⎪⎪⎭⎫⎝⎛123)321(=(1⨯3+2⨯2+3⨯1)=(10).(3))21(312-⎪⎪⎭⎫⎝⎛; 解 )21(312-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫ ⎝⎛---=632142. (4)⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412 ; 解 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫ ⎝⎛---=6520876. (5)⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ; 解⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x =(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫ ⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=.5. 设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问: (1)AB =BA 吗?解 AB ≠BA .因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA .(2)(A +B)2=A 2+2AB +B 2吗?解 (A +B)2≠A 2+2AB +B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148, 但 ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610, 所以(A +B)2≠A 2+2AB +B 2.(3)(A +B)(A -B)=A 2-B 2吗?解 (A +B)(A -B)≠A 2-B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A , 而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A , 故(A +B)(A -B)≠A 2-B 2.6. 举反列说明下列命题是错误的:(1)若A 2=0, 则A =0;解 取⎪⎭⎫ ⎝⎛=0010A , 则A 2=0, 但A ≠0. (2)若A 2=A , 则A =0或A =E ;解 取⎪⎭⎫ ⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y .解 取⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y , 则AX =AY , 且A ≠0, 但X ≠Y .7. 设⎪⎭⎫ ⎝⎛=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k . 解 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎪⎭⎫ ⎝⎛=101λk A k . 8. 设⎪⎪⎭⎫⎝⎛=λλλ001001A , 求A k . 解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ, ⎪⎪⎭⎫ ⎝⎛=⋅=3232323003033λλλλλλA A A , ⎪⎪⎭⎫ ⎝⎛=⋅=43423434004064λλλλλλA A A ,⎪⎪⎭⎫ ⎝⎛=⋅=545345450050105λλλλλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=k A k k k k k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫ . 用数学归纳法证明:当k =2时, 显然成立.假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A ⎪⎪⎪⎪⎭⎫ ⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ, 由数学归纳法原理知:⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121. 9. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵. 证明 因为A T =A , 所以(B T AB)T =B T (B T A)T =B T A T B =B T AB ,从而B T AB 是对称矩阵.10. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA . 证明 充分性: 因为A T =A , B T =B , 且AB =BA , 所以(AB)T =(BA)T =A T B T =AB ,即AB 是对称矩阵.必要性: 因为A T =A , B T =B , 且(AB)T =AB , 所以AB =(AB)T =B T A T =BA .11. 求下列矩阵的逆矩阵:(1)⎪⎭⎫ ⎝⎛5221; 解 ⎪⎭⎫ ⎝⎛=5221A . |A|=1, 故A -1存在. 因为 ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A , 故*||11A A A =-⎪⎭⎫ ⎝⎛--=1225. (2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ; 解⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos A . |A|=1≠0, 故A -1存在. 因为 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A , 所以*||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos . (3)⎪⎪⎭⎫⎝⎛---145243121; 解 ⎪⎪⎭⎫ ⎝⎛---=145243121A . |A|=2≠0, 故A -1存在. 因为 ⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A , 所以 *||11A A A =-⎪⎪⎪⎭⎫ ⎝⎛-----=1716213213012.(4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n≠0) .解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021, 由对角矩阵的性质知⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 . 12. 解下列矩阵方程:(1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛12643152X ; 解 ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232. (2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311*********X ; 解 1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫ ⎝⎛---=32538122. (3)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ;解 11110210132141--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111. (4)⎪⎪⎭⎫⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X . 解 11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫ ⎝⎛---=201431012. 13. 利用逆矩阵解下列线性方程组:(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x , 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x , 从而有 ⎪⎩⎪⎨⎧===001321x x x .(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x .解 方程组可表示为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x ,故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x , 故有 ⎪⎩⎪⎨⎧===305321x x x .14. 设A k =O (k 为正整数), 证明(E -A)-1=E +A +A 2+⋅ ⋅ ⋅+A k -1. 证明 因为A k =O , 所以E -A k =E . 又因为 E -A k =(E -A)(E +A +A 2+⋅ ⋅ ⋅+A k -1),所以 (E -A)(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E , 由定理2推论知(E -A)可逆, 且(E -A)-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A)-1(E -A). 另一方面, 由A k =O , 有E =(E -A)+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(A k -1-A k ) =(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A),故 (E -A)-1(E -A)=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A), 两端同时右乘(E -A)-1, 就有(E -A)-1(E -A)=E +A +A 2+⋅ ⋅ ⋅+A k -1.15. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E)-1.证明 由A 2-A -2E =O 得 A 2-A =2E , 即A(A -E)=2E ,或E E A A =-⋅)(21,由定理2推论知A 可逆, 且)(211E A A -=-.由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E)(A -3E)=-4E ,或E A E E A =-⋅+)3(41)2(由定理2推论知(A +2E)可逆, 且)3(41)2(1A E E A -=+-.证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得 |A 2-A|=2,即 |A||A -E|=2, 故 |A|≠0,所以A 可逆, 而A +2E =A 2, |A +2E|=|A 2|=|A|2≠0, 故A +2E 也可逆. 由 A 2-A -2E =O ⇒A(A -E)=2E⇒A -1A(A -E)=2A -1E ⇒)(211E A A -=-,又由 A 2-A -2E =O ⇒(A +2E)A -3(A +2E)=-4E⇒ (A +2E)(A -3E)=-4 E ,所以 (A +2E)-1(A +2E)(A -3E)=-4(A +2 E)-1,)3(41)2(1A E E A -=+-.16. 设A 为3阶矩阵,21||=A , 求|(2A)-1-5A*|.解 因为*||11A A A =-, 所以|||521||*5)2(|111----=-A A A A A |2521|11---=A A=|-2A -1|=(-2)3|A -1|=-8|A|-1=-8⨯2=-16. 17. 设矩阵A 可逆, 证明其伴随阵A*也可逆, 且(A*)-1=(A -1)*.证明 由*||11A A A =-, 得A*=|A|A -1, 所以当A 可逆时, 有|A*|=|A|n |A -1|=|A|n -1≠0,从而A*也可逆.因为A*=|A|A -1, 所以 (A*)-1=|A|-1A .又*)(||)*(||1111---==A A A A A , 所以(A*)-1=|A|-1A =|A|-1|A|(A -1)*=(A -1)*. 18. 设n 阶矩阵A 的伴随矩阵为A*, 证明: (1)若|A|=0, 则|A*|=0; (2)|A*|=|A|n -1. 证明(1)用反证法证明. 假设|A*|≠0, 则有A*(A*)-1=E , 由此得 A =A A*(A*)-1=|A|E(A*)-1=O ,所以A*=O , 这与|A*|≠0矛盾,故当|A|=0时, 有|A*|=0.(2)由于*||11A A A =-, 则AA*=|A|E , 取行列式得到|A||A*|=|A|n . 若|A|≠0, 则|A*|=|A|n -1;若|A|=0, 由(1)知|A*|=0, 此时命题也成立. 因此|A*|=|A|n -1.19. 设⎪⎪⎭⎫⎝⎛-=321011330A , AB =A +2B , 求B .