(完整word版)高中物理解决动态平衡问题的五种方法(带答案)
动态平衡问题(含解析)
动态平衡问题 类型一 动态平衡问题1.动态平衡是指物体的受力状态缓慢发生变化,但在变化过程中,每一个状态均可视为平衡状态.2.常用方法 (1)解析法对研究对象进行受力分析,画出受力示意图,根据物体的平衡条件列方程,得到因变量与自变量的函数表达式(通常为三角函数关系),最后根据自变量的变化确定因变量的变化. (2)图解法此法常用于求解三力平衡问题中,已知一个力是恒力、另一个力方向不变的情况.一般按照以下流程分析: 受力分析―――――――→化“动”为“静”画不同状态下的平衡图――――――→“静”中求“动”确定力的变化 (3)相似三角形法在三力平衡问题中,如果有一个力是恒力,另外两个力方向都变化,且题目给出了空间几何关系,多数情况下力的矢量三角形与空间几何三角形相似,可利用相似三角形对应边成比例求解(构建三角形时可能需要画辅助线).题型例析1 图解法例1 (多选)如图所示,在倾角为α的斜面上,放一质量为m 的小球,小球和斜面及挡板间均无摩擦,当挡板绕O 点逆时针缓慢地转向水平位置的过程中( )A.斜面对球的支持力逐渐增大B.斜面对球的支持力逐渐减小C.挡板对小球的弹力先减小后增大D.挡板对小球的弹力先增大后减小 题型例析2 解析法例2 (2020·广东中山市月考)如图,一小球放置在木板与竖直墙面之间.设墙面对球的压力大小为F N1,木板对球的压力大小为F N2.以木板与墙连接点所形成的水平直线为轴,将木板从图示位置开始缓慢地转到水平位置.不计一切摩擦,在此过程中( )A.F N1先增大后减小,F N2始终减小B.F N1先增大后减小,F N2先减小后增大C.F N1始终减小,F N2始终减小D.F N1始终减小,F N2始终增大题型例析3相似三角形法例3(2020·山西大同市开学考试)如图所示,AC是上端带光滑轻质定滑轮的固定竖直杆,质量不计的轻杆BC一端通过铰链固定在C点,另一端B悬挂一重力为G的物体,且B端系有一根轻绳并绕过定滑轮,用力F拉绳,开始时∠BCA>90°,现使∠BCA缓慢变小,直到∠BCA=30°.此过程中,轻杆BC所受的力()A.逐渐减小B.逐渐增大C.大小不变D.先减小后增大变式训练1(单个物体的动态平衡问题)(多选)(2020·广东惠州一中质检)如图所示,在粗糙水平地面上放着一个截面为四分之一圆弧的柱状物体A,A的左端紧靠竖直墙,A与竖直墙之间放一光滑圆球B,已知A的圆半径为球B的半径的3倍,球B所受的重力为G,整个装置处于静止状态.设墙壁对B的支持力为F1,A对B的支持力为F2,若把A向右移动少许后,它们仍处于静止状态,则F1、F2的变化情况分别是()A.F1减小B.F1增大C.F2增大D.F2减小变式训练2(多个物体的动态平衡问题)(多选)(2019·全国卷Ⅰ·19)如图所示,一粗糙斜面固定在地面上,斜面顶端装有一光滑定滑轮.一细绳跨过滑轮,其一端悬挂物块N,另一端与斜面上的物块M相连,系统处于静止状态.现用水平向左的拉力缓慢拉动N,直至悬挂N的细绳与竖直方向成45°.已知M始终保持静止,则在此过程中()A.水平拉力的大小可能保持不变B.M所受细绳的拉力大小一定一直增加C.M所受斜面的摩擦力大小一定一直增加D.M所受斜面的摩擦力大小可能先减小后增加类型二平衡中的临界、极值问题1.临界问题当某物理量变化时,会引起其他几个物理量的变化,从而使物体所处的平衡状态“恰好出现”或“恰好不出现”,在问题的描述中常用“刚好”“恰能”“恰好”等.