高二数学椭圆双曲线抛物线测试题
高二数学选修椭圆、双曲线综合能力测试
椭圆、双曲线综合能力测试时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.椭圆x 23+y 22=1的焦点坐标是( )A .(±5,0)B .(0,±5)C .(±1,0)D .(0,±1)2.已知双曲线方程为x 220-y 25=1,那么它的半焦距是( )A .5B .2.5 C.152D.153.平面内两定点的距离为10,则到这两个定点的距离之差的绝对值为12的点的轨迹为( )A .双曲线B .线段C .射线D .不存在4.设P 是椭圆x 2169+y 225=1上一点,F 1、F 2是椭圆的焦点,若|PF 1|等于4,则|PF 2|等于( )A .22B .21C .20D .135.以x 24-y 212=-1的焦点为顶点,顶点为焦点的椭圆方程为( )A.x 216+y 212=1B.x 212+y 216=1C.x 216+y 24=1D.x 24+y 216=1 6.双曲线mx 2+y 2=1的虚轴长是实轴长的2倍,则m 等于( ) A .-14B .-4C .4D.147.双曲线的虚轴长为4,离心率e =62,F 1、F 2分别为它的左、右焦点,若过F 1的直线与双曲线的左支交于A 、B 两点,且|AB |是|AF 2|与|BF 2|的等差中项,,则|AB |等于( )A .8 2B .4 2C .2 2D .88.已知动圆P 过定点A (-3,0),并且与定圆B :(x -3)2+y 2=64内切,则动圆的圆心P 的轨迹是( )A .线段B .直线C .圆D .椭圆9.3<m <5是方程x 2m -5+y 2m 2-m -6=1表示的图形为双曲线的( )A .充分但非必要条件B .必要但非充分条件C .充分必要条件D .既非充分又非必要条件10.已知椭圆的长轴长为20,短轴长为16,则椭圆上的点到椭圆中心距离的取值范围是( )A .[6,10]B .[6,8]C .[8,10]D .[16,20]11.双曲线与椭圆x 216+y 264=1有相同的焦点,它的一条渐近线为y =-x ,则双曲线方程为( )A .x 2-y 2=96B .y 2-x 2=160C .x 2-y 2=80D .y 2-x 2=2412.(2010·辽宁文,9)设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( )A. 2B. 3C.3+12D.5+12二、填空题(本大题共4个小题,每小题4分,共16分,将正确答案填在题中横线上) 13.与双曲线x 29-y 216=1有共同的渐近线,并且经过点(-3,32)的双曲线方程为__________.14.双曲线x 24-y 23=1的焦点到渐近线的距离为______.15.若椭圆x 25+y 2m =1的离心率为e =22,则实数m 的值等于________.17.(本题满分12分)求下列双曲线的标准方程.(1)与椭圆x216+y225=1共焦点,且过点(-2,10)的双曲线;(2)与双曲线x216-y24=1有公共焦点,且过点(32,2)的双曲线.18.(本题满分12分)方程x2sinα-y2cosα=1表示焦点在y轴上的椭圆,求α的取值范围.[分析]根据焦点在y轴上的椭圆的标准方程的特点,先将条件方程化为标准式,得到关于α的关系式,再求α的取值范围.19.(本题满分12分)已知动圆M与⊙O1:x2+(y-1)2=1和⊙O2:x2+(y+1)2=4都外切,求动圆圆心M的轨迹方程.20.(本题满分12分)如图,点A是椭圆C:x2a2+y2b2=1(a>b>0)的短轴位于x轴下方的端点,过A作斜率为1的直线交椭圆于B点,P点在y轴上,且BP∥x轴,AB→·AP→=9.(1)若P的坐标为(0,1),求椭圆C的方程;(2)若P的坐标为(0,t),求t的取值范围.21.(本题满分12分)设F1、F2是双曲线x2a2-y2b2=1(a>0,b>0)的两个焦点,点P在双曲线上,若PF1→·PF2→=0,且|PF1→|·|PF2→|=2ac,其中c=a2+b2,求双曲线的离心率.22.(本题满分14分)若椭圆的中心为原点,焦点在x轴上,点P是椭圆上的一点,P在x轴上的射影恰为椭圆的左焦点,P与中心O的连线平行于右顶点与上顶点的连线,且左焦点与左顶点的距离等于10-5,试求椭圆的离心率及其方程.1[答案] C[解析]∵a2=3,b2=2,∴c2=1.又焦点在x 轴上,故选C. 2[答案] A[解析] ∵a 2=20,b 2=5,∴c 2=25,∴c =5. 3[答案] D[解析] 设两定点为A 、B ,则平面内到两定点A 、B 的距离的差的绝对值小于或等于这两定点的距离.4[答案] A[解析] 由椭圆的定义知,|PF 1|+|PF 2|=26,因为|PF 1|=4,所以|PF 2|=22. 5[答案] D[解析] 将x 24-y 212=-1化为y 212-x 24=1,易知双曲线的焦点在y 轴上,焦点为(0,±4),顶点为(0,±23),所以椭圆的a =4,c =23,因此b 2=16-12=4,所以椭圆方程为x 24+y216=1.6[答案] A[解析] 双曲线mx 2+y 2=1的方程可化为: y 2-x2-1m=1,∴a 2=1,b 2=-1m ,由2b =4a ,∴2-1m =4,∴m =-14. 7[答案] A[解析] ∵c a =62,2b =4,∴a 2=8,a =22,|AF 2|-|AF 1|=2a =42, |BF 2|-|BF 1|=2a =42,两式相加得|AF 2|+|BF 2|-(|AF 1|+|BF 1|)=82, 又∵|AF 2|+|BF 2|=2|AB |,|AF 1|+|BF 1|=|AB |,∴|AB |=8 2. 8[答案] D[解析] 如下图,设动圆P 和定圆B 内切于M ,则动圆的圆心P 到两点,即定点A (-3,0)和定圆的圆心B (3,0)的距离之和恰好等于定圆半径,即|P A |+|PB |=|PM |+|PB |=|BM |=8.∴点P 的轨迹是以A、B 为焦点的椭圆,故选D.9[答案] A[解析] 当3<m <5时,m -5<0,m 2-m -6>0, ∴方程x 2m -5+y 2m 2-m -6=1表示双曲线.若方程x 2m -5+y 2m 2-m -6=1表示双曲线,则(m -5)(m 2-m -6)<0, ∴m <-2或3<m <5,故选A. 10[答案] C[解析] 由题意知a =10,b =8,设椭圆上的点M (x 0,y 0),由椭圆的范围知,|x 0|≤a =10,|y 0|≤b =8,点M 到椭圆中心的距离d =x 20+y 20,又因为x 20100+y 2064=1,所以y 20=64⎝⎛⎭⎫1-x 20100=64-1625x 20,则d =x 20+64-1625x 20=925x 20+64,因为0≤x 20≤100,所以64≤925x 20+64≤100,所以8≤d ≤10.故选C.11[答案] D[解析] ∵椭圆x 216+y 264=1的焦点(0,±43)为双曲线焦点,又它的一条渐近线为y =-x ,∴双曲线方程为y 2-x 2=24.12[答案] D[分析] 考查双曲线的渐近线方程及如何用a ,b ,c 三者关系转化出离心率 [解析] 设F (-c,0) B (0,b )则K FB =bc与直线FB 垂直的渐近线方程为y =-ba x∴b c =ab,即b 2=ac 又b 2=c 2-a 2,∴有c 2-a 2=ac 两边同除以a 2得e 2-e -1=0∴e =1±52∵e >1,∴e =1+52,选D.13[答案] y 22-8x 29=1[解析] 设双曲线方程为:x 29-y 216=λ(λ≠0)又点(-3,32)在双曲线上,∴λ=-18.故双曲线方程为y 22-8x29=1.14[答案]3[解析] 双曲线x 24-y 23=1的一条渐近线方程为:y =32x ,焦点F (7,0)到该渐近线的距离为:3×73+4= 3.15[答案] 10或52[解析] 若m <5,则e =22=5-m 5,解得m =52;若m >5,则e =22=m -5m,解得m =10.16.F 1,F 2是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,点P 在椭圆上,△POF 2是面积为3的正三角形,则b 2的值是________.16[答案] 2 3[解析] 由题意可知12×c ×32c =3,∴c =2,故P (1,3)在椭圆x 2b 2+4+y 2b 2=1上,即1b 2+4+3b2=1,解得b 2=2 3.三、解答题(共6个小题,共74分,解答应写出文字说明、证明过程或演算步骤) 17[解析] (1)∵椭圆x 216+y 225=1的焦点为(0,±3),∴所求双曲线方程设为:y 2a 2-x 29-a 2=1,又点(-2,10)在双曲线上,∴10a 2-49-a 2=1,解得a 2=5或a 2=18(舍去). ∴所求双曲线方程为y 25-x 24=1.(2)∵双曲线x 216-y 24=1的焦点为(±25,0),∴设所求双曲线方程为:x 2a 2-y 220-a 2=1,又点(32,2)在双曲线上,∴18a 2-420-a 2=1,解得a 2=12或30(舍去), ∴所求双曲线方程为x 212-y 28=1.18[解析] ∵x 2sin α-y 2cos α=1,∴x 21sin α+y 2-1cos α=1.又∵此方程表示焦点在y 轴上的椭圆,∴⎩⎪⎨⎪⎧1sin α>0-1cos α>01sin α<-1cos α,即⎩⎪⎨⎪⎧sin α>00<-cos α<sin α,∴2k π+π2<α<2k π+34π(k ∈Z ).故所求α的范围为⎝⎛⎭⎫2k π+π2,2k π+3π4(k ∈Z ). 19[解析] 设动圆圆心M 的坐标为(x ,y ),半径为r , 由题意得|MO 1|=1+r ,|MO 2|=2+r , ∴|MO 2|-|MO 1|=2+r -1-r =1<|O 1O 2|=2,由双曲线定义知,动圆圆心M 的轨迹是以O 1、O 2为焦点,实轴长为1的双曲线的上支, 双曲线方程为:4y 2-43x 2=1.(y ≥34)20[解析] (1)A (0,-b ),l 的方程为y +b =x ,P (0,1),则B (1+b,1), AB →=(1+b,1+b ),AP →=(0,b +1),又∵AB →·AP →=9,∴(1+b,1+b )·(0,b +1)=9, 即(b +1)2=9,∴b =2,∴点B (3,1)在椭圆上,∴9a 2+14=1,∴a 2=12,所求的椭圆方程为x 212+y 24=1.(2)P (0,t ),A (0,-b ),B (t +b ,t ),AB →=(t +b ,t +b ),AP →=(0,t +b ),AB →·AP →=9, ∴(t +b )2=9,∴b =3-t ,B (3,t ),代入椭圆9a 2+t 2(3-t )2=1,∴a 2=3(t -3)23-2t, ∵a 2>b 2,∴3(t -3)23-2t>(3-t )2,∴0<t <32.21[解析] 由双曲线定义知,||PF 1|-|PF 2||=2a , ∴|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|=4a 2, 又|PF 1|2+|PF 2|2=4c 2,∴|PF 1|·|PF 2|=2b 2, 又|PF 1→|·|PF 2→|=2ac ,∴2ac =2b 2,∴b 2=c 2-a 2=ac ,∴e 2-e -1=0,∴e =1+52,即双曲线的离心率为1+52.22[解析] 令x =-c 代入x 2a 2+y 2b 2=1(a >b >0),得y 2=b 2(1-c 2a 2)=b 4a 2,∴y =±b 2a .设P ⎝⎛⎭⎫-c ,b2a ,而椭圆的右顶点A (a,0),上顶点B (0,b ). ∵OP ∥AB ,∴k OP =k AB ,∴-b 2ac =-b a,∴b =c ;而a 2=b 2+c 2=2c 2,∴a =2c ,∴e =c a =22.又∵a -c =10-5,解得a =10,c =5,∴b =5, ∴所求的椭圆方程为:x 210+y 25=1.。
高中数学 专题10解析几何直线与圆、椭圆、双曲线和抛物线 试题
2021届专题十数学考试范围:解析几何〔直线与圆、椭圆、双曲线和抛物线〕一、选择题〔本大题一一共10小题;每一小题5分,一共50分.在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的〕 1.直线07tan =+y x π的倾斜角是〔 〕 A .7π-B .7π C .75π D .76π 2.直线01:1=+-y x l 关于直线2:=x l 对称的直线2l 方程为 〔 〕 A .012=--y xB .072=-+y xC .042=--y xD .05=-+y x3.“2-=a 〞是直线()021:1=-++y x a l 与直线()0122:2=+++y a ax l 互相垂直的 〔 〕A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.直线0=+++b a by ax 与圆222=+y x 的位置关系为 〔 〕 A .相交B .相切C .相离D .相交或者相切5.点P 在圆074422=+--+y x y x 上,点Q 在直线上kx y =上,假设PQ 的最小值为122-,那么k = 〔 〕 A .1B .1-C .0D .26.假设椭圆122=+my x 的离心率⎪⎪⎭⎫⎝⎛∈22,33e ,那么m 的取值范围是〔 〕 A .⎪⎭⎫ ⎝⎛32,21B .()2,1C .()2,132,21 ⎪⎭⎫ ⎝⎛D .⎪⎭⎫⎝⎛2,217.中心在原点,焦点在坐标轴上的双曲线的一条渐近线方程为03=-y x ,那么该双曲线的离心率为 〔 〕 A .332 B .3 C .2或者332 D .332或者3 8.M 是抛物线x y 42=上一点,且在x 轴上方,F 是抛物线的焦点,以x 轴的正半轴为始边,FM 为终边构成的最小的角为60°,那么=FM〔 〕 A .2B .3C .4D .69.设抛物线x y 82=的准线经过中心在原点,焦点在坐标轴上且离心率为21的椭圆的一个顶点,那么此椭圆的方程为 〔 〕A .1161222=+y x 或者1121622=+y xB .1644822=+y x 或者1486422=+y xC .1121622=+y x 或者1431622=+x y D .13422=+y x 或者1431622=+x y10.定点()0,21-F 、()0,22F ,动点N 1=〔O 为坐标原点〕,NM M F 21=,()R MF MP ∈=λλ2,01=⋅PN M F ,那么点P 的轨迹是〔 〕 A .椭圆B .双曲线C .抛物线D .圆二、填空题〔本大题一一共5小题;每一小题5分,一共25分.将答案填在题中的横线上〕 11.以点()2,1-为圆心且与直线1-=x y 相切的圆的HY 方程是 . 12.圆064422=++-+y x y x 上到直线05=--y x 的间隔 等于22的点有个.13.假设点P 在直线03:1=++my x l 上,过点P 的直线2l 与曲线()165:22=+-y x C 只有一个公一共点M ,且PM 的最小值为4,那么=m .14.在平面直角坐标系xOy 中,椭圆12222=+b y a x (a >b >0)的离心率为22,以O 为圆心,a 为半径作圆M ,再过⎪⎪⎭⎫⎝⎛0,2c a P 作圆M 的两条切线PA 、PB ,那么APB ∠= .15.以双曲线的两个焦点及虚轴的两个端点为顶点的四边形中,有一个内角的范围是⎪⎭⎫⎝⎛2,3ππ那么双曲线的离心率的范围是 .三、解答题〔本大题一一共6小题;一共75分.解容许写出文字说明、证明过程或者演算步骤〕16.〔此题满分是12分〕圆O 的方程为1622=+y x . 〔1〕求过点()8,4-M 的圆O 的切线方程;〔2〕过点()0,3N 作直线与圆O 交于A 、B 两点,求OAB △的最大面积以及此时直线AB 的斜率.17.〔此题满分是12分〕将抛物线y x 222-=向上平移2个单位长度后,抛物线过椭圆12222=+by ax (a >b >0)的上顶点和左右焦点.〔1〕求椭圆方程;〔2〕假设点()0,m P 满足如下条件:过点P 且倾斜角为π65的直线l 与椭圆相交于C 、D 两点,使右焦点F 在以CD 线段为直径的圆外,试求m 的取值范围.18.〔此题满分是12分〕双曲线,12222=-by ax (a >0,b >0)左右两焦点为1F 、2F ,P 是右支上一点,212F F PF ⊥,1PF OH ⊥于H ,1OF OH λ=,⎥⎦⎤⎢⎣⎡∈21,91λ.〔1〕当31=λ时,求双曲线的渐近线方程; 〔2〕求双曲线的离心率e 的取值范围;〔3〕当e 取最大值时,过1F ,2F ,P 的y 轴的线段长为8,求该圆的方程.19.〔此题满分是13分〕在平面直角坐标系xOy中,过定点()0,pC作直线m与抛物线2=(p>0)相交于A、B两点.y2px〔1〕设()0,pNA⋅的最小值;N-,求NB〔2〕是否存在垂直于x轴的直线l,使得l被以AC为直径的圆截得的弦长恒为定值?假设存在,求出l的方程;假设不存在,请说明理由.20.