解 由AB =A +2E 可得(A -2E)B =A , 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E A B ⎪⎪⎭⎫ ⎝⎛-=011321330.20. 设⎪⎪⎭⎫⎝⎛=101020101A , 且AB +E =A 2+B , 求B .解 由AB +E =A 2+B 得 (A -E)B =A 2-E ,即 (A -E)B =(A -E)(A +E).因为01001010100||≠-==-E A , 所以(A -E)可逆, 从而⎪⎪⎭⎫⎝⎛=+=201030102E A B .21. 设A =diag(1, -2, 1), A*BA =2BA -8E , 求B . 解 由A*BA =2BA -8E 得 (A*-2E)BA =-8E , B =-8(A*-2E)-1A -1 =-8[A(A*-2E)]-1 =-8(AA*-2A)-1 =-8(|A|E -2A)-1 =-8(-2E -2A)-1 =4(E +A)-1=4[diag(2, -1, 2)]-1)21 ,1 ,21(diag 4-==2diag(1, -2, 1).22. 已知矩阵A 的伴随阵⎪⎪⎪⎭⎫⎝⎛-=8030010100100001*A , 且ABA -1=BA -1+3E , 求B .解 由|A*|=|A|3=8, 得|A|=2. 由ABA -1=BA -1+3E 得 AB =B +3A ,B =3(A -E)-1A =3[A(E -A -1)]-1A11*)2(6*)21(3---=-=A E A E⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=-1030060600600006603001010010000161. 23. 设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11.解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A=P Λ11P -1.|P|=3,⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P ,而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛-=Λ11111120 012001,故⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731.24. 设AP =P Λ, 其中⎪⎪⎭⎫⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511, 求ϕ(A)=A 8(5E -6A +A 2).解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)] =diag(1,1,58)diag(12,0,0)=12diag(1,0,0). ϕ(A)=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ ⎪⎪⎭⎫⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫⎝⎛=1111111114.25. 设矩阵A 、B 及A +B 都可逆, 证明A -1+B -1也可逆, 并求其逆阵. 证明 因为A -1(A +B)B -1=B -1+A -1=A -1+B -1,而A -1(A +B)B -1是三个可逆矩阵的乘积, 所以A -1(A +B)B -1可逆, 即A -1+B -1可逆.(A -1+B -1)-1=[A -1(A +B)B -1]-1=B(A +B)-1A .26. 计算⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121. 解 设⎪⎭⎫ ⎝⎛=10211A , ⎪⎭⎫ ⎝⎛=30122A , ⎪⎭⎫ ⎝⎛-=12131B , ⎪⎭⎫ ⎝⎛--=30322B ,则⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ,而⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A ,⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A ,所以 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521, 即 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521. 27. 取⎪⎭⎫ ⎝⎛==-==1001D C B A , 验证|||||||| D C B A D C B A ≠.解4100120021100101002000021010010110100101==--=--=D C B A , 而01111|||||||| ==D C B A , 故|||||||| D C B A D C B A ≠. 28. 设⎪⎪⎪⎭⎫ ⎝⎛-=22023443O O A , 求|A 8|及A 4. 解 令⎪⎭⎫ ⎝⎛-=34431A , ⎪⎭⎫ ⎝⎛=22022A ,则⎪⎭⎫⎝⎛=21A O O A A ,故8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A ,1682818281810||||||||||===A A A A A .⎪⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A . 29. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求(1)1-⎪⎭⎫ ⎝⎛O B A O ;解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O , 则⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143. 由此得 ⎪⎩⎪⎨⎧====s n E BC O BC O AC E AC 2143⇒⎪⎩⎪⎨⎧====--121413B C O C O C A C ,所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111. (2)1-⎪⎭⎫ ⎝⎛B C O A .解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A , 则⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321. 由此得 ⎪⎩⎪⎨⎧=+=+==s n E BD CD O BD CD O AD E AD 423121⇒⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D ,所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A . 30. 求下列矩阵的逆阵:(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025; 解 设⎪⎭⎫ ⎝⎛=1225A , ⎪⎭⎫ ⎝⎛=2538B , 则⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B .于是 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛----850032000052002125003800001200251111B A B A .(2)⎪⎪⎪⎭⎫⎝⎛4121031200210001. 解 设⎪⎭⎫ ⎝⎛=2101A , ⎪⎭⎫ ⎝⎛=4103B , ⎪⎭⎫ ⎝⎛=2112C , 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛------1111114121031200210001B CA B O A BC O A⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=411212458103161210021210001.第三章 矩阵的初等变换与线性方程组1.把下列矩阵化为行最简形矩阵:(1) ⎪⎪⎪⎭⎫ ⎝⎛--340313021201; (2)⎪⎪⎪⎭⎫⎝⎛----174034301320; (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311; (4)⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.解 (1) ⎪⎪⎪⎭⎫ ⎝⎛--340313*********2)3()2(~r r r r -+-+⎪⎪⎪⎭⎫ ⎝⎛---020*********)2()1(32~-÷-÷r r ⎪⎪⎪⎭⎫ ⎝⎛--01003100120123~r r -⎪⎪⎪⎭⎫⎝⎛--300031001201 33~÷r ⎪⎪⎪⎭⎫ ⎝⎛--100031001201323~r r +⎪⎪⎪⎭⎫ ⎝⎛-1000010012013121)2(~r r r r +-+⎪⎪⎪⎭⎫ ⎝⎛100001000001(2) ⎪⎪⎪⎭⎫ ⎝⎛----1740343013201312)2()3(2~r r r r -+-+⨯⎪⎪⎪⎭⎫ ⎝⎛---31003100132021233~r r r r ++⎪⎪⎪⎭⎫ ⎝⎛000031001002021~÷r ⎪⎪⎪⎭⎫ ⎝⎛000031005010 (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311 141312323~rr r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311)5()3()4(432~-÷-÷-÷r r r ⎪⎪⎪⎪⎭⎫⎝⎛-----22100221002210034311 2423213~r r r r r r ---⎪⎪⎪⎪⎭⎫⎝⎛---00000000002210032011(4) ⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132 242321232~rr r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110141312782~rr r r r r --+⎪⎪⎪⎪⎭⎫⎝⎛--410004100020201111134221)1(~r r r r r --⨯↔⎪⎪⎪⎪⎭⎫ ⎝⎛----0000041000111102020132~rr +⎪⎪⎪⎪⎭⎫⎝⎛--000004100030110202012.设⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A ,求A 。
(完整版)行列式习题答案
线性代数练习题 第一章 行 列 式系 专业 班 姓名 学号第一节 n 阶 行 列 式一.选择题1.若行列式 = 0,则[ C ]x52231521-=x (A )2 (B )(C )3(D )2-3-2.线性方程组,则方程组的解=[ C ]⎩⎨⎧=+=+473322121x x x x ),(21x x (A )(13,5)(B )(,5)(C )(13,)(D )()13-5-5,13--3.方程根的个数是[ C ]093142112=x x (A )0 (B )1 (C )2 (D )34.下列构成六阶行列式展开式的各项中,取“+”的有 [ A ](A ) (B ) 665144322315a a a a a a 655344322611a a a a a a (C ) (D )346542165321a a a a a a 266544133251a a a a a a 5.若是五阶行列式的一项,则的值及该项的符号为[ B ]55443211)541()1(a a a a a l k l k N -ij a l k ,(A ),符号为正; (B ),符号为负;3,2==l k 3,2==l k (C ),符号为正;(D ),符号为负2,3==l k 2,3==l k 6.下列n (n >2)阶行列式的值必为零的是 [ BD ](A) 行列式主对角线上的元素全为零 (B) 三角形行列式主对角线上有一个元素为零 (C) 行列式零的元素的个数多于n 个 (D) 行列式非零元素的个数小于n 个二、填空题1.行列式的充分必要条件是1221--k k 0≠3,1k k ≠≠-2.排列36715284的逆序数是133.已知排列为奇排列,则r =2,8,5s = 5,2,8,t = 8,5,2397461t s r4.在六阶行列式中,应取的符号为 负 。
