条件概率与事件的独立性(二)

合集下载

知识讲解 条件概率 事件的相互独立性

知识讲解 条件概率 事件的相互独立性

条件概率事件的相互独立性【学习目标】1.了解条件概率的概念和概率的乘法公式.2.能运用条件概率解决一些简单的实际问题.3.了解两个事件相互独立的概念,会判断两个事件是否为相互独立事件.4.能运用相互独立事件的概率解决一些简单的实际问题.【要点梳理】要点一、条件概率的概念1.定义设A、B为两个事件,且()0P A>,在已知事件A发生的条件下,事件B发生的概率叫做条件概率。

用符号(|)P B A表示。

(|)P B A读作:A发生的条件下B发生的概率。

要点诠释在条件概率的定义中,事件A在“事件B已发生”这个附加条件下的概率与没有这个附加条件的概率是不同的,应该说,每一个随机试验都是在一定条件下进行的.而这里所说的条件概率,则是当试验结果的一部分信息已知,求另一事件在此条件下发生的概率.2.P(A|B)、P()、P(B)的区别P(A|B)是在事件B发生的条件下,事件A发生的概率。

P()是事件A与事件B同时发生的概率,无附加条件。

P(B)是事件B发生的概率,无附加条件.它们的联系是:() (|)()P ABP A BP B=.要点诠释一般说来,对于概率P()与概率P(A),它们都以基本事件空间Ω为总样本,但它们取概率的前提是不相同的。

概率P(A)是指在整个基本事件空间Ω的条件下事件A发生的可能性大小,而条件概率P()是指在事件B发生的条件下,事件A发生的可能性大小。

例如,盒中球的个数如下表。

从中任取一球,记“取得篮球”,“取得玻璃球”。

基本事件空间Ω包含的样本点总数为16,事件A包含的样本点总数为11,故11 ()P A=。

如果已知取得玻璃球的条件下取得篮球的概率就是事件B发生的条件下事件A发生的条件概率,那么在事件B 发生的条件下可能取得的样本点总数应为“玻璃球的总数”,即把样本空间压缩到玻璃球全体。

而在事件B 发生的条件下事件A 包含的样本点数为蓝玻璃球数,故42(|)63P A B ==。

要点二、条件概率的公式1.计算事件B 发生的条件下事件A 发生的条件概率,常有以下两种方式: ①利用定义计算.先分别计算概率P ()及P (B ),然后借助于条件概率公式()(|)()P AB P A B P B =求解. ②利用缩小样本空间的观点计算.在这里,原来的样本空间缩小为已知的条件事件B ,原来的事件A 缩小为事件,从而(|)AB P A B B =包含的基本事件数包含的基本事件数,即:()(|)()n AB P B A n A =,此法常应用于古典概型中的条件概率求解. 要点诠释概率P()与P()的联系与区别: 联系:事件A ,B 都发生了。

事件的相互独立性与条件概率、全概率公式

事件的相互独立性与条件概率、全概率公式

思维升华
求相互独立事件同时发生的概率的方法 (1)相互独立事件同时发生的概率等于他们各自发生的概率之积. (2)当正面计算较复杂或难以入手时,可从其对立事件入手计算.
跟踪训练1 (1)(多选)甲、乙两个口袋中装有除了编号不同以外其余完全 相同的号签.其中,甲袋中有编号为 1,2,3的三个号签;乙袋有编号为
对于C,三次传输,发送1,则译码为1的事件是依次收到1,1,0;1,0,1; 0,1,1和1,1,1这4个事件的和, 它们互斥,所求的概率为 C23β(1-β)2+(1-β)3=(1-β)2(1+2β),故 C 错误; 对于D,三次传输,发送0,则译码为0的概率P=(1-α)2(1+2α), 单次传输发送0,则译码为0的概率P′=1-α,而0<α<0.5, 因此P-P′=(1-α)2(1+2α)-(1-α)=α(1-α)(1-2α)>0,即P>P′, 故D正确.
微拓展
D 选项,由 C 选项知 Pn=12(1-Pn-1), 即 Pn=-12Pn-1+12, 设 Pn+λ=-12(Pn-1+λ), 故 Pn=-12Pn-1-32λ, 所以-32λ=12,解得 λ=-13,
微拓展
故 Pn-13=-12Pn-1-31, 又 P1-13=-13≠0, 所以Pn-13是首项为-13,公比为-21的等比数列,故 Pn-13=-13-12n-1, 故 Pn=13-13-12n-1,D 正确; B 选项,由 D 选项可知 P4=13-13×-123=38,B 错误.
自主诊断
2.(必修第二册 P253T4 改编)甲、乙两人独立地破解同一个谜题,破解出
谜题的概率分别为12,23,则谜题没被破解出的概率为
√A.16
B.13
C.56

事件的相互独立性、条件概率与全概率公式-高考数学复习

事件的相互独立性、条件概率与全概率公式-高考数学复习
“两次取出的球的数字之和是7”,则(

A. 甲与丙相互独立
B. 甲与丁相互独立
C. 乙与丙相互独立
D. 丙与丁相互独立
目录
解析:
1
事件甲发生的概率 P (甲)= ,事件乙发生的概率 P
6
1
5
5
(乙)= ,事件丙发生的概率 P (丙)=
= ,事件丁发生的概
6
6×6
36
6
1
率 P (丁)=
= .事件甲与事件丙同时发生的概率为0, P (甲
)=(1-0.6)×0.5×0.5×0.4+0.6×(1-0.5)×0.5×0.4+
0.6×0.5×(1-0.5)×0.4+0.6×0.5×0.5×(1-0.4)=0.25,4人需
使用设备的概率 P 2=0.6×0.5×0.5×0.4=0.06,故所求的概率 P =
3
2
3
5
( )·P ( )·P ( )=(1- )(1- )(1- )= .
4
3
8
96
因为事件“甲、乙、丙三人都回答错误”与事件“甲、乙、丙
三人中,至少有一人答对这道题”是对立事件,
5
91
所以所求事件的概率为 P ( M )=1- = .
96
96
目录
解题技法
1. 求相互独立事件同时发生的概率的步骤
2∪…∪ An =Ω,且 P ( Ai )>0, i =1,2,…, n ,则对任意的事

件 B ⊆Ω,有 P ( B )=
∑ P ( Ai ) P ( B | Ai )
i=1
,我们称上面
的公式为全概率公式.
目录
1. 判断正误.(正确的画“√”,错误的画“×”)

概率与统计中的事件独立性与条件概率

概率与统计中的事件独立性与条件概率

概率与统计中的事件独立性与条件概率概率与统计是数学中的一个重要分支,用于研究随机现象和不确定性问题。

在概率与统计的基础概念中,事件的独立性与条件概率是两个核心概念。

本文将对这两个概念进行详细解释,并探讨它们在实际问题中的应用。

一、事件的独立性在概率与统计中,事件的独立性是指两个或多个事件之间的关联程度。

如果两个事件A和B相互独立,意味着事件A的发生与否不会对事件B的发生概率产生影响,反之亦然。

换句话说,事件A和B的发生概率是相互独立的,它们之间不存在任何关联。

为了判断两个事件A和B是否相互独立,可以通过下列公式进行计算:P(A∩B) = P(A) × P(B)其中,P(A∩B)表示事件A和B同时发生的概率,P(A)和P(B)分别表示事件A和B发生的概率。

如果上式成立,则事件A和B相互独立;如果不成立,则事件A和B不相互独立。

事件的独立性在实际问题中具有广泛的应用。

例如,假设有一批产品,每个产品的质量合格的概率为0.9。

如果从该批产品中随机选取两个产品,事件A表示第一个产品质量合格,事件B表示第二个产品质量合格。

根据事件的独立性,我们可以通过计算概率来判断同时选中两个质量合格产品的概率。

二、条件概率条件概率是指在已知某个事件发生的条件下,另一个事件发生的概率。

条件概率通常用P(B|A)表示,其中P(B|A)表示在事件A发生的条件下,事件B发生的概率。

条件概率的计算公式为:P(B|A) = P(A∩B) / P(A)其中,P(A∩B)表示事件A和B同时发生的概率,P(A)表示事件A发生的概率。

通过计算条件概率,我们可以得出在某种条件下发生某个事件的概率。

条件概率在实际问题中非常有用。

例如,假设有一个班级,其中40%的学生会参加音乐比赛,30%的学生参加体育比赛。

如果我们知道某个学生参加了音乐比赛,那么他参加体育比赛的概率是多少?根据条件概率的计算公式,我们可以得出这个概率。

三、事件独立性与条件概率的关系事件的独立性与条件概率密切相关。

条件概率与事件的独立性例题和知识点总结

条件概率与事件的独立性例题和知识点总结

条件概率与事件的独立性例题和知识点总结在概率论中,条件概率和事件的独立性是两个非常重要的概念。

理解并掌握它们对于解决各种概率问题至关重要。

接下来,我们将通过一些具体的例题来深入探讨这两个概念,并对相关知识点进行总结。

一、条件概率条件概率是指在已知某个事件发生的条件下,另一个事件发生的概率。

其定义为:设 A、B 是两个事件,且 P(A) > 0,在事件 A 发生的条件下,事件 B 发生的条件概率记为 P(B|A),且 P(B|A) = P(AB) /P(A) 。