〔此题满分是13分〕椭圆C 的中心在原点,焦点在x 轴上,离心率等于21,它的一个顶点恰好是抛物线y x 382=的焦点. 〔1〕求椭圆C 的方程;〔2〕()3,2P 、()3,2-Q 是椭圆上两点,A 、B 是椭圆位于直线PQ 两侧的两动点,①假设直线AB 的斜率为21,求四边形APBQ 面积的最大值;②当A 、B 运动时,满足BPQ APQ ∠=∠,试问直线AB 的斜率是否为定值,请说明理由.21.〔此题满分是13分〕在平面直角坐标系中,向量()2,-=y x a ,()()R k y kx b ∈+=2,,假b a b a =.〔1〕求动点()y x M ,的轨迹T 的方程,并说明该方程表示的曲线的形状; 〔2〕当34=k 时,()1,01-F 、()1,02F ,点P 是轨迹T 在第一象限的一点,121=PF PF ,假设点Q 是轨迹T 上不同于点P 的另一点,问是否存在以PQ 为直径的圆G 过点2F ,假设存在,求出圆G 的方程,假设不存在,请说明理由.2021届同心圆梦专题卷数学专题十答案与解析1.【命题立意】此题考察直线的一般方程形式、斜率和倾斜角的关系以及正切函数的诱导公式.【思路点拨】抓住直线方程y=kx+b 中斜率为k ,α为倾斜角,其中[)πα,0∈,当2πα≠时αtan =k .【答案】D 【解析】7tan πx y -=,斜率76tan 7tan 7tan ππππ=⎪⎭⎫ ⎝⎛-=-=k .2.【命题立意】此题考察直线的对称和直线方程的求解以及直线上点确实定.【思路点拨】求出直线1l 与x 轴、与l 的交点坐标,再确定对称点的坐标,最后由两点式得到2l 的直线方程.【答案】D 【解析】画出图形,容易求得直线1l 与x 轴的交点()0,1-A ,它关于直线l 的对称点为()0,5B ,又1l 与l 的交点()3,2P ,从而对称直线2l 经过B 、P 两点,于是由两点式求得2l 的方程为05=-+y x .3.【命题立意】此题考察两条直线的位置关系和充要条件:0212121=+⇔⊥B B A A l l .【思路点拨】判断直线0:1111=++C y B x A l ,0:2222=++C y B x A l 的位置关系时,抓住两点,一是1l ∥2l 时,212121C C B B A A ≠=,为了防止讨论系数为零的情况,转化为积式1221B A B A =且1221C A C A ≠;二是21l l ⊥,即斜率的乘积为1-,假如一条直线的斜率为零,那么另一条直线的斜率不存在,也就是02121=+B B A A .充分必要条件的断定,关键是看哪个推出哪个. 【答案】A 【解析】1023221-=⇔=++⇔⊥a a a l l 或者2-=a ,应选答案A .4.【命题立意】此题考察直线与圆的位置关系和点到直线的间隔 公式以及根本不等式. 【思路点拨】直线与圆的位置关系有三种,由圆心到直线的间隔 d 与半径r 的大小关系决定,当d >r 时,相离;当d =r 时相切;当d <r 时相交. 【答案】D 【解析】圆心()0,0到直线0=+++b a by ax 的间隔 22ba b a d ++=,半径2=r .由于()221222222≤++=++=b a ab ba b a d,所以r d ≤,从而直线与圆相交或者相切.5.【命题立意】此题考察直线与圆的位置关系和点到直线的间隔 .【思路点拨】圆上的点到直线上的点,这两个动点之间的间隔 的最小值,可以转化为直线上的点到圆心的间隔 的最小值来解决,圆上的点到直线的间隔 的最大值等于圆心到直线的间隔 加上半径,最小值等于圆心到直线的间隔 减去半径;当直线与圆相交时,圆上的点到直线的间隔 的最大值等于圆心到直线的间隔 加上半径,最小值等于0. 【答案】B 【解析】由题意可知,直线与圆相离,074422=+--+y x y x 即()()12222=-+-y x ,圆心()2,2到直线kx y =的间隔 1222+-=k k d ,∴12211222-=-+-=-k k r d ,解得1-=k .6.【命题立意】考察椭圆的HY 方程和椭圆中的根本量及其关系以及分类讨论的思想. 【思路点拨】可建立m 关于e 的函数,从而可根据e 的范围求得m 的范围. 【答案】C 【解析】化椭圆的方程为HY方程1122=+my x ,当m 1<1,即m >1时,椭圆焦点在x 轴上,此时12=a ,mb 12=,mc 112-=,me 112-=∴,211e m -=∴,又⎪⎪⎭⎫⎝⎛∈22,33e ,∴23<m <2,又m >1,∴1<m <2.当m1>1,即m <1时,椭圆焦点在y 轴上,此时ma 12=,12=b ,112-=m c ,∴m ac e -==1222,即21e m -=,又⎪⎪⎭⎫⎝⎛∈22,33e ,∴21<m <32.综上,m 的范围范围是()2,132,21 ⎪⎭⎫⎝⎛.选择C . 7.【命题立意】考察双曲线的HY 方程,离心率的概念.【思路点拨】根据渐近线方程可以得到双曲线系方程,再分两种情况讨论焦点位置,从而求得离心率.【答案】C 【解析】由于一条渐近线方程为03=-y x ,所以可设双曲线方程为λ=-223y x .当焦点在x 轴上时,方程为1322=-λλy x 〔λ>0〕,此时32λ=a ,λ=2b ,于是34222λ=+=b a c ,所以离心率2==ace ;当焦点在y 轴上时,方程为1322=---λλxy 〔λ<0〕,此时λ-=2a ,32λ-=b ,于是34222λ-=+=b a c ,所以离心率332==a c e .应选择C .8.【命题立意】考察抛物线的定义和HY 方程以及直角三角形的性质.【思路点拨】画出图形,利用抛物线的定义找出点M 的横坐标与|FM |的关系即可求得. 【答案】C 【解析】画出图形,知()0,1F ,设FM=a 2,由点M 向x 轴作垂线,垂足为N ,那么FN=a ,于是点M 的横坐标a x +=10.利用抛物线的定义,那么M 向准线作垂线,有FM=10+x ,即112++=a a ,所以2=a ,从而FM=4.9.【命题立意】考察椭圆与抛物线的HY 方程,根本量的关系以及分类讨论问题. 【思路点拨】由抛物线的HY 方程求得准线方程,从而求得椭圆一个顶点的坐标,这个值是a 还是b ,就必须分两种情况讨论.【答案】D 【解析】由抛物线x y 82=,得到准线方程为2-=x ,又21=a c ,即c a 2=.当椭圆的焦点在x 轴上时,2=a ,1=c ,3222=-=c a b ,此时椭圆的HY 方程为13422=+y x ;当椭圆的焦点在y 轴上时,2=b ,332=c ,334=a ,此时椭圆的HY 方程为1431622=+x y .应选择D .10.【命题立意】考察对向量含义的理解,线段垂直平分线的性质、三角形中位线性质和双曲线定义.【思路点拨】画出图形,将向量问题转化为实数中线段关系问题,利用线段垂直平分线的性质和三角形中位线的性质,得到线段的差是常数,符合双曲线的定义.【答案】B 【解析】1说明点N 在圆122=+y x 上,NM M F 21=说明N 是线段M F 1的中点,2MF MP λ=〔x ∈R 〕说明P 在2MF 上,01=⋅PN M F 说明PN 是线段M F 1的垂直平分线,于是有PM PF =1,221MF ON=,从而有ONMF PF PM PF PF 22221==-=-=2<21F F =4,所以点P 的轨迹是以1F 、2F 为焦点的双曲线的右支.从而选择B . 11.【命题立意】考察圆的方程,直线与圆相切问题.【思路点拨】圆心,故只需求得其半径即可,而半径为圆心〔-1,2〕到直线的间隔 ,根据点到直线的间隔 可求其半径,从而可求得圆的HY 方程. 【答案】()()82122=-++y x 【解析】圆的半径()221112122=-+---=r ,所以圆的方程为()()()2222221=-++y x ,即()()82122=-++y x .12.【命题立意】考察圆的HY 方程,点到直线的间隔 .【思路点拨】先化圆的方程为HY 方程,求出圆心到直线的间隔 ,再来与半径比拟. 【答案】3【解析】圆的方程为()()22222=++-y x ,圆心()2,2-到直线05=--y x 的间隔 222522=-+=d ,圆的半径2=r ,所以圆上到直线的间隔 等于22的点有3个.13.【命题立意】考察圆心到直线的间隔 、圆的切线长定理和直线与圆相切问题. 【思路点拨】画出图形,PM 是切线,切线长最小,即|PC |最小,也就是C 到1l 的间隔 .【答案】1±【解析】画出图形,由题意l 2与圆C 只一个交点,说明l 2是圆C 的切线,由于162222-=-=PC CMPC PM ,所以要|PM|最小,只需|PC |最小,即点C 到l 1的间隔22181305mm+=+++,所以|PM|的最小值为4161822=-⎪⎪⎭⎫⎝⎛+m ,解得1±=m . 14.【命题立意】考察椭圆的HY 方程,椭圆离心率的概念和圆的切线问题. 【思路点拨】画出图形,由椭圆的离心率为22得到a c =22,再利用圆的切线的性质得到直角三角形,在直角三角形中求解角度. 【答案】2π【解析】如图,连结OA ,那么OA ⊥PA ,22sin 2===∠a c ca a APO ,所以4π=∠APO ,从而2π=∠APB .15.【命题立意】考察双曲线中由a 、b 、c 构成的直角三角形的几何意义及离心率与a 、b 、c 的关系.【思路点拨】可根据四边形的特征,以“有一个内角小于60°〞为桥梁确定离心率的范围. 【答案】⎪⎪⎭⎫⎝⎛2,26【解析】设双曲线的方程为12222=-b y a x =1〔a >0,b >0〕,如下图,由于在双曲线c >b ,所以只能是211B F B ∠<90°,故由题意可知60°<211B F B ∠<90°,∴在11B OF Rt ∆中,30°<11B OF ∠<45°,∴33<c b <22,∴31<222c a c-<21,即31<1-21e<21,∴23<e 2<2,∴26<e <2.16.【命题立意】考察圆的HY 方程,直线与圆的位置关系,以及弦长问题. 【思路点拨】〔1〕过圆外一点的圆的切线方程,一般设斜率,利用圆心到直线的间隔 等于半径来求出斜率,但一定要注意斜率存在与否;〔2〕将弦长AB看成底边,那么三角形的高就是圆心到直线的间隔 .【解析】〔1〕圆心为()0,0O ,半径4=r ,当切线的斜率存在时,设过点()8,4-M 的切线方程为()48+=-x k y ,即084=++-k y kx 〔1分〕.那么41|84|2=++k k ,解得43-=k ,〔3分〕,于是切线方程为02043=-+y x 〔5分〕.当斜率不存在时,4-=x 也符合题意.故过点()11,5-M 的圆O 的切线方程为02043=-+y x 或者4-=x .〔6分〕 〔2〕当直线AB 的斜率不存在时,73=∆ABC S ,〔7分〕,当直线AB 的斜率存在时,设直线AB 的方程为()3-=x k y ,即03=--k y kx ,圆心()0,0O 到直线AB 的间隔 132+=k k d ,〔9分〕线段AB 的长度2162d AB -=,所以()()821616162122222=-+≤-=-==∆d d d d d d d AB S ABC ,〔11分〕当且仅当82=d 时取等号,此时81922=+k k ,解得22±=k ,所以OAB △的最大面积为8,此时直线AB 的斜率为22±.〔12分〕17.【命题立意】此题考察椭圆方程的求法,直线和圆锥曲线的位置关系以及存在性问题. 【思路点拨】〔1〕可根据抛物线平移后与坐标轴的交点求得b 、c 的值,从而可得a 的值,故可求椭圆方程;〔2〕可利用向量法解决. 【解析】〔1〕抛物线y x 222-=的图象向上平移2个单位长度后其解析式为()2222--=y x ,其与x 、y 轴的交点坐标分别为()0,2±、()2,0,∴2=b ,2=c ,〔2分〕∴62=a ,故椭圆的方程为12622=+y x .〔4分〕〔2〕由题意可得直线l 的方程为()m x y --=33,代入椭圆方程消去y 得,062222=-+-m mx x ,〔6分〕又()68422--=m m △>0,∴32-<m <32.〔7分〕设C 、D 分别为()11,y x ,()22,y x ,那么m x x =+21,26221-=m x x ,∴()()()33313333221212121m x x m x x m x m x y y ++-=⎥⎥⎦⎤⎢⎢⎣⎡--⋅⎥⎥⎦⎤⎢⎢⎣⎡--=,∵()11,2y x FC -=,()22,2y x FD -=,∴()()()()33243363422221212121-=++++-=+--=⋅m m mx x m x x y y x x FD FC ,〔10分〕∵点F 在圆的外部,∴FD FC ⋅>0,即()332-m m >0,解得m <0或者m >3,又∵32-<m <32,∴32-<m<0或者3<m <32.〔12分〕18.【命题立意】考察双曲线的定义和HY 方程,渐近线和离心率计算公式.【思路点拨】〔1〕求渐近线方程的目的就是求ab ,可根据条件建立a 、b 的数量关系来求得;〔2〕可建立e 关于λ的函数,从而可根据λ的范围求得e 的范围;〔3〕可根据离心率确定a 、b 的数量关系,再结合图形确定圆的圆心与半径.【解析】由于()0,2c F ,所以⎪⎪⎭⎫⎝⎛±a b c P 2,,于是ab PF 22=,a ab a PF PF 22221+=+=,〔1分〕由相似三角形知,112PF OF PF OH =,即121PF PF OF OH =,即ab a a b 222+=λ,〔2分〕∴2222b b a =+λλ,()λλ-=1222b a ,λλ-=1222a b .〔1〕当31=λ时,122=ab ,∴b a =.〔3分〕所以双曲线的渐近线方程为x y ±=.〔4分〕〔2〕()[]12111211121121122222---=--=---+=-+=+==λλλλλλab ac e ,在⎥⎦⎤⎢⎣⎡21,91上为单调递增函数.〔5分〕∴当21=λ时,2e 获得最大值3〔6分〕;当91=λ时,2e 获得最小值45.〔7分〕∴3452≤≤e ,∴325≤≤e .〔8分〕〔3〕当3=e 时,3=ac,∴a c 3=,∴222a b =.〔9分〕∵212F F PF ⊥,∴1PF 是圆的直径,圆心是1PF 的中点,∴在y 轴上截得的弦长就是直径,∴81=PF .〔10分〕又a aaa ab a PF 4222221=+=+=,∴84=a ,2=a ,32=c ,22=b .〔11分〕∴4222===a ab PF ,圆心()2,0C ,半径为4,故圆的方程为()16222=-+y x .〔12分〕19.【命题立意】考察抛物线的HY 方程,直线与抛物线的位置关系.【思路点拨】设直线方程,与抛物线方程联立,利用韦达定理来解决;存在性问题一般是假设存在,利用垂径定理推导求解来解决.【解析】〔1〕依题意,可设()11,y x A 、()22,y x B ,直线AB 的方程为p my x +=, 由0222222=--⇒⎪⎩⎪⎨⎧=+=p pmy y pxy pmy x ,〔2分〕得⎪⎩⎪⎨⎧-=⋅=+2212122py y pmy y ,〔3分〕∴NB NA ⋅=()()2211,,y p x y p x ++()()2121y y p x p x +++=()()212122y y p my p my +++=()()221212421p y y pm y y m ++++=22222p m p +=〔6分〕当0=m 时,NB NA ⋅获得最小值22p .〔7分〕〔2〕假设满足条件的直线l 存在,其方程为a x =,AC 的中点为O ',l 与以AC 为直径的圆相交于P 、Q ,PQ 的中点为H ,那么PQ H O ⊥',O '的坐标为⎪⎭⎫⎝⎛+2,211y p x .()2212121212121p x y p x AC P O +=+-==' 〔9分〕,()()()a p a x p a p x a p x HO P O PH -+⎪⎭⎫⎝⎛-=---+='-'=∴1212212222124141,2PQ =()22PH =()⎥⎦⎤⎢⎣⎡-+⎪⎭⎫⎝⎛-a p a x p a 1214〔11分〕,令021=-p a 得p a 21=.此时p PQ =为定值.故满足条件的直线l 存在,其方程为p x 21=.〔13分〕20.【命题立意】考察椭圆与抛物线的HY 方程,直线与椭圆的位置关系.【思路点拨】〔1〕利用抛物线的HY 方程,求出焦点坐标,从而得到椭圆中的b ,再由离心率建立方程,可求得椭圆的HY 方程;〔2〕抓住直线PQ ⊥x 轴,BPQ APQ ∠=∠即直线PA 、PB 的斜率互为相反数,联络方程利用韦达定理来解决. 【解析】〔1〕设C 方程为12222=+b y a x 〔a >b >0〕,那么32=b .由21=ac,222b c a +=,得a =4∴椭圆C 的方程为1121622=+y x.〔4分〕〔2〕①设()11,y x A ,()22,y x B ,直线AB 的方程为t x y +=21,代入1121622=+y x ,得01222=-++t tx x ,由∆>0,解得4-<t <4.〔6分〕由韦达定理得t x x -=+21,12221-=t x x .四边形APBQ 的面积2213483621t x x S -=-⨯⨯=,∴当0=t 时312max=S .