ij a 623551461423a a a a a a 三、计算下列行列式:1.=181322133212.=55984131113.yxyx x y x yyx y x +++332()x y =-+4.=100011000001001005.000100002000010n n -1(1)!n n -=-6.0011,22111,111 n n nn a a a a a a --(1)212,11(1)n n n n n a a a --=-线性代数练习题 第一章 行 列 式系专业 班 姓名 学号第二节 行列式的性质一、选择题:1.如果, ,则 [ C ]1333231232221131211==a a a a a a a a a D 3332313123222121131211111232423242324a a a a a a a a a a a a D ---==1D (A )8(B )(C )(D )2412-24-2.如果,,则 [ B ]3333231232221131211==a a a a a a a a a D 2323331322223212212131111352352352a a a a a a a a a a a a D ---==1D (A )18(B ) (C )(D )18-9-27-3. = [ C ]2222222222222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c c b b b b a a a a (A )8 (B )2(C )0(D )6-二、选择题:1.行列式 12246000 2. 行列式-3=30092280923621534215=11101101101101112.多项式的所有根是0211111)(321321321321=+++++=x a a a a x a a a a x a a a a x f 0,1,2--3.若方程= 0 ,则225143214343314321x x --1,x x =±=4.行列式 5==2100121001210012D 三、计算下列行列式:1.2605232112131412-21214150620.12325062r r +=2.xa a a x a a a x 1[(1)]().n x n a x a -=+--线性代数练习题 第一章 行 列 式系专业 班 姓名 学号第三节 行列式按行(列)展开一、选择题:1.若,则中x 的一次项系数是[D]111111111111101-------=x A A (A )1(B )(C )(D )1-44-2.4阶行列式的值等于 [D ]443322110000000a b a b b a b a (A ) (B )43214321b b b b a a a a -))((43432121b b a a b b a a --(C )(D )43214321b b b b a a a a +))((41413232b b a a b b a a --3.如果,则方程组 的解是 [B]122211211=a a a a ⎩⎨⎧=+-=+-0022221211212111b x a x a b x a x a (A ), (B ),2221211a b a b x =2211112b a b a x =2221211a b a b x -=2211112b a b a x =(C ), (D ),2221211a b a b x ----=2211112b a b a x ----=2221211a b a b x ----=2211112b a b a x -----=二、填空题:1.行列式 中元素3的代数余子式是 -6122305403--2.设行列式,设分布是元素的余子式和代数余子式,4321630211118751=D j j A M 44,j a 4则 =,=-6644434241A A A A +++44434241M M M M +++3.已知四阶行列D 中第三列元素依次为,2,0,1,它们的余子式依次分布为1-5,3,4,则D = -15,7-三、计算行列式:1.321421431432432112341234134101131010141201311123031111310131160.311-==---=-=-2.12111111111na a a +++ ==121111011101110111n a a a+++121111100100100na a a---211112111110010010n c c a a a a a+--+111223211111100001000na a cc a a a a++-+11121101111000000ni ni iia a a c a c a=+++∑1211()(1)nn i i a a a a =+∑或121123113111111000000nn a r r a r r a r r a a a a+------211211212311111000000na a aa a a c c a a a a+++--11122313311111100000ni in nnaa a c c a a a c c a a a a=++++∑1122()(1)nn i ia a a a a =++∑或11221121121110111110111111111(1).n n n n nn i ia a a a a a D a a a a a a a --=++++=+=+=+∑线性代数练习题 第一章 行 列 式系专业 班 姓名学号综 合 练 习一、选择题:1.如果,则 = [ C ]0333231232221131211≠==M a a a a a a a a a D 3332312322211312111222222222a a a a a a a a a D =(A )2 M(B )-2 M(C )8 M(D )-8 M2.若,则项的系数是[ A ]xxx x x x f 171341073221)(----=2x (A )34 (B )25 (C )74 (D )6二、选择题:1.若为五阶行列式带正号的一项,则 i = 2 j = 154435231a a a a a j i 2. 设行列式,则第三行各元素余子式之和的值为 8。
《线性代数》第一章行列式精选习题及解答
第一章 行列式1.1 目的要求1.会求n 元排列的逆序数;2.会用对角线法则计算2阶和3阶行列式; 3.深入领会行列式的定义;4.掌握行列式的性质,并且会正确使用行列式的有关性质化简、计算行列式; 5.灵活掌握行列式按(列)展开; 6.理解代数余字式的定义及性质;7.会用克拉默法则判定线性方程组解的存在性、唯一性及求出方程组的解.1.2 重要公式和结论1.2.1 n 阶行列式的定义n 阶行列式 nnn n n n a a a a a a a a a D (2122221)11211=n n np p p tp p p a a a ...)1(212121)...(∑−=.其中是n 个数12…n 的一个排列,t 是此排列的逆序数,∑表示对所有n 元排列求和,故共有n !项. n p p p ...211.2.2 行列式的性质1.行列式和它的转置行列式相等;2.行列式的两行(列)互换,行列式改变符号;3.行列式中某行(列)的公因子可提到行列式的的外面,或若以一个数乘行列式等于用该数乘此行列式的任意一行(列);4.行列式中若有两行(列)成比例,则该行列式为零;5.若行列式的某一行(列)的元素都是两数之和,则此行列式等于两个行列式之和,即nn n n in i i nnn n n in in i i i i n a a a a a a a a a a a a b a b a b a a a a L MMM L M M M L LMM M L MM M L21211121121221111211=++++nnn n ini i na a ab b b a a a L MMM L M M M L 2121112116. 把行列式的某一行(列)的各元素乘以同一数然后加到另一行(列)对应的元素上去,行列式的值不变. 1.2.3 行列式按行(列)展开设D 为n 阶行列式,则有=∑=nK jkika A 1⎩⎨⎧≠==+++j i ji D A a A a A a jn in j i j i 0...2211=∑=nK jkika A1⎩⎨⎧≠==+++j i ji D A a A a A a jn in j i j i 0 (2211)其中是的代数余子式. st A st a 1.2.4 克拉默法则1.如果线性非齐次方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a L M M M M M L L 22112222212111212111的系数行列式,则方程组有唯一解0≠D DD x 11=( i=1,2,…,n ),其中是D 中第i 列元素(即的系数)换成方程中右端常数项所构成的行列式.i D i x 2.如果线性齐次方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++000221122221211212111n nn n n n n n n x a x a x a x a x a x a x a x a x a L M M M M M L L的系数行列式,则方程组只有唯一零解.若齐次线性方程组有非零解,则其系数行列式.0≠D 0=D 1.2.5 一些常用的行列式1.上、下三角形行列式等于主对角线上的元素的积.2.设 kk k k a a a a D L M M ML 11111=,nnn nb b b b D L M M M L 11112=,则 211111*********D D b bc c b b c c a a a a nn n nkn n k kkk k =L L M M M MM ML L L MMM L .3.范德蒙行列式)(..................1 (11)11121121i j nj i n nn n n a a aaaa a a −=∏≤<≤−−−.1.2.6 计算行列式的常用方法1.利用对角线法则计算行列式,它只适用于2、3阶行列式; 2.利用n 阶行列式定义计算行列式; 3.利用行列式的性质化三角形法计算行列式; 4.利用行列式按某一行(列)展开定理计算行列式; 5.利用数学归纳法计算行列式; 6.利用递推公式计算行列式;7.利用范德蒙行列式的结论计算特殊的行列式; 8.利用加边法计算行列式; 9.综合运用上述方法计算行列式.1.3 例题分析例1.1 排列14536287的逆序数为 ( )(A) 8 (B) 7 (C) 10 (D) 9解 在排列14536287中,1排在首位,逆序数为0;4、5、6、8各数的前面没有比它们自身大的数,故这四个数的逆序数为0;3的前面比它大的数有2个(4、5),故逆序数为2; 2的前面比它大的数有4个(4、5、3、6),故逆序数为4;7的前面比它大的数有1个(8),故逆序数为1;于是这个排列的逆序数为 t=0+0+2+4+1=7,故正确答案为(B ).例1.2 下列排列中( )是偶排列.(A)54312 (B)51432 (C) 45312 (D) 654321解 按照例1的方法计算知:排列54312的逆序数为9;排列51432的逆序数为7;排列45312的逆序数为8;排列654321的逆序数为15;故正确答案为(C ).例1.3 下列各项中,为某五阶行列式中带正号的项是( ). (A) (B) (C)(D) 5541324413a a a a a 5415413221a a a a a 5214432531a a a a a 5344223115a a a a a 解 由行列式的定义知,每一项应取自不同行不同列的五个元素之积,因此(A)、(B)不是五阶行列式的项,但(C)应取负号,故正确答案为(D ).例1.4 行列式351232113,010101021=−=D D λλλ, 若21D D =,则λ的取值为( ) (A) 2, —1 (B) 1, —1 (C)0, 2 (D)0,1解 按三阶行列式的对角线法则得.若,则,于是0,)1)(1(221=−+=D D λλ21D D =0)1)(1(2=−+λλ1,1−=λ,故正确答案为(B ).例1.5 方程组有唯一解,则( ).⎪⎩⎪⎨⎧=++=++=++111321321321x x x x x x x x x λλλ(A)1−≠λ且2−≠λ (B) 1≠λ且2−≠λ (C) 1≠λ且2≠λ (D) 1−≠λ且2≠λ解 由克拉默法则知,当所给非齐次线性方程组的系数行列式不等于0时,该方程组有唯一解,于是令行列式0)1)(2(1111112≠−+=λλλλλ 即1≠λ且2−≠λ,故正确答案为(B ).例1.6 ==2006200420082006D ( ).分析 对于2、3阶行列式的计算,元素的数值较小时,可以直接采用对角线法则进行计算;但元素的数值较大时,一般不宜直接采用对角线法则进行计算,而是用行列式的性质进行计算.解 此题是一个2阶行列式,虽然可以直接用对角线法则计算,但因数值较大,计算较繁,因此要仔细观察分析,用行列式的性质求解.402221003200622008220062004200820061221=−−+−−−=c c c c D ,故答案为4.例1.7 ==3214214314324321D ( ). 分析 如果行列式的各行(列)数的和相同时,一般首先采用的是将各列(行)加到第一列(行),提取第一列(行)的公因子(简称列(行)加法) .解 这个行列式的特点是各列4个数的和为10 ,于是,各行加到第一行,得===321421431432101010103214214314324321D 101230121012101111103214214314321111−−−−−−= 160400004001210111110=−−−=.例1.8设xx x x x x f 111123111212)(−=,则的系数为( ),的系数为( ). 4x 3x 分析 此类确定系数的题目,首先是利用行列式的定义进行计算.如果用定义比较麻烦时,再考虑用行列式的计算方法进行计算.解 从的表达式和行列式的定义可知,当且仅当的主对角线的4个元素的)(x f )(x f积才能得出,其系数显然是2. 