例如,一个盒子里有 5 个红球和 3 个白球。

从中随机取出一个球,已知取出的是红球,那么这个红球是第一次取出的球的概率是多少?首先,总的取球情况有 8 种。

取出红球的情况有 5 种。

第一次取出红球的情况有 5 种。

所以,P(第一次取出红球|取出的是红球) = 5 / 5 = 1 。

二、事件的独立性如果事件 A 的发生不影响事件 B 发生的概率,事件 B 的发生也不影响事件 A 发生的概率,那么称事件 A 和事件 B 是相互独立的。

即如果 P(B|A) = P(B) 且 P(A|B) = P(A) ,则事件 A 和事件 B 相互独立。

例如,有两个独立的事件 A 和 B,P(A) = 04 ,P(B) = 05 ,那么P(AB) = P(A) × P(B) = 04 × 05 = 02 。

再来看一个例子,一个家庭有两个孩子,已知第一个孩子是男孩,那么第二个孩子是女孩的概率是多少?假设生男生女的概率相等,都是 05 。

因为这两个孩子的性别是相互独立的事件,所以第二个孩子是女孩的概率仍然是 05 。

三、条件概率与事件独立性的关系事件的独立性与条件概率有着密切的关系。

如果事件 A 和事件 B相互独立,那么 P(B|A) = P(B) ,P(A|B) = P(A) 。

反之,如果 P(B|A)= P(B) 且 P(A|B) = P(A) ,则事件 A 和事件 B 相互独立。

概率论和数理统计(第三学期)第2章条件概率与独立性

概率论和数理统计(第三学期)第2章条件概率与独立性

PA1PA2 A1PA3 A1A2
(1 p) p p p p 1 p p p p p 1 p p p p p
2
2
2
1 5 3 pp3
2
§2.2 全概率公式与贝叶斯公式
全概率公式
定理 设B1,B2,…,Bn 是一组两两互斥的事件,且
n
(1) Bi i 1
(3)P( A3 B) 1 P( A3 B)
1
0.2 0.2
0.93
0.5 0.6 0.3 0.9 0.2 0.2
解法二:
(3)P( A1 A2 B) P( A1 B) P( A2 B) 0.49 0.44 0.93
a a 1 b
a
a b a b 1 a b a b 1
a ab
例2 一商店出售的某型号的晶体管是甲、乙、
丙三家工厂生产的,其中乙厂产品占总数的50%, 另两家工厂的产品各占25%。已知甲、乙、丙各 厂产品合格率分别为0.9、0.8、0.7,试求随意取出 一只晶体管是合格品的概率(也就是本商店出售货 的合格率)。
pk
1 4
(
pk
pk 1 )
pn p1 ( p2 p1 ) ( p3 p2 ) ( pn pn1 )
1 1 n1
p1
4 1 1
( p2 p1 )
4

pn
3 5
(1)n 10
1 4n 1
贝叶斯公式
定理 设B1,B2,…,Bn是一组两两互斥的事件,且
n
(1) Bi i 1
而p1
m 1 m
pn
1 2
1
m2 m
n
当n
时,pn
1 2
例4 连续做某项试验,每次试验只有成功和失败