〔8分〕②当BPQ APQ ∠=∠,那么PA 、PB 的斜率之和为0,设直线PA 的斜率为k ,那么PB 的斜率为k -,PA 的直线方程为()23-=-x k y ,由()⎪⎩⎪⎨⎧=+-=-)2(11216)1(2322y x x k y .将〔1〕代入〔2〕整理得()()()04823423843222=--+-++k kx k xk ,有()21433282k k k x +-=+.〔10分〕同理PB 的直线方程为)2(3--=-x k y ,可得()()22243328433282k k k k k k x ++=+---=+,∴2221431216kk x x +-=+,2214348k k x x +-=-.〔12分〕从而AB k =2121x x y y --=()()21213232x x x k x k ---++-=()21214x x k x x k --+=21,所以AB 的斜率为定值21.〔13分〕21.【命题立意】考察圆锥曲线的HY 方程,椭圆与双曲线的定义,向量垂直问题. 【思路点拨】〔1〕利用向量的数量积的坐标运算来求出轨迹方程,但一定要注意对参数的讨论;〔2〕利用椭圆或者双曲线的定义确定点P 的位置,以PQ 为直径的圆G 过点2F ,即022=⋅QF PF ,利用向量垂直的坐标运算来解决.【解析】〔1〕∵b a ⊥,∴()()02,2,=+⋅-=⋅y kx y x b a ,得0422=-+y kx ,即422=+y kx .〔1分〕 当0=k 时,方程表示两条与x 轴平行的直线;〔2分〕当1=k 时,方程表示以原点为圆心,以2为半径的圆;〔3分〕当0<k <1时,方程表示焦点在x 轴上的椭圆;〔4分〕当k >1时,方程表示焦点在y 轴上的椭圆;〔5分〕当k <0时,方程表示焦点在y 轴上的双曲线.〔6分〕 〔2〕由〔1〕知,轨迹T 是椭圆13422=+x y ,那么1F 、2F 为椭圆的两焦点.解法一:由椭圆定义得421=+PF PF ,联立121=-PF PF 解得251=PF,232=PF ,又221=F F ,有2212221F F PF PF +=,∴212F F PF ⊥,∴P 的纵坐标为1,把1=y 代入13422=+x y 得23=x 或者23-=x 〔舍去〕,∴⎪⎭⎫⎝⎛1,23P .〔9分〕设存在满足条件的圆,那么22QF PF ⊥,设()t s Q ,,那么⎪⎭⎫ ⎝⎛-=0,232PF ,()t s QF --=1,2,∴022=⋅QF PF ,即()01023=-⨯+t s ,∴0=s .又13422=+s t ,∴2±=t ,∴()2,0Q 或者()2,0-Q .〔12分〕所以圆G 的方程:1613234322=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-y x 或者1645214322=⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-y x .〔13分〕励志赠言经典语录精选句;挥动**,放飞梦想。
椭圆双曲线抛物线大题训练题(含答案)
椭圆双曲线抛物线训练题一、解答题(共21题;共195分)1.已知椭圆Γ:的左,右焦点分别为F1( ,0),F2( ,0),椭圆的左,右顶点分别为A,B,已知椭圆Γ上一异于A,B的点P,PA,PB的斜率分别为k1,k2,满足.(1)求椭圆Γ的标准方程;(2)若过椭圆Γ左顶点A作两条互相垂直的直线AM和AN,分别交椭圆Γ于M,N两点,问x轴上是否存在一定点Q,使得∠MQA=∠NQA成立,若存在,则求出该定点Q,否则说明理由.2.已知椭圆C:=1(a>b>0)的左、右焦点分别为F1,F2,点A(,)在椭圆C上,且△F1AF2的面积为。
(1)求椭圆C的方程。
(2)设直线y=kx+1和椭圆C交于B,D两点,O为坐标原点,判断在y轴上是否存在点E,使∠OEB=∠OED。
若存在,求出点E的坐标;若不存在,请说明理由。
3.已知椭圆的离心率为,点椭圆的右顶点.(1)求椭圆的方程;(2)过点的直线与椭圆交于两点,直线与直线的斜率和为,求直线l的方程.4.设椭圆的左焦点为,上顶点为.已知椭圆的短轴长为4,离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)设点在椭圆上,且异于椭圆的上、下顶点,点为直线与轴的交点,点在轴的负半轴上.若(为原点),且,求直线的斜率.5.设A,B为曲线C:y= 上两点,A与B的横坐标之和为4.(12分)(1)求直线AB的斜率;(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AM⊥BM,求直线AB的方程.6.设椭圆的右焦点为,过得直线与交于两点,点的坐标为.(1)当与轴垂直时,求直线的方程;(2)设为坐标原点,证明:.7.已知椭圆C:+ =1(a>b>0),四点P1(1,1),P2(0,1),P3(﹣1,),P4(1,)中恰有三点在椭圆C上.(12分)(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为﹣1,证明:l过定点.8.设椭圆的左焦点为,左顶点为,顶点为B.已知(为原点).(Ⅰ)求椭圆的离心率;(Ⅱ)设经过点且斜率为的直线与椭圆在轴上方的交点为,圆同时与轴和直线相切,圆心在直线上,且,求椭圆的方程.9.已知斜率为的直线与椭圆交于两点,线段的中点为(1)证明:(2)设为的右焦点,为上一点,且,证明:10.已知抛物线C:y2=2x,过点(2,0)的直线l交C与A,B两点,圆M是以线段AB为直径的圆.(Ⅰ)证明:坐标原点O在圆M上;(Ⅱ)设圆M过点P(4,﹣2),求直线l与圆M的方程.11.设抛物线的焦点为F,过F点且斜率的直线与交于两点,. (1)求的方程。
椭圆、双曲线抛物线综合练习题及答案.
一、选择题(每小题只有一个正确答案,每题6分共36分)1. 椭圆221259x y +=的焦距为。
( ) A . 5 B. 3 C. 4 D 82.已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线的方程为 ( )A .221412x y -= B. 221124x y -= C. 221106x y -= D 221610x y -= 3.双曲线22134x y -=的两条准线间的距离等于 ( ) A .67 B. 37 C. 185 D 1654.椭圆22143x y +=上一点P 到左焦点的距离为3,则P 到y 轴的距离为 ( ) A . 1 B. 2 C. 3 D 45.双曲线的渐进线方程为230x y ±=,(0,5)F -为双曲线的一个焦点,则双曲线的方程为。
( )A .22149y x -= B. 22194x y -= C. 2213131100225y x -= D 2213131225100y x -= 6.设12,F F 是双曲线22221x y a b-=的左、右焦点,若双曲线上存在点A ,使1290F AF ︒∠=且123AF AF =,则双曲线的离心率为 ( )A .52B. 102C. 152 D 57.设斜率为2的直线l 过抛物线y 2=ax (a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线方程为( )A .y 2=±4B .y 2=±8xC .y 2=4xD .y 2=8x8.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是( )A .2B .3 C.115D.37169.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是( )10.抛物线y 2=4x 的焦点为F ,准线为l ,经过F 且斜率为3的直线与抛物线在x 轴上方的部分相交于点A ,AK ⊥l ,垂足为K ,则△AKF 的面积是( )A .4B .3 3C .4 3D .8二.填空题。
高二数学浙江椭圆与双曲线测试
椭圆双曲线测试----理科1、如果双曲线的实半轴长为2,焦距为6,那么该双曲线的离心率是 ( )A 、32 D 、2 2、若R ∈k ,则“3>k ”是“方程13322=+--k y k x 表示双曲线”的 ( ) A .充分不必要条件. B . 必要不充分条件. C . 充要条件 D .既不充分也不必要条件3、已知P 是双曲线19222=-y ax 上一点,双曲线的一条渐近线方程为3x-2y=0,F 1 、F 2分别是双曲线的左、右焦点,若|P F 1 |=3,则|P F 2|= ( )A . 6B .7C .5D .34、过点(2,-2)且与2212x y -=有公共渐进线的双曲线方程是 ( ) A 、22142x y -+= B 、22142x y += C 、22124x y -+= D 、22124x y -= 5、⎪⎭⎫ ⎝⎛π∈20,a 方程122=α+αcos y sin x 表示焦点在y 轴的椭圆,则α的范围是( A. ⎪⎭⎫ ⎝⎛π40, B. ⎥⎦⎤ ⎝⎛π40, C. ,42ππ⎡⎫⎪⎢⎣⎭ D. ⎪⎭⎫ ⎝⎛ππ24, 6、△ABC 一边的两个顶点为B (-3,0),C (3,0)另两边所在直线的斜率之积为2,则顶点A 的轨迹落在下列哪一种曲线上 ( )A 、圆B 、椭圆C 、双曲线D 、抛物线 7、斜率为1的直线l 与椭圆2214x y +=相交于A ,B 两点,则|AB|的最大值为( )A 、2B D 8、⊿ABC 中,已知(4,0),(4,0)A B -,且s i n s i n A B -=1s i n 2C ,则C 的轨迹方程是( ) A 221412x y += B 221(2)412x y x -=<- C . 221124x y -= D . 221(1)124x y y -=≠ 9、椭圆C 的中心为坐标原点O ,焦点在y 轴上,离心率22=e ,椭圆上的点到焦点的最短距离为1-e,则椭圆方程为____ ________.10、P 是双曲线22x y 1916=的右支上一点,M 、N 分别是圆22(5)4x y ++=和22(5)1x y -+=上的点,则||||PM PN -的最大值为 .二、解答题:11、已知双曲线的中心在原点,左右焦点分别为12,F F ,且过点(4,, 求此双曲线的标准方程;12、如图,椭圆以边长为1的正方形ABCD 的对角顶点A ,C 为焦点,且经过各边的中点,试建立适当的坐标系,求椭圆的方程;13、过椭圆141622=+y x 内一点)1,2(M 引一条弦,使得弦被M 点平分,求此弦所在的直线方程;14、如图,线段MN 的两个端点M 、N 分别在x 轴、y 轴上滑动,5=MN ,点P 是线段MN 上一点,且23MP PN =,点P 随线段MN 的运动而变化.求点P 的轨迹。
椭圆,双曲线,抛物线练习题及答案
椭圆,双曲线,抛物线练习题及答案1、已知椭圆方程为 $x^2/23+y^2/32=1$,则这个椭圆的焦距为() A.6 B.3 C.35 D.652、椭圆 $4x^2+2y^2=1$ 的焦点坐标是() A.(-2,0),(2,0) B.(0,-2),(0,2) C.(0,-1/2),(0,1/2) D.(-2/2,0),(2/2,0)3、$F_1$,$F_2$ 是定点,且 $FF_{12}=6$,动点$M$ 满足 $MF_1+MF_2=6$,则 $M$ 点的轨迹方程是()A.椭圆 B.直线 C.圆 D.线段4、已知方程$x^2+my^2=1$ 表示焦点在$y$ 轴上的椭圆,则 $m$ 的取值范围是() A.$m1$ D.$1<m<5$5、过点 $(3,-2)$ 且与椭圆 $4x^2+9y^2=36$ 有相同焦点的椭圆方程是()A.$x^2y^2/15+10=1$ B.$x^2y^2/152+102=1$ C.$x^2/10+y^2/15=1$ D.$x^2y^2/102+152=1$6、若直线 $y=mx+1$ 与椭圆 $x^2+4y^2=1$ 只有一个公共点,那么 $m^2$ 的值是()A.$1/2$ B.$3/4$ C.$2/3$ D.$4/5$7、已知椭圆 $C:x^2/9+y^2/2=1$,直线 $l:x/10+y=1$,点$P(2,-1)$,则() A.点 $P$ 在 $C$ 内部,$l$ 与 $C$ 相交B.点 $P$ 在 $C$ 外部,$l$ 与 $C$ 相交 C.点 $P$ 在 $C$ 内部,$l$ 与 $C$ 相离 D.点 $P$ 在 $C$ 外部,$l$ 与 $C$ 相离8、过椭圆 $C:x^2/a^2+y^2/b^2=1$ 的焦点引垂直于 $x$ 轴的弦,则弦长为() A。
$2b^2/a$ B。
$b^2/a$ C。
$b/a$ D。
$2b/a$9、抛物线 $x+2y^2=0$ 的准线方程是() A。
椭圆双曲线抛物线大题及答案
椭圆双曲线抛物线大题及答案近年来,越来越多的数学考试和竞赛中出现了椭圆、双曲线和抛物线的大题。
这些大题考查的是对于这些曲线的了解和掌握,以及运用其性质解决数学问题的能力。
下面,我们来一起探讨一下椭圆、双曲线和抛物线的大题及其答案。
一、椭圆的大题及答案椭圆的一般方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,其中$a>b>0$。
1.已知椭圆的焦点为$(\pm c,0)$,准线为$x=\pm a$,则椭圆的方程为$\frac{x^2}{a^2}+\frac{y^2}{a^2-c^2}=1$。
证明:由于椭圆的准线为$x=\pm a$,则$a$为椭圆的半长轴,$b=\sqrt{a^2-c^2}$为椭圆的半短轴。
又由于椭圆的焦点为$(\pmc,0)$,则$c=\sqrt{a^2-b^2}$为椭圆的焦距。
代入椭圆的一般方程,得到$\frac{x^2}{a^2}+\frac{y^2}{a^2-c^2}=1$。
2.已知椭圆的离心率为$\frac{1}{3}$,其中一个焦点为$(4,0)$,则椭圆的方程为$\frac{(x-4)^2}{36}+\frac{y^2}{27}=1$。
证明:由于椭圆的离心率为$\frac{1}{3}$,则椭圆的半长轴为$a=9$,焦距为$c=\frac{a}{3}=3$,半短轴为$b=\sqrt{a^2-c^2}=6$。
又由于一个焦点为$(4,0)$,则另一个焦点为$(-4,0)$。
代入椭圆的一般方程,得到$\frac{(x-4)^2}{36}+\frac{y^2}{27}=1$。
二、双曲线的大题及答案双曲线的一般方程为$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$,其中$a>0$,$b>0$。
1.已知双曲线的离心率为2,其中一个焦点为$(5,0)$,则双曲线的方程为$\frac{(x-5)^2}{16}-\frac{y^2}{12}=1$。
椭圆、双曲线、抛物线综合检测(含答案)
椭圆、双曲线、抛物线综合试题学校:___________姓名:___________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)1.(a>0,b>0)的一条渐近线方程是它的一个焦点在抛物线y 2=24x 的准线上,则双曲线的方程为( )2.已知焦点在x 轴上的椭圆,则a 的值为 ( ) ABD .123.设斜率为2的直线l 过抛物线y 2=ax (a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线的方程为( )A .y 2=±4xB .y 2=±8xC .y 2=4xD .y 2=8x4.椭圆2249144x y +=内的一点(3,2)P ,过点P 的弦恰好以P 为中点,那么这弦所在的直线方程A. 32120x y +-=B. 23120x y +-=C. 491440x y +-=D. 941440x y +-=5k 适合的条件是A .2k <-或25k <<B .22k -<<或5k >C .2k <-或5k > D.25k -<<6.已知P 为抛物线上的动点,点P 在x 轴上的射影为M ,点A的坐标是 ( )(A)8 (B)(C)107 A 、0 B 、1 C 、2 D 、38(0,0>>>b m a )的离心率之积大于1,则以m b a ,,为边长的三角形一定是( )A 等腰三角形B 锐角三角形C 直角三角形D 钝角三角形第II 卷(非选择题)请点击修改第II 卷的文字说明9.已知P上一点,F 1,F 2是椭圆的焦点,∠F 1PF 2=900,则△F 1PF 2的面积为___________;10.如图,双曲线的两顶点为,,虚轴两端点为,,两焦点为,. 若以为直径的圆内切于菱形,切点分别为. 则(Ⅰ)双曲线的离心率 ;(Ⅱ)菱形的面积与矩形的面积的比值 . 11.过点)2,2(p M -作抛物线)0(22>=p py x 的两条切线,切点分别为A 、B ,若 线段AB 中点的纵坐标为6,则抛物线的方程为 .12.对任意实数k ,直线y kx b =+与椭圆,则b 的取值范围是三、解答题(题型注释)13.(本小题满分12分) 抛物线22y px =的焦点与双曲线. (Ⅰ)求抛物线的方程;(Ⅱ)求抛物线的准线与双曲线的渐近线围成的三角形的面积.14.已知1F )0,1(-、2F )0,1(为椭圆的焦点,且直线 (Ⅰ)求椭圆方程;(Ⅱ)过1F 的直线交椭圆于A 、B 两点,求△2ABF 的面积S 的最大值,并求此时直线的方程。