当第一行取4x )1(13=a 或)2(14=a ,则含或的行列式的项中是不出现,含的行列式的项中是不出现,于是含的项只能是含,,,的积,故的系数为13a 14a 3x )2(11x a =3x 3x 12a 21a 33a 44a 3x 1−.故答案为2 ,1−.例1.9 设0123411222641232211154321=D ,则(1)=++333231A A A ( ), (2)=+3534A A ( ), (3)=++++5554535251A A A A A ( ). 分析 此类题目一般不宜算出表达式里每一项的值,而是注意观察要求的表达式的结构,充分利用按行(列)展开的计算方法来进行技巧计算.解 00123411222221112211154321)(23534333231==++++A A A A A (第2,3行相同) 即 =0. 同理 )(2)(3534333231A A A A A ++++)()(23534333231A A A A A ++++=0 于是 0, =++333231A A A =+3534A A 0.011111333336412322111543211111111222641232211154321245554535251=+=++++r r A A A A A 故答案为0,0,0.例1.10 2007000000002006000200500020001000L L L MM MM M M L =D .分析 当行列式中有较多零元素时,一般可以采用行列式的定义或按行(列)展开来计算.解 此行列式刚好只有n 个非零元素,故非零项只有一项:nn n n n a a a a ,,,,112211−−−L nn n n n t a a a a 112211)1(−−−−L ,其中 2)2)(1(−−=n n t ,因此 !2007!2007)1(2)22007)(12007(−=−=−−D .此题也可以按行(列)展开来计算. 例1.11 计算n 阶行列式2111121111211112L M M M M L L L =n D解法1 (行(列)加法)因为这个行列式的每一行的n 个元素的和都为n+1, 所以将第2,3,…,n 列都加到第一列上,得),3,2(,2111121111211111)1(21111211112111111n i r r n n n n n D i n L L M M M ML L L L M M M M L L L =−+=++++=1101000101111)1(+=+n n L M M M M L L L解法2 (加边法))1,,3,2(211111211111211111210000111+=−==+n i c c D D i n n L L M M M M M LL L L11000101001010100011000011000101001001010001111111121+=++++−−−−+n n r r r n L M M M M M LL L L L L M M M M M L L L L . 解法3 (利用行列式的性质)101010100111112),,3,2(21111211112111121L M M M M L L L L L M M M M L L L −−−=−=n i r r D i n11000100010111121+=++++n n c c c n L M M M M L L L L .例 1.12 计算nn n n nn n y x y x y x y x y x y x y x y x y x D +++++++++=111111111212221212111L MM M L L . 解 当n=2时,))((11111212221221112y y x x y x y x y x y x D −−=++++=当n≥3时,111212112122111121111()()()0()()()n nn n n n x y x y x y x x y x x y x x y D x x y x x y x x y +++−−−==−−−L L M M M L n.例1.13 计算nn n n nn n n x x x x x x a a a a a x a D 1122112321100000000000−−−−−−−−+=L L M M M M M M LL其中.),,2,1(0n i x i L ≠≠解 因 )1(11111111x a x x a x a D +=+=+=, 1(221121212112x ax a x x x x a x a D ++=−+=, 归纳推得 )1(1121nn n n x a x a x x x D +++=L L . 用数学归纳法证明上式, 假设当k=n-1时结论成立,即)1(11111211−−−−+++=n n n n x a x a x x x D L L . 则当k=n 时,将按第n 列展开,得n D ))(())(()1(122111−−+−−−−−−+=n n n n n n n x x x x a D x D L 1221111)1()1(−−−+−−−+=n n n n n n n x x x x a D x Ln n nn n n n x a x x x x x D x 12211−−−+=L 1(1121nn n x a x ax x x +++=L L 即当k=n 时结论也成立,故对一切自然数结论都成立.例1.14 计算222111222333n nn nD n n n =L L L M M M L 解 (利用范德蒙行列式计算)1113213211111!−−−==n n n Tnn n n n D D L MMM M LL )]1([)2()24)(23)(1()13)(12(!−−−−−−−−=n n n n n L L L !2)!2()!1(!L −−=n n n .例 1.15 计算 βαβαβαβαβαβαβαβα+++++=L L MM M M ML LL 000000000000n D .解 按第一列把D n 分成两个行列式的和+++++=βαβαβαβαβαβαααL L M M M M M L L L000000000000000n D βαβαβαβαβαβαβαβ++++L L MM MM M LL L0000000000000n n n D D βαβαββαβαβα+=+=−−110000000000000000L L MM M M M L L L (1) +++++=βαβαβαβαβαβααβL L M M M M M L L L000000000000000n D βαβαβαβαβαβαβαα++++L L MM MM M LL L 00000000000000n n n D D αβαβααβαβαβ+=+=−−1100000000000000L L M MM M M L L L (2) (a) 当βα≠时 ,由(1)(2)得 =, 则n n D βα+−1nn D αβ+−1βαβα−−=−nn n D 1.于是 βαβα−−=++11n n n D .(b) 当βα=时,由(1)得 .n n n n n D D ααα)1(1+==+=−L例1.16 设, 证明:0>>>c b a 01222<++abca bc c b a cb a cabc ab . 证明 将行列式的第1行)(c b a ++×,第2行)1(−×,然后加到第3行,得ca bc ab ca bc ab ca bc ab c b a c b a ab ca bc c b a c b a ++++++=222222 222222111)(111)(c b a c b a ca bc ab c b a c b aca bc ab ++=++= ))()()((a b b c a c ca bc ab −−−++=于是,不等式的左边=))()((a b b c a c −−−.由于,从而,0>>>c b a 0)(<−a c 0)(,0)(<−<−a b b c ,因此,当时,0>>>c b a 01222<++abca bc c b a cb a cabc ab .例 1.17 设在上连续,在内可导,试证:至少存在一个)(),(),(x h x g x f ],[b a ),(b a ),(b a ∈ξ,使得0)(=′ξH .其中 )()()()()()()()()()(x h x g x f b h b g b f a h a g a f x H =.证明 由题设知在上连续,在内可导,又由行列式的性质可知,于是由洛尔中值定理可知,至少存在一个)(x H ],[b a ),(b a 0)()(==b H a H ),(b a ∈ξ,使得0)(=′ξH .1.4 独立作业1.4.1 基础训练1.设ij a D =为阶行列式,则在行列式中的符号为( ) . n 11342312n n n a a a a a −L (A) 正 (B) 负 (C) (D) 1)1(−−n 2)1()1(−−n n2.行列式为0的充分条件是( ).n D(A) 零元素的个数大于n; (B) 中各行元素的和为零; n D (C) 次对角线上元素全为零; (D) 主对角线上元素全为零. 3.行列式不为零,利用行列式的性质对进行变换后,行列式的值( ). n D n D (A) 保持不变; (B) 可以变成任何值; (C) 保持不为零; (D)保持相同的正负号.4.方程0881441221111132=−−x x x的根为 ( ).(A) 1,2,2− (B)1,2,3 (C)1,1−,2 (D)0,1,25.如果4333231232221131211==a a a a a a a a a D ,则=−−−−−−=33323331232223211312131********a a a a a a a a a a a a D ( ). (A)-12 (B)12 (C)48 (D)-486.行列式=9092709262514251( ).7.ab b a log 11log = ( ).8.行列式c b d c a b cb a , 则=++312111A A A ( ).9.函数x x x x x f 121312)(−=中,的系数为( ).3x 10.4444333322225432154321543215432111111= ( ).11.49362516362516925169416941, 12.00000000x y y x y x x y D = 13.20000120000001301200101−−=D , 14.xyz zx yyz x 111 15.520003520003520035200035, 16.44342414433323134232221241312111y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x ++++++++++++++++17.nn n n a a a a a a b b b b b 13221132100000000−−−−−L M M M M M LL L ,(其中),,2,1(,0n i a i L =≠) 18.n x x x D L M M M M LL L 01001001111021= (),,2,1,0n i x i L =≠ 19.43211111111111111111x x x x ++++, 20.nL M M M ML L L 22223222222222121.211121112L L L L L L =n D .22.当μ取何值时,齐次线性方程组有非零解?⎪⎩⎪⎨⎧=−−+−=−+−=−++0)1(02)3(0)1(42321321321x x x x x x x x x μμμ23.证明αααααααsin )1sin(cos 210001cos 200000cos 210001cos 210001cos 2+=n L L M MM M M LL L (其中0sin ≠α).1.4.2 提高练习1.设A 为n 阶方阵,为*A A 的伴随矩阵,则*A A 为( ) (A) 2A (B) 12−n A(C) nA2 (D) nA2.设A 为n 阶方阵,B 为m 阶方阵,=00A B( ). (A)B A − (B) B A (C) B A mn )1(− (D) B A n m +−)1(3.若xxx x x x g 171341073221)(−−−−=,则的系数为( ). 2x (A) 29 (B) 38 (C) —22 (D) 344.347534453542333322212223212−−−−−−−−−−−−−−−=x x x x x x x x x x x x x x x x g(x),则方程=)(x g 0的根的个数为( ). (A)1 (B)2 (C)3 (D)45.当( )时,方程组只有零解.≠a ⎪⎩⎪⎨⎧=+−=++=+02020z y ax z ax x z ax (A)-1 (B) 0 (C) -2 (D) 26.排列可经过( )次对换后变为排列. n r r r r L 321121r r r r n n n L −−7.四阶行列式中带负号且含有因子和的项为( ).12a 21a 8.设y x ,为实数,则当=x ( ),=y ( )时,010100=−−−x yy x . 9.设A 为4阶方阵,B 为5阶方阵,且,2,2−==B A 则 =−A B ( ),=−B A ( ).10.设A ,B 为n 阶方阵,且,2,3−==B A 则 =−1*3B A ( ). 11.设A 为3阶正交矩阵,0>A ,若73=+B A ,则=+T AB E 21( ). 12.