临界问题常见的种类:(1)由静止到运动,摩擦力达到最大静摩擦力.(2)绳子恰好绷紧,拉力F=0.(3)刚好离开接触面,支持力F N=0.2.极值问题平衡中的极值问题,一般指在力的变化过程中的最大值和最小值问题.3.解题方法(1)极限法:首先要正确地进行受力分析和变化过程分析,找出平衡的临界点和极值点;临界条件必须在变化中去寻找,不能停留在一个状态来研究临界问题,而要把某个物理量推向极端,即极大和极小.(2)数学分析法:通过对问题的分析,根据物体的平衡条件写出物理量之间的函数关系(或画出函数图象),用数学方法求极值(如求二次函数极值、公式极值、三角函数极值).(3)物理分析方法:根据物体的平衡条件,作出力的矢量图,通过对物理过程的分析,利用平行四边形定则进行动态分析,确定最大值与最小值.例4(2020·广东茂名市测试)如图所示,质量分别为3m和m的两个可视为质点的小球a、b,中间用一细线连接,并通过另一细线将小球a与天花板上的O点相连,为使小球a和小球b均处于静止状态,且Oa 细线向右偏离竖直方向的夹角恒为37°,需要对小球b朝某一方向施加一拉力F.若已知sin 37°=0.6,cos 37°=0.8.重力加速度为g,则当F的大小达到最小时,Oa细线对小球a的拉力大小为()A.2.4mgB.3mgC.3.2mgD.4mg例5如图所示,质量为m的物体放在一固定斜面上,当斜面倾角为30°时恰能沿斜面匀速下滑.对物体施加一大小为F、方向水平向右的恒力,物体可沿斜面匀速向上滑行.设最大静摩擦力等于滑动摩擦力,当斜面倾角增大并超过某一临界角θ0时,不论水平恒力F多大,都不能使物体沿斜面向上滑行,求:(1)物体与斜面间的动摩擦因数;(2)这一临界角θ0的大小.跟踪训练1.(2020·河南驻马店市第一学期期终)质量为m的物体用轻绳AB悬挂于天花板上,用水平力F拉着绳的中点O,使OA段绳偏离竖直方向一定角度,如图所示.设绳OA段拉力的大小为F T,若保持O点位置不变,则当力F的方向顺时针缓慢旋转至竖直方向的过程中()A.F先变大后变小,F T逐渐变小B.F先变大后变小,F T逐渐变大C.F先变小后变大,F T逐渐变小D.F先变小后变大,F T逐渐变大2.(多选)如图所示,质量均为m的小球A、B用劲度系数为k1的轻弹簧相连,B球用长为L的细绳悬挂于O 点,A球固定在O点正下方,当小球B平衡时,细绳所受的拉力为F T1,弹簧的弹力为F1;现把A、B间的弹簧换成原长相同但劲度系数为k2(k2>k1)的另一轻弹簧,在其他条件不变的情况下仍使系统平衡,此时细绳所受的拉力为F T2,弹簧的弹力为F2.则下列关于F T1与F T2、F1与F2大小的比较,正确的是()A.F T1>F T2B.F T1=F T2C.F1<F2D.F1=F23.(多选)(2016·全国卷Ⅰ·19)如图,一光滑的轻滑轮用细绳OO′悬挂于O点;另一细绳跨过滑轮,其一端悬挂物块a,另一端系一位于水平粗糙桌面上的物块b.外力F向右上方拉b,整个系统处于静止状态.若F方向不变,大小在一定范围内变化,物块b仍始终保持静止,则()A.绳OO′的张力也在一定范围内变化B.物块b所受到的支持力也在一定范围内变化C.连接a和b的绳的张力也在一定范围内变化D.物块b与桌面间的摩擦力也在一定范围内变化4.(2020·安徽黄山市高三期末)如图所示,在水平放置的木棒上的M、N两点,系着一根不可伸长的柔软轻绳,绳上套有一光滑小金属环.现将木棒绕其左端逆时针缓慢转动一个小角度,则关于轻绳对M、N两点的拉力F1、F2的变化情况,下列判断正确的是()A.F1和F2都变大B.F1变大,F2变小C.F1和F2都变小D.F1变小,F2变大5.