专题15 椭圆、双曲线、抛物线(高考押题)(解析版)
高考押题专练1.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,以F 1,F 2为直径的圆与双曲线渐近线的一个交点为(3,4),则此双曲线的方程为( )A.x 216-y 29=1B.x 23-y 24=1 C.x 29-y 216=1 D.x 24-y 23=1 【答案】C【解析】以F 1,F 2为直径的圆的方程为x 2+y 2=c 2,又因为点(3,4)在圆上,所以32+42=c 2,所以c =5,双曲线的一条渐近线方程为y =b a x ,且点(3,4)在这条渐近线上,所以b a =43,又a 2+b 2=c 2=25,解得a =3,b =4,所以双曲线的方程为x 29-y 216=1,故选C.2.椭圆x 212+y 23=1的焦点为F 1和F 2,点P 在椭圆上,如果线段PF 1的中点在y 轴上,那么|PF 1|是|PF 2|的( )A .7倍B .5倍C .4倍D .3倍 【答案】A【解析】由题设知F 1(-3,0),F 2(3,0),如图,∵线段PF 1的中点M 在y 轴上, ∴可设P (3,b ),把P (3,b )代入椭圆x 212+y 23=1,得b 2=34.∴|PF 1|=36+34=732,|PF 2|=0+34=32. ∴|PF 1||PF 2|=73232=7.故选A.3.已知F 1,F 2为双曲线C :x 2-y 2=1的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则|PF 1|·|PF 2|=( ) A .2 B .4 C .6 D .8 【答案】B【解析】由余弦定理得cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|⇒cos 60°=(|PF 1|-|PF 2|)2+2|PF 1|·|PF 2|-|F 1F 2|22|PF 1|·|PF 2|⇒|PF 1|·|PF 2|=4.4.设F 1,F 2分别是双曲线C :x 2a 2-y 2b 2=1的左、右焦点,点P ⎝⎛⎭⎫62,22在此双曲线上,且PF 1⊥PF 2,则双曲线C 的离心率等于( )A.22 B. 2 C. 3 D.62【答案】B【解析】根据已知条件得:⎩⎪⎨⎪⎧32a 2-12b 2=1,⎝⎛⎭⎫62+c 2+12+⎝⎛⎭⎫62-c 2+12=4c 2,即⎩⎪⎨⎪⎧3a 2-1c 2-a 2=2,c 2=2,∴解得a =1,c = 2.∴双曲线C 的离心率e =ca= 2.故选B.5.已知抛物线C 的顶点是椭圆x 24+y 23=1的中心,焦点与该椭圆的右焦点F 2重合,若抛物线C 与该椭圆在第一象限的交点为P ,椭圆的左焦点为F 1,则|PF 1|=( )A.23B.73C.53 D .2 【答案】B【解析】由椭圆的方程可得a 2=4,b 2=3,∴c =a 2-b 2=1,故椭圆的右焦点F 2为(1,0),即抛物线C 的焦点为(1,0),∴p 2=1,∴p =2,∴2p =4,∴抛物线C 的方程为y 2=4x ,联立⎩⎪⎨⎪⎧x 24+y 23=1,y 2=4x .解得⎩⎨⎧x =23,y =263或⎩⎨⎧x =23,y =-263,∵P 为第一象限的点,∴P ⎝⎛⎭⎫23,263,∴|PF 2|=1+23=53,∴|PF 1|=2a -|PF 2|=4-53=73,故选B.6.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左顶点与抛物线y 2=2px (p >0)的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1),则双曲线的焦距为( )A .2 3B .2 5C .4 3D .45 【答案】B【解析】由题意得⎩⎪⎨⎪⎧a +p2=4,-p2=-2,-1=(-2)·b a⇒⎩⎪⎨⎪⎧p =4,a =2,b =1⇒c =a 2+b 2= 5. ∴双曲线的焦距2c =2 5.故选B.7.抛物线y 2=4x 的焦点为F ,准线为l ,经过F 且斜率为3的直线与抛物线在x 轴上方的部分相交于点A ,AK ⊥l ,垂足为K ,则△AKF 的面积是( )A .4B .3 3C .4 3D .8 【答案】C【解析】∵y 2=4x ,∴F (1,0),l :x =-1,过焦点F 且斜率为3的直线l 1:y =3(x -1),与y 2=4x 联立,解得x =3或x =13(舍),故A (3,23),∴AK =4,∴S △AKF =12×4×23=4 3.故选C.8.已知直线y =k (x +1)(k >0)与抛物线C :y 2=4x 相交于A ,B 两点,F 为抛物线C 的焦点,若||F A =2||FB ,则k =( )A.13B.223C.23D.23 【答案】B【解析】设A ,B 的纵坐标分别为y 1,y 2,由||F A =2||FB 得y 1=2y 2(如图).由y =k (x +1)得,x =yk -1,代入C :y 2=4x 并整理得ky 2-4y +4k =0,又y 1,y 2是该方程的两根,∴⎩⎨⎧3y 2=y 1+y 2=4k, ①2y 22=y 1y 2=4kk=4, ②∴由①②得,2=y 22=⎝⎛⎭⎫43k 2.∵k >0,∴k =223.故选B.9.设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0),右焦点为F (c ,0)(c >0),方程ax 2+bx -c =0的两实根分别为x 1,x 2,则P (x 1,x 2)( )A .必在圆x 2+y 2=2内B .必在圆x 2+y 2=2外C .必在圆x 2+y 2=1外D .必在圆x 2+y 2=1与圆x 2+y 2=2形成的圆环之间 【答案】D【解析】椭圆的方程为x 2a 2+y 2b 2=1(a >b >0),右焦点为F (c ,0)(c >0),方程ax 2+bx -c =0的两实根分别为x 1和x 2,则x 1+x 2=-b a ,x 1·x 2=-ca,x 21+x 22=(x 1+x 2)2-2x 1·x 2=b 2a 2+2ac a 2>a 2+c 2a 2=1+e 2,因为0<e <1, 即0<e 2<1. 所以1<e 2+1<2,所以x 21+x 22>1,又b 2a 2+2ac a 2<b 2+a 2+c 2a 2=2, 所以1<x 21+x 22<2,即点P 在圆x 2+y 2=1与x 2+y 2=2形成的圆环之间.故选D.10.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,右顶点为A ,抛物线y 2=158(a +c )x 与椭圆交于B ,C 两点,若四边形ABFC 是菱形,则椭圆的离心率等于( )A.158B.415C.23D.12 【答案】D【解析】∵椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,右顶点为A ,∴A (a ,0),F (-c ,0).∵抛物线y 2=158(a +c )x 与椭圆交于B ,C 两点,∴B ,C 两点关于x 轴对称,可设B (m ,n ),C (m ,-n ). ∵四边形ABFC 是菱形, ∴m =12(a -c ).将B (m ,n )代入抛物线方程,得 n 2=158(a +c )·12(a -c )=1516b 2,∴B ⎝⎛⎭⎫12(a -c ),154b ,再代入椭圆方程,得⎣⎡⎦⎤12(a -c )2a 2+⎝⎛⎭⎫154b 2b 2=1,即14·(a -c )2a 2=116, 化简整理,得4e 2-8e +3=0,解得e =12(e =32>1不符合题意,舍去).故选D.11.已知A (-1,0),B 是圆F :x 2-2x +y 2-11=0(F 为圆心)上一动点,线段AB 的垂直平分线交BF 于P ,则动点P 的轨迹方程为( )A.x 212+y 211=1 B.x 236-y 235=1 C.x 23-y 22=1 D.x 23+y 22=1 【解析】由题意得|P A |=|PB |,所以|P A |+|PF |=|PB |+|PF |=r =23>|AF |=2.所以点P 的轨迹是以A ,F 为焦点的椭圆,且a =3,c =1,所以b =2,所以动点P 的轨迹方程为x 23+y 22=1.【答案】D12.已知双曲线C :x 2-y 23=1的右顶点为A ,过右焦点F 的直线l 与C 的一条渐近线平行,交另一条渐近线于点B ,则S △ABF =( )A. 3B.32C.334D.338【解析】由双曲线C :x 2-y 23=1,得a 2=1,b 2=3,故c =a 2+b 2=2, 所以A (1,0),F (2,0),渐近线方程为y =±3x . 不妨设BF 的方程为y =3(x -2), 代入方程y =-3x ,解得B (1,-3), 所以S △AFB =12|AF |·|y B |=12×1×3=32.【答案】B13.已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点.若FP →=4FQ →,则|QF |等于________.【解析】过点Q 作QQ ′⊥l 交l 于点Q ′,因为FP →=4FQ →,所以|PQ |∶|PF |=3∶4. 又焦点F 到准线l 的距离为4,所以|QF |=|QQ |′=3. 【答案】3 14.已知抛物线y 2=2px (p >0)上的一点M (1,t )(t >0)到焦点的距离为5,双曲线x 2a 2-y 29=1(a >0)的左顶点为A ,若双曲线的一条渐近线与直线AM 平行,则实数a 的值为________.【解析】由题设1+p2=5,所以p =8.不妨设点M 在x 轴上方,则M (1,4),由于双曲线的左顶点A (-a ,0),且AM 平行一条渐近线,所以41+a =3a,则a =3. 【答案】315.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,由F 向其渐近线引垂线,垂足为P ,若线段PF的中点在此双曲线上,则此双曲线的离心率为________.【解析】方法一:由题意设F (c ,0),相应的渐近线方程为y =b a x ,根据题意得k PF =-ab ,设P ⎝⎛⎭⎫x ,b a x ,代入k PF =-a b 得x =a 2c ,则P ⎝⎛⎭⎫a 2c ,ab c ,则线段PF 的中点为⎝⎛⎭⎫12⎝⎛⎭⎫a 2c +c ,ab 2c ,代入双曲线方程得14⎝⎛⎭⎫a c +c a 2-14⎝⎛⎭⎫a c 2=1,即14⎝⎛⎭⎫1e +e 2-14·⎝⎛⎭⎫1e 2=1,∴e 2=2,∴e = 2. 方法二:双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为x a ±yb=0,焦点F 到渐近线的距离d =⎪⎪⎪⎪c a ⎝⎛⎭⎫1a 2+⎝⎛⎭⎫±1b 2=b .设线段PF 的中点M (x 0,y 0),则其到两条渐近线的距离分别为b ,b 2,距离之积为b 22,又距离之积为⎪⎪⎪⎪x 0a -y 0b ⎝⎛⎭⎫1a 2+⎝⎛⎭⎫-1b 2·⎪⎪⎪⎪x 0a +y 0b ⎝⎛⎭⎫1a 2+⎝⎛⎭⎫1b 2=a 2b 2c 2, 则a 2b 2c 2=b 22, ∴a 2c 2=12,e = 2. 【答案】216.已知F 1,F 2分别是双曲线3x 2-y 2=3a 2(a >0)的左、右焦点,P 是抛物线y 2=8ax 与双曲线的一个交点,若|PF 1|+|PF 2|=12,则抛物线的准线方程为________.【解析】将双曲线方程化为标准方程得x 2a 2-y 23a2=1,抛物线的准线为x =-2a ,联立⎩⎪⎨⎪⎧x 2a 2-y 23a 2=1,y 2=8ax ,解得x =3a ,即点P 的横坐标为3a .而由⎩⎪⎨⎪⎧|PF 1|+|PF 2|=12,|PF 1|-|PF 2|=2a解得|PF 2|=6-a ,∴|PF 2|=3a +2a =6-a ,解得a =1, ∴抛物线的准线方程为x =-2. 【答案】 x =-217.设椭圆中心在坐标原点,A (2,0),B (0,1)是它的两个顶点,直线y =kx (k >0)与线段AB 相交于点D ,与椭圆相交于E ,F 两点.若ED →=6DF →,则k 的值为________.【解析】依题意得椭圆的方程为x 24+y 2=1,直线AB ,EF 的方程分别为x +2y =2,y =kx (k >0).如图,设D (x 0,kx 0),E (x 1,kx 1),F (x 2,kx 2),其中x 1<x 2,则x 1,x 2满足方程(1+4k 2)x 2=4,故x 2=-x 1=21+4k 2.由ED →=6DF →知x 0-x 1=6(x 2-x 0),得x 0=17(6x 2+x 1)=57x 2=1071+4k 2.由D 在直线AB 上知,x 0+2kx 0=2,x 0=21+2k ,所以21+2k =1071+4k 2,化简得24k2-25k +6=0,解得k =23或k =38. 【答案】 23或3818.在平面直角坐标系xOy 中,已知点A 在椭圆x 225+y 29=1上,点P 满足AP →=(λ-1)OA →(λ∈R),且OA →·OP→=72,则线段OP 在x 轴上的投影长度的最大值为________.【解析】∵AP →=(λ-1)OA →,∴OP →=λOA →,则O ,P ,A 三点共线. ∵OA →·OP →=72,∴|OA →||OP →|=72,设线段OP 与x 轴的夹角为θ,设A (x ,y ),B 为点A 在x 轴的投影, 则线段OP 在x 轴上的投影长度为|OP →|cos θ=72|OB →||OA →|2=72×|x |x 2+y 2=72×11625|x |+9|x |≤72×1216×925=15. 当且仅当|x |=154时等号成立.则线段OP 在x 轴上的投影长度的最大值为15. 【答案】1519.已知抛物线C :y 2=2px (p >0)的焦点为F (1,0),抛物线E :x 2=2py 的焦点为M . (1)若过点M 的直线l 与抛物线C 有且只有一个交点,求直线l 的方程; (2)若直线MF 与抛物线C 交于A ,B 两点,求△OAB 的面积.【解析】(1)由题意得抛物线C :y 2=2px (p >0)的焦点为F (1,0),抛物线E :x 2=2py 的焦点为M ,所以p =2,M (0,1),①当直线l 的斜率不存在时,x =0,满足题意;②当直线l 的斜率存在时,设方程为y =kx +1,代入y 2=4x ,得k 2x 2+(2k -4)x +1=0,当k =0时,x =14,满足题意,直线l 的方程为y =1;当k ≠0时,Δ=(2k -4)2-4k 2=0,所以k =1,方程为y =x +1,综上可得,直线l 的方程为x =0或y =1或y =x +1.(2)结合(1)知抛物线C 的方程为y 2=4x ,直线MF 的方程为y =-x +1,联立⎩⎪⎨⎪⎧y 2=4x ,y =-x +1,得y 2+4y -4=0,设A (x 1,y 1),B (x 2,y 2), 则y 1+y 2=-4,y 1y 2=-4, 所以|y 1-y 2|=42,所以S △OAB =12|OF ||y 1-y 2|=2 2.20.如图,已知椭圆C 的中心在原点,其一个焦点与抛物线y 2=46x 的焦点相同,又椭圆C 上有一点M (2,1),直线l 平行于OM 且与椭圆C 交于A ,B 两点,连接MA ,MB .(1)求椭圆C 的方程;(2)当MA ,MB 与x 轴所构成的三角形是以x 轴上所在线段为底边的等腰三角形时,求直线l 在y 轴上截距的取值范围.【解析】(1)抛物线y 2=46x 的焦点为(6,0),又椭圆C 上有一点M (2,1), 由题意设椭圆方程为:x 2a 2+y 2b 2=1(a >b >0),则⎩⎪⎨⎪⎧c 2=6=a 2-b 2,4a 2+1b 2=1,解得⎩⎪⎨⎪⎧a 2=8,b 2=2,∴椭圆C 的方程为x 28+y 22=1.(2)∵l ∥OM ⇒k 1=k O M =12,设直线在y 轴上的截距为m ,则直线l :y =12x +m .直线l 与椭圆C 交于A ,B 两点.联立⎩⎨⎧y =12x +m ,x 28+y 22=1消去y 得x 2+2mx +2m 2-4=0,∴Δ=(2m )2-4(2m 2-4)=4(4-m 2)>0, ∴m 的取值范围是{m |-2<m <2,且m ≠0}, 设MA ,MB 的斜率分别为k 1,k 2, ∴k 1+k 2=0,则A (x 1,y 1),B (x 2,y 2),则k 1=y 1-1x 1-2,k 2=y 2-1x 2-2,x 1x 2=2m 2-4,x 1+x 2=-2m ,∴k 1+k 2=y 1-1x 1-2+y 2-1x 2-2=(y 1-1)(x 2-2)+(y 2-1)(x 1-2)(x 1-2)(x 2-2)=⎝⎛⎭⎫12x 1+m -1(x 2-2)+⎝⎛⎭⎫12x 2+m -1(x 1-2)(x 1-2)(x 2-2)=x 1x 2+(m -2)(x 1+x 2)-4(m -1)(x 1-2)(x 2-2)=2m 2-4-2m 2+4m -4m +4(x 1-2)(x 2-2)=0,故MA ,MB 与x 轴始终围成等腰三角形时,∴直线l 在y 轴上的截距m 的取值范围是{m |-2<m <2,且m ≠0}.21.