传感器原理及应用 第9章
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金属氧化物 加热电极 输出极
烧结型
目前最常用的是氧化锡(SnO2)烧结型气敏元件, 它的加热温度较低, 一般在200-300℃, SnO2气敏 半导体对许多可燃性气体, 如氢、一氧化碳、甲烷、 丙烷、乙醇等都有较高的灵敏度。
(2)薄膜型
在石英基片上蒸发或溅射一层半导体薄膜制
成(厚度 0.1 μ m 以下)。上下为输出电极和加
注: (1) 检测不同气体,加热温度及添加物质不同, 目的是使传感器对不同气体有选择性。
三、气敏元件的基本测量电路 图中EH为加热电源, EC为测 量电源, 电阻中气敏电阻值的 变化引起电路中电流的变化, 输出电压(信号电压)由电 阻Ro上取出。 特别在低浓度 下灵敏度高, 而高浓度下趋于 稳定值。 因此, 常用来检查 可燃性气体泄漏并报警等。
表9.1 半导体气体传感器的分类
主要物理特性 传感器举例
氧化银、氧化锌
工作温度
室温450℃
电 阻 式
电 阻
表ቤተ መጻሕፍቲ ባይዱ控制型
体控制型
典型被测气 体 可燃性气体
氧化钛、氧化 700℃以 钴、氧化镁、 上 氧化锡
酒精、 氧气、 可燃性 气体 硫醇 氢气、 一氧化 碳、酒 精 氢气、 硫化氢
非 电 阻 式
表面电位 二极管整流特性
制造工艺简单、成本低、功 耗小、可以在高电压回路下使 用;
热容量小,易受环境气流的 影响,测量回路与加热回路之 间没有隔离,相互影响。 内热式气敏器件结构
(5)旁热式 管芯增加了陶瓷管,管内放 加热丝,管外涂梳状金电极做 测量极,在金电极外涂SnO2 等气敏材料; 测量极与加热丝分离,加热 丝不与气敏材料接触,避免了 测量回路与加热回路之间的相 互影响,热容量大,不易受环 境气流的影响。
热电极,中间为加热器。 输出极 加热器 金属氧化物
薄膜型
加热电极
(3)厚膜型
将金属氧化物粉末、添加剂、粘合剂等混合配成浆 料,将浆料印刷到基片上,制成数十微米的厚膜。 灵敏度、工艺性、机械强度和一致性等方面,厚膜 气敏元件较好。
半导体氧化物 Pt电极 氧化铝基片 厚膜型 加热器
(4)内热式
加热丝和测量丝都直接埋在 基体材料内;
当表面吸附某种气体时会引起电导率的变化. 1、结构与分类 由气敏元件、加热器、封装部分组成; 按制造工艺可分为烧结型、薄膜型、厚膜型。 按加热方式分为内热式和旁热式。
双层 金属网 罩 气敏 元件 电极 引线
外套 封装 基痤 端子
图9.1 某气敏传感器的整体结构
(1) 烧结型
将元件的电极和加热器 均埋在金属氧化物气敏材 料中, 经加热成型后低温 烧结而成。
– 高分子气敏传感器等。
一、半导体气敏传感器
元件材料:金属氧化物或金属半导体氧化物,
作用原理:与气体相互作用时产生表面吸附或反 应,引起以载流子运动为特征的电导率或伏安特 性或表面电位变化。借此来检测特定气体的成分 或者测量其浓度,并将其变换成电信号输出。 应用范围:可用于检测气体中的特定成分(CO、 CO2、甲醛、酒精、氧气、氢气等)。
表面控制型
氧化银 铂/硫化镉、 铂/氧化钛 铂栅MOS场 效应晶体管
室温
室温200℃
晶体管特性
150℃
电阻式半导体气敏传感器:
其电阻随着气体含量不同而变化; 主要是指半导体金属氧化物陶瓷气敏传感器, 是一种用金属氧化物薄膜(例如SnO2、ZnO、 Fe2O3、TiO2等)制成的阻抗器件。
二、表面控制型电阻式半导体气敏传感器
气敏元件的基本测量电路
1、电源电路 一般气敏元件的工作电压不高(3V~10V), 其工作电压,特别是供给加热的电压,必须稳定。 否则,将导致加热器的温度变化幅度过大,使气 敏元件的工作点漂移,影响检测准确性。
2、辅助电路
在设计、制作应用电路时,应考虑气敏元件自身的特性 (温度系数、湿度系数、初期稳定性等)。如: 采用温度补偿电路,以减少气敏元件的温度系数引起 的误差;
当半导体的功函数小于吸附分子的电子亲和力,吸附分子从 半导体夺走电子成为负离子吸附,半导体载流子数减少,电 阻率增大,阻值增大。具有负离子吸附倾向的气体被称为氧 化性气体(例O2、NOx等)。
100
元件电阻 元件加热 正常状态 吸附氧化性气体
50
元件阻值变化
吸附还原性气体
0
空气中 吸附气体后
时间
当吸附还原性气体时,N型半导体的功函数大于吸附 分子的离解能,吸附分子向半导体释放电子成为正离子 吸附,半导体载流子数增加,半导体电阻率减少,阻值 降低。
当吸附氧化性气体时,N型半导体的功函数小于吸附 分子的电子亲和力,吸附分子从半导体夺走电子成为负 离子吸附,半导体载流子数减少,电阻率增大,阻值增 大. 对于P型半导体器件,情况刚好相反,氧化性气体使 其电阻减小,还原性气体使其电阻增大。
传感器原理及应用
第九章 气敏、湿敏传感器
概述
• 气敏传感器:检测气体浓度和成分,主要 用于环境保护和安全监督等方面。
• 湿敏传感器:检测湿度情况,广泛应用于 工业、农业、国防、科技和生活等各个领 域。
分类:
– – – – –
9.1 气敏传感器
通常以气敏特性来分类,主要可分为:
半导体型气敏传感器, 电化学型气敏传感器, 固体电解质气敏传感器, 接触燃烧式气敏传感器, 光化学型气敏传感器,
应用场合: 一般用于易燃、易爆、有毒、有害气体的检 测和报警。 基本要求: 1、对被测气体有高的灵敏度。 2、气体选择性好。 3、能够长期稳定工作。
4、响应速度快。
分类:
按照与气体的相互作用是局限于半导体内部还 是涉及到外部分为表面控制型和体控制型;
按照半导体变化的物理特性分为电阻式和非电 阻式。
旁热式气敏器件结构
注:加热器的作用
(1)使附着在元件上的油污、尘埃烧掉。
(2 )加速气体的氧化、还原反应,提高器件的灵
敏度及响应速度。
2、工作原理
元件加热到稳定状态,当有气体吸附时,吸附分子在气敏元 件表面自由扩散(物理吸附),一部分吸附分子被蒸发掉,一部 分吸附分子产生热分解固定在吸附处(化学吸附)。 当半导体的功函数大于吸附分子的离解能,吸附分子向半导 体释放电子成为正离子吸附,半导体载流子数增加,半导体 电阻率减少,阻值降低。具有正离子吸附倾向的气体被称为 还原性气体(例H2、CO、炭氢化合物和酒类等)。