概率的条件与独立事件

概率的条件与独立事件

概率的条件与独立事件概率是数学中的一个分支,用于研究随机事件发生的可能性。

在概率理论中,条件和独立事件是两个重要的概念。

本文将详细探讨概率的条件和独立事件,以及它们在实际生活中的应用。

1. 条件概率条件概率是指在已知某个事件发生的条件下,另一个事件发生的概率。

设A、B为两个事件,P(A|B)表示在事件B发生的条件下事件A 发生的概率。

条件概率的计算公式如下:P(A|B) = P(A∩B) / P(B)其中,P(A∩B)表示事件A和事件B同时发生的概率,P(B)表示事件B发生的概率。

条件概率的应用十分广泛。

例如,在医学诊断中,医生根据病人的症状判断某种疾病的概率就是条件概率;在市场调查中,根据消费者的不同特征,预测其购买某种产品的概率也是条件概率的应用之一。

2. 独立事件独立事件是指两个或多个事件之间相互不影响的事件。

设A、B为两个事件,如果P(A|B) = P(A),则称事件A和事件B是独立事件。

换句话说,如果事件B的发生与事件A的发生无关,那么这两个事件就是独立事件。

独立事件在现实生活中也有很多应用。

例如,投掷一个标准的骰子,每个面出现的概率都是相等的,因此连续投掷两次,第一次投掷结果不会对第二次投掷结果产生影响,这就是独立事件的应用之一。

3. 条件独立事件条件独立事件是指在已知某个事件发生的条件下,另外两个事件是相互独立的事件。

设A、B、C为三个事件,如果P(A∩B|C) = P(A|C) × P(B|C),则称事件A和事件B在事件C的条件下是独立的。

对于条件独立事件来说,假设C事件发生的情况下,事件A和事件B之间的独立性保持不变。

条件独立事件在统计学和机器学习中有广泛的应用,例如朴素贝叶斯分类器是基于条件独立事件假设的。

4. 应用案例为了更好地理解条件和独立事件的概念以及其应用,我们举一个实际的例子。

假设某公司的销售记录表明,在晴天的情况下,销售手机的概率为0.8;而在雨天的情况下,销售手机的概率为0.3。

高中数学 第2章 概率 2.2 条件概率与事件的独立性 2.2.1 条件概率 2.2.2 事件的独立

高中数学 第2章 概率 2.2 条件概率与事件的独立性 2.2.1 条件概率 2.2.2 事件的独立

2.2.1 条件概率 2.2.2 事件的独立性1.了解条件概率和两个事件相互独立的概念.2.理解条件概率公式和相互独立事件同时发生的概率公式.3.能利用概率公式解决实际问题.1.条件概率(1)定义:对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率,用符号“P (B |A )”来表示,读作“A 发生的条件下B 发生的概率”.类似地,事件B 发生的条件下事件A 发生的条件概率记为“P (A |B )”,读作“B 发生的条件下A 发生的概率”.(2)事件的交(或积)由事件A 和B 同时发生所构成的事件D ,称为事件A 与B 的交(或积),记作D =A ∩B (或D =AB ).(3)条件概率计算公式 一般地,条件概率公式为P (B |A )=P (A ∩B )P (A )(P (A )>0),类似地,P (A |B )=P (A ∩B )P (B )(P (B )>0).2.相互独立事件(1)定义:一般地,事件A 是否发生对事件B 发生的概率没有影响,即P (B |A )=P (B ),则称两个事件A ,B 相互独立,并把这两个事件叫做相互独立事件.若n 个事件A 1,A 2,…,A n ,如果其中任何一个事件发生的概率不受其他事件是否发生的影响,则称这n 个事件相互独立.(2)相互独立事件的性质一般地,若事件A ,B 相互独立,则A 与B ,A 与B ,A 与B 也相互独立. (3)相互独立事件同时发生的概率①两个相互独立事件同时发生的概率,等于每个事件发生的概率的积,即P (A ∩B )=P (A )×P (B ).②如果事件A 1,A 2,…,A n 相互独立,则这n 个事件都发生的概率,等于每个事件发生的概率的积,即P (A 1∩A 2∩…∩A n )=P (A 1)×P (A 2)×…×P (A n )并且上式中任意多个事件A i 换成其对立事件后,等式仍成立.1.判断(对的打“√”,错的打“×”) (1)若事件A 、B 互斥,则P (B |A )=1.( ) (2)必然事件与任何一个事件相互独立.( )(3)“P (AB )=P (A )·P (B )”是“事件A ,B 相互独立”的充要条件.( ) 答案:(1)× (2)√ (3)√2.已知P (AB )=310,P (A )=35,则P (B |A )为( )A.950 B.12 C.910D.14答案:B3.甲、乙两人各射击一次,他们各自击中目标的概率都是0.6,则他们都击中目标的概率是( )A .0.6B .0.36C .0.16D .0.84答案:B4.甲、乙两颗卫星同时监测台风,在同一时刻,甲、乙两颗卫星准确预报台风的概率分别为0.8和0.75,则在同一时刻至少有一颗卫星预报准确的概率为________.答案:0.95求条件概率[学生用书P26]在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2道题,求: (1)第1次抽到理科题的概率;(2)第1次和第2次都抽到理科题的概率;(3)在第1次抽到理科题的条件下,第2次抽到理科题的概率.【解】 设第1次抽到理科题为事件A ,第2次抽到理科题为事件B ,则第1次和第2次都抽到理科题为事件A ∩B .(1)从5道题中不放回地依次抽取2道题的事件数为A 25=20. 根据分步乘法计数原理,事件A 的总数为A 13×A 14=12. 故P (A )=1220=35.(2)因为事件A ∩B 的总数为A 23=6. 所以P (A ∩B )=620=310.(3)法一:由(1)、(2)可得,在第1次抽到理科题的条件下,第2次抽到理科题的概率为P (B |A )=P (A ∩B )P (A )=31035=12.法二:因为事件A ∩B 的总数为6,事件A 发生的总数为12,所以P (B |A )=612=12.利用定义计算条件概率的步骤(1)分别计算概率P (AB )和P (A ). (2)将它们相除得到条件概率P (B |A )=P (AB )P (A ),这个公式适用于一般情形,其中AB 表示A ,B 同时发生.设10件产品中有4件不合格,从中任意取出2件,那么在所取得的产品中发现有一件不合格品,求另一件也是不合格品的概率.解:设事件A 为“在所取得的产品中发现有一件不合格品”,事件B 为“另一件产品也是不合格品”,则P (A )=C 14C 16C 210=4×6×210×9=815,P (A ∩B )=C 24C 210=215.因此P (B |A )=P (A ∩B )P (A )=14.相互独立事件的判断判断下列各对事件是不是相互相互独立事件:(1)甲组3名男生,2名女生;乙组2名男生,3名女生,现从甲、乙两组中各选1名同学参加演讲比赛,“从甲组中选出1名男生”与“从乙组中选出1女生”;(2)容器内盛有5个白乒乓球和3个黄乒乓球,“从8个球中任意取出1个,取出的是白球”与“从剩下的7个球中任意取出1个,取出的还是白球”;(3)掷一颗骰子一次,“出现偶数点”与“出现3点或6点”.【解】 (1)“从甲组中选出1名男生”这一事件是否发生,对“从乙组中选出1名女生”这一事件发生的概率没有影响,所以它们是相互独立事件.(2)“从8个球中任意取出1个,取出的是白球”的概率为58,若这一事件发生了,则“从剩下的7个球中任意取出1个,取出的仍是白球”的概率为47,若前一事件没有发生,则后一事件发生的概率为57.可见,前一事件是否发生,对后一事件发生的概率有影响,所以两者不是相互独立事件.(3)记A :出现偶数点,B :出现3点或6点,则A ={2,4,6},B ={3,6},AB ={6}, 所以P (A )=36=12,P (B )=26=13,P (AB )=16,所以P (A ∩B )=P (A )·P (B ), 所以事件A 与B 相互独立.判断两事件的独立性的方法(1)定义法:如果事件A ,B 同时发生的概率等于事件A 发生的概率与事件B 发生的概率的积,则事件A ,B 为相互独立事件.(2)由事件本身的性质直接判定两个事件发生是否相互影响. (3)当P (A )>0时,可用P (B |A )=P (B )判断.一个家庭中有若干个小孩,假定生男孩和生女孩是等可能的,令A ={一个家庭中既有男孩又有女孩},B ={一个家庭中最多有一个女孩}.对下述两种情形,讨论A 与B 的独立性:(1)家庭中有两个小孩; (2)家庭中有三个小孩.解:(1)有两个小孩的家庭,男孩、女孩的可能情形为Ω={(男,男),(男,女),(女,男),(女,女)},它有4个基本事件, 由等可能性知概率各为14.这时A ={(男,女),(女,男)},B ={(男,男),(男,女),(女,男)}, A ∩B ={(男,女),(女,男)},于是P (A )=12,P (B )=34,P (A ∩B )=12.由此可知P (A ∩B )≠P (A )P (B ),所以事件A ,B 不相互独立.(2)有三个小孩的家庭,小孩为男孩、女孩的所有可能情形为Ω={(男,男,男),(男,男,女),(男,女,男),(女,男,男),(男,女,女),(女,男,女),(女,女,男),(女,女,女)},由等可能性知这8个基本事件的概率均为18,这时A 中含有6个基本事件,B 中含有4个基本事件, A ∩B 中含有3个基本事件.于是P (A )=68=34,P (B )=48=12,P (A ∩B )=38,显然有P (A ∩B )=38=P (A )P (B )成立.从而事件A 与B 是相互独立的.求相互独立事件的概率甲、乙2个人独立地破译一个密码,他们能译出密码的概率分别为13和14,求:(1)2个人都译出密码的概率; (2)2个人都译不出密码的概率; (3)至多1个人译出密码的概率;【解】 记“甲独立地译出密码”为事件A ,“乙独立地译出密码”为事件B ,A 与B 为相互独立事件,且P (A )=13,P (B )=14.(1)“2个人都译出密码”的概率为:P (AB )=P (A )·P (B )=13×14=112.(2)“2个人都译不出密码”的概率为:P (A -B -)=P (A -)·P (B -)=[1-P (A )]×[1-P (B )]=(1-13)×(1-14)=12.(3)“至多1个人译出密码”的对立事件为“2个人都译出密码”,所以至多1个人译出密码的概率为:1-P (AB )=1-P (A )P (B )=1-13×14=1112.在本例条件下,求:(1)恰有1个人译出密码的概率; (2)至少1个人译出密码的概率.解:(1)“恰有1个人译出密码”可以分为两类,即甲译出乙未译出以及甲未译出乙译出,且两个事件为互斥事件,所以恰有1个人译出密码的概率为:P (A B -∪A -B )=P (A B -)+P (A -B )=P (A )P (B -)+P (A -)P (B ) =13×(1-14)+(1-13)×14=512. (2)“至少1个人译出密码”的对立事件为“2个人都未译出密码”,所以至少1个人译出密码的概率为:1-P (A -B -)=1-P (A -)P (B -)=1-23×34=12.与相互独立事件有关的概率问题求解策略一般地,已知两个事件A ,B ,它们的概率分别为P (A ),P (B ),那么:A ,B 互斥 A ,B 相互独立P (A +B ) P (A )+P (B )1-P (A -)P (B -)P (AB ) 0P (A )P (B ) P (A -B -)1-[P (A )+P (B )]P (A -)P (B -)某田径队有三名短跑运动员,根据平时训练情况统计甲、乙、丙三人100米跑(互不影响)的成绩在13 s 内(称为合格)的概率分别为25,34,13,若对这三名短跑运动员的100 m 跑的成绩进行一次检测,则(1)三人都合格的概率; (2)三人都不合格的概率; (3)出现几人合格的概率最大.解:记“甲、乙、丙三人100米跑成绩合格”分别为事件A ,B ,C ,显然事件A ,B ,C 相互独立,则P (A )=25,P (B )=34,P (C )=13.设恰有k 人合格的概率为P k (k =0,1,2,3),(1)三人都合格的概率:P 3=P (ABC )=P (A )·P (B )·P (C )=25×34×13=110. (2)三人都不合格的概率:P 0=P (A -B -C -)=P (A -)·P (B -)·P (C -)=35×14×23=110. (3)恰有两人合格的概率:P 2=P (AB C -)+P (A B -C )+P (A -BC )=25×34×23+25×14×13+35×34×13=2360. 恰有一人合格的概率:P 1=1-P 0-P 2-P 3=1-110-2360-110=2560=512.综合第一问、第二问、第三问可知P 1最大. 所以出现恰有1人合格的概率最大.相互独立事件的综合应用在一场娱乐晚会上,有5位民间歌手(1至5号)登台演唱,由现场数百名观众投票选出最受欢迎歌手.