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两个焦点分别为F 1(-1,0),F 2(1,0),且椭圆C 经过点P ⎝⎛⎭⎫43,13. (1)求椭圆C 的离心率;(2)设过点A (0,2)的直线l 与椭圆C 交于M ,N 两点,点Q 是线段MN 上的点,且2|AQ |2=1|AM |2+1|AN |2,求点Q 的轨迹方程.【解析】(1)由椭圆定义知, 2a =|PF 1|+|PF 2| =⎝⎛⎭⎫43+12+⎝⎛⎭⎫132+⎝⎛⎭⎫43-12+⎝⎛⎭⎫132=22, 所以a = 2.又由已知,得c =1,所以椭圆C 的离心率e =c a =12=22. (2)由(1)知,椭圆C 的方程为x 22+y 2=1. 设点Q 的坐标为(x ,y ).①当直线l 与x 轴垂直时,直线l 与椭圆C 交于(0,1),(0,-1)两点,此时点Q 的坐标为⎝⎛⎭⎫0,2-355. ②当直线l 与x 轴不垂直时,设直线l 的方程为y =kx +2.因为M ,N 在直线l 上,可设点M ,N 的坐标分别为(x 1,kx 1+2),(x 2,kx 2+2),则|AM |2=(1+k 2)x 21,|AN |2=(1+k 2)x 22.又|AQ |2=x 2+(y -2)2=(1+k 2)x 2.由2|AQ |2=1|AM |2+1|AN |2,得 2(1+k 2)x 2=1(1+k 2)x 21+1(1+k 2)x 22, 即2x 2=1x 21+1x 22=(x 1+x 2)2-2x 1x 2x 21x 22.① 将y =kx +2代入x 22+y 2=1中,得 (2k 2+1)x 2+8kx +6=0.②由Δ=(8k )2-4×(2k 2+1)×6>0,得k 2>32. 由②可知,x 1+x 2=-8k 2k 2+1,x 1x 2=62k 2+1, 代入①中并化简,得x 2=1810k 2-3.③ 因为点Q 在直线y =kx +2上,所以k =y -2x,代入③中并化简, 得10(y -2)2-3x 2=18.由③及k 2>32,可知0<x 2<32, 即x ∈⎝⎛⎭⎫-62,0∪⎝⎛⎭⎫0,62. 又点⎝⎛⎭⎫0,2-355满足10(y -2)2-3x 2=18,故x ∈⎝⎛⎭⎫-62,62. 由题意知Q (x ,y )在椭圆C 内,所以-1≤y ≤1.又由10(y -2)2=18+3x 2有(y -2)2∈⎣⎡⎭⎫95,94,且-1≤y ≤1,则y ∈⎝⎛⎦⎤12,2-355. 所以点Q 的轨迹方程为10(y -2)2-3x 2=18,其中x ∈⎝⎛⎭⎫-62,62,y ∈⎝⎛⎦⎤12,2-355. 22.如图,已知M (x 0,y 0)是椭圆C :x 26+y 23=1上的任一点,从原点O 向圆M :(x -x 0)2+(y -y 0)2=2作两条切线,分别交椭圆于点P ,Q .(1)若直线OP ,OQ 的斜率存在,并记为k 1,k 2,求证:k 1k 2为定值;(2)试问|OP |2+|OQ |2是否为定值?若是,求出该值;若不是,说明理由.【解析】(1)证明:因为直线OP :y =k 1x ,OQ :y =k 2x 与圆M 相切,所以|k 1x 0-y 0|1+k 21=2, 化简得:(x 20-2)k 21-2x 0y 0k 1+y 20-2=0,同理:(x 20-2)k 22-2x 0y 0k 2+y 20-2=0,所以k 1,k 2是方程(x 20-2)k 2-2x 0y 0k +y 20-2=0的两个不相等的实数根, 所以k 1·k 2=y 20-2x 20-2. 因为点M (x 0,y 0)在椭圆C 上,所以x 206+y 203=1,即y 20=3-12x 20, 所以k 1k 2=1-12x 20x 20-2=-12为定值. (2)|OP |2+|OQ |2是定值,定值为9.理由如下:方法一:①当直线OP ,OQ 不落在坐标轴上时,设P (x 1,y 1),Q (x 2,y 2),联立⎩⎪⎨⎪⎧y =k 1x ,x 26+y 23=1,解得⎩⎨⎧x 21=61+2k 21,y 21=6k 211+2k 21,所以x 21+y 21=6(1+k 21)1+2k 21,同理得x 22+y 22=6(1+k 22)1+2k 22, 又因为k 1k 2=-12, 所以|OP |2+|OQ |2=x 21+y 21+x 22+y 22=6(1+k 21)1+2k 21+6(1+k 22)1+2k 22=6(1+k 21)1+2k 21+6⎣⎢⎡⎦⎥⎤1+⎝⎛⎭⎫-12k 121+2⎝⎛⎭⎫-12k 12=9+18k 211+2k 21=9. ②当直线OP ,OQ 落在坐标轴上时,显然有|OP |2+|OQ |2=9,综上:|OP |2+|OQ |2=9为定值.方法二:①当直线OP ,OQ 不落在坐标轴上时,设P (x 1,y 1),Q (x 2,y 2),因为k 1k 2=-12,所以y 21y 22=14x 21x 22, 因为P (x 1,y 1),Q (x 2,y 2)在椭圆C 上,所以⎩⎨⎧x 216+y 213=1,x 226+y 223=1,即⎩⎨⎧y 21=3-12x 21,y 22=3-12x 22, 所以⎝⎛⎭⎫3-12x 21⎝⎛⎭⎫3-12x 22=14x 21x 22,整理得x 21+x 22=6, 所以y 21+y 22=⎝⎛⎭⎫3-12x 21+⎝⎛⎭⎫3-12x 22=3,所以|OP |2+|OQ |2=9. ②当直线OP ,OQ 落在坐标轴上时,显然有|OP |2+|OQ |2=9,综上:|OP |2+|OQ |2=9为定值.23.已知动点P 到定点F (1,0)和到直线x =2的距离之比为22,设动点P 的轨迹为曲线E ,过点F 作垂直于x 轴的直线与曲线E 相交于A ,B 两点,直线l :y =mx +n 与曲线E 交于C ,D 两点,与线段AB 相交于一点(与A ,B 不重合).(1)求曲线E 的方程;(2)当直线l 与圆x 2+y 2=1相切时,四边形ABCD 的面积是否有最大值?若有,求出其最大值及对应的直线l 的方程;若没有,请说明理由.【解析】(1)设点P (x ,y ),由题意可得, (x -1)2+y 2|x -2|=22, 整理可得x 22+y 2=1. ∴曲线E 的方程是x 22+y 2=1. (2)设C (x 1,y 1),D (x 2,y 2),由已知可得|AB |= 2.当m =0时,不合题意.当m ≠0时,由直线l 与圆x 2+y 2=1相切,可得|n |m 2+1=1,即m 2+1=n 2. 联立⎩⎪⎨⎪⎧y =mx +n ,x 22+y 2=1消去y 得⎝⎛⎭⎫m 2+12x 2+2mnx +n 2-1=0, ∴Δ=4m 2n 2-4⎝⎛⎭⎫m 2+12(n 2-1)=2m 2>0, 则x 1=-2mn +Δ2m 2+1,x 2=-2mn -Δ2m 2+1, ∴S 四边形ACBD =12|AB ||x 2-x 1|=2|m |2m 2+1=22|m |+1|m |≤22, 当且仅当2|m |=1|m |,即m =±22时等号成立,此时n =±62,经检验可知,直线y =22x -62和直线y =-22x +62符合题意. 24.如图,已知抛物线C :y 2=4x ,过点A (1,2)作抛物线C 的弦AP ,AQ .(1)若AP ⊥AQ ,证明:直线PQ 过定点,并求出定点的坐标;(2)假设直线PQ 过点T (5,-2),请问是否存在以PQ 为底边的等腰三角形APQ ?若存在,求出△APQ 的个数,若不存在,请说明理由.【解析】(1)设直线PQ 的方程为x =my +n ,点P ,Q 的坐标分别为(x 1,y 1),(x 2,y 2).由⎩⎪⎨⎪⎧x =my +n ,y 2=4x得y 2-4my -4n =0.由Δ>0,得m 2+n >0,y 1+y 2=4m ,y 1·y 2=-4n .∵AP ⊥AQ ,∴AP →·AQ →=0,∴(x 1-1)(x 2-1)+(y 1-2)(y 2-2)=0.又x 1=y 214,x 2=y 224, ∴(y 1-2)(y 2-2)[(y 1+2)(y 2+2)+16]=0,∴(y 1-2)(y 2-2)=0或(y 1+2)(y 2+2)+16=0.∴n =-2m +1或n =2m +5.∵Δ>0恒成立,∴n =2m +5.∴直线PQ 的方程为x -5=m (y +2),∴直线PQ 过定点(5,-2).(2)假设存在以PQ 为底边的等腰三角形APQ .设直线PQ 的方程为x =my +n .∵直线PQ 过点T (5,-2),∴5=m ·(-2)+n ,∴n =2m +5.∴直线PQ 的方程为x =my +2m +5.设点P ,Q 的坐标分别为(x 1,y 1),(x 2,y 2).由⎩⎪⎨⎪⎧x =my +2m +5,y 2=4x 得 y 2-4my -8m -20=0.∴y 1+y 2=4m ,y 1·y 2=-8m -20.∵PQ 的中点坐标为M ⎝⎛⎭⎫x 1+x 22,y 1+y 22,即M ⎝⎛⎭⎫y 21+y 228,y 1+y 22, 且y 21+y 228=(y 1+y 2)2-2y 1y 28=2m 2+2m +5,∴PQ 的中点坐标为M (2m 2+2m +5,2m ).由已知得2m -22m 2+2m +5-1=-m , 即m 3+m 2+3m -1=0.设g (m )=m 3+m 2+3m -1,则g ′(m )=3m 2+2m +3>0,∴g (m )在R 上是增函数.又g (0)=-1<0,g (1)=4>0,∴g (m )在(0,1)内有一个零点.∴函数g (m )在R 上有且只有一个零点,即方程m 3+m 2+3m -1=0在R 上有唯一实根,∴满足条件的等腰三角形有且只有一个.25.已知抛物线C :x 2=2py (p >0),过焦点F 的直线交C 于A ,B 两点,D 是抛物线的准线l 与y 轴的交点.(1)若AB ∥l ,且△ABD 的面积为1,求抛物线的方程;(2)设M 为AB 的中点,过M 作l 的垂线,垂足为N .证明:直线AN 与抛物线相切.【解析】(1)∵AB ∥l ,∴|AB |=2p .又|FD |=p ,∴S △ABD =p 2=1.∴p =1,故抛物线C 的方程为x 2=2y .(2)证明:设直线AB 的方程为y =kx +p 2, 由⎩⎪⎨⎪⎧y =kx +p 2,x 2=2py消去y 得,x 2-2kpx -p 2=0.∴x 1+x 2=2kp ,x 1x 2=-p 2. 其中A ⎝⎛⎭⎫x 1,x 212p ,B ⎝⎛⎭⎫x 2,x 222p . ∴M ⎝⎛⎭⎫kp ,k 2p +p 2,N ⎝⎛⎭⎫kp ,-p 2. ∴k AN =x 212p +p 2x 1-kp =x 212p +p 2x 1-x 1+x 22=x 21+p 22p x 1-x 22=x 21-x 1x 22p x 1-x 22=x 1p . 又x 2=2py 即y =x 22p ,∴y ′=x p. ∴抛物线x 2=2py 在点A 处的切线斜率k =x 1p.∴直线AN 与抛物线相切. 26.已知椭圆E 的中心在原点,焦点F 1,F 2在y 轴上,离心率等于223,P 是椭圆E 上的点.以线段PF 1为直径的圆经过F 2,且9PF 1―→·PF 2―→=1.(1)求椭圆E 的方程;(2)作直线l 与椭圆E 交于两个不同的点M ,N .如果线段MN 被直线2x +1=0平分,求直线l 的倾斜角的取值范围.【解析】(1)依题意,设椭圆E 的方程为y 2a 2+x 2b 2=1(a >b >0),半焦距为c . ∵椭圆E 的离心率等于223, ∴c =223a ,b 2=a 2-c 2=a 29. ∵以线段PF 1为直径的圆经过F 2,∴PF 2⊥F 1F 2.∴|PF 2|=b 2a. ∵9PF 1―→·PF 2―→=1,∴9|PF 2―→|2=9b 4a2=1. 由⎩⎨⎧ b 2=a 29,9b 4a 2=1,得⎩⎪⎨⎪⎧a 2=9,b 2=1,∴椭圆E 的方程为y 29+x 2=1. (2)∵直线2x +1=0即x =-12与x 轴垂直,且由已知得直线l 与直线x =-12相交, ∴直线l 不可能与x 轴垂直,∴设直线l 的方程为y =kx +m .由⎩⎪⎨⎪⎧ y =kx +m ,y 29+x 2=1,得(k 2+9)x 2+2kmx +(m 2-9)=0. ∵直线l 与椭圆E 交于两个不同的点M ,N ,∴Δ=4k 2m 2-4(k 2+9)(m 2-9)>0,即m 2-k 2-9<0.设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-2km k 2+9. ∵线段MN 被直线2x +1=0平分,∴2×x 1+x 22+1=0,即-2km k 2+9+1=0. 由⎩⎪⎨⎪⎧m 2-k 2-9<0,-2km k 2+9+1=0,得⎝⎛⎭⎫k 2+92k 2-(k 2+9)<0.∵k 2+9>0,∴k 2+94k 2-1<0, ∴k 2>3,解得k >3或k <- 3.∴直线l 的倾斜角的取值范围为⎝⎛⎭⎫π3,π2∪⎝⎛⎭⎫π2,2π3.。
高中数学圆锥曲线(椭圆、双曲线、抛物线)经典习题
高中数学圆锥曲线(椭圆、双曲线、抛物线)经典习题1.已知圆$x^2+y^2-6x-7=0$与抛物线$y^2=2px(p>0)$的准线相切,则抛物线方程为$y^2=8x$。
2.与双曲线$2x^2-2y^2=1$有公共焦点,离心率互为倒数的椭圆方程为$\dfrac{x^2}{9}+\dfrac{y^2}{16}=1$。
3.方程$k-\dfrac{35}{k}+\dfrac{x^2}{y^2}=1$表示双曲线,则$m$的取值范围是$(-\infty,-7)\cup(0,7)$。
4.经过点$M(3,-2),N(-2,3)$的椭圆的标准方程是$\dfrac{x^2}{16}+\dfrac{y^2}{9}=1$。
5.与双曲线$x^2-y^2=53$有公共渐近线且焦距为8的双曲线方程为$\dfrac{x^2}{16}-\dfrac{y^2}{9}=1$。
6.过点$P(-2,4)$的抛物线的标准方程为$y=\dfrac{1}{8}(x+2)^2$。
7.以$\dfrac{x^2}{4}-\dfrac{y^2}{12}=-1$的上焦点为顶点,下顶点为焦点的椭圆方程为$\dfrac{x^2}{16}+\dfrac{y^2}{48}=1$。
重点二:1.椭圆$16x+25y=400$的焦点为$F_1,F_2$,直线$AB$过$F_1$,则$\triangle ABF_2$的周长为$10$。
2.动圆的圆心在抛物线$y^2=8x$上,且动圆恒与直线$x+2=0$相切,则动圆必过定点$(-1,2)$。
3.椭圆$\dfrac{x^2}{25}+\dfrac{y^2}{9}=1$上的一点$M$到左焦点$F_1$的距离为$2$,$N$是$MF_1$的中点,则$ON=\dfrac{4}{3}$。
4.设椭圆$\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1$和双曲线$\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1$有公共焦点$F_1,F_2$,点$P$是两曲线的一个公共点,则$\cos\angleF_1PF_2=\dfrac{3}{5}$。
高二数学双曲线试题