设,则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=653042001A =+−12A E ( ).13.解方程组011112222212112=nnnnnnn b b b b b b b b b x x x L M M M M L L L ,其中为各不相同的常数. n b b b b ,,,,321L 14.证明:)()()()()()()()()(212222111211x a x a x a x a x a x a x a x a x a dx d nn n n n n L M M M L L =∑=ni nn n n in i i n x a x a x a x a dx d x a dx d x a dx d x a x a x a 1212111211)()()()()()()()()(LM M M L M M M L 15.设xx x x x x x g 620321)(332=,求)(x g ′.16.设17131231533111)(85222−−−−−−=x x x x x x x g ,试证:存在)1,0(∈ξ,使得0)(=′ξg .17.证明:奇数阶反对称矩阵的行列式为零. 18.设z y x ,,是互异的实数,证明:0111333=z y x z y x 的充要条件是0=++z y x . 19.设4322321143113151−=A ,计算44434241A A A A +++的值,其中是)4,3,2,1(4=i A i A 的代数余子式.20.利用克莱默法则求解方程组.⎪⎩⎪⎨⎧=+−=+−=−+3232222321321321x x x x x x x x x 21.求极限111cos sin 3212sin 1231lim23x x x x x x x →.第一章 参考答案1.4 独立作业 1.4.1 基础训练1. (C) 2. (B) 3. (C) 4.(A) 5. (B)6.解=×==17092142512000200070922000425190927092625142515682000.7.0 , 8. 解 0111312111==++cb c a cb A A A ,故答案为09.解 因为在此行列式的展开式中,含有的只有主对角线上的元素的积,故答案为 10.解 由范德蒙行列式得行列式的值为2883x 2−11.解0222222229753169411311971197597531694149362516362516925169416941===.12.解 x y x y x x xyy yxy xyyx y xxy D 0000000000000000−−==22222)(y x xyyx x x yy x y −−=−= 13.解 0131201014200013120101220000120000001301200101−×−=−×−=−−=D 20311243131200014=−−×−=−−×−=14.解 yzx z x y x z y x z x y z x y yzx xy zzx yyz x−−−−=−−−−−−=11))(()(0)(01111=))()((x z z y y x −−−15.解 520003520003520003500003352000352000352000352000325200035200035200035200035+= =5203520035200353252000352000352000350000332000320000320000320000325+=+==L 665 16.解1413121414131213141312121413121144342414433323134232221241312111y y y y y y y x y y y y y y y x y y y y y y y x y y y y y y y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x −−−+−−−+−−−+−−−+=++++++++++++++++=017.解132111322113210000000)1(00000000−+−−−−−−×−=−−−=n n n n n n n n a a a a b a a a a a a b b b b b D L MMM M MLL L L M M M M M M L L L=−−×+−−−−12221122100n n n n n a a a a a b b b b a L MMM M M LL L ==+−L L 121n n n n nD a a b a a a )(121∑=ni ii n a b a a a L18.解 由第()列的i n i ,,2,1L =ix 1−倍加到第一列上去. nni inx x x x x x x D L MM M ML L LL MM M M LL L 0000000011111001001111021121∑=−===)1(121∑=−n i i n x x x x L19.解43211114321100100111111111111111111x x x x x x x x x x x −−−+=++++432111413121100000001x x x x x x x x x x x x x −−−++++==3214214314324321x x x x x x x x x x x x x x x x ++++20.解 2020012000200021222232222222221−−=n nL MM M M LL L L M M M M L L L 20212002−−=n L M M M ML L =)!2(2−−n 21.解 211121111)1(211121111211121112L LL L L L L L L L L L L L L L L L +=+++==n n n n D n 1101011001)1(+=+=n n L L L L L L22.解 由齐次线性方程组有非零解的条件可知0111213142=−−−−−−μμμ 解之得μ=0,2,3. 于是当μ=0,2,3时,齐次方程组有非零解.⎪⎩⎪⎨⎧=−−+−=−+−=−++0)1(02)3(0)1(42321321321x x x x x x x x x μμμ23.证明 (1)当时,结论显然成立, (2)假设当1=n k n ≤时,结论成立, (3)当时1+=k n11cos 2101cos 200000cos 210001cos 210001cos 2++=k k D αααααL L M M M M ML L Lkk D ααααcos 21010000cos 210001cos 2100001)1(cos 23L M M M M M LL L L −+=ααααααααααsin )2sin(sin sin sin sin cos 2sin )1sin(cos 21+=−=−+=−k k k D k k ααsin ]1)1sin[(++=k 故结论成立. 1.4.2 提高练习1.B , 2.C , 3.D , 4.B , 5.D, 6.2)1(−n n , 7. 44332112a a a a 8.0, 0, 9.32, 64 , 10.2312−−n , 11.277, 12.6 13.提示:用范德蒙行列式将行列式展开求解,答案为i b x =,(n i ,,2,1L =), 14.(用行列式的定义和导数的运算法则)证明))()()()1(()()()()()()()()()(11)(12122221112112211x a x a x a dx dx a x a x a x a x a x a x a x a x a dx d n n p p p p p p t nn n n n n L L M M ML L L ∑−== ))())(()()()1((111)(12211x a x a dx d x a x a n i n p p p p p p p tL L L ∑−=∑=ni nn n n in i i n x a x a x a x a dx d x a dx d x a dx d x a x a x a 1212111211)()()()()()()()()(LMM M L M M M L15.利用(14)的结论进行计算便可得结果,答案为6.2x 16.(用罗尔中值定理证)证明 (1)显然是多项式,故在上连续,在()(x g )(x g ]1,0[)1,0内可导,且 ,从而由罗尔中值定理知,存在0)1()0(==g g )1,0(∈ξ,使得0)(=′ξg . 17.用行列式的性质3的推论(同济四版)18.证明 33333333333301111x z xy xz xy x z x y x x z x y x z y x z y x−−−−=−−−−=0))()()((11))((2222=++−−−=++++−−=z y x y z x z x y xxz z x xy y x z x y 由于z y x ,,是互异的实数,故要使上式成立,当且仅当0=++z y x .19.解 6111132114311315144434241=−=+++A A A A , 20. 11=x ,, 22=x 33=x 21.解 (用罗必塔法则求解)11100013212001230000111231001100sin cos 3212sin 123230cos 11231lim1101cos sin 3212sin 1231lim223230=+=−+=→→x x x x x x x x x x x x x x x x x。
(完整版)线性代数试题和答案(精选版)
线性代数习题和答案第一部分选择题 (共28分)一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出の四个选项中只有一个是符合题目要求の,请将其代码填在题后の括号内。
错选或未选均无分。
1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于( )A。
m+n B. —(m+n) C. n-m D. m—n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于()A。
130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C。
13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D。
120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3。
设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是Aの伴随矩阵,则A *中位于(1,2)の元素是()A. –6 B。
6C。
2 D. –24。
设A是方阵,如有矩阵关系式AB=AC,则必有( )A。
A =0 B. B≠C时A=0C. A≠0时B=C D。
|A|≠0时B=C5。
已知3×4矩阵Aの行向量组线性无关,则秩(A T)等于( )A. 1 B。
2C。
3 D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则( )A。
有不全为0の数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0の数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0の数λ1,λ2,…,λs使λ1(α1—β1)+λ2(α2—β2)+…+λs(αs-βs)=0D。
有不全为0の数λ1,λ2,…,λs和不全为0の数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07。
设矩阵Aの秩为r,则A中( )A.所有r-1阶子式都不为0B.所有r—1阶子式全为0C。
线代一二章习题及答案