(2020·广东高三模拟)如图所示,竖直墙上连有细绳AB,轻弹簧的一端与B相连,另一端固定在墙上的C 点.细绳BD与弹簧拴接在B点,现给BD一水平向左的拉力F,使弹簧处于伸长状态,且AB、CB与墙的夹角均为45°.若保持B点不动,将BD绳绕B点沿顺时针方向缓慢转动,则在转动过程中BD绳的拉力F的变化情况是()A.变小B.变大C.先变小后变大D.先变大后变小6.(2020·河南信阳市高三上学期期末)如图所示,足够长的光滑平板AP与BP用铰链连接,平板AP与水平面成53°角固定不动,平板BP可绕水平轴在竖直面内自由转动,质量为m的均匀圆柱体O放在两板间,sin 53°=0.8,cos 53°=0.6,重力加速度为g.在使BP板由水平位置缓慢转动到竖直位置的过程中,下列说法正确的是()A.平板AP受到的压力先减小后增大B.平板AP受到的压力先增大后减小C.平板BP受到的最小压力为0.6mg7.(2020·黑龙江哈尔滨市三中高三模拟)如图所示,斜面固定,平行于斜面处于压缩状态的轻弹簧一端连接物块A,另一端固定,最初A静止.在A上施加与斜面成30°角的恒力F,A仍静止,下列说法正确的是()A.A对斜面的压力一定变小B.A对斜面的压力可能不变C.A对斜面的摩擦力一定变大D.A对斜面的摩擦力可能变为零8.(多选)如图所示,倾角为α的粗糙斜劈放在粗糙水平面上,物体a放在斜劈的斜面上,轻质细线一端固定在物体a上,另一端绕过光滑的定滑轮1固定在c点,滑轮2下悬挂物体b,系统处于静止状态.若将固定点c向右移动少许,而物体a与斜劈始终静止,则()A.细线对物体a的拉力增大B.斜劈对地面的压力减小C.斜劈对物体a的摩擦力减小D.地面对斜劈的摩擦力增大9.(多选)(2019·河北唐山一中综合测试)如图所示,带有光滑竖直杆的三角形斜劈固定在水平地面上,放置于斜劈上的光滑小球与套在竖直杆上的小滑块用轻绳连接,开始时轻绳与斜劈平行.现给小滑块施加一竖直向上的拉力,使小滑块沿杆缓慢上升,整个过程中小球始终未脱离斜劈,则有()A.轻绳对小球的拉力逐渐增大B.小球对斜劈的压力先减小后增大C.竖直杆对小滑块的弹力先增大后减小D.对小滑块施加的竖直向上的拉力逐渐增大10.(多选)如图所示装置,两根细绳拴住一小球,保持两细绳间的夹角θ=120°不变,若把整个装置顺时针缓慢转过90°,则在转动过程中,CA绳的拉力F1、CB绳的拉力F2的大小变化情况是()A.F1先变小后变大B.F1先变大后变小C.F2一直变小D.F2最终变为零11.倾角为θ=37°的斜面与水平面保持静止,斜面上有一重为G的物体A,物体A与斜面间的动摩擦因数μ=0.5.现给A施加一水平力F,如图所示.设最大静摩擦力与滑动摩擦力相等(sin 37°=0.6,cos 37°=0.8),如果物体A能在斜面上静止,水平推力F与G的比值不可能是()A.3B.2C.1D.0.512.(2020·山西“六校”高三联考)跨过定滑轮的轻绳两端分别系着物体A和物体B,物体A放在倾角为θ的斜面上,与A相连的轻绳和斜面平行,如图所示.已知物体A的质量为m,物体A与斜面间的动摩擦因数为μ(μ<tan θ),滑轮的摩擦不计,要使物体A静止在斜面上,求物体B的质量的取值范围(最大静摩擦力等于滑动摩擦力).参考答案类型一动态平衡问题题型例析1图解法例1【答案】BC【解析】对小球受力分析知,小球受到重力mg、斜面的支持力F N1和挡板的弹力F N2,如图,当挡板绕O 点逆时针缓慢地转向水平位置的过程中,小球所受的合力为零,根据平衡条件得知,F N1和F N2的合力与重力mg大小相等、方向相反,作出小球在三个不同位置力的受力分析图,由图看出,斜面对小球的支持力F N1逐渐减小,挡板对小球的弹力F N2先减小后增大,当F N1和F N2垂直时,弹力F N2最小,故选项B、C正确,A、D错误.故选BC。