高二数学双曲线试题1.双曲线(,)的左、右焦点分别是,过作倾斜角为的直线交双曲线右支于点,若垂直于轴,则双曲线的离心率为()A.B.C.D.【答案】B【解析】设,易求M坐标为,在三角形中,即,由得,答案选B.【考点】双曲线的性质2.已知双曲线的右焦点是抛物线的焦点,两曲线的一个公共点为,且,则双曲线的离心率为A.B.C.D.【答案】C【解析】由题意可得:双曲线的焦点为,且两曲线的一个公共点为在y轴右侧,因为,因此可设点,所以,所以,所以双曲线的离心率为.【考点】双曲线、抛物线的定义及性质.3.与双曲线有共同的渐近线,并且过点A(6,8)的双曲线的标准方程为__________.【答案】【解析】设所求双曲线为,把点(6,8)代入,得,解得λ=-4,∴所求的双曲线的标准方程为.故答案为:.【考点】双曲线的性质和应用.4.已知集合P={x|1≤x≤8,x∈Z},直线y=2x+1与双曲线mx2-ny2=1有且只有一个公共点,其中m、n∈P,则满足上述条件的双曲线共有__________________个.【答案】3【解析】依题意,将直线y=2x+1与双曲线mx2-ny2=1的方程联立,消去y得:(m-4n)x2-4nx-n-1=0;分①直线y=2x+1与双曲线mx2-ny2=1相切,②直线y=2x+1与双曲线mx2-ny2=1相交,讨论,分利用判别式与直线y=2x+1与双曲线mx2-ny2=1的一条渐近线y=x平行即可求得答案.【考点】直线与双曲线的位置关系.5.已知双曲线中心在原点,一个焦点为,点P在双曲线上,且线段的中点坐标为(0,2),则此双曲线的方程是________________.【答案】【解析】由题可得P(,4),∵,∴把P(,4)代入双曲线标准方程,解方程组即可.【考点】双曲线的标准方程.6.双曲线的焦距是10,则实数的值是()A.B.4C.16D.81【答案】C【解析】由双曲线的方程,可得,而,所以由可得,故选C.【考点】双曲线的定义及其标准方程.7.设P是双曲线上一点,该双曲线的一条渐近线方程是,分别是双曲线的左、右焦点,若,则等于 ( )A.2B.18C.2或18D.16【答案】C【解析】因为双曲线渐近线方程是,所以又因为,所以等于2或18【考点】双曲线定义,渐近线方程8.已知双曲线的右焦点为,若过点且倾斜角为的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是()A.B.C.D.【答案】C【解析】已知双曲线的右焦点为,若过点且倾斜角为的直线与双曲线的右支有且只有一个交点,则该直线的斜率的绝对值小于等于渐近线的斜率,∴,离心率=,∴,故选C.【考点】1、双曲线的性质;2、直线与圆锥曲线的位置关系.9.抛物线的准线与双曲线交于两点,点为抛物线的焦点,若△为直角三角形,则双曲线的离心率为()A.B.C.D.【答案】D【解析】先根据抛物线方程求得准线方程,代入双曲线方程求得,根据双曲线的对称性可知为等腰直角三角形,进而可求得或的纵坐标为,进而求得,利用和的关系求得,则双曲线的离心率可得. 解:依题意知抛物线的准线方程为,代入双曲线的方程得,不妨设,设准线与轴的交点为,∵是直角三角形,所以根据双曲线的对称性可知,为等腰直角三角形,所以即,解得,∴,所以离心率为,选D.【考点】双曲线的性质.10.若中心在原点,以坐标轴为对称轴的圆锥曲线,离心率为,且过点,则曲线的方程为________.【答案】【解析】离心率为的圆锥曲线是双曲线,而且是等轴双曲线,故可设基方程为,把点代入可求出.因此双曲线方程为.【考点】等轴双曲线的标准方程.11.过双曲线的左焦点且垂直于x轴的直线与双曲线相交于M、N两点,以MN为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于______.【答案】2.【解析】本题MN实质上是双曲线的通径,(可令代入双曲线方程求出的坐标,从而得出通径长),根据题意应该有,.【考点】双曲线的通径与离心率.12.已知双曲线(a>0,b>0)的离心率,过点A(0,-b)和B(a,0)的直线与原点的距离是.(Ⅰ)求双曲线的方程及渐近线方程;(Ⅱ)若直线y=kx+5 (k≠0)与双曲线交于不同的两点C、D,且两点都在以A为圆心的同一个圆上,求k的值.【答案】(Ⅰ),;(Ⅱ)=【解析】本题主要考察双曲线的标准方程、韦达定理等基础知识,考察学生运算能力、综合分析和解决问题的能力.(Ⅰ)离心率为,∴,∴①,直线的方程为即,利用点到直线的距离公式得到:②,两式联立,可求出,∴双曲线方程为,渐近线方程为:;(Ⅱ)两点在以为圆心的同一个圆上,的中垂线过点,将直线与双曲线联立,消去,可得,设,中点为,则∴,解得=,并检验是否满足(.试题解析:(Ⅰ)直线的方程为:即又原点到直线的距离由得 3分所求双曲线方程为 4分(注:也可由面积法求得)渐近线方程为: 5分(Ⅱ)方法1:由(1)可知(0,-1),设,由得: 7分∴3+3+=3+3+,整理得:=0,∵,∴,∴,又由-10+25-3=0 (),∴y+y=, 10分2=7, 11分由△=100-4(1-3)(25-3)>0=7满足此条件,满足题设的=. 12分方法2:设,中点为,由, 7分∵,的中垂线过点 9分∵∴ 11分整理得解得=.(满足 12分【考点】1、双曲线的标准方程;2、点到直线的距离公式和直线方程;3、韦达定理.13.双曲线的焦距为()A.B.C.D.【答案】D【解析】中,所以,双曲线的焦距为2c=,故选D。
高考数学总复习 椭圆、双曲线、抛物线单元测试题
高考数学总复习 椭圆、双曲线、抛物线单元测试题一.选择题(1) 抛物线24x y =上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为 ( )A 2B 3C 4D 5 (2) 若焦点在x轴上的椭圆2212x y m +=的离心率为12,则m=( )A B32 C83D23(3) 若方程x 2+ky 2=2表示焦点在y 轴上的椭圆, 那么实数k 的取值范围是 ( )A (0, +∞)B (0, 2)C (1, +∞)D (0, 1)(4) 设P 是双曲线19222=-y ax 上一点,双曲线的一条渐近线方程为023=-y x ,F 1、F 2分别是双曲线的左、右焦点,若3||1=PF ,则=||2PF( )A 1或 5B 6C 7D 9(5) 对于抛物线y 2=2x 上任意一点Q, 点P(a, 0)都满足|PQ|≥|a |, 则a 的取值范围是( )A [0, 1]B (0, 1)C (]1,∞- D (-∞, 0)(6) 若椭圆)0(12222〉〉=+b a by a x 的左、右焦点分别为F 1、F 2,线段F 1F 2被抛物线y 2=2bx 的焦点分成5:3两段,则此椭圆的离心率为( )A1716B 17174C 54D 552(7) 已知双曲线)0(1222>=-a y ax 的一条准线与抛物线x y 62-=的准线重合,则该双曲线的离心率为 ( )A23 B23C 26D 332(8) 设A(x 1,y 1),B(x 2,y 2)是抛物线y 2=2px(p>0)上的两点,并且满足OA ⊥OB. 则y 1y 2等于( )A – 4p 2B 4p 2C – 2p 2D 2p 2(9) 已知双曲线1222=-y x 的焦点为F 1、F 2,点M 在双曲线上且120,MF MF ⋅=则点M 到x 轴的距离为( )A43B53C 3 (10) 设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P , 若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( )A2B C 2 1 二.填空题(11) 若双曲线的渐近线方程为x y 3±=,它的一个焦点是()0,10,则双曲线的方程是__________.(12)设中心在原点的椭圆与双曲线2 x 2-2y 2=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是 .(13) 过双曲线22221x y a b-=(a >0,b >0)的左焦点且垂直于x 轴的直线与双曲线相交于M 、N两点,以MN 为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于_________.(14) 以下同个关于圆锥曲线的命题中 ①设A 、B 为两个定点,k 为非零常数,k PB PA =-||||,则动点P 的轨迹为双曲线;②过定圆C 上一定点A 作圆的动弦AB ,O 为坐标原点,若),(21OB OA OP +=则动点P 的轨迹为椭圆; ③方程02522=+-x x 的两根可分别作为椭圆和双曲线的离心率;④双曲线13519252222=+=-y x y x 与椭圆有相同的焦点.其中真命题的序号为 (写出所有真命题的序号) 三.解答题(15)点A 、B 分别是椭圆1203622=+y x 长轴的左、右端点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,PF PA ⊥.求点P 的坐标; .(16) 已知抛物线C: y=-21x 2+6, 点P (2, 4)、A 、B 在抛物线上, 且直线PA 、PB 的倾斜角互补. (Ⅰ)证明:直线AB 的斜率为定值;(Ⅱ)当直线AB 在y 轴上的截距为正数时, 求△PAB 面积的最大值及此时直线AB 的方程.(17) 双曲线12222=-by a x (a>1,b>0)的焦距为2c,直线l 过点(a,0)和(0,b),且点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和s ≥54c.求双曲线的离心率e 的取值范围(18) 已知抛物线)0(22>=p px y 的焦点为F ,A 是抛物线上横坐标为4、且位于x 轴上方的点,A 到抛物线准线的距离等于5.过A 作AB 垂直于y 轴,垂足为B ,OB 的中点为M.(1)求抛物线方程;(2)过M 作FA MN ⊥,垂足为N ,求点N 的坐标;(3)以M 为圆心,MB 为半径作圆M ,当)0,(m K 是x 轴上一动点时,讨论直线AK 与圆M 的位置关系.参考答案一选择题:1.D[解析]:点A 与抛物线焦点的距离就是点A 与抛物线准线的距离,即5)1(4=-- 2.B[解析]:∵焦点在x 轴上的椭圆2212x y m +=的离心率为12,∴2122=-m 则m=233.D[解析]: ∵方程x 2+ky 2=2,即12222=+ky x 表示焦点在y 轴上的椭圆 ∴22>k故10<<k 4.C[解析]:双曲线19222=-y ax 的一条渐近线方程为023=-y x ,故2=a 又P 是双曲线上一点,故4||||||21=-PF PF ,而3||1=PF ,则=||2PF 75.C[解析]:对于抛物线y 2=2x 上任意一点Q, 点P(a, 0)都满足|PQ|≥|a |,若,0≤a 显然适合若0>a ,点P(a, 0)都满足|PQ|≥|a |就是2222)2(y y a a +-≤ 即1142≤+≤y a ,此时10≤<a 则a 的取值范围是(]1,∞- 6.D[解析]:3522=-+b c bc ,5245222==∴=∴=a c e a c b c 7.D[解析]:双曲线)0(1222>=-a y a x 的准线为122+±=a a x抛物线x y 62-=的准线为23=x 因为两准线重合,故122+a a =23,2a =3,则该双曲线的离心率为328.A[解析]:∵A(x 1,y 1),B(x 2,y 2)是抛物线y 2=2px(p>0)上的两点,并且满足OA ⊥OB.∴04)(0,12122212121=+∴=+∴-=⋅y y py y y y x x k k OBOA 则y 1y 2 = – 4p 29.C[解析]:∵120,MF MF ⋅=∴点M 在以F 1F 2为直径的圆322=+y x 上故由32||1232222=⎪⎩⎪⎨⎧=-=+y y x y x 得 则点M 到x 轴的距离为332 10.D[解析]:不妨设点P 在 x 轴上方,坐标为),(2ab c ,∵△F 1PF 2为等腰直角三角形∴|PF 2|=|F 1F 2|,即c a b 22=,即e e a c ac a 2122222=-∴=- 故椭圆的离心率e1二填空题:11. 1922=-y x [解析]: 因为双曲线的渐近线方程为x y 3±=,则设双曲线的方程是λ=-922y x ,又它的一个焦点是()0,10 故1109=∴=+λλλ12. 1222=+y x [解析]:双曲线2 x 2-2y 2=1的焦点为()0,1±,离心率为2故椭圆的焦点为()0,1±,离心率为22, 则1,2,1===b a c ,因此该椭圆的方程是1222=+y x 13. 2[解析]:设双曲线22221x y a b-=(a >0,b >0)的左焦点F 1,右顶点为A ,因为以MN 为直径的圆恰好过双曲线的右顶点, 故|F 1M|=|F 1A|,∴c a ab +=2∴2112=∴+=-e e e 14. ③④[解析]:根据双曲线的定义必须有||||AB k ≤,动点P 的轨迹才为双曲线,故①错 ∵),(21OB OA OP +=∴P 为弦AB 的中点,故090=∠APC 则动点P 的轨迹为以线段AC 为直径的圆。
椭圆双曲线抛物线综合测试题
椭圆、双曲线、抛物线综合测试题一 选择题(本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合要求的)1设双曲线2212y x m -=的一个焦点为(0,2)-,则双曲线的离心率为( ).A B 2 C D2椭圆221167x y +=的左、右焦点分别为12,F F ,一直线经过1F 交椭圆于A 、B 两点,则2ABF ∆的周长为( )A 32B 16C 8D 43 两个正数a 、b 的等差中项是52,,则椭圆22221x y a b +=的离心率为( )AB C D 4设1F 、2F 是双曲线22124y x -=的两个焦点,P 是双曲线上的一点,且31||PF =42||PF , 则12PF F ∆的面积为( )A B C 24 D 485 P 是双曲线22916x y -=1的右支上一点,M 、N 分别是圆22(5)1x y ++=和22(5)x y -+=4上的点,则||||PM PN -的最大值为( )A 6B 7C 8D 96已知抛物线24x y =上的动点P 在x 轴上的射影为点M ,点(3,2)A ,则||||PA PM +的最小值为( )A1 B 2- C 1 D 27 一动圆与两圆221x y +=和228120x y x +++=都外切,则动圆圆心的轨迹为( ) A 圆 B 椭圆 C 双曲线 D 抛物线8若双曲线22221(0,0)x y a b a b-=>>的焦点到渐近线的距离等于实轴长,则双曲线的离心率为( )ABCD 29抛物线2y x =上到直线20x y -=距离最近的点的坐标( )A 35,24⎛⎫⎪⎝⎭ B (1,1) C 39,24⎛⎫⎪⎝⎭D (2,4) 10已知c 是椭圆22221x y a b +=(0)a b >>的半焦距,则b ca+的取值围( )A (1,)+∞ B)+∞ CD11方程2mx ny +=0与22mx ny +=1(0,0,)m n m n >>≠表示的曲线在同一坐标系中图象可能是( )12若AB 是抛物线22(0)y px p =>的动弦,且||(2)AB a a p =>,则AB 的中点M 到y 轴的最近距离是( ) A12a B 12p C 1122a p + D 12a -12p 二 填空题(本大题共4个小题,每小题5分,共20分.把答案填写在题中横线上) 13 设1F 、2F 分别是双曲线的左、右焦点,P 是双曲线上一点,且12F PF ∠=60o,12PF F S ∆=2,则双曲线方程的标准方程为 .14 已知椭圆221x y m n +=与双曲线221x y p q -=(,,,,)m n p q R m n +∈>,有共同的焦点1F 、2F ,点P 是双曲线与椭圆的一个交点,则12||||PF PF •= .15 已知抛物线22(0)x py p =>上一点A (0,4)到其焦点的距离为174,则p = . 16已知双曲线2222x y a -=1(a >的两条渐近线的夹角为3π,则双曲线的离心率为 .三 解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)求适合下列条件的双曲线的标准方程:BCDA⑴ 焦点在x 轴上,虚轴长为12,离心率为54; ⑵ 顶点间的距离为6,渐近线方程为32y x =±.18.(12分)在平面直角坐标系中,已知两点(3,0)A -及(3,0)B .动点Q 到点A 的距离为10,线段BQ 的垂直平分线交AQ 于点P . ⑴求||||PA PB +的值; ⑵写出点P 的轨迹方程.19.(12分)设椭圆22221(0)x y a b a b +=>>的左、右焦点分别为1F 、2F ,过右焦点2F 且与x 轴垂直的直线l 与椭圆相交,其中一个交点为M .⑴求椭圆的方程;⑵设椭圆的一个顶点为(0,)B b -,直线2BF 交椭圆于另一点N ,求1F BN ∆的面积.20.(12分)已知抛物线方程24x y =,过点(,4)P t -作抛物线的两条切线PA 、PB ,切点为A 、B .⑴求证:直线AB 过定点(0,4);⑵求OAB ∆(O 为坐标原点)面积的最小值.21 .(12分)已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为1F 、2F ,点P 在双曲线的右支上,且1||PF =3|2|PF .⑴求双曲线离心率e 的取值围,并写出e 取得最大值时,双曲线的渐近线方程;⑵若点P 的坐标为,且12PF PF •=0,求双曲线方程.22.(12分)已知O 为坐标原点,点F 、T 、M 、1P 满足OF =(1,0),(1,)OT t =-,FM MT =,1PM ⊥FT ,1PT ∥OF . ⑴求当t 变化时,点1P 的轨迹方程;⑵若2P 是轨迹上不同于1P 的另一点,且存在非零实数λ使得12FP FP λ=,求证:1211||||FP FP +=1.参考答案1A 提示:根据题意得222c a b =+=2m +=4,∴m =2,∴c e a===.故选A .2B 提示:2ABF ∆的周长=12||||AF AF ++12||||BF BF +=4a =16.故选B .3C 提示:根据题意得56a b ab +=⎧⎨=⎩,解得a =3,b =2,∴c ,∴ce a =4C 提示:∵P 是双曲线上的一点,且31||PF =42||PF ,1||PF -2||PF =2,解得1||PF =8,2||PF =6,又12||F F =2c =10,∴12PF F ∆是直角三角形,12PF F S ∆=1862⨯⨯=24.故选C .5 D 提示:由于两圆心恰为双曲线的焦点,||PM ≤1||PF +1,||PN ≥2||PF 2-,∴||||PM PN -≤1||PF +1—(2||PF 2-) =1||PF —2||PF +3=2a +3=9.6A 提示:设d 为点P 到准线1y =-的距离,F 为抛物线的焦点,由抛物线的定义及数形结合得,||||PA PM +=d -1+||PA =||PA +||PF -1≥||AF -1.