各位观众要彼此独立地在选票上选3名歌手,其中观众甲是1号歌手的歌迷,他必选1号,不选2号,另在3至5号中随机选2名.观众乙和丙对5位歌手的演唱没有偏爱,因此在1至5号中随机选3名歌手.(1)求观众甲选中3号歌手且观众乙未选中3号歌手的概率. (2)X 表示3号歌手得到观众甲、乙、丙的票数之和,求X 的分布列.【解】 (1)设A 表示事件“观众甲选中3号歌手”,B 表示事件“观众乙选中3号歌手”,则P (A )=C 12C 23=23,P (B )=C 24C 35=35.因为事件A 与B 相互独立,所以观众甲选中3号歌手且观众乙未选中3号歌手的概率为P (A B -)=P (A )·P (B -)=P (A )·[1-P (B )]=23×25=415.(或P (A B -)=C 12·C 34C 23·C 35=415). (2)设C 表示事件“观众丙选中3号歌手”,则P (C )=C 24C 35=35,因为X 可能的取值为0,1,2,3,且取这些值的概率分别为P (X =0)=P (A -B -C -)=13×25×25=475,P (X =1)=P (A B - C -)+P (A -B C -)+P (A -B -C )=23×25×25+13×35×25+13×25×35=2075, P (X =2)=P (A B C -)+P (A -BC )+P (A B -C )=23×35×25+13×35×35+23×25×35=3375, P (X =3)=P (ABC )=23×35×35=1875,所以X 的分布列为X 0 1 2 3 P475207533751875概率问题中的数学思想(1)正难则反.灵活应用对立事件的概率关系(P (A )+P (A -)=1)简化问题,是求解概率问题最常用的方法.(2)化繁为简.将复杂事件的概率转化为简单事件的概率,即寻找所求事件与已知事件之间的关系.“所求事件”分几类(考虑加法公式,转化为互斥事件)还是分几步组成(考虑乘法公式,转化为互独事件).(3)方程思想.利用有关的概率公式和问题中的数量关系,建立方程(组),通过解方程(组)使问题获解.三个元件T 1,T 2,T 3正常工作的概率分别为12,34,34,将它们中的某两个元件并联后再和第三个元件串联接入电路,如图所示,求电路不发生故障的概率.解:记“三个元件T 1,T 2,T 3正常工作”分别为事件A 1,A 2,A 3, 则P (A 1)=12,P (A 2)=34,P (A 3)=34,不发生故障的事件为(A 2∪A 3)A 1,P =P [(A 2∪A 3)A 1]=P (A 2∪A 3)·P (A 1) =[1-P (A 2)·P (A 3)]·P (A 1) =(1-14×14)×12=1532.————————————————————————————————————————————————1.求条件概率的方法(1)利用定义,分别求P (A )和P (A ∩B ),得P (B |A )=P (A ∩B )P (A ).(2)借助古典概型概率公式,先求事件A 包含的基本事件数n (A ),再在事件A 发生的条件下求事件B 包含的基本事件数,即n (AB ),得P (B |A )=n (A ∩B )n (A ).2.判定两个事件相互独立的方法(1)定义法:如果A 、B 同时发生的概率等于事件A 发生的概率与事件B 发生的概率的积,则事件A 、B 为相互独立事件.(2)由事件本身的性质直接判定两个事件发生是否相互影响.3.事件A 、B 相互独立,则P (AB )=P (A )P (B ).注意与事件互斥区别.1.求复杂事件的概率时,先判断事件间的关系,是互斥还是独立,特别对“至多”“至少”等问题,可分成互斥事件求概率,也可用对立事件求概率.2.在解题过程中,要明确事件中的“至少有一个发生”、“至多有一个发生”“恰有一个发生”“都发生”“都不发生”“不都发生”等词语的意义,已知两个事件A 、B ,它们的概率分别为P (A )、P (B ),那么:A 、B 中至少有一个发生的事件为A ∪B ; A 、B 都发生的事件为AB ;A 、B 都不发生的事件为A -B -;A 、B 恰有一个发生的事件为A B -∪A -B ;A 、B 中至多有一个发生的事件为A B -∪A -B ∪A -B -.1.已知P (B |A )=12,P (AB )=38,则P (A )等于( )A.316B.1316C.34D.14解析:选C.由P (AB )=P (A )P (B |A )可得P (A )=34.2.甲、乙、丙3人投篮,投进的概率分别是13,25,12,现3人各投篮1次,则3人都没有投进的概率为( )A.115 B.215C.15D.110解析:选C.甲、乙、丙3人投篮相互独立,都不进的概率为⎝ ⎛⎭⎪⎫1-13⎝ ⎛⎭⎪⎫1-25⎝ ⎛⎭⎪⎫1-12=15.3.某人一周晚上值班2次,在已知他周日一定值班的条件下,则他在周六晚上值班的概率为________.解析:设事件A 为“周日值班”,事件B 为“周六值班”,则P (A )=C 16C 27,P (AB )=1C 27,故P (B |A )=P (AB )P (A )=16.答案:16[A 基础达标]1.设A 与B 是相互独立事件,则下列事件中不相互独立的是( ) A .A 与B -B.A -与B C.A -与B -D .A 与A -解析:选D.A 、B 、C 选项的两事件相互独立,而A 与A -是对立事件,不是相互独立事件. 2.某班学生考试成绩中,数学不及格的占15%,语文不及格的占5%,两门都不及格的占3%.已知一学生数学不及格,则他语文也不及格的概率是( )A .0.2B .0.33C .0.5D .0.6解析:选A.A =“数学不及格”,B =“语文不及格”,P (B |A )=P (AB )P (A )=0.030.15=0.2,所以数学不及格时,该生语文也不及格的概率为0.2.3.7名同学站成一排,已知甲站在中间,则乙站在末尾的概率是( ) A.14 B.15 C.16D.17解析:选C.记“甲站在中间”为事件A ,“乙站在末尾”为事件B ,则n (A )=A 66,n (AB )=A 55,P (B |A )=A 55A 66=16.4.从甲袋中摸出一个红球的概率是13,从乙袋中摸出一个红球的概率是12,从两袋各摸出一个球,则23等于( )A .2个球不都是红球的概率B .2个球都是红球的概率C .至少有1个红球的概率D .2个球中恰有1个红球的概率解析:选C.分别记从甲、乙袋中摸出一个红球为事件A 、B ,则P (A )=13,P (B )=12,由于A 、B 相互独立,所以1-P (A -)P (B -)=1-23×12=23.根据互斥事件可知C 正确.5.同时转动如图所示的两个转盘,记转盘甲得到的数为x ,转盘乙得到的数为y (若指针停在边界上则重新转),x ,y 构成数对(x ,y ),则所有数对(x ,y )中满足xy =4的概率为( )A.116B.18C.316D.14解析:选C.满足xy =4的所有可能如下:x =1,y =4;x =2,y =2;x =4,y =1.所以所求事件的概率P =P (x =1,y =4)+P (x =2,y =2)+ P (x =4,y =1)=14×14+14×14+14×14=316. 6.已知有两台独立在两地工作的雷达,它们发现飞行目标的概率分别为0.9和0.85,则两台雷达都未发现飞行目标的概率为________.解析:所求概率为(1-0.9)×(1-0.85)=0.015. 答案:0.0157.某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为1625,则该队员每次罚球的命中率为________. 解析:设此队员每次罚球的命中率为p , 则1-p 2=1625,所以p =35.答案:358.有五瓶墨水,其中红色一瓶,蓝色、黑色各两瓶,某同学从中随机任取出两瓶,若取出的两瓶中有一瓶是蓝色,则另一瓶是红色或黑色的概率是________.解析:设事件A 为“其中一瓶是蓝色”,事件B 为“另一瓶是红色”,事件C 为“另一瓶是黑色”,事件D 为“另一瓶是红色或黑色”,则D =B ∪C ,且B 与C 互斥, 又P (A )=C 12C 14C 25=45,P (AB )=C 12C 11C 25=15,P (AC )=C 12C 12C 25=25,故P (D |A )=P (B ∪C |A ) =P (B |A )+P (C |A ) =P (AB )P (A )+P (AC )P (A )=34.答案:349.在社会主义新农村建设中,某市决定在一个乡镇投资农产品加工、绿色蔬菜种植和水果种植三个项目,据预测,三个项目成功的概率分别为45、56、23,且三个项目是否成功互相独立.(1)求恰有两个项目成功的概率; (2)求至少有一个项目成功的概率.解:(1)只有农产品加工和绿色蔬菜种植两个项目成功的概率为 45×56×(1-23)=29, 只有农产品加工和水果种植两个项目成功的概率为 45×(1-56)×23=445, 只有绿色蔬菜种植和水果种植两个项目成功的概率为 (1-45)×56×23=19,所以恰有两个项目成功的概率为29+445+19=1945.(2)三个项目全部失败的概率为 (1-45)×(1-56)×(1-23)=190,所以至少有一个项目成功的概率为1-190=8990.10.甲箱的产品中有5个正品和3个次品,乙箱的产品中有4个正品和3个次品. (1)从甲箱中任取2个产品,求这2个产品都是次品的概率.(2)若从甲箱中任取2个产品放入乙箱中,然后再从乙箱中任取一个产品,求取出的这个产品是正品的概率.解:(1)从甲箱中任取2个产品的事件数为C 28=28,这2个产品都是次品的事件数为C 23=3.所以这2个产品都是次品的概率为328.(2)设事件A 为“从乙箱中取一个正品”,事件B 1为“从甲箱中取出2个产品都是正品”,事件B 2为“从甲箱中取出1个正品1个次品”,事件B 3为“从甲箱中取出2个产品都是次品”,则事件B 1、事件B 2、事件B 3彼此互斥.P (B 1)=C 25C 28=514,P (B 2)=C 15C 13C 28=1528,P (B 3)=C 23C 28=328,P (A |B 1)=69,P (A |B 2)=59,P (A |B 3)=49,所以P (A )=P (B 1)P (A |B 1)+P (B 2)·P (A |B 2)+P (B 3)P (A |B 3) =514×69+1528×59+328×49=712. [B 能力提升]11.抛掷一枚均匀的骰子所得的样本空间为Ω={1,2,3,4,5,6},令事件A ={2,3,5},B ={1,2,4,5,6},则P (A |B )等于( )A.25B.12C.35D.45解析:选A.因为A ∩B ={2,5},所以n (AB )=2. 又因为n (B )=5,故P (A |B )=n (AB )n (B )=25.12.设两个独立事件A 和B 都不发生的概率为19,A 发生B 不发生的概率与B 发生A 不发生的概率相同,则事件A 发生的概率P (A )=________.解析:由题意,P (A -)·P (B -)=19,P (A -)·P (B )=P (A )·P (B -).设P (A )=x ,P (B )=y , 则⎩⎪⎨⎪⎧(1-x )(1-y )=19,(1-x )y =x (1-y ). 即⎩⎪⎨⎪⎧1-x -y +xy =19,x =y , 所以x 2-2x +1=19,所以x -1=-13,或x -1=13(舍去),所以x =23.答案:2313.一只口袋内装有2个白球和2个黑球.求:(1)在先摸出1个白球不放回的条件下,再摸出1个白球的概率是多少? (2)在先摸出1个白球后放回的条件下,再摸出1个白球的概率是多少? 解:(1)记A =“先摸出一个白球不放回”,B =“再摸出一个球为白球”, 则AB =“先后两次摸到白球”. 因为P (A )=24=12,P (A ∩B )=A 22A 24=16,所以P (B |A )=P (A ∩B )P (A )=13.(2)记A 1=“先摸出一个白球放回”,B 1=“再摸出一个球为白球”, 则AB 1=“先后两次摸到白球”. 因为P (A 1)=24=12,P (A 1∩B 1)=2×24×4=14,所以P (B 1|A 1)=P (A 1∩B 1)P (A 1)=12.14.(选做题)某班甲、乙、丙三名同学竞选班委,甲当选的概率为45,乙当选的概率为35,丙当选的概率为710.求:(1)恰有一名同学当选的概率; (2)至多有两人当选的概率.解:设甲,乙,丙当选分别为事件A ,B ,C , 则有P (A )=45,P (B )=35,P (C )=710.(1)因为事件A ,B ,C 相互独立, 所以恰有一名同学当选的概率为P (A ∩B -∩C -)+P (A -∩B ∩C -)+P (A -∩B -∩C )=P (A )P (B -)P (C -)+P (A -)P (B )P (C -)+P (A -)P (B -)P (C ) =45×25×310+15×35×310+15×25×710 =47250. (2)至多有两人当选的概率为 1-P (A ∩B ∩C )=1-P (A )P (B )P (C )4 5×35×710=83125.=1-。