动态平衡问题常见解法
动态平衡问题苗贺铭动态平衡问题是高中物理平衡问题中的一个难点,学生不掌握问题的根本和规律,就不能解决该类问题,一些教学资料中对动态平衡问题归纳还不够全面。
因此,本文对动态平衡问题的常见解法梳理如下。
所谓的动态平衡,就是通过控制某一物理量,使物体的状态发生缓慢变化的平衡问题,物体在任意时刻都处于平衡状态,动态平衡问题中往往是三力平衡。
即三个力能围成一个闭合的矢量三角形。
一、图解法方法:对研究对象受力分析,将三个力的示意图首尾相连构成闭合三角形。
然后将方向不变的力的矢量延长,根据物体所受三个力中二个力变化而又维持平衡关系时,这个闭合三角形总是存在,只不过形状发生改变而已,比较这些不同形状的矢量三角形的边长,各力的大小及变化就一目了然了。
例题1如图所示,一小球放置在木板与竖直墙面之间.设墙面对球的压力大小为F N1,球对木板的压力大小为F N2.以木板与墙连接点所形成的水平直线为轴,将木板从图示位置开始缓慢地转到水平位置.不计摩擦,在此过切程中( )A.F N1始终减小B. F N2始终减小C. F N1先增大后减小D. F N2先减小后增大解析:以小球为研究对象,分析受力情况:重力G、墙面的支持力和木板的支持力,如图所示:由矢量三角形可知:始终减小,始终减小。
归纳:三角形图象法则适用于物体所受的三个力中,有一力的大小、方向均不变(通常为重力,也可能是其它力),另一个力的方向不变,大小变化,第三个力则大小、方向均发生变化的问题。
二、解析法方法:物体处于动态平衡状态时,对研究对象的任一状态进行受力分析,建立平衡方程,得到自变量与应变量的函数关系,由自变量的关系确定应变量的关系。
例题2.1倾斜长木板一端固定在水平轴O上,另一端缓慢放低,放在长木板上的物块m 一直保持相对木板静止状态,如图所示.在这一过程中,物块m受到长木板支持力F N和摩擦力F f的大小变化情况是() A. F N变大,F f变大B. F N变小,F f变小C. F N变大,F f变小D. F N变小,F f变大解析:设木板倾角为θ根据平衡条件:F N=mgcosθF f=mgsinθ可见θ减小,则F N变大,F f变小;故选:C例题2.2 如图所示,轻绳OA 、OB 系于水平杆上的A 点和B 点,两绳与水平杆之间的夹角均为30°,重物通过细线系于O 点。
(完整版)动态平衡问题常见解法
动态平衡问题苗贺铭动态平衡问题是高中物理平衡问题中的一个难点,学生不掌握问题的根本和规律,就不能解决该类问题,一些教学资料中对动态平衡问题归纳还不够全面。
因此,本文对动态平衡问题的常见解法梳理如下。
所谓的动态平衡,就是通过控制某一物理量,使物体的状态发生缓慢变化的平衡问题,物体在任意时刻都处于平衡状态,动态平衡问题中往往是三力平衡。
即三个力能围成一个闭合的矢量三角形。
一、图解法方法:对研究对象受力分析,将三个力的示意图首尾相连构成闭合三角形。
然后将方向不变的力的矢量延长,根据物体所受三个力中二个力变化而又维持平衡关系时,这个闭合三角形总是存在,只不过形状发生改变而已,比较这些不同形状的矢量三角形的边长,各力的大小及变化就一目了然了。