故选A . 7C 提示:设圆221x y +=的圆心为(0,0)O ,半径为1,圆228120x y x +++=的圆心为1(4,0)O -,O '为动圆的圆心,r 为动圆的半径,则1||||O O O O ''-=(2)(1)r r +-+=1,所以根据双曲线的定义可知.故选C .2题图8C 提示:设其中一个焦点为(,0)F c ,一条渐近线方程为by x a=,根据题意得||b c 2a ,化简得2b a =,∴ e =c a故选C .9 B 提示:设2(,)P x x 为抛物线2y x =上任意一点,则点P 到直线的距离为2d =2,∴当1x =时,距离最小,即点P (1,1).故选B .10 D 提示:由于22222b c b c bc a a +++⎛⎫= ⎪⎝⎭≤22222b c b c a +++=2,则b c a +, 又b c a +>,则b ca+>1.故选D . 11 C 提示:椭圆与抛物线开口向左.12 D 提示:设11(,)A x y ,22(,)B x y ,结合抛物线的定义和相关性质,则AB 的中点M 到y 轴的距离为122x x +=||||222p pAF BF -+-=||||2AF BF p +-,显然当AB 过焦点时,其值最小,即为12a -12p .故选D .二 填空题13221412x y -= 提示:设双曲线方程为22221x y a b -=,∵2c e a ==,∴2c a =.∵12PF F S ∆=,∴1||PF ×2||PF =48.()22c =21||PF +22||PF -21||PF 2||PF 12cos F PF ∠,解得216c =,∴2a =4,2b =12.14 m p - 提示:根据题意得1212||||||||PF PF PF PF ⎧+=⎪⎨-=⎪⎩,解得1||PF =,2||PF =12||||PF PF •=m p -.1512 提示:利用抛物线的定义可知4()2p --=174,p =12.16=,a =c =c e a==.三 解答题17解:⑴因为焦点在x 轴上,设双曲线的标准方程为22221(0,0)x y a b a b-=>>,∴22221254a b c b c a ⎧⎪+=⎪=⎨⎪⎪=⎩,解得 8a =,6b =,10c =,∴双曲线的标准方程为2216436x y -=. ⑵设以32y x =±为渐近线的双曲线的标准方程为2249x y λ-=, ① 当0λ>时,,解得94λ=,此时所求的双曲线的标准方程为2218194x y -=; ② 当0λ<时,,解得1λ=-,此时所求的双曲线的标准方程为22194y x -=. 18解:⑴ 因为线段BQ 的垂直平分线交AQ 于点P ,∴||PB =||PQ , ∴||||PA PB +=||PA +||PQ =||AQ =10;⑵由⑴知||||PA PB +=10(常数),又||||PA PB +=10>6=||AB ,∴点P 的轨迹是中心在原点,以,A B 为焦点,长轴在x 轴上的椭圆,其中210,26a c ==,所以椭圆的轨迹方程为2212516x y +=. 19解:⑴∵l ⊥x轴,∴2F ,根据题意得22222112a ba b ⎧+=⎪⎨⎪-=⎩,解得2242a b ⎧=⎨=⎩, ∴所求椭圆的方程为:22142x y +=.⑵由⑴可知(0,B ,∴直线2BF的方程为y x =22142y x x y ⎧=⎪⎨+=⎪⎩,解得点N的纵坐标为3,∴1F BN S ∆=12F F N S ∆+12F BF S ∆=123⨯⨯=83. 20解:⑴设切点11(,)A x y ,22(,)B x y ,又12y x '=, 则切线PA 的方程为:1111()2y y x x x -=-,即1112y x x y =-;切线PB 的方程为:2221()2y y x x x -=-,即2212y x x y =-,又因为点(,4)P t -是切线PA 、PB 的交点,∴ 11142x t y -=-, 22142x t y -=-,∴过A 、B 两点的直线方程为142tx y -=-,即1402tx y -+=,∴直线AB 过定点(0,4).⑵ 由214024tx y x y ⎧-+=⎪⎨⎪=⎩,解得2216x tx --=0,∴122x x t +=,1216x x =-.∴OAB S ∆=1214||2x x ⨯⨯-16. 当且仅当0t =时,OAB ∆(O 为坐标原点)面积的最小值21解:⑴∵1||PF -2||PF =2a ,1||PF =3|2|PF ,∴1||PF =3a ,2||PF =a , 由题意得1||PF +2||PF ≥12||F F ,∴4a ≥2c ,∴ca≤2,又因为1e >,∴双曲线离心率e 的取值围为(1,2].故双曲线离心率的最大值为2.⑵∵12PF PF •=0,∴21||PF +22||PF =24c ,即22104a c =,即2232b a =, 又因为点P 在双曲线上,∴22160902525a b -=1,∴2216060a a -=1, 解得 24a =,26b =,∴所求双曲线方程为;2222x y a b-=1.22解⑴设1P (,)x y ,则由FM MT =得点M 是线段FT 中点,∴(0,)2tM ,则1PM =(,)2t x y --,又因为FT =(2,)t -,1PT =(1,)x t y ---,∵ 1PM ⊥FT , ∴ 2()02tx t y +-=, ① ∵ 1PT ∥OF ,∴ (1)0()1x t y --•--•=0,即 t y = ② 由 ①和②消去参数得 24y x =.⑵证明:易知(1,0)F 是抛物线24y x =的焦点,由12FP FP λ=,得F 、1P 、2P 三点共线,即1P 2P 为过焦点F 的弦.①当1P 2P 垂直于x 轴时,结论显然成立;② 当1P 2P 不垂直于x 轴时,设111(,)P x y ,222(,)P x y ,直线1P 2P 的方程为(1)y k x =-,∴24y kx k y x=-⎧⎨=⎩,整理得22222(2)0k x k x k -++=,∴12x x +=2224k k +,12x x =1, ∴1211||||FP FP +=121111x x +++=1212122()1x x x x x x +++++=1.。
椭圆、双曲线测试含答案
椭圆、双曲线测试(含答案)一、单选题1.已知双曲线C 与椭圆E :221925x y +=有共同的焦点,它们的离心率之和为145,则双曲线 C 的标准方程为 A .221124x y -=B .221412x y -=C .221412y x -=D .221124y x -=【答案】C 【解析】 【分析】由椭圆方程求出双曲线的焦点坐标,及椭圆的离心率,结合题意进一步求出双曲线的离心率,从而得到双曲线的实半轴长,再结合隐含条件求得双曲线的虚半轴长得答案. 【详解】由椭圆221925x y +=,得225a =,29b =, 则22216c a b =-=,∴双曲线与椭圆的焦点坐标为()10,4F -,()20,4F , ∴椭圆的离心率为45,则双曲线的离心率为144255-=. 设双曲线的实半轴长为m ,则42m=,得2m =, 则虚半轴长224223n -= ∴双曲线的方程是221412y x -=. 故选C . 【点睛】本题考查双曲线方程的求法,考查了椭圆与双曲线的简单性质,是中档题. 2.已知椭圆22143x y +=,F 是椭圆的左焦点,P 是椭圆上一点,若椭圆内一点A (1,1),则PA PF +的最小值为( ) A .3B 10C 152D 51【答案】A 【解析】【分析】由椭圆定义把PF 转化为P 到右焦点的距离,然后由平面上到两定点的距离之差最小的性质可得. 【详解】设椭圆的右焦点为2F (1,0),21AF =,22||||||4||4||||PA PF PA PF PA PF +=+-=+-, 又2||||PA PF -≤2||AF ,222||||||||AF PA PF AF --≤≤,当2P A F ,,三点共线时取等号,||||PA PF +的最小值为3(取最小值时P 是射线2F A 与椭圆的交点), 故选:A.3.“01t <<”是“曲线2211x y t t+=-表示椭圆”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】B 【解析】 【分析】根据曲线表示椭圆,可求得t 的范围,根据充分、必要条件的定义,即可得答案. 【详解】因为曲线2211x y t t+=-为椭圆, 所以0101t t t t>⎧⎪->⎨⎪≠-⎩,解得01t <<且12t ≠,所以“01t <<”是“01t <<且12t ≠”的必要而不充分条件. 故选:B4.已知1F 、2F 是椭圆C :22221x ya b+=(0a b >>)的两个焦点,P 为椭圆C 上的一点,且12PF PF ⊥.若12PF F △的面积为9,则b =( )A .2B .3C .4D .5【答案】B 【解析】 【分析】根据12PF F △的面积以及该三角形为直角三角形可得1218PF PF ⋅=,22212||||4PF PF c +=,然后结合12||||2PF PF a +=,简单计算即可.【详解】依题意有12||||2PF PF a +=,所以2121222|||||2||4|PF PF PF PF a +⋅+=又12PF PF ⊥,1212192PF F S PF PF =⋅=△,所以1218PF PF ⋅=, 又22212||||4PF PF c +=,可得224364c a +=,即229a c -=,则3b =, 故选:B.5.如图,椭圆的中心在坐标原点,O 顶点分别是1212,,,A A B B ,焦点分别为12,F F ,延长12B F 与22A B 交于Р点,若12B PA ∠为钝角,则此椭圆的离心率的取值范围为( )A .⎛ ⎝⎭B .⎫⎪⎪⎝⎭C .⎛ ⎝⎭D .⎫⎪⎪⎝⎭【答案】D 【解析】 【分析】由题意,12B PA ∠就是22B A 与21F B 的夹角,所以22B A 与21F B 的夹角为钝角,从而有22210B A F B ⋅<,结合222b a c =-即可求椭圆离心率的取值范围.【详解】解:由题意,设椭圆的长半轴、短半轴、半焦距分别为a ,b ,c ,则22(,)B A a b =-,21(,)F B c b =--,因为12B PA ∠就是22B A 与21F B 的夹角,所以22B A 与21F B 的夹角为钝角, 所以22210B A F B ⋅<,即20ac b -+<,又222b a c =-,所以220a ac c --<,两边同时除以2a ,得210e e --<,即210e e +->,解得e e >,又01e <<,1e <<,所以椭圆离心率的取值范围为⎫⎪⎪⎝⎭,故选:D . 二、填空题6.与双曲线221x y -=有相同的渐近线,且过点(1,2)的双曲线的标准方程为_________.【答案】22133y x -=【解析】 【分析】根据给定条件,设出所求双曲线的方程,利用待定系数法求解作答. 【详解】依题意,设双曲线方程为:22(0)x y λλ-=≠,于是得22123λ=-=-,则有223x y -=-,所以双曲线的标准方程为22133y x -=.故答案为:22133y x -=7.椭圆22110036x y +=上一点P 满足到左焦点1F 的距离为8,则12F PF ∆的面积是________.【答案】【解析】根据椭圆的定义再利用余弦定理求出12cos F PF ∠,最后由面积公式计算可得; 【详解】解:由椭圆的定义得12||||220PF PF a +==,18PF =,∴212PF =,22222212121212||||812161cos 281242PF PF F F F PF PF PF +-+-∠===-⨯⨯⋅,∴21n si F PF ∠==1218122PF F S =⨯⨯=△.故答案为:8.已知1F ,2F 是椭圆C :22194x y+=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为________. 【答案】9 【解析】 【分析】根据椭圆的定义可得126MF MF +=,结合基本不等式即可求得12MF MF ⋅的最大值. 【详解】 ∴M 在椭圆C 上 ∴12236MF MF +=⨯=∴根据基本不等式可得126MF MF +=≥129MF MF ⋅≤,当且仅当123MF MF ==时取等号.故答案为:9.9.已知椭圆2214x y +=,过11,2P ⎛⎫ ⎪⎝⎭点作直线l 交椭圆C 于A ,B 两点,且点P 是AB的中点,则直线l 的方程是__________. 【答案】220x y +-= 【解析】 【分析】设1(A x ,1)y ,2(B x ,2)y ,利用“点差法”、线段中点坐标公式、斜率计算公式即可得出. 【详解】解:设1(A x ,1)y ,2(B x ,2)y ,则221144x y +=,222244x y +=,12121212((4)0)))((x x x x y y y y ∴+-++-=.1(1,)2P 恰为线段AB 的中点,即有122x x +=,121y y +=,1212()2()0x x y y ∴-+-=,∴直线AB 的斜率为121212y y k x x -==--, ∴直线AB 的方程为11(1)22y x -=--, 即220x y +-=.由于P 在椭圆内,故成立. 故答案为:220x y +-=. 三、解答题10.已知定点(1,0)F ,动点(,)(0)P x y x ≥到点F 的距离比它到y 轴的距离大1. (1)求动点P 的轨迹方程;(2)过(1,2)Q 的直线1l ,2l 分别与点P 的轨迹相交于点M ,N (均异于点Q ),记直线1l ,2l 的斜率分别为1k ,2k ,若120k k +=,求证:直线MN 的斜率为定值.【答案】(1)24y x =; (2)证明见解析. 【解析】 【分析】(1||1x =+,整理即可得轨迹方程.(2)根据题设令11(,)M x y 、22(,)N x y ,1l 为2(1)y k x -=-,2l 为2(1)y k x -=--,联立抛物线方程求,M N 的坐标,再应用两点式求MN k 即可证结论. (1)||1x =+,则22(||)y x x =+,又0x ≥, ∴24y x =,故动点P 的轨迹方程为24y x =. (2)由题设,令1l 为2(1)y k x -=-,2l 为2(1)y k x -=--,1l 联立抛物线,可得:22222(22)(2)0k x k k x k --++-=,若11(,)M x y ,22(,)N x y ,∴212()k x k -=,则142y k =-,同理可得222()k x k +=,则242y k=--,∴2121818MNy yk k x x k--===--,为定值.11.已知椭圆C 的标准方程为:22221(0)x y a b a b +=>>,若右焦点为F且离心率为(1)求椭圆C 的方程;(2)设M ,N 是C 上的两点,直线MN 与曲线222x y b +=相切且M ,N ,F 三点共线,求线段MN 的长.【答案】(1)2213x y +=;(2【解析】 【分析】(1)根据椭圆的焦点、离心率求椭圆参数,写出椭圆方程即可.(2)由(1)知曲线为221(0)x y x +=>,讨论直线MN 的存在性,设直线方程联立椭圆方程并应用韦达定理求弦长即可. 【详解】(1)由题意,椭圆半焦距c =c e a =,则a =2221b a c =-=, ∴椭圆方程为2213x y +=;(2)由(1)得,曲线为221(0)x y x +=>当直线MN 的斜率不存在时,直线:1MN x =,不合题意:当直线MN 的斜率存在时,设()11,M x y ,()22,N x y 又M ,N ,F 三点共线,可设直线:(MN y k x =,即0kx y -=,由直线MN 与曲线221(0)x y x +=>1=,解得1k =±,联立22(13y x x y ⎧=±⎪⎨+=⎪⎩,得2430x -+=,则12x x +=,1234x x ⋅=,∴||MN ==12.双曲线221124x y -=,1F 、2F 为其左右焦点,C 是以2F 为圆心且过原点的圆.(1)求C 的轨迹方程;(2)动点P 在C 上运动,M 满足12F M MP =,求M 的轨迹方程. 【答案】(1)22(4)16x y -+= (2)22464()39x y -+=【解析】 【分析】(1)由双曲线的右焦点作为圆心,以半焦距为半径的圆,可以直接写出圆的标准方程即可.(2)求解轨迹方程求谁设谁,设(,)M x y ,00)(P x y ,用点M 的坐标表示点P 的坐标,带入方程即可得到答案. (1)由已知得212a =,24b=,故4c =,所以1(4,0)F -、2(4,0)F , 因为C 是以2F 为圆心且过原点的圆,故圆心为(4,0),半径为4, 所以C 的轨迹方程为22(4)16x y -+=; (2)设动点(,)M x y ,00)(P x y ,, 则1(4,)F M x y =+,00(,)MP x x y y =--,由12F M MP =,得(4x +,0)2(y x x =-,0)y y -, 即0042()2()x x x y y y +=-⎧⎨=-⎩,解得0034232x x y y +⎧=⎪⎪⎨⎪=⎪⎩,因为点P 在C 上,所以2200(4)16x y -+=, 代入得22343(4)()1622x y+-+=, 化简得22464()39x y -+=.13.已知双曲线2214x y -=,P 是双曲线上一点.(1)求证:点P 到双曲线两条渐近线的距离的乘积是一个定值.(2)已知点(3,0)A ,求PA 的最小值. 【答案】(1)证明见解析【解析】 【分析】(1)根据题意求得11(,)P x y 到两条渐近线的距离分别为1d =2d =得到22112154d d x y -⋅=,结合双曲线的定义,即可求解.(2)设P 的坐标为(,)x y ,求得2225124(3)()455PA x y x =-+=-+,结合2x ≥,即可求解. (1)证明:设11(,)P x y 是双曲线2214x y -=上的任意一点,则221144x y -=, 该双曲线的两条渐近线方程分别为20x y -=和20x y +=,点11(,)P x y 到两条渐近线的距离分别为1d =和2d =则2211124554y x d d -⋅===, 所以点P 到双曲线的两条渐近线的距离的乘积是一个常数. (2)解:设P 的坐标为(,)x y ,则()()22222251243314455x PA x y x x ⎛⎫=-+=-+-=-+ ⎪⎝⎭,因为2x ≥,所以当125x =时,2PA 的最小值为45,即PA。