3事件的相互独立性(2h)

3事件的相互独立性(2h)
0.9 0.8) (0.9)(0.8)
0.98
返回
退出
2. 相互独立的直观认定方法及其应用
例2-3 甲乙丙三人射击敌机的命中率分别为0.4,0.5 和 0.7 . 已知飞机被单人命中而坠落的概率为0.2 ,被两人同 时命中而坠落的概率为 0.6,被三人同时命中时则必坠落. (1) 求飞机在一次齐射中被击落的概率. 解 以 A 表“飞机被击落” , 以Bi 表“飞机被 i 个人命中” , ( i = 1, 2, 3) , C1 , C2 ,C3 依次表“飞机被甲乙丙击中”, 则
| | 3600 3 | | 3600 4 | AB | 600 1 (2) P ( AB ) , | | 3600 6 1 1 1 P ( AB) P ( B A) P ( B ) P ( AB ) . 4 6 12 P ( AB) 1 6 1 P ( AB) 112 1 P ( B | A) , P ( B | A) . 2 P ( A) 4 1 P ( A) 3 4 3
P ( A) P ( B ) 0.6 (1 0.7) 0.18
P ( A B) P ( AB)
P ( A) P ( B) (1 0.6) (1 0.7) 0.12
返回
退出
例3-2 设 P ( A) 0.3 , P( B) 0.4 , P ( AB ) 0.5 . 试求: P ( B | A B ) . 解
返回
退出
2. 相互独立的直观认定方法及其应用
例2-3 甲乙丙三人射击敌机的命中率分别为0.4,0.5 和 0.7 . 已知飞机被单人命中而坠落的概率为0.2 ,被两人同 时命中而坠落的概率为 0.6,被三人同时命中时则必坠落. (2) 求被击落的飞机为甲所击落的概率. 解 以 A 表“飞机被击落” , 以Bi 表“飞机被 i 个人命中” , ( i = 1, 2, 3) , C1 , C2 ,C3 依次表“飞机被甲乙丙击中”, 则

条件概率与事件的独立性-讲义(学生版)

条件概率与事件的独立性-讲义(学生版)

条件概率与事件的独立性一、课堂目标1.掌握条件概率的定义和计算公式,以及条件概率与乘法公式之间的关系.2.掌握独立事件的定义和性质.3.掌握互斥事件和独立事件的综合应用.4.掌握全概率公式的定义及应用,了解贝叶斯公式.二、知识讲解1. 条件概率知识精讲(1)定义一般地,当事件发生的概率大于时(即),则事件发生的条件下事件发生的概率,称为条件概率,记作.(2)计算公式一般地,设为两个随机事件,且,则:.(3)性质①非负性:条件概率具有的性质,任何事件的条件概率都在0和1之间,即.②若事件A与B互斥,即与不可能同时发生,则.③可加性:如果和是两个互斥事件,则.(4)条件概率的求法①定义法,先求和,再求;②基本事件法,借助古典型概率公式,先求事件包含的基本事件数,再求事件所包含的基本事件数,得.注意:求复杂事件的条件概率时,可以把它分解为若干个互不相容的简单事件,求出这些简单事件的条件概率,再利用概率的可加性,得到最终结果.经典例题A. B.C.D.1.某地气象台预计,月日该地区下雨的概率为,刮风的概率为,既刮风又下雨的概率为,设表示下雨,表示刮风,则().巩固练习A.B.C.D.2.小明早上步行从家到学校要经过有红绿灯的两个路口,根据经验,在第一个路口遇到红灯的概率为,在第二个路口遇到红灯的概率为,在两个路口连续遇到红灯的概率是.某天早上小明在第一个路口遇到了红灯,则他在第二个路口也遇到红灯的概率是().经典例题A. B.C.D.3.一个盒子内装有个红球,个白球,从盒子中取出两个球,已知一个球是红球,则另一个也是红球的概率是().巩固练习A. B.C.D.4.某盒中装有只乒乓球,其中只新球,只旧球,不放回地依次摸出个球使用,在第一次摸出新球的条件下,第二次也取到新球的概率为().经典例题A. B.C.D.5.袋中装有形状和大小完全相同的个黑球,个白球,从中不放回地依次随机摸取两个球,则在第一次摸到黑球的条件下,第二次摸到白球的概率是().巩固练习A.B.C.D.6.抛掷一颗质地均匀的骰子的基本事件构成集合,令事件,,则的值为().2.乘法公式知识精讲由条件概率的计算公式可知,这就是说,根据事件发生的概率,以及事件发生的条件下事件发生的概率,可以求出与同时发生的概率.一般地,这个结论称为乘法公式.经典例题7.甲袋中有个白球,个红球;乙袋中有个白球,个红球,从两个袋子中任取一袋,然后从所取到的袋子中任取一球 ,则取到白球的概率是.巩固练习A.B.C.D.8.市场上供应的灯泡中,甲厂产品占,乙厂占,甲厂产品的合格率是,乙厂产品的合格率是,则从市场上买到一个是甲厂生产的合格灯泡的概率是().A.B.C.D.9.已知箱中有红球个,白球个,箱中有白球个,(、箱中所有的球除颜色外完全相同).现随意从箱中取出个球放入箱,将箱中的球充分搅匀后,再从箱中随意取出个球放入箱,则红球从箱移到箱,再从箱返回箱中的概率等于().3. 事件的独立性知识精讲(1)定义当时,与独立的充要条件是这时,我们称事件、相互独立,并把这两个事件叫做相互独立事件.(2)独立事件的性质对于两个独立事件和,有如下两个性质:①与,与,与也相互独立;②.经典例题A. B.C.D.10.袋中有大小形状都相同的个黑球和个白球.如果不放回地依次取次球,每次取出个,那么在第次取到的是黑球的条件下,第次取到白球的概率为().巩固练习A. B.C.D.11.已知件次品和件正品混在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,则在第一次取出次品的条件下,第二次取出的也是次品的概率是().经典例题12.甲、乙、丙三人独立地去破译一个密码,他们能译出的概率分别为,,,则此密码能被译出的概率为.巩固练习13.某学生在上学的路上要经过三个路口,假设在各路口是否遇到红绿灯是相互独立的,遇到红灯的概率都是,则这名学生在上学的路上到第三个路口时第一次遇到红灯的概率为.4. 互斥事件与独立事件知识精讲互斥事件与独立事件的区别:“互斥事件”和“相互独立事件”是两个不同的概念,前者表示两个事件不可能同时发生,后者指一个事件是否发生对另一个事件发生的概率没有影响.知识点睛已知两个事件,它们的概率分别为.将中至少有一个发生记为事件,都发生记为事件,都不发生记为事件,恰有一个发生记为事件,至多有一个发生记为事件,则它们的概率间的关系见下表.概率互斥相互独立1经典例题A.不相互独立事件B.相互独立事件C.互斥事件D.对立事件14.一袋中装有只白球,只黄球,在有放回地摸球中,用表示第一次摸得白球,表示第二次摸得白球,则事件与是( ).巩固练习A.互斥但不相互独立B.相互独立但不互斥C.互斥且相互独立D.既不相互独立也不互斥15.掷一颗骰子一次,设事件:“掷出奇数点”,事件:“掷出点或点”,则事件,的关系( ).经典例题A.B.C.D.16.甲、乙两名学生通过某种听力测试的概率分别为和,两人同时参加测试,其中有且只有一人能通过概率是( ).(1)(2)17.某学生语、数、英三科考试成绩,在一次考试中排名全班第一的概率:语文为,数学为,英语为,并且该生各科取得第一名相互独立.问一次考试中:三科成绩均未获得第一名的概率是多少?恰有一科成绩未获得第一名的概率是多少?巩固练习18.从应届高中生中选拔飞行员,已知这批学生体型合格的概率为,视力合格的概率为,假设各项标准互不影响,从中任选一名学生,则该学生恰有一项合格的概率为( ).A.B. C.D.A.B.C.D.19.社区开展“建军周年主题活动——军事知识竞赛”,甲乙两人能荣获一等奖的概率分别为和,两人是否获得一等奖相互独立,则这两人中至少有一人获得一等奖的概率为().5. 全概率公式知识精讲(1)公式公式的推导:一般地,如果样本空间为,而为事件,则与是互斥的,且,所以,当且时,由乘法公式得:,所以,.(2)全概率公式的一般结论前面提到的全概率公式,本质上是将样本空间分成互斥的两部分(即与)后得到的.如果将样本空间分成更多互斥的部分,从而得到更一般的结论,如下:定理:若样本空间中的事件满足:①任意两个事均互斥,即;②;③.则对中的任意事件,都有,且.上述公式也称为全概率公式.经典例题20.某射击小组共有名射手,其中一级射手人, 二级射手人, 三级射手人, 四级射手人. 一、二、三、四级射手能通过选拔进入比赛的概率分别是、、、. 求任选一名射手能通过选拔进入比赛的概率.巩固练习(1)(2)21.某仓库有同样规格的产品箱,其中箱、箱、箱依次是由甲、乙、丙三个厂生产的,且三个厂的次品率分别为、、.现从这箱中任取一箱,再从取得的一箱中任意取出一件产品,求:取得一件产品是次品的概率.若已知取得的一件产品为次品,这件次品是乙厂生产的概率.6. 贝叶斯公式知识精讲(1)贝叶斯公式一般地,当且时,有.这称为贝叶斯公式.(2)贝叶斯公式的推广同全概率公式一样,贝叶斯公式也可以进行推广.定理:若样本空间中的事件满足:①任意两个事件均互斥,即;②;③.则对中的任意概率非零事件,有.上述公式也称为贝叶斯公式.经典例题22.甲、乙两厂生产同一种商品.甲厂生产的此商品占市场上的,乙厂生产的占;甲厂商品的合格率为,乙厂商品的合格率为.若某人购买了此商品发现为次品,则此次品为甲厂生产的概率为 .巩固练习23.某地区居民的肝癌发病率为 ,现用甲胎蛋白法进行普查医学研究表明,化验结果是存在错误的已知患有肝癌的人其化验结果呈阳性(有病),而没患肝癌的人其化验结果呈阴性(无病).现某人的检查结果呈阳性,问他真的患肝癌的概率有多少?三、思维导图你学会了吗?画出思维导图总结本课所学吧!四、出门测A.B.C.D.24.下面结论正确的是( ).若,则事件与是互为对立事件若,则事件与是相互独立事件若事件与是互斥事件,则与也是互斥事件若事件与是相互独立事件,则与也是相互独立事件25.根据某地区气象台统计,该地区下雨的概率是,刮风的概率为,既刮风又下雨的概率为,则在刮风天里,下雨的概率为 ,在下雨天里,刮风的概率为 .26.已知件产品中有件次品,现逐一不放回的检验,直到件次品都能被确认为止,则检验次数为的概率为 .27.甲、乙、丙的投篮命中率分别为,,.三人各投篮一次,假设三人投篮相互独立,则至少有一人命中的概率是 .。