例题1如图所示,一小球放置在木板与竖直墙面之间.设墙面对球的压力大小为F N1,球对木板的压力大小为F N2.以木板与墙连接点所形成的水平直线为轴,将木板从图示位置开始缓慢地转到水平位置.不计摩擦,在此过切程中( )A.F N1始终减小B. F N2始终减小C. F N1先增大后减小D. F N2先减小后增大解析:以小球为研究对象,分析受力情况:重力G、墙面的支持力和木板的支持力,如图所示:由矢量三角形可知:始终减小,始终减小。
归纳:三角形图象法则适用于物体所受的三个力中,有一力的大小、方向均不变(通常为重力,也可能是其它力),另一个力的方向不变,大小变化,第三个力则大小、方向均发生变化的问题。
二、解析法方法:物体处于动态平衡状态时,对研究对象的任一状态进行受力分析,建立平衡方程,得到自变量与应变量的函数关系,由自变量的关系确定应变量的关系。
例题2.1倾斜长木板一端固定在水平轴O上,另一端缓慢放低,放在长木板上的物块m 一直保持相对木板静止状态,如图所示.在这一过程中,物块m受到长木板支持力F N和摩擦力F f的大小变化情况是() A. F N变大,F f变大B. F N变小,F f变小C. F N变大,F f变小D. F N变小,F f变大解析:设木板倾角为θ根据平衡条件:F N=mgcosθF f=mgsinθ可见θ减小,则F N变大,F f变小;故选:C例题2.2 如图所示,轻绳OA 、OB 系于水平杆上的A 点和B 点,两绳与水平杆之间的夹角均为30°,重物通过细线系于O 点。
高中物理解决动态平衡问题的五种方法(带答案)
第03讲解决动态平衡问题的五种方法通过控制某些物理量,使物体的状态发生缓慢地变化,物体在这一变化过程中始终处于一系列的平衡状态中,这种平衡称为动态平衡。
解决此类问题的基本思路是化“动”为“静”,“静”中求“动”,具体有以下三种方法:(一)解析法对研究对象进行受力分析,先画出受力示意图,再根据物体的平衡条件列式求解,得到因变量与自变量的一般函数表达式,最后根据自变量的变化确定因变量的变化。
(二)结论法若合力不变,两等大分力夹角变大,则分力变大.若分力大小不变,两等大分力夹角变大,则合力变小.1、粗细均匀的电线架在A、B两根电线杆之间。
由于热胀冷缩,电线在夏、冬两季呈现如图所示的两种形状,若电线杆始终处于竖直状态,下列说法中正确的是( )A.冬季,电线对电线杆的拉力较大B.夏季,电线对电线杆的拉力较大C.夏季与冬季,电线对电线杆的拉力一样大D.夏季,电线杆对地面的压力较大2、如图所示,体操吊环运动有一个高难度的动作就是先双手撑住吊环(图甲),然后身体下移,双臂缓慢张开到图乙位置,则在此过程中,吊环的两根绳的拉力FT(两个拉力大小相等)及它们的合力F的大小变化情况为()A.FT 减小,F不变B.FT增大,F不变C.FT 增大,F减小D.FT增大,F增大3、如图所示,硬杆BC一端固定在墙上的B点,另一端装有滑轮C,重物D用绳拴住通过滑轮固定于墙上的A点。
若杆、滑轮及绳的质量和摩擦均不计,将绳的固定端从A点稍向下移,则在移动过程中( )A.绳的拉力、滑轮对绳的作用力都增大B.绳的拉力减小,滑轮对绳的作用力增大C.绳的拉力不变,滑轮对绳的作用力增大D.绳的拉力、滑轮对绳的作用力都不变(三)图解法此法常用于求解三力平衡且有一个力是恒力、另有一个力方向不变的问题。
一般按照以下流程解题。