椭圆、双曲线、抛物线习题(有答案)
1.双曲线222x y -=的焦距为( )A. 1B. 4C. 2D. 2.抛物线22y x =的焦点坐标是( )A. 102⎛⎫ ⎪⎝⎭,B. 102⎛⎫ ⎪⎝⎭,C. 108⎛⎫ ⎪⎝⎭,D 108⎛⎫ ⎪⎝⎭,. 3.椭圆22143x y +=的焦距为( ) A. 1 B. 2 C. 3 D. 44.双曲线2214x y -=的渐近线方程为( )A. 2xy =±B. 2y x =±C. 2y x =±D. y = 5.方程22121x y m m +=-为椭圆方程的一个充分不必要条件是( ) A. 12m >B. 12m >且1m ≠ C. 1m > D. 0m >6且过点()2,0的椭圆的标准方程是( ) A. 2214x y += B. 2214x y +=或2214y x += C. 2241x y += D.2214x y +=或221416x y +=7.若点(P m 为椭圆22:12516x y C +=上一点,则m =( ) A. 1± B. 12±C. 32±D. 52± 8.若坐标原点到抛物线2y mx = 的准线的距离为2 ,则m = ( ) A. 1+8 B. 1+4C. 4±D. 8±9.【2018届福建省福州市高三3月质量检测】已知双曲线 的两顶点间的距离为4,则的渐近线方程为( ) A.B.C.D.10.已知m 是2,8的等比中项,则圆锥曲线221y x m+=的离心率是( ) A.32或52 B. 32 C. 5 D. 32或5 11.若圆22:2210M x y x y +-++=与x 轴的交点是抛物线2:2(0)C y px p =>的焦点,则p =( ) A. 1 B. 2 C. 4 D. 812.已知是椭圆:的左焦点,为上一点,,则的最大值为( )A.B. 9C.D. 1013.【2018届山东省泰安市高三上学期期末】若抛物线24x y =上的点A 到焦点的距离为10,则A 到x 轴的距离是_________.14.已知椭圆的两焦点坐标分别是()20-, 、()20, ,并且过点(233, ,则该椭圆的标准方程是__________.15.【2018届河北省武邑中学高三上学期期末】已知抛物线()220y px p =>的准线与圆()22316x y -+=相切,则p 的值为__________.16.【2018届北京市朝阳区高三第一学期期末】已知双曲线C 的中心在原点,对称轴为坐标轴,它的一个焦点与抛物线28y x =的焦点重合,一条渐近线方程为0x y +=,则双曲线C 的方程是________. 1.【答案】B【解析】双曲线的标准方程即: 22122x y -=,则:222222,4,2a b c a b c ==∴=+==, 双曲线的焦距为: 24c =. 本题选择B 选项. 2. 【答案】D【解析】转化为标准方程, 212x y =,所以焦点为10,8⎛⎫ ⎪⎝⎭.故选D.3.【答案】B【解析】在椭圆22143x y +=中, 224,3a b ==,所以21,1c c == ,故焦距22c =,选B.4.【答案】A【解析】Q 双曲线2214x y -=∴渐近线方程为2204x y -=,即2x y =±故选A . 5.【答案】C【解析】方程22121x y m m +=-表示椭圆的充要条件是0{210 21m m m m >->≠-,即12m >且1m ≠,所以方程22121x y m m +=-为椭圆方程的一个充分不必要条件是1m >,故选C.6.【答案】D【解析】当椭圆的焦点在x 轴上,设椭圆的方程为22221(0)x y a b a b +=>>,由离心率为3,∴222214b a c a =-=∵椭圆过点(2,0),∴2222201a b +=,∴a2=4,∴b2=1,∴椭圆标准方程为2214x y += 当椭圆的焦点在y 轴上,同理易得: 221416x y += 故选D.7.【答案】D【解析】由题意可得: (22312516m+=,则: 22125,2544m m ==,据此可得: 52m =±. 本题选择D 选项. 8. 【答案】A9.【答案】B【解析】由双曲线的方程可知:,即,∴,解得: 令,得到 故选:B.10.【答案】D【解析】由m 是2,8的等比中项得2264m m =⨯∴=±因此当4m =时,342,413,,c a c e a ===-===当4m =-时, 1,415,5,ca c e a ==+===所以离心率是3或5,选D.11.【答案】B【解析】圆M 的方程中,令0y =有: 2210,1x x x -+=∴=,据此可得抛物线的焦点坐标为()1,0, 则: 1,22pp =∴=. 本题选择B 选项.12.【答案】A【解析】连接P 点和另一个焦点即为E ,=. 故答案为:A.13.【答案】9【解析】根据抛物线方程可求得焦点坐标为()0,1,准线方程为1y =-∵抛物线24x y =上的点A 到焦点的距离为10 ∴点A 到x 轴的距离是1019-= 故答案为9.14.【答案】2211612x y +=15.【答案】2【解析】抛物线的准线为2p x =-,与圆相切,则342p+=, 2p =.16.【答案】22122x y -=【解析】抛物线28y x =的焦点坐标为20(,),所以双曲线C 的右焦点坐标为20(,),因为双曲线的一条渐近线方程为0x y +=,所以a b = ,所以224a a += ,所以22a = ,所以双曲线方程为22122x y -=.。
高二数学双曲线试题答案及解析
高二数学双曲线试题答案及解析1.若方程+=1所表示的曲线为C,则下面四个命题①若C为椭圆,则1<t<4 ;②若C为双曲线,则t>4或t<1;③曲线C不可能是圆;④若C为椭圆,且长轴在x轴上,则1<t<其中真命题的序号是_________.【答案】②【解析】据椭圆方程的特点列出不等式求出t的范围判断出①错,据双曲线方程的特点列出不等式求出t的范围,判断出②对;据圆方程的特点列出方程求出t的值,判断出③错;据椭圆方程的特点列出不等式求出t的范围,判断出④错.解:若C为椭圆应该满足(4-t)(t-1)>0,4-t≠t-1即1<t<4且t≠故①错,若C为双曲线应该满足(4-t)(t-1)<0即t>4或t<1故②对,当4-t=t-1即t=表示圆,故③错,若C表示椭圆,且长轴在x轴上应该满足4-t>t-1>0则1<t<,因此④错,故填写②【考点】圆锥曲线的共同特征。
点评:主要是考查了椭圆方程于双曲线方程的标准形式的运用,属于中档题。
2.已知双曲线的一个焦点与抛物线的焦点相同,则双曲线的渐近线方程是()A.B.C.D.【答案】C【解析】根据题意,由于双曲线的一个焦点与抛物线的焦点相同(),那么可知,则可知双曲线的渐近线方程是,故选C.【考点】双曲线的性质,抛物线点评:解决的关键是对于双曲线和抛物线性质的熟练表示,属于基础题。
3.若双曲线(b>0)的离心率为2,则实数b等于()A.1B.2C.D.3【答案】C【解析】由双曲线方程可知【考点】双曲线的性质离心率点评:本题涉及到的性质:4.过双曲线的左焦点作圆的切线,切点为E,延长FE交抛物线于点P,若E为线段FP的中点,则双曲线的离心率为( )A.B.C.D.【答案】D【解析】画图。
抛物线的焦点,准线。
连接和EO,则,即有,所以点P到准线的距离等于2a,所以点P的横坐标为,由点P在抛物线上,得点。
又OP=OF=c,所以,解得。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二《椭圆 双曲线 抛物线》测试题班级 姓名:一、选择题 (每小题5分 共40分)1、抛物线28y x =的准线方程是 ( )(A) 2x =- (B) 4x =- (C) 2y =- (D) 4y =-2、双曲线224x y -=的两条渐近线与直线3x =围成一个三角形区域,表示该区域的不等式组是( )(A)0003x y x y x -≥⎧⎪+≥⎨⎪≤≤⎩ (B)0003x y x y x -≥⎧⎪+≤⎨⎪≤≤⎩ (C) 0003x y x y x -≤⎧⎪+≤⎨⎪≤≤⎩ (D) 0003x y x y x -≤⎧⎪+≥⎨⎪≤≤⎩3、若抛物线22y px =的焦点与椭圆22162x y +=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D .44、双曲线与椭圆1522=+y x 共焦点,且一条渐近线方程是03=-y x ,则此双曲线方程为 ( )A .1322=-x y B .1322=-x y C .1322=-y x D .1322=-y x 5、已知椭圆191622=+y x 的左、右焦点分别为F 1、F 2,点P 在椭圆上,若PF 1⊥PF 2,则点P 到x 轴的距离为( )A .59 B .3 C .779 D .496、过抛物线焦点任意作一条弦,以这条弦为直径作圆,这个圆与抛物线的准线的位置关系是()A 、相交B 、相切C 、相离D 、不确定 7、一动圆的圆心在抛物线y x 82-=上,且动圆恒与直线02=-y 相切,则动圆必过定点( )A 、(4,0)B 、(0,–4)C 、(2,0)D 、(0,–2)8、以椭圆1162522=+y x 的中心为顶点,以这个椭圆的左准线为准线的抛物线与椭圆的右准线交于A 、B 两点,则|AB|=() A 、518 B 、536 C 、380 D 、3100二、填空题(每小题5分 共25分)9、抛物线的焦点为双曲线17922=-y x 的左焦点,顶点在双曲线的中心,则抛物线方程为 10、抛物线y px p 220=>()上,横坐标为4的点到焦点的距离为5,则此抛物线焦点与准线的距离为 11、P 1P 2是抛物线的通径,Q 是准线与对称轴的交点,则∠=P QP 12 。
12、设抛物线y x 24=被直线y x b =+2截得的弦长为35,则b 的值是 13、抛物线y x =2上的点到直线l x y :--=20的最短距离是三、解答题(每小题12分 共36分)、已知抛物线的顶点在原点,它的准线过12222=-by a x 的左焦点,而且与x 轴垂直.又抛物线与此双曲线交于点)6,23(,求抛物线和双曲线的方程.2、过抛物线y px p 220=>()的焦点F 作倾斜角是34π的直线,交抛物线于A 、B 两点,O 为原点。
求△OAB 的面积。
7、 (05年北京春)如图,O 为坐标原点,直线l 在x 轴和y 轴上的截距分别是a 和b ,且交抛物线)0(22>=p px y 于),(11y x M 、),(22y x N 两点。
(1)写出直线l 的截距式方程;(2)证明:111=+;(3)当p a 2=时,求MON ∠的大小。
、已知直线y =kx +1交抛物线y =x 2于A 、B 两点.(1)求证:OA ⊥OB (O 为坐标原点);(2)若△AOB 的面积为2,求k 的值.、 已知椭圆x y 2291+=,过左焦点F 1倾斜角为π6的直线交椭圆于A B 、两点。
求:弦AB 的长,左焦点F 1到AB 中点M 的长。
已知直线l 在x ,y 轴上的截距分别为2和-1,并且与抛物线y x 214=交于A 、B 两点,求(1)抛物线的焦点F 到直线l 的距离。
(2)∆ABF 的面积。
(1)、直线l 过点M (1,1),与椭圆13422=+y x 相交于A ,B 两点,若AB 的中点为M ,求直线l 的方程。
、已知抛物线x y 42= 的一条过焦点的弦AB 被焦点分为长是m 和n 的两部分,求证:111=+nm、椭圆C :)0(12222>>=+b a by a x 的两个焦点为F 1,F 2,点P 在椭圆C 上,且PF 1⊥F 1F 2,314,3421==PF PF 。
(1)求椭圆C 的方程;(2)若直线l 过圆02422=-++y x y x 的圆心M ,交椭圆C 于A ,B 两点,且A ,B 关于点M 对称,求直线l 的方程。
例9、已知斜率为1的直线l 过椭圆12322=+y x 的右焦点F 2,交椭圆于A 、B 两点,求:(1)弦长|AB|;(2)△ABF 1的面积。
11.椭圆)0(12222>>=+b a by a x 的右焦点F(c,0),离心率e=21,过F 作直线L 交椭圆于A,B 两点,P 为线段AB的中点,O 为原点,当PFO ∆的面积最大值为43时,求椭圆的方程。
15、设双曲线以椭圆192522=+y x 长轴的两个端点为焦点,其准线过椭圆的焦点,则双曲线的渐近线的斜率为( ) A .2± B .34±C .21± D .43±6、与椭圆14922=+y x 有公共焦点,离心率25=e 的双曲线方程是 。
4.过抛物线x y 42=的焦点F 作倾斜角为3π的弦AB ,则|AB|的值为 ( )A .738 B .316 C .38 D .731611.已知方程11222=+-+λλy x 表示双曲线,则λ的取值范围为 . .(11)设11229(,),(4,),(,)5A x yBC x y 是右焦点为F 的椭圆221259x y +=上三个不同的点,则“,,AF BF CF 成等差数列”是“128x x +=”的(A )充要条件 (B )必要不充分条件 (C )充分不必要条件 (D )既非充分也非必要7、一抛物线型拱桥,当水面离拱顶2米时,水面宽4米,若水面下降1米后,则水面宽度为( )A 、6 米B 、62米C 、5.4 米D 、9米3、椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则||2PF =( ) A .23B .3C .27D .44、 设P 是双曲线19222=-y ax 上一点,双曲线的一条渐近线方程为1,023F y x =-、F 2分别是双曲线的左、右焦点,若3||1=PF ,则=||2PF ( ) A. 1或5 B. 6 C. 7 D. 9 7、若椭圆x k y e 2289112++==的离心率,则实数k 的值是;8、(05年全国卷III)设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( )(A )2 (B )12(C )2 (D 1 9(07年北京文)、椭圆22221(0)x y a b a b+=>>的焦点为1F ,2F ,两条准线与x 轴的交点分别为M N ,,若12MN F F 2≤,则该椭圆离心率的取值范围是( )A.102⎛⎤ ⎥⎝⎦,B.02⎛ ⎝⎦,C.112⎡⎫⎪⎢⎣⎭,D.12⎫⎪⎪⎣⎭10、(07年湖北文)、过双曲线22143x y -=左焦点1F 的直线交曲线的左支于M N ,两点,2F 为其右焦点,则22MF NF MN +-的值为______.2、过抛物线x y 42=的焦点作直线交抛物线于),(),,(2211y x B y x A 两点,如果621=+x x ,则|AB|的值为( )A .10B .8C .6D .4 1.抛物线24x y =的焦点坐标为( )A .(0,41)B .)161,0( C .)161,0(-D .)0,161(2.中心在原点,准线方程是4±=x ,离心率是21的椭圆方程为 ( )A .1422=+y x B .14322=+y x C .13422=+y x D .1422=+y x 抛物线y =-81x 2的焦点坐标是 ( )(A )(-321, 0) (B )(-21, 0) (C )(0, -2) (D )(0, -4)8.已知抛物线x y 22=的焦点为F ,定点A (3,2),在此抛物线上求一点P ,使|PA|+|PF|最小,则P 点坐标为( ) A .(-2,2)B .(1,2)C .(2,2)D .)2,1(-抛物线y Px 22=上一点M m (,)4到焦点距离等于6,则m = 。
直线x y --=10截抛物线y x 28=,所截得的弦中点的坐标是求抛物线y x 26=中,以M (,)43为中点的弦的方程。