条件概率与事件的独立性

条件概率与事件的独立性

条件概率与事件的独立性概率论中的条件概率和事件的独立性是两个基本概念,它们在统计学、机器学习等领域中具有重要的应用。

条件概率用于描述在给定另一个事件发生的条件下,某个事件发生的概率;而事件的独立性则描述了两个或多个事件之间的相互独立性。

在本文中,我们将深入探讨条件概率与事件的独立性的概念、性质以及应用。

一、条件概率条件概率是在已知事件B发生的条件下,事件A发生的概率。

用数学符号表示为P(A|B),读作"A在B发生的条件下发生的概率"。

其计算公式为:P(A|B) = P(A∩B) / P(B)其中,P(A∩B)表示事件A与事件B同时发生的概率,P(B)表示事件B发生的概率。

条件概率的概念在实际问题中广泛应用。

例如,假设一批产品中有10%的次品,现在从这批产品中随机抽取一件,已知这件产品是次品,求其实际上是某个特定厂家生产的概率。

这个问题就可以利用条件概率来求解,假设事件A表示该产品是某个特定厂家生产的事件,事件B表示这件产品是次品的事件,那么我们需要求解的就是P(A|B)。

二、事件的独立性事件的独立性是指两个或多个事件之间的发生没有相互影响,即一个事件的发生与否不会改变其他事件发生的概率。

具体地,对于两个事件A和B,如果满足以下条件,则称事件A和事件B是相互独立的:P(A∩B) = P(A) * P(B)其中,P(A∩B)表示事件A和事件B同时发生的概率,P(A)和P(B)分别表示事件A和事件B发生的概率。

事件的独立性在概率论中具有重要的应用。

例如,假设有两个骰子,求它们同时投掷时出现两个特定数字的概率。

我们可以将出现某个特定数字的事件定义为事件A和事件B,利用事件的独立性可以得到P(A∩B) = P(A) * P(B)。

三、条件概率与事件的独立性的关系条件概率与事件的独立性之间存在着紧密的联系。

如果事件A和事件B相互独立,那么有以下关系成立:P(A|B) = P(A)这表示在已知事件B发生的条件下,事件A的发生概率与事件B无关。

事件的独立性与条件概率

事件的独立性与条件概率

(2)依题意可知ξ=0,1,2,3, P(ξ=0)= P(DEF) P(D) P(E) P(F)
=(1-0.6)×(1-0.5)×(1-0.5)=0.1;„„„„„„„„„„7分
P(ξ=1)= P(DEF) P(DEF) P(DEF)=0.6×(1-0.5)×(1-0.5)+(1-
(2)记事件E:密码被破译, E :密码未被破译,
1 1 1 2 则 P(E) =P(AB C) =(- 1 ) (1 - ) (1 - ) = , 3 所以 P(E) 所以P(E)>P( E ). =- 1 P(E) = , 5 5 4 3 5
故密码被破译的概率大.
【满分指导】相互独立事件概率主观题的规范解答 【典例】(12分)(2011・山东高考)红队队员甲、乙、丙与蓝队队
11 答案: 12 4 3 4 3 4 3 12
(3)加工某一零件需经过三道工序,设第一、二、三道工序的
1 且各道工序互不影响,则加工出来的 次品率分别为 1 、1 、 , 70 69 68
零件的次品率为______.
1 【解析】依题意得,加工出来的零件的正品率是 (1 - ) 1 1 67 67 3 因此加工出来的零件的次品率是 1 (1 - ) (1 - ) = , - = . 69 68 70 70 70 答案: 3 70 70
(2)设“甲恰好击中目标2次且乙恰好击中目标3次”为事件B,
2 2 3 3 则P(B)= C2 ( ) ( ) C ( ) . 4 4
2 3
1 3
3 4
1 4
1 8
(3)设“乙恰好射击5次后,被中止射击”为事件C,由于乙恰好 射击5次后被中止射击,故必然是最后两次未击中目标,第三次 击中目标,第一次及第二次至多有一次未击中目标 .

概率问题的条件概率与独立性

概率问题的条件概率与独立性

概率问题的条件概率与独立性概率论是数学的一个分支,研究随机事件的发生及其规律性。

在概率论中,条件概率与独立性是两个重要的概念。

本文将详细讨论条件概率与独立性的概念、性质以及应用。

一、条件概率的概念与计算方法条件概率是指在已知某一事件发生的前提下,另一事件发生的概率。

设A、B是两个事件,且P(A)>0,则在事件A发生的条件下,事件B发生的概率记为P(B|A),读作“在A发生的条件下B发生的概率”。

条件概率的计算方法如下:P(B|A) = P(A∩B) / P(A)其中,P(A∩B)表示事件A与事件B同时发生的概率,P(A)表示事件A发生的概率。

二、条件概率的性质1. 乘法定理:对于任意两个事件A和B,有P(A∩B) = P(A) × P(B|A) = P(B) × P(A|B)。

2. 独立事件的条件概率:对于独立事件A和B,有P(B|A) = P(B),P(A|B) = P(A),即事件A的发生与否不影响事件B的概率,反之亦然。

三、独立性的概念与判定方法独立性是指两个事件之间的发生与否相互独立,即一个事件的发生不受另一个事件的影响。

设A、B是两个事件,如果满足P(A∩B) =P(A) × P(B),则称事件A和事件B是独立事件,简写为A⊥B。

判定事件的独立性可以通过以下方法:1. 乘法法则:若P(A) × P(B) = P(A∩B),则可以推断A与B是独立事件。

2. 条件概率的性质:若P(B|A) = P(B),则A与B是独立事件。

四、条件独立性的概念与判定方法条件独立性是指在已知某一条件的前提下,两个事件之间仍然相互独立。

设A、B、C是三个事件,若满足P(A∩B|C) = P(A|C) × P(B|C),则称事件A和事件B在条件C下是条件独立的,简写为A⊥B|C。

我们可以通过以下方法判断事件的条件独立性:若满足P(A∩B|C) = P(A|C) × P(B|C),则可以推断在条件C下事件A 与事件B是条件独立的。

概率论中的条件概率与独立性

概率论中的条件概率与独立性

概率论中的条件概率与独立性概率论是数学中的一个重要分支,研究随机事件发生的规律及其可能性大小。

在概率论中,条件概率与独立性是两个基本概念,它们在解决实际问题中起着重要作用。

一、条件概率条件概率是指在已知事件B发生的条件下,事件A发生的概率。

用P(A|B)表示事件A在事件B发生的条件下发生的概率。

条件概率的计算公式为:P(A|B) = P(A∩B) / P(B)其中,P(A∩B)表示事件A与事件B同时发生的概率,P(B)表示事件B发生的概率。

条件概率的计算方法可以通过实际问题进行理解。

例如,某班级中男生占总人数的60%,女生占总人数的40%。

已知某学生是男生的条件下,他退学的概率为5%;已知某学生是女生的条件下,她退学的概率为8%。

现在要求某个学生退学的概率,可根据条件概率公式计算:P(退学) = P(退学|男生) * P(男生) + P(退学|女生) * P(女生)= 0.05 * 0.6 + 0.08 * 0.4= 0.03 + 0.032= 0.062因此,某学生退学的概率为6.2%。

二、独立性独立性是指两个事件A和B,事件A的发生与否不会对事件B的发生产生影响,反之亦然。

如果事件A和事件B相互独立,那么它们的概率满足以下条件:P(A∩B) = P(A) * P(B)即事件A和事件B同时发生的概率等于事件A发生的概率乘以事件B发生的概率。