1、如图所示,小球用细绳系住放在倾角为θ的光滑斜面上,当细绳由水平方向逐渐向上偏移时,细绳上的拉力将( )A.逐渐增大B.逐渐减小C.先增大后减小D.先减小后增大2、半圆柱体P放在粗糙的水平地面上,其右端有一固定放置的竖直挡板MN.在半圆柱体P和MN之间放有一个光滑均匀的小圆柱体Q,整个装置处于平衡状态,如图所示是这个装置的截面图.现使MN保持竖直并且缓慢地向右平移,在Q滑落到地面之前,发现P始终保持静止.则在此过程中,下列说法中正确的是()A.MN对Q的弹力逐渐减小B.P对Q的弹力逐渐增大C.地面对P的摩擦力逐渐增大D.Q所受的合力逐渐增大3、如图所示,挡板固定在斜面上,滑块m在斜面上,上表面呈弧形且左端最薄,球M搁在挡板与弧形滑块上,一切摩擦均不计,用平行于斜面的拉力F拉住弧形滑块,使球与滑块均静止。
动态平衡问题的处理方法
动态平衡问题的处理方法
动态平衡问题的处理方法可以通过以下几个步骤进行:
1. 定义动态平衡问题:明确问题的目标和限制条件,了解问题所涉及的物体、力、加速度等相关概念。
2. 绘制自由体图:将问题中涉及的物体及其受力情况绘制成自由体图,包括标记物体的重力、摩擦力、张力等。
3. 应用牛顿第二定律:根据牛顿第二定律,根据自由体图中物体所受的合力和加速度的关系,建立动态平衡方程。
4. 解方程求解:根据建立的动态平衡方程,对力、加速度等未知量进行求解,得到问题的具体解。
5. 检查解的合理性:对解进行检查,看是否满足物理规律和问题的限制条件,以确保解的合理性。
需要注意的是,动态平衡问题的处理方法与静态平衡问题有所不同,因为动态平衡问题中涉及到了加速度和物体的运动。
在处理过程中,需要考虑加速度对力的影响,并进行相应的修正。
高中物理中动态平衡问题
第一部分动态平衡分析动态平衡问题中的一部分力是变力,是动态力,力的大小和方向均要发生变化,故这是力平衡问题中的一类难题。
根据现行高考要求,物体受到往往是三个共点力问题,利用三力平衡特点讨论动态平衡问题是力学中一个重点和难点。
方法一:三角形图解法特点:三角形图象法则适用于物体所受的三个力中,有一力的大小、方向均不变(通常为重力,也可能是其它力),另一个力的方向不变,大小变化,第三个力则大小、方向均发生变化的问题。
方法:先正确分析物体所受的三个力,将三个力的矢量首尾相连构成闭合三角形。
然后将方向不变的力的矢量延长,根据物体所受三个力中二个力变化而又维持平衡关系时,这个闭合三角形总是存在,只不过形状发生改变而已,比较这些不同形状的矢量三角形,各力的大小及变化就一目了然了。
1 质量为m的物体用轻绳AB悬挂于天花板上.用水平向左的力F缓慢拉动绳的中点O,如图所示.用T表示绳OA段拉力的大小,在O点向左移动的过程中()A.F逐渐变大,T逐渐变大B.F逐渐变大,T逐渐变小C.F逐渐变小,T逐渐变大D.F逐渐变小,T逐渐变小【答案】A【解析】动态平衡问题,F与T的变化情况如图:可得:'''F F F→→↑'''T T T→→↑2 如图所示,一个重力G的匀质球放在光滑斜面上,斜面倾角为α,在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态。
今使板与斜面的夹角β缓慢增大,问:在此过程中,挡板和斜面对球的压力大小如何变化?12【解析】取球为研究对象,如图所示,球受重力G 、斜面支持力F 1、挡板支持力F 2。
因为球始终处于平衡状态,故三个力的合力始终为零,将三个力矢量构成封闭的三角形。
F 1的方向不变,但方向不变,始终与斜面垂直。
F 2的大小、方向均改变,随着挡板逆时针转动时,F 2的方向也逆时针转动,动态矢量三角形图中一画出的一系列虚线表示变化的F 2。
由此可知,F 2先减小后增大,F 1随 增大而始终减小。
动态平衡问题的几种解法