第一讲 行列式例1、下三角行列式nnnn n nnnn n n n n n n a a a a a a a a a a a a a a a a22112211)12(121111211222111)1(000000000=-=-----τ对角行列式,上(下)三角行列式的值就等于对角线上的元素的乘积例2、 求xx b x a x 1221102085413+----的4x 和3x 的系数.解析:4x 的系数是1;3x 的系数是-10例3、 求3阶行列式 754102643--=(-3)A 11+4A 12+6A 13=(-3)M 11-4M 12+6m 3=(-3)⨯(-5)-4⨯(-18)+6⨯(-10)=27.例4、1010001001tt tt解析: 原式=1 A 11+t A 1n =1+11)1(-+-⋅n ntt=1+ nnt +-1)1(例5、 求行列式 2235007022220403--的第四行各元素的余子式的和. 解析: 所求为4443424144434241A A A A M M M M +-+-=+++原式=444342412235A A A A +-+将原行列式换为1111007022220403---即他的值就是原题的余子式之和答案为-28(对第三行展开 323277M A =-)例6、27718497518100549754102643=--==--08题aaa aa aa a a A 2012001200012000122222=. 证明|A |=(n+1)a n .分析: 证明:初等变换nan nan a a a n an a a a aaa aa a a a aa aa a a a )1()1(34232)1(010000340000023000012201200034000002300001220012001200002300001222222+=+⋅⋅=+→→→例7、 ?=cA 答A c n; 例 8、设4阶矩阵BA B A B A +====求,3,2),,,,(),,,,(321321γγγβγγγα解:40,,,8,,,8,,,82,2,2,),2,2,2,(321321321321321=+=+=+=++=+γγγβγγγαγγγβαγγγβαγγγβαB A B A例9、 已知行列式3123111++++-+--z x y y x z z y xd c b a 的代数余子式A 11=-9,A 12=3,A 13=-1,A 14=3,求x,y,z.解析:思路:利用性质8⎪⎩⎪⎨⎧===⇒⎪⎩⎪⎨⎧=+++--→z y x z y x 0)1(339(二)、典型例题 例1①22222aaaaa a a a a a a a a a a aa a a a ②xx x x ++++1111111111111111③aa a a ++++4444333322221111④ 对角线上的元素都为0,其它元素都为1的n 阶行列式. ②分析:解:4)x 00000001114111411141114111411111111111111113+=+→+++++++→++++(所以值x xx x x xxx x x x x xx x x①分析:与②同理 ④分析:类型一致③分析:把下面三行分别加到第一行例24321532154215431543254321解:100510501500115111111411411411115111411411411411115111401141014110411105432154321153215152154151543155432154321532154215431543254321-------→-------→----→----→→所以值=15×125=1875例343211111111111111111x x x x ++++解:+=+++++==+++++++=++++4321431432432143214324321401010********01001001000100000000011101110111011111111111111111111111111111111111x x x x x x x x x x x x x x x x x x x x x x x x x例4 证明时)当b a ba bab aba ab b a b b a a b b a n n ni iin ≠--==++++++=-∑(00000000011分析:证明:归纳法:展开递推21n )(---+=→n n abD D b a D 递推公式 再用归纳法证明之 也可以:nn n n abD ab a b ab a bD ba ab b a b ab a bD ba ab b a b b a b b b a a b b a b b a a b a +=+==+++=+++++++---111000000000000000000000000000000000000000000时)当另b a ba baD baD b a b a D D D D n n n n n n nn nn ≠--=→-=-→⨯〉〈-⨯〉〈〉〈+=〉〈+=++++--()(212b a 1a b 111111-n 11-n na n aaa a a a a a ab a )1(2020000020002+=其值为时另当第二讲 矩阵例、⎪⎪⎪⎭⎫ ⎝⎛---=101111010A ,⎪⎪⎪⎭⎫⎝⎛--=301521B .求 B AX =的解⎪⎪⎪⎭⎫⎝⎛---→⎪⎪⎪⎭⎫⎝⎛-----=313315210010101301521101111010)(B A⎪⎪⎪⎭⎫⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛---→211213100010001413415200010101⎪⎪⎪⎭⎫⎝⎛---=211213X2007年的一个题中,求3阶矩阵 B , 满足⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛-222111B ,⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛011011B ,⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛110110B .解:建立矩阵方程⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛-102112012101111011B⎪⎪⎪⎭⎫⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛---21311001112011001111011222110011111⎪⎪⎪⎭⎫⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛-→011101110100010001033110011300110011⎪⎪⎪⎭⎫ ⎝⎛--=011101110TB⎪⎪⎪⎭⎫⎝⎛--=011101110B2008年考题: 03=A ,时 证明: A E -可逆.证 E A E A A E A E =-=++-32))((.所以A E -可逆例1、设C B A ,,都是n 阶矩阵,满足CA A C AB E B +=+=,,则C B -为(A)E .(B) E -. (C)A . (D)A -. )(A (2005年数学四)AB E B +=化为E B A E =-)( 即 B 与 )(A E - 互为逆矩阵CA A C += 化为 A A E C =-)(, 用 B 右乘得 AB C = 例2、 设A 是3阶矩阵,将A 的第2行加到第1行上得B ,将B 的第1列的-1倍加到第2列上得 *C .记⎪⎪⎪⎭⎫⎝⎛=100011001PAP P C A 1)(-= 1)(-=PAP C B AP P C C T =)( TPAPD =)(A B ⎪⎪⎪⎭⎫ ⎝⎛=100010011⎪⎪⎪⎭⎫⎝⎛-=100010011B C110010011100010011-=⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛=PAP A C例3、 设A 是3阶可逆矩阵,交换A 的1,2行得B ,则(A) 交换*A 的1,2行得到*B . (B) 交换*A 的1,2列得到*B . (C) 交换*A 的1,2行得到*-B . (D) 交换*A 的1,2列得到*-B . 2009题设A 和B 都是2阶矩阵,2=A , 3=B .则 ()=⎪⎪⎭⎫⎝⎛*O BA O⎪⎪⎭⎫⎝⎛**O A B O A 23)(⎪⎪⎭⎫⎝⎛**O A B OB 32)( ⎪⎪⎭⎫⎝⎛**O B A O C 23)(⎪⎪⎭⎫⎝⎛**O B A O D 32)(( 2009年的考题)解:1-*=CC C先求1-C()⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛=00100011000010010010*********A O O B O B A OE C⎪⎪⎭⎫ ⎝⎛→--O ABO E O O E11⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=----*O ABOO A BO O BA O C 1111⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=**----O A B B A O OA AB B B A O O ABOB A 1111例4、 设A 是n 阶非零实矩阵,满足 TA A =*. 证明:)1(>A)2(如果2>n 则1=A解:条件TA A =*,即,)()(Tij T ij a A =即ji ij ij a A ,,∀=(1)inin i i i i A a A a A a A ++=2211022221≥+++=ini i a a a又因为 0≠A , 即A 有非零元素, 则2221>+++=in ke k a a a A(2)EA AAAAT==*nAA=2得12=-n A因为>A2-n 是正整数,得1=A例5、 3阶矩阵B A ,满足E BA ABA +=**2,其中⎪⎪⎪⎭⎫⎝⎛=100021012A ,求B .(04一) 解:E BA ABA+=**2E BA E A =-*)2(AB E A A =-)2(AB E A A =-23913112122=⨯=-=AE A B例6 设3阶矩阵,⎪⎪⎪⎭⎫⎝⎛---=201011153A A XA XA A 21+=-,求X .解: 11112)(----+=AAXAAAXA AE X X A 21+=-A AX X 2+=A X A E 2)(=-⎪⎪⎪⎭⎫⎝⎛------=-4020222106101021152)2(A A E ⎪⎪⎪⎭⎫⎝⎛----→⎪⎪⎪⎭⎫ ⎝⎛------→010424202210001002142262022120110021⎪⎪⎪⎭⎫⎝⎛---→01042424106100010001得⎪⎪⎪⎭⎫ ⎝⎛---=01042424106X例7 设3阶矩阵,⎪⎪⎪⎭⎫ ⎝⎛---=111111111A X A X A 21+=-*,求X .解: X A X A 21+=-*AXE X A 2+=E X A E =-)24(1)24(--=A E X411110112111111111=--=---=A例8 4阶矩阵B A ,满足E BAABA311+=--,已知⎪⎪⎪⎪⎪⎭⎫⎝⎛-=*8000010030100101A 求B . (00一) 解: E BAABA311+=--A B AB 3+=EA B A B A 3+=*83==*AA得2=AE B A E 6)2(=-*1)2(6-*-=A E B例9 设B A ,是3阶矩阵,A 可逆,它们满足E B B A 421-=-.(1) 证明E A 2-可逆.(2) 设⎪⎪⎪⎭⎫⎝⎛-=200021021B ,求A .(2002)A 可逆解:EB B A 421-=-即A AB B 42-= B A AB 24+= A B E A 4)2(=-由A 可逆得E A 2-可逆例10 设n 阶矩阵B A ,满足bB aA AB +=.其中0≠ab ,证明 (1)bE A -和aE B -都可逆. (2) A 可逆B ⇔可逆. (3)BA AB =解:(1)令aE B D bE A C -=-=,aE D B bE C A +=+=,abE bD abE aC aE D bE C +++=++))(( abE bD aC abE bD aC CD 2++=+++D C abE CD ,⇒=都可逆或者直接把bE A -和aE B -相乘abE bB aA AB +--(2)aA B bE A =-)( (3)abE aE B bE A =--))((E aE B ab bE A =--)()( EabbE A aE B =--)()( abE bE A aE B =--))((O bB aA BA =--AB bB aA BA =+=例11 设B A ,都是n 阶对称矩阵,AB E +可逆,证明A AB E 1)(-+也是对称矩阵. 证:验证A AB E A AB E T11)(])[(--+=+ TTTAB E A A AB E ])[(])[(11--+=+ 111)()(])[(---+=+=+=BA E A A B E A AB E A T T T即要证明)()()()(111BA E A AB E A A AB E BA E A ++=⇔+=+---)()(BA E A A AB E +=+⇔。
行列式习题答案
线性代数练习题 第一章 行 列 式系 专业 班 学号 第一节 n 阶 行 列 式一.选择题1.若行列式x52231521- = 0,则=x [ C ] (A )2 (B )2- (C )3 (D )3- 2.线性方程组⎩⎨⎧=+=+473322121x x x x ,则方程组的解),(21x x = [ C ](A )(13,5) (B )(13-,5) (C )(13,5-) (D )(5,13--)3.方程093142112=x x根的个数是 [ C ] (A )0 (B )1 (C )2 (D )34.下列构成六阶行列式展开式的各项中,取“+”的有 [ A ] (A )665144322315a a a a a a (B )655344322611a a a a a a (C )346542165321a a a a a a (D )266544133251a a a a a a 5.若55443211)541()1(a a a a a l k l k N -是五阶行列式ij a 的一项,则l k ,的值及该项的符号为[ B ](A )3,2==l k ,符号为正; (B )3,2==l k ,符号为负; (C )2,3==l k ,符号为正; (D )2,3==l k ,符号为负6.下列n (n >2)阶行列式的值必为零的是 [ BD ] (A) 行列式主对角线上的元素全为零 (B) 三角形行列式主对角线上有一个元素为零 (C) 行列式零的元素的个数多于n 个 (D) 行列式非零元素的个数小于n 个 二、填空题 1.行列式1221--k k 0≠的充分必要条件是 3,1k k ≠≠-2.排列36715284的逆序数是 133.已知排列397461t s r 为奇排列,则r = 2,8,5 s = 5,2,8 ,t = 8,5,24.在六阶行列式ij a 中,623551461423a a a a a a 应取的符号为 负 。