独立性的概念在实际问题中应用广泛。

例如,某班级中有60%的学生喜欢音乐,40%的学生喜欢运动。

已知某学生喜欢音乐的条件下,他喜欢运动的概率为50%;已知某学生喜欢运动的条件下,他喜欢音乐的概率为40%。

现在要求某学生既喜欢音乐又喜欢运动的概率,可根据独立性的概念计算:P(音乐∩运动) = P(音乐) * P(运动)= 0.6 * 0.4= 0.24因此,某学生既喜欢音乐又喜欢运动的概率为24%。

三、条件概率与独立性的关系条件概率与独立性是概率论中两个重要的概念,它们之间存在一定的关系。

概率论中的条件概率与事件独立性

概率论中的条件概率与事件独立性

条件概率与事件 独立性的实际案 例分析
天气预报的准确率与事件独立性分析
天气预报准确率与事件独立性的关系 不同天气预报模型对独立性的影响 实际案例分析:某地区连续两天的天气预报准确率 结论:提高天气预报准确率有助于更好地分析事件独立性
股票价格波动与事件独立性分析
股票价格波动与事件独立性的概念 股票价格波动与事件独立性的关系 股票价格波动与事件独立性的实际案例分析 股票价格波动与事件独立性的应用
掌握条件概率与事件独立性的概念和性质,对于理解概率论和统计学的基本原理、进行科学推断 和决策具有重要的意义。
未来研究方向与展望
深入研究条件概率 与事件独立性的关 系
探讨其在不同领域 的应用前景
探索如何更好地解 释和预测事件发生 的可能性
进一步研究条件概 率与事件独立性的 数学理论基础
感谢您的观看
汇报人:XX
条件概率与事件独立性
汇报人:XX
目录
添加目录标题
01
条件概率的定义与计 算
02
事件独立性的定义与 性质
03
条件概率与事件独立 性的关系
04
条件概率与事件独立 性的应用场景
05
条件概率与事件独立 性的实际案例分析
06
添加章节标题
条件概率的定义 与计算
条件概率的定义
条件概率是指在某 一事件B已经发生 的情况下,另一事 件A发生的概率,
在统计推断中,条件概率与事件独立性可用于构建复杂的概率模型,如贝叶斯推断和 马尔科夫链蒙特卡洛方法。
条件概率与事件独立性在统计推断中的应用有助于提高预测精度和决策的科学性。
在决策论中的应用
风险决策:根据条 件概率评估不同方 案的风险和收益

条件概率和事件的相互独立

条件概率和事件的相互独立
(3)法1 P( B | A) P( AB) 10 1 . 3 2法2 P( A) 5
n( AB) 6 7 1 P( B | A) n( A) 12 2
想一想
你能归纳出求解条件概率的一般步骤吗?
求解条件概率的一般步骤: (1)用字母表示有关事件
(2)求P(AB),P(A)或n(AB),n(A)
P ( AB) n( AB) ( 3 )利用条件概率公式求 P B A P ( A) n( A)
8
1. 掷两颗均匀骰子,问: ⑴ “ 第一颗掷出6点”的概率是多少? ⑵ “掷出点数之和不小于10”的概率又是多少? ⑶ “已知第一颗掷出6点,则掷出点数之和不小于10”的概率呢?
11 12 13 14 15 16 33 34 35 36 43 44 45 46 53 54 55 56 63 64 65 66
一般地,设A,B为两个事件,且 P ( A) 0 ,称
P ( AB ) 为事件A发生的条件下,事件B P B A P ( A) 发生的条件概率.
P(B|A)读作A发生的条件下B发生的概率,
n( AB) P B A n( A) P ( AB) P ( A)
B
A∩B
A
P(B|A)相当于把A当做新的样本空间来计算AB发生的概率。
1 P( A B C ) 1 0.5 0.55 0.6 0.835
0.8 P ( D)
所以,合三个臭皮匠之力把握就大过诸葛亮.
23
练习 1:
一个元件能正常工作的概率r称为该元件的可靠性。 由多个元件组成的系统能正常工作的概率称为系统的可 靠性。今设所用元件的可靠性都为r(0<r<1),且各元件能 否正常工作是互相独立的。试求各系统的可靠性。

条件概率与事件的独立性

条件概率与事件的独立性

据此估计,该运动员三次投篮恰有两次命中的概率为(
)
A.0.35
C.0.20
B.0.25
D.0.15
[解析]
24 由随机数可估算出每次投篮命中的概率p≈ 60
2 = ,则三次投篮中两次为C32×P2×(1-P)≈0.25. 5
[答案] B
3 .(2009·湖北) 甲、乙、丙三人将参加某项测试,他们能
(1)求一投保人在一年度内出险的概率p;
(2) 设保险公司开办该项险种业务除赔偿金外的成本为 50 000元,为保证盈利的期望不小于0,求每位投保人应交纳的最 低保费(单位:元).
[解]
各投保人是否出险互相独立,且出险的概率都是
p,记投保的10 000人中出险的人数为ξ,则ξ-B(104,p). (1)记A表示事件:保险公司为该险种至少支付10 000元 赔偿金,则 A 发生当且仅当ξ=0, P(A)=1-P( A ) =1-P(ξ=0) =1-(1-p)104, 又P(A)=1-0.9999104, 故p=0.001.
=0.6×0.6+0.4×0.4=0.52.
P(ξ=3)=1-P(ξ=2)=1-0.52=0.48
ξ的分布列
ξ P
2 0.52
3 0.48
Eξ=2×P(ξ=2)+3×(ξ=3) =2×0.52+3×0.48=2.48.
(2009· 北京)某学生在上学路上要经过 4 个路口,假设在 1 各路口是否遇到红灯是相互独立的,遇到红灯的概率都是 3, 遇到红灯时停留的时间都是 2min.
4.在n次独立重复试验中,事件A恰好发生k次的概率为 P(X=k)=CnkPk(1-P)n-k,k=0,1,2,„,n,其中P是一次 试验中该事件发生的概率.实际上,CnkPk(1-P)n-k正好是二项 式[(1-P)+P]n的展开式中的第k+1项.

事件的相互独立性、条件概率与全概率公式 2025年高考数学基础专项复习

事件的相互独立性、条件概率与全概率公式 2025年高考数学基础专项复习
事件甲与事件丙同时发生的概率为0,(甲丙)≠ (甲)(丙),故A错误;事件甲与事件丁同时发生的概率为
1
6×6
1
1
1
= 36,(甲丁)= (甲)(丁),故B正确;事件乙与事件丙同时发生的概率为6×6 = 36,(乙丙)≠
(乙)(丙),故C错误;事件丙与事件丁是互斥事件,不是相互独立事件,故D错误.故选B.
本质
一个事件是否发生对另一个事件是否发生没有影响.
独立
事件
(1)必然事件Ω、不可能事件∅都与任意事件相互独立;(2)当事件A与B相互独立时,事件A与B,A与
性质
B,A与B也相互独立;(3)如果事件A1,A2,…,An相互独立,那么这n个事件同时发生的概率等于每个
事件发生的概率的积,即P(A1A2…An)=P(A1)P(A2)…P(An).
1
3
2.[多选][人A必修二P253习题10.3第2题变式]设,为两个随机事件,若 = 2, = 4,则下列结论中
正确的是(
ABD )
3
3
B.若 ∩ = 8,则,相互独立
A.若,相互独立,则 ∩ = 8
3
7
C.若与相互独立,则 ∩ = 8
D.若与相互独立,则 ∪ = 8
1
三好学生的概率为__.
8
【解析】 根据题意可得,该班男生有40名,三好学生有10名,三好学生中男生有5名.设“从该班任选一名学生,
没有选上女生”为事件,“从该班任选一名学生,选
上的是三好学生”为事件,则“没有选上女生且选上的是三好学生”为事件 , = 40 , = 5.
40
2
2
3
+ 1−
1

2.2 条件概率与事件的独立性

2.2  条件概率与事件的独立性

【高二数学学案】§2. 2 条件概率与事件的独立性2.2.1 条件概率主备人: 时间:一、自学导引1、条件概率一般地,设A 、B 为两个事件,且P(A)>0,称P(B|A)= 为在事件A 发生的条件下,事件B 发生的条件概率。

一般把P(B|A)读作 。

2、求条件概率的两个公式(1)P(B|A)= ; (2)P(B|A)= .二、学法指导条件概率计算公式的使用说明:(1)利用定义计算。

先分别计算概率P(AB)和P(A),然后将它们相除得到条件概率)()()|(B P AB P A B P =,这个公式适用于一般情形,其中AB 表示A 、B 同时发生。

(2)利用缩小样本空间的观点计算。

在这种观点下,原来的样本空间缩小为已知的条件事件A ,原来的事件B 缩小为AB 。

而A 中仅包含有限个基本事件,每个基本事件发生的概率相等,从而可以在缩小的概率空间上利用古典概型公式计算条件概率。

即)()()|(A n AB n A B P =,这里n(A)和n(AB)的计数是基于缩小的概率空间。

三、典例精析例1、设31)(,21)|()|(===A P A B P B A P ,求P(B).随练:某地区气象台统计,该地区下雨的概率是154,刮风的概率为152,既刮风又下雨的概率是101,设A 为下雨,B 为刮风。