动态平衡问题的几种解法物体在几个力的共同作用下处于平衡状态,如果其中的某一个力或某几个力发生缓慢的变化,其他的力也随之发生相应的变化,在变化过程中物体仍处于平衡状态,我们称这种平衡为动态平衡。
因为物体受到的力都在发生变化,是动态力,所以这类问题是力学中比较难的一类问题。
因为在整个过程中物体一直处于平衡状态,所以过程中的每一瞬间物体所受到的合力都是零,这是我们解这类题的根据.下面就举例介绍几种这类题的解题方法.一,三角函数法例1.(2014年全国卷1)如图,用橡皮筋将一小球悬挂在小车的架子上,系绕处于平衡状态。
现使小车从静止开始向左加速,加速度从零开始逐渐增大到某一值,然后保持此值,小球稳定地偏离竖直方向某一角度(橡皮筋在弹性限度内)。
与稳定在竖直位置时相比,小球的高度()A.一定升高B.一定降低C.保持不变D.升高或降低由橡皮筋的劲度系数决定解析:设L0为橡皮筋的原长,k为橡皮筋的劲度系数,小车静止时,对小球受力分析得:F1=mg,弹簧的伸长,即小球与悬挂点的距离为,当小车的加速度稳定在一定值时,对小球进行受力分析如图:得:,,解得:,弹簧的伸长:,则小球与悬挂点的竖直方向的距离为:,即小球在竖直方向上到悬挂点的距离减小,所以小球一定升高,故A正确,BCD错误.故选A.点评:这种方法适用于有两个力垂直的情形,这样才能构建直角三角形,从而根据直角三角形中的边角关系解题.二,图解法例2.如图所示,半圆形支架BAD上悬着两细绳OA和OB,结于圆心O,下悬重为G的物体,使OA绳固定不动,将OB绳的B端沿半圆支架从水平位置逐渐移至竖直的位置C的过程中,如图所示,OA绳受力大小变化情况是______,OB绳受力大小变化情况是______.解析:对O点受力分析,根据O点合力是零可知绳OA和绳OB上拉力的合力跟重力大小相等,方向相反,也就是说这个合力的大小不变方向竖直向上。
根据图像OA绳受力变小,OB绳受力先变小后变大.点评:这种方法适用于一个力大小方向都不变,另一个力方向不变,只有第三个力大小方向都变化的情况.三,相似三角形法例3.(2014年上海卷)如图,竖直绝缘墙上固定一带电小球A,将带电小球B用轻质绝缘丝线悬挂在A的正上方C处,图中AC=h。
高中物理解决动态平衡问题的五种方法(带答案)
第03讲 解决动态平衡问题的五种方法通过控制某些物理量,使物体的状态发生缓慢地变化,物体在这一变化过程中始终处于一系列的平衡状态中,这种平衡称为动态平衡。
解决此类问题的基本思路是化“动”为“静”,“静”中求“动”,具体有以下三种方法:(一)解析法 对研究对象进行受力分析,先画出受力示意图,再根据物体的平衡条件列式求解,得到因变量与自变量的一般函数表达式,最后根据自变量的变化确定因变量的变化。
(二)结论法 若合力不变,两等大分力夹角变大,则分力变大.若分力大小不变,两等大分力夹角变大,则合力变小.1、粗细均匀的电线架在A 、B 两根电线杆之间。
由于热胀冷缩,电线在夏、冬两季呈现如图所示的两种形状,若电线杆始终处于竖直状态,下列说法中正确的是( )A .冬季,电线对电线杆的拉力较大B .夏季,电线对电线杆的拉力较大C .夏季与冬季,电线对电线杆的拉力一样大D .夏季,电线杆对地面的压力较大2、如图所示,体操吊环运动有一个高难度的动作就是先双手撑住吊环(图甲),然后身体下移,双臂缓慢张开到图乙位置,则在此过程中,吊环的两根绳的拉力F T (两个拉力大小相等)及它们的合力F 的大小变化情况为( )A .F T 减小,F 不变B .F T 增大,F 不变C .F T 增大,F 减小D .F T 增大,F 增大3、如图所示,硬杆BC 一端固定在墙上的B 点,另一端装有滑轮C ,重物D用绳拴住通过滑轮固定于墙上的A 点。