第一章行列式(学生题目简单答案版)
第二部分 线性代数第一章 行列式题型1.1 行列式的计算(88年,数学一)设4阶矩阵234234(,,,)(,,,)A B αγγγβγγγ==,,其中,234,,,,αβγγγ均为4维列向量,且已知行列式41A B ==,,则行列式A B += .【答案】40.(88年,数学三/数学四)1110110110110111= . 【答案】3-.(89年,数学五)行列式1111111111111111x x x x ---+-=--+-- . 【答案】4x .(90年,数学五)设A 为1010⨯矩阵 10010000010000001100000A ⎛⎫⎪⎪⎪= ⎪⎪ ⎪⎝⎭,计算行列式A E λ-,其中E 为10阶单位矩阵,λ为常数.【解析】101010A E λλ-=-.(91年,数学五)n 阶行列式0000000000000000a b a b a a b b a=.【答案】1(1)n n n a b ++-.(96年,数学一)四阶行列式112233440000000a b a b b a b a 的值等于(). (A )12341234a a a a b b b b -. (B )12341234a a a a b b b b +.(C )12123434()()a a b b a a b b --. (D )23231414()()a a b b a a b b --. 【答案】(D ).(96年,数学五)5阶行列式1000110001100011011a aaa D a a a a a---==------ . 【答案】23451a a a a a -+-+-.(97年,数学四)设n 阶矩阵0111110111110111110111110A ⎛⎫⎪⎪ ⎪=⎪ ⎪ ⎪⎪⎪⎝⎭,则A = .【答案】1(1)(1)n n ---.(99年,数学二)记行列式212322212223333245354435743x x x x x x x x x x x x x x x x ---------------为()f x ,则方程()0f x =的根的个数为().(A )1. (B )2. (C )3. (D )4. 【答案】(B ).(00年,数学四)设(1,0,1)T α=-,矩阵T A n αα=,为正整数,则n aE A -= . 【答案】2(2)n a a -.(01年,数学四)设行列式3040222207005322D =--,则第四行各元素余子式之和的值为 .【答案】28-.(14年,数学一/数学二/数学三)行列式00000000a b abc d c d=(). (A )2()ad bc -.(B )2()ad bc --.(C )2222a d b c -.(D )2222b c a d -.【答案】(B ).(15年,数学一)n 阶行列式200212020022012-=-. 【答案】122n +-.(16年,数学一/数学三)行列式10001=0014321λλλλ---+ . 【答案】43223 4.λλλλ++++题型1.2 行列式的计算(二)矩阵的性质(87年,数学一)设A 为n 阶方阵,且A 的行列式0A a =≠,而*A 是A 的伴随矩阵,则*A =().(A )a . (B )1a. (C )1n a -. (D )na . 【答案】(C ).(87年,数学四)设A 为n 阶方阵,k 为常数,则kA k A =.()【答案】(×).(88年,数学四)设A 是三阶方阵,*A 是A 的伴随矩阵,A 的行列式12A =.求行列式1*(3)2A A --的值.【解析】31*12(3)23A A A --⎛⎫-=- ⎪⎝⎭1627=-.(90年,数学五)设A 为n 阶可逆矩阵,*A 是A 的伴随矩阵,则*A =().(A )1n A-. (B )A . (C )n A . (D )1A-.【答案】(A ).(92年,数学四)设A 为m 阶方阵,B 为n 阶方阵,且00A A a B b C B ⎛⎫=== ⎪⎝⎭,,,则C = .【答案】(1)mn ab -.(92年,数学五)已知实矩阵33()ij A a ⨯=满足条件:(Ⅰ)(,1,2,3)ij ij a A i j ==,其中ij A 是ij a 的代数余子式; (Ⅱ)110a ≠. 计算行列式A .【解析】1A =.(93年,数学五)若12312,,,,αααββ都是四维列向量,且四阶行列式1231,,,,m αααβ=1223,,,,n ααβα=则四阶行列式32112,,,()αααββ+等于().(A )m n +. (B )()m n -+. (C )n m -. (D )m n -. 【答案】(C ).(94年,数学一)设A 为n 阶非零方阵,*A 是A 的伴随矩阵,T A 是A 的转置矩阵,当*T A A =时,证明0A ≠.【证明】略. .(95年,数学一)设A 是n 阶矩阵,满足T AA E =(E 是n 阶单位矩阵,T A 是A 的转置矩阵),0A <,求A E +.【解析】0A E +=.(98年,数学四)设,A B 均为n 阶矩阵,23A B ==-,,则*12A B -= .【答案】2123n --.(03年,数学二)设三阶方阵,A B 满足2A B A B E --=,其中E 为三阶单位矩阵,若101020201A ⎛⎫ ⎪= ⎪ ⎪-⎝⎭,则B = .【答案】12.(04年,数学一/数学二)设矩阵210120001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,矩阵B 满足**2ABA BA E =+,其中*A 为A 的伴随矩阵,E 是单位矩阵,则B = .【答案】19.(05年,数学一/数学二/数学四)设123,,ααα均为三维列向量,记矩阵123(,,)A ααα=,123123123(2439)B ααααααααα=++++++,,.如果1A =,那么B = .【答案】2.(06年,数学一/数学二)设矩阵2112A E ⎛⎫=⎪-⎝⎭,为二阶单位矩阵,矩阵B 满足2BA B E =+,则B = .【答案】2.(06年,数学四)已知12,αα为二维列向量,矩阵1212(2,)A αααα=+-,12(,)B αα=.若行列式,6A =,则B = .【答案】2-.(10年,数学二/数学三)设,A B 为3阶矩阵,且1322A B A B -==+=,,,则1A B -+= .【答案】3.(12年,数学二/数学三)设A 为3阶矩阵,且*3A A =,为A 的伴随矩阵,若交换A 的第一行与第二行得矩阵B ,则*BA = .【答案】27-.(13年,数学一/数学二/数学三)设()ij A a =是3阶非零矩阵,A 为A 的行列式,ijA 为ij a 的代数余子式.若0(123)ij ij a A i j +==,,,,则A = . 【答案】1-.题型1.3 行列式的计算(三)秩数,特征值的性质(91年,数学一)设A 是n 阶正定矩阵,E 是n 阶单位矩阵,证明A E +的行列式大于1. 【证明】略.(98年,数学三)齐次线性方程组2123123123000x x x x x x x x x λλλλ⎧++=⎪++=⎨⎪++=⎩,,,的系数矩阵记为A ,若存在3阶矩阵B O ≠,使得AB O =,则().(A )2λ=-且0B =. (B )2λ=-且0B ≠. (C )1λ=且0B =. (D )1λ=且0B ≠. 【答案】(C ).(99年,数学一/数学二)设A 是m n ⨯矩阵,B 是n m ⨯矩阵,则().(A )当m n >时,必有行列式0AB ≠. (B )当m n >时,必有行列式0AB =.(C )当n m >时,必有行列式0AB ≠. (D )当n m >时,必有行列式0AB =. 【答案】(B ).(00年,数学三)若四阶矩阵A 与B 相似,矩阵A 的特征值为1111,,,2345,则行列式1B E --= .【答案】24.(00年,数学四)已知四阶矩阵A 相似于,B A 的特征值为2,3,4,5.E 为四阶单位矩阵,则B E -= .【答案】24.(08年,数学三)设3阶矩阵A 的特征值是1,2,2,E 为3阶单位矩阵,则14A E --= .【答案】3.(15年,数学二/数学三)设3阶矩阵A 的特征值为2221B A A E -=-+,,,,其中E 为3阶单位矩阵,则行列式B = .【答案】21.。
线性代数第一章作业及其答案
第一章行列式一、单项选择题1.行列式D 非零的充分条件是()(A)D 的所有元素非零(B)D 至少有n 个元素非零(C)D 的任何两行元素不成比例(D)以D 为系数矩阵的非齐次线性方程组有唯一解2.二阶行列式1221--k k ≠0的充分必要条件是()A.k≠-1B.k≠3C.k≠-1且k≠3D.k≠-1或≠33.已知2阶行列式2211b a b a =m ,2211c b c b =n ,则222111c a b c a b ++=()A.m -nB.n -mC.m +nD.–(m +n )4.设行列式==1111034222,1111304zy x zyx则行列式()A.32B.1C.2D.385.下列行列式等于零的是()A .100123123- B.031010300-C.100310-D.261422613-6.行列式111101111011110------第二行第一列元素的代数余子式21A =()A.-2B.-1C.1D.27.如果方程组⎪⎩⎪⎨⎧=+=-=-+0404033232321kx x x x x kx x 有非零解,则k=()A.-2B.-1C.1D.28.(考研题)行列式0000000ab a bc dc d=()A.()2ad bc - B.()2ad bc -- C.2222a db c- D.2222b c a d-二、填空题1.四阶行列式中带负号且含有因子12a 和21a 的项为。
2.行列式1112344916中位于(3,2)元素的代数余子式A 32=。
3.设1578111120963437D --=--,则1424445A A A ++=。
4.已知行列式212300111a=-,则数a =。
5.若a ,b 是实数,则当a =且b =时,有000101ab ba-=--。
6.设13124321322)(+--+-+=x x x x f ,则2x 的系数为。
7.五阶行列式000130003201830207530026=。
(精选)线性代数行列式第一章练习题答案
《线性代数》(工)单元练习题一、填空题1、设矩阵A 为4阶方阵,且|A|=5,则|A*|=__125____,|2A|=__80___,|1-A |= 1/52、若方程组⎪⎩⎪⎨⎧=+=+=+a bz cy b az cx ay bx 0 有唯一解,则abc ≠ 03、把行列式的某一列的元素乘以同一数后加到另一列的对应元素上,行列式 0 .4、当a 为 1 or 2 时,方程组⎪⎩⎪⎨⎧=++=++=++040203221321321x a x x ax x x x x x 有非零解.5、设=-+----=31211142,410132213A A A D 则 .0二、单项选择题1.设)(则=---===333231312322212113121111333231232221131211324324324,1a a a a a a a a a a a a D a a a a a a a a a D B (A)0 ; (B)―12 ; (C )12 ; (D )12.设齐次线性方程组⎪⎩⎪⎨⎧=+-=++=+02020z y kx z ky x z kx有非零解,则k = ( A )(A )2 (B )0 (C )-1 (D )-23.设A=792513802-,则代数余子式 =12A ( B )(A) 31- (B) 31 (C) 0 (D) 11-4.已知四阶行列式D 中第三列元素依次为-1,2,0,1,它们的余子式依次分别为5,3,-7,4,则D= ( A ) (A ) -15 (B ) 15 (C ) 0 (D ) 1 三、计算行列式1、111a b c b c a c a b +++ ( 0 ) 2、. 1212301112042411D --=----(-10)3、1111111111111111x x y y+-+- (x 2y 2) 4、 3321322132113211111b a a a a b a a a a b a a a a +++(b 1b 2b 3)5、3222232222322223ΛM M M M M ΛΛΛ=n D (2n+1)三、已知n 阶行列式12312001030100n nD n=LLLM M M O M L,求第一行各元素的代数余子式之和. 解:A 11+A 12+…+A 1n 11111200111(1)!103023100n nn==----⋅LLL LM M M O M L(注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。
《线性代数》第一章行列式精选习题及解答
4.利用行列式按某一行(列)展开定理计算行列式;
5.利用数学归纳法计算行列式;
6.利用递推公式计算行列式;
7.利用范德蒙行列式的结论计算特殊的行列式;
8.利用加边法计算行列式;
9.综合运用上述方法计算行列式.