求:(1)P(A|B); (2)P(B|A)。

例2、在5道题中有3道理科题和2道文科题。

如果不放回地依次抽取2道题,求: (1)第1次抽到理科题的概率;(2)第1次和第2次都抽到理科题的概率;(3)在第1次抽到理科题的条件下,第2次抽到理科题的概率。

随练:抛掷红、蓝两颗骰子,设事件A 为“蓝色骰子的点数为3或6”,事件B 为“两颗骰子的点数之和大于8”。

(1)求P(A), P(B), P(AB);(2)当已知蓝色骰子两点数为3或6时,问两颗骰子的点数之和大于8的概率为多少?例3、在某次考试中,要从20道题中随机地抽出6道题,若考生至少能答对其中的4道题即可通过;若至少能答对其中5道题就获得优秀。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)方差:体现了总体的稳定性(波动性)
事件间的关系
①包含(子事件) ②相等 ③和(并)
⑤互斥
⑥对立 ⑦独立
④积(交) ⑧容斥
注:互斥、对立及独立间的关联:
不能同时为互斥 互斥特例为对立 互不影响为独立 一对独立全独立 互斥独立不相干 概率相等即重复
A1 …… Ω A2 A3
AA Ω
常见事件的字母表示
① A+B=A∪B
A、B中至少有一个发生
② AB=A∩B
A、B要同时发生
③ AB+ AB
A、B中恰好有一个发生
④ A·B = A+B A·B·C = A+B+C
A、B都不发生 A、B、C都不发生
⑤ A·B = A+ B
A、BC A、B、C不都发生
离散型随机变量的分布列求法: 一选二算三列表
注4:题干中出现“在”、“当”、“已知”、“如果” 词
十有八九是条件概率
随机变量及其分布列概述
随 细化数化分布列①
机 事
一选二算三列表 ② 六大分布公式化 ③
件 期望方差确定化④
分 布 列
注①:细化数化分布列
(1)细化: 繁

(大) 分类:互斥事件加法公式 (小)
事 分步:独立事件乘法公式 事


1 P( A1A2 )
13 15
(3)(2014年湖南)某企事业有甲、乙两个研发小组,他们研发新产品 成功的概率分别为 2 和 3 ,现安排甲组研发新产品A,乙组研发新产 品B,设甲,乙两组的3研发5相互独立
3
4
③所求概率为 P(AB AB ) P(AB) P(AB ) 5
12
④所求概率为 P 1 P(AB) 11
12
(2)甲,乙两人独立地破译密码的概率分别为 1 ,1 ,求
①两个人都译出密码的概率
34
②两个人都译不出密码的概率
③恰有一人译出密码的概率
④至多一人译出密码的概率
⑤至少一人译出密码的概率
不能同时为互斥 互斥特例为对立 互不影响为独立 一对独立全独立 互斥独立不相干 概率相等即重复
1.定义:
事件的独立性
若 P( AB) P(A)P(B) ,则称事件A与事B相互独立
2.性质:
若事件A与B相互独立,则事件 A与B,A与B,A与B
也相互独立
3.判定:
A与B独立 P(AB) P(A)P(B)
格式③
X x1 x2 x3 x4 … xi … p p1 p2 p3 p4 … pi …
随机变量千千万 均匀分布平等化 多次成败伯努利 成分两类超几何
六大分布最常见 两点分布论成败 二项连续是正态 几何分布破天荒
均匀分布
X 形如
p
x1
1 n
x2
1 n
x3
1 n
x4
1 n


xn
1
的分布列,
n
称为均匀分布
加工为一等品的概率分别为
2 3

3 4
.两个零件是否加工
为一等品相互独立,则这两个零件中恰有一个一等品的
概率为
A. 1 2
B. 5 12
C. 1
D. 1
4
6
析:设A1, A2分别表示甲、乙加工的零件为一等品

P( A1)
2 3
,
P( A2 )
3 4
故所求概率为
P( A1A2 ) P( A1A2 )
k=0,1,2,…,m; m=min{M,n}
X
0
1

m
即P
C0MCNn- -0M CnN
C1MCNn- -1M CnN

CmM
Cn- m N- M
CNn
称该分布列称为超几何分布
称随机变量X服从超几何分布. 并记X~ H (n,M,N)
注:元素属性两大类 质量抽检是范例


大 N总数抽小 n 次品 M 含小 k
注2:频率代概率 总数一大批 抽取要放回 二项分布也
二、常用的公式:
若 ~ B(n , p) ,则
① P( k) Cnk pk (1 p)nk (k 0,1,2,..., n)
② E( ) np
③ D( ) np(1 p)
一、求分布列的总思路:
繁 (大)
事 件
分类:互斥事件加法公式 分步:独立事件乘法公式
一选:根据题意灵活的选取随机变量所有可能的取值 二算:根据题意灵活的计算各随机变量相应的概率
计算概率常用的方法


杂 化繁为简 单




的 以小代大 的




定义法 模拟试验法 性质公式法
统计定义 古典概型 几何概型
计算概率常用的方法
定义法
统计定义法 古典定义法 几何定义法
模拟试验法
物理机械法 计算机(软件)法
(1)均匀分布
(2)两点(0—1)分布
(3)几何分布
(4)超几何分布
(5)二项分布
(6)正态分布
随机变量及其分布列概述
随 细化数化分布列①

一选二算三列表 ② 六大分布公式化 ③
分 布

件 期望方差确定化④

注④:期望方差确定化
(1)期望:将随机事件“虚拟”成一确定事件 体现了总体的平均水平(聚中性)
注1:几何分布的模型是放回抽样 注2:几何分布是“破天荒”概型
随机变量千千万 均匀分布平等化 多次成败伯努利 成分两类超几何
六大分布最常见 两点分布论成败 二项连续是正态 几何分布破天荒
超几何分布
在含有M件次品的N件产品中,任取n件,其中恰有X件次品数

P( X
k)
C C k nk M NM CNn
①求至少有一种新产品研发成功的概率 ②若新产品A研发成功,预计企业可获利润120万元;
若新产品B研发成功,预计企业可获利润100万元, 求该企业可获利润的分布列和数学期望
析:设A1, A2分别表示甲、乙独自研发出了新产品

P( A1)
2 3
,
P(
A2
)
3 5
①所求概率为 P(A1 A2) P(A1) P(A2) P(A1A2)
离散型随机变量的分布列求法: 一选二算三列表
一选:根据题意灵活的选取随机变量所有可能的取值 二算:根据题意灵活的计算各随机变量相应的概率 三列表:
格式①
X x1 x2 x3 x4 … xi … p p1 p2 p3 p4 … pi …
格式②
X x1 x2 x3 x4 … xi … p p1 p2 p3 p4 … pi …
4.公理化定义法: 有待大学提高补充之
估计稳定是概率 古典概型个数比 几何概型测度比 有限无限是区分
(一)、定义法:
1.统计定义法 2.古典定义法 3.几何定义法 4.公理化定义法
(二)、模拟试验法:
1.物理机械法: 2.计算机(软件)法:
(三)、性质公式法:
1.性质法: ①范围性 ②总和性 2.公式法: ①加法公式 ②乘法公式 ③和积互补公式 ④对偶律
注:若A,B独立,则有 P( AB) P( A)P(B)
③和积互补公式 P(A1 A2 An ) 1 P(A1 • A2 • • An ) 注:若A,B对立,则有 P( A) P(B) 1,反之则不然
④对偶律 P(A• B •C) P(A B C) P(A• B •C) P(A B C)
5 12
(2)甲,乙两人独立地破译密码的概率分别为 1 ,1 ,求
①两个人都译出密码的概率
34
②两个人都译不出密码的概率
③恰有一人译出密码的概率
④至多一人译出密码的概率
⑤至少一人译出密码的概率
析:设A, B分别表示甲、乙独自破译了密码
则 P( A) 1 , P(B) 1
3
4
①所求概率为 P(AB)=P(A)P(B)=13×14=112
①超几何分布是“结构一分为二(成分两大类)” 概型
②超几何分布的模型是不放回抽样
随机变量千千万 均匀分布平等化 多次成败伯努利 成分两类超几何
六大分布最常见 两点分布论成败 二项连续是正态 几何分布破天荒
二项分布——独立重复n次,恰好发生k次的概率 一、定义:参课本P:57
注1:互不影响为独立 概率相等即重复 重复n 次恰好 k 通项公式后项 p
②所求概率为 P( A B )=P( A )P( B )=…=12
(2)甲,乙两人独立地破译密码的概率分别为 1 ,1 ,求
①两个人都译出密码的概率
34
②两个人都译不出密码的概率
③恰有一人译出密码的概率
④至多一人译出密码的概率
⑤至少一人译出密码的概率
析:设A, B分别表示甲、乙独自破译了密码
则 P( A) 1 , P(B) 1
不能同时为互斥 互斥特例为对立 互不影响为独立 一对独立全独立 互斥独立不相干 概率相等即重复
条件概率
1.定义: 在事件A发生的条件下,事件B发生的概率称为条件概率 并记为P(B|A). 读作:A发生的条件下B发生的概率 2.性质:
① 0 P(B | A) 1;
②如果B和C是两个互斥事件,那么
注2:如果事件A 1,A2,…,An 两两相互独立,那么
P(A1A2...An ) P(A1)P(A2 )...P(An )
注3:P(B | A) P( AB) P( A)
注4:题干中出现“在”、“当”、“已知”、“如果” 词
十有八九是条件概率
练习1.事件的独立性:
相关文档
最新文档