1.3 例题分析
例 1.1 排列 14536287 的逆序数为 ( )
(A) 8 (B) 7
因此
(−1Байду номын сангаасt a1n−1a2n−2 Lan−11ann ,其中
t = (n −1)(n − 2) , 2
( 2007 −1)( 2007 − 2 )
D = (−1) 2 2007!= −2007!.
此题也可以按行(列)展开来计算.
例 1.11 计算 n 阶行列式
2 1 1L1
1 2 1L1
Dn = 1 1 2 L 1
⎪⎪a ⎨
21
x1
⎪
+
a22 x2 MM
+L+ MM
a2n xn M
=
0
⎪⎩an1 x1 + an2 x2 + L + ann xn = 0
的系数行列式 D ≠ 0 ,则方程组只有唯一零解.若齐次线性方程组有非零解,则其系数行
列式 D = 0 .
1.2.5 一些常用的行列式
1.上、下三角形行列式等于主对角线上的元素的积.
⎧D i = j
jk
=
ai1 Aj1
+ ai2 Aj2
+ ... + ain Ajn
=
⎨ ⎩
0
i≠ j
其中 Ast 是 ast 的代数余子式.
1.2.4 克拉默法则 1.如果线性非齐次方程组
线性代数习题参考答案
第一章行列式§1 行列式的概念1.填空(1) 排列6427531的逆序数为,该排列为排列。
(2) i= ,j= 时,排列1274i56j9为偶排列。
(3) n阶行列式由项的代数和组成,其中每一项为行列式中位于不同行不同列的n个元素的乘积,若将每一项的各元素所在行标按自然顺序排列,那么列标构成一个n元排列。
若该排列为奇排列,则该项的符号为号;若为偶排列,该项的符号为号。
(4) 在6阶行列式中,含152332445166a a a a a a的项的符号为,含324314516625a a a a a a的项的符号为。
2.用行列式的定义计算下列行列式的值(1)112223323300 0aa aa a解:该行列式的3!项展开式中,有项不为零,它们分别为,所以行列式的值为。
(2)12,121,21,11, 12,100000nn nn n n n n n n n n nnaa aa a aa a a a------解:该行列式展开式中唯一不可能为0的项是,而它的逆序数是,故行列式值为。
3. 证明:在全部n 元排列中,奇排列数与偶排列数相等。
证明:n 元排列共有!n 个,设其中奇排列数有1n 个,偶排列数为2n 个。
对于任意奇排列,交换其任意两个元的位置,就变成偶排列,故一个奇排列与许多偶排列对应,所以有1n 2n ,同理得2n 1n ,所以1n 2n 。
4. 若一个n 阶行列式中等于0的元素个数比n n -2多,则此行列式为0,为什么?5. n 阶行列式中,若负项的个数为偶数,则n 至少为多少?(提示:利用3题的结果)6. 利用对角线法则计算下列三阶行列式(1)201141183---(2)222111ab c a b c§2 行列式的性质1.利用行列式的性质计算系列行列式。
(1) 2141 3121 1232 5062-(2)100 110 011 001abcd ---(3)ab ac ae bd cd de bf cf ef ---2. 证明下列恒等式(1) ()33ax by ay bzaz bx x y z D ay bzaz bx ax by a b yz x az bx ax by ay bzzxy+++=+++=++++ (提示:将行列式按第一列分解为两个行列式之和,再利用性质证明)(2)()()()()()()()()()()()()22222222222222221231230123123a a a a b b b b cc c cd d d d ++++++=++++++(3)1111221100001000001n n n n n n n x x x a x a x a x a a a a x a ------=++++-+ (提示:从最后一列起,后列的x 倍加到前一列)3. 已知四阶行列式D 的第三行元素分别为:1,0,2,4-;第四行元素的对应的余子式依次是2,10,a ,4,求a 的值。
《线性代数》第一章行列式精选习题及解答
a1 ...
∏ a2
...
... ...
an ...
=
(a j − ai ) .
1≤i< j≤n
a1n−1
a
n−1 2
... ann−1
1.2.6 计算行列式的常用方法
1.利用对角线法则计算行列式,它只适用于 2、3 阶行列式;
2.利用 n 阶行列式定义计算行列式;
3.利用行列式的性质化三角形法计算行列式;
(C) 10 (D) 9
解 在排列 14536287 中,1 排在首位,逆序数为 0;4、5、6、8 各数的前面没有比它们
自身大的数,故这四个数的逆序数为 0;3 的前面比它大的数有 2 个(4、5),故逆序数为 2;
2 的前面比它大的数有 4 个(4、5、3、6),故逆序数为 4;7 的前面比它大的数有 1 个(8),
MM MM
M
11 1 1L2
1 −1 −1 −1 L −1
n +1 0 0 0 L 0
11 0 0L0
求和,故共有 n!项. 1.2.2 行列式的性质
1.行列式和它的转置行列式相等; 2.行列式的两行(列)互换,行列式改变符号; 3.行列式中某行(列)的公因子可提到行列式的的外面,或若以一个数乘行列式等于 用该数乘此行列式的任意一行(列);
4.行列式中若有两行(列)成比例,则该行列式为零; 5.若行列式的某一行(列)的元素都是两数之和,则此行列式等于两个行列式之和, 即
即 ( A31 + A32 + A33 ) + 2( A34 + A35 ) =0. 同理 2( A31 + A32 + A33 ) + ( A34 + A35 ) =0
(完整版)线性代数行列式第一章练习题答案
(完整版)线性代数行列式第一章练习题答案《线性代数》(工)单元练习题一、填空题1、设矩阵A 为4阶方阵,且|A |=5,则|A*|=__125____,|2A |=__80___,|1-A |= 1/52、若方程组??=+=+=+a bz cy b az cx ay bx 0 有唯一解,则abc ≠ 03、把行列式的某一列的元素乘以同一数后加到另一列的对应元素上,行列式 0 .4、当a 为 1 or 2 时,方程组=++=++=++040203221321321x a x x ax x x x x x 有非零解.5、设=-+----=31211142,410132213A A A D 则 .0二、单项选择题1.设)(则=---===333231312322212113121111333231232221131211324324324,1a a a a a a a a a a a a D a a a a a a a a a D B (A)0 ;(B)―12 ;(C )12 ;(D )12.设齐次线性方程组=+-=++=+02020z y kx z ky x z kx有非零解,则k = ( A )(A )2 (B )0 (C )-1 (D )-23.设A=792513802-,则代数余子式 =12A ( B )(A) 31- (B) 31 (C) 0 (D) 11- 4.已知四阶行列式D 中第三列元素依次为-1,2,0,1,它们的余子式依次分别为5,3,-7,4,则D= ( A ) (A ) -15 (B ) 15 (C ) 0 (D ) 1 三、计算行列式1、111a b c b c a c a b +++ ( 0 ) 2、. 1212301112042411D --=----(-10)3、1111111111111111x x y y+-+- (x 2y 2) 4、 3321322132113211111b a a a a b a a a a b a a a a +++(b 1b 2b 3)5、3222232222322223ΛM M M M M ΛΛΛ=n D (2n+1)三、已知n 阶行列式12312001030100n nD n=LLLM M M O M L ,求第一行各元素的代数余子式之和. 解:A 11+A 12+…+A 1n 11111200111(1)!103023100n nn==----?LLL LM M M O M L。