若杆、滑轮及绳的质量和摩擦均不计,将绳的固定端从A 点稍向下移,则在移动过程中( ) A.绳的拉力、滑轮对绳的作用力都增大 B.绳的拉力减小,滑轮对绳的作用力增大C.绳的拉力不变,滑轮对绳的作用力增大D.绳的拉力、滑轮对绳的作用力都不变A CB(三)图解法此法常用于求解三力平衡且有一个力是恒力、另有一个力方向不变的问题。
一般按照以下流程解题。
1、如图所示,小球用细绳系住放在倾角为θ的光滑斜面上,当细绳由水平方向逐渐向上偏移时,细绳上的拉力将()A.逐渐增大B.逐渐减小C.先增大后减小D.先减小后增大2、半圆柱体P放在粗糙的水平地面上,其右端有一固定放置的竖直挡板MN.在半圆柱体P和MN之间放有一个光滑均匀的小圆柱体Q,整个装置处于平衡状态,如图所示是这个装置的截面图.现使MN保持竖直并且缓慢地向右平移,在Q滑落到地面之前,发现P始终保持静止.则在此过程中,下列说法中正确的是()A.MN对Q的弹力逐渐减小B.P对Q的弹力逐渐增大C.地面对P的摩擦力逐渐增大D.Q所受的合力逐渐增大3、如图所示,挡板固定在斜面上,滑块m在斜面上,上表面呈弧形且左端最薄,球M搁在挡板与弧形滑块上,一切摩擦均不计,用平行于斜面的拉力F拉住弧形滑块,使球与滑块均静止。
物理动态平衡问题的基本解法五种
物理动态平衡问题的基本解法五种
物理动态平衡问题的基本解法有以下五种:
1. 力的平衡法:根据牛顿第二定律,物体的总受力为零时,物体处于力的平衡状态。
可以通过分析物体受到的各个力的大小和方向来判断物体的平衡状态,并解出未知量。
2. 力矩的平衡法:根据物体的力矩(或力矩矩阵)的平衡条件来判断物体是否处于平衡状态。
物体的力矩等于零时,物体处于力矩平衡状态。
可以根据物体的几何形状和受力情况,建立力矩平衡方程来解决问题。
3. 动力学方法:使用动力学的方法来分析物体的运动状态和平衡条件。
通过分析物体所受到的各个力和力矩,建立动力学方程组,解出未知量。
4. 能量守恒法:利用能量守恒定律来解决物体的平衡问题。
通过分析物体所受到的各个力和物体的势能和动能之间的关系,建立能量守恒方程来解决问题。
5. 作图法:根据物体的几何形状和受力情况,通过作图来解决问题。
可以根据物体的平衡条件和受力分析,将物体的受力情况转换为几何图形,然后通过几何推理和计算,解决问题。
动态平衡问题常见解法
动态平衡问题苗贺铭动态平衡问题是高中物理平衡问题中的一个难点,学生不掌握问题的根本和规律,就不能解决该类问题,一些教学资料中对动态平衡问题归纳还不够全面。
因此,本文对动态平衡问题的常见解法梳理如下。
所谓的动态平衡,就是通过控制某一物理量,使物体的状态发生缓慢变化的平衡问题,物体在任意时刻都例题F N2..不由矢量三角形可知:始二、解析法方法:物体处于动态平衡状态时,对研究对象的任一状态进行受力分析,建立平衡方程,得到自变量与应变量的函数关系,由自变量的关系确定应变量的关系。
例题2.1倾斜长木板一端固定在水平轴O上,另一端缓慢放低,放在长木板上的物块m?一直保持相对木板静止状态,如图所示.在这一过程中,物块m受到长木板支持力F N和摩擦力F f的大小变化情况是()A.F N变大,F f变大B.F N变小,F f变小C.F N变大,F f变小D.F N变小,F f变大解析:设木板倾角为θ根据平衡条件:F N=mgcosθF f=mgsinθ可见θ减小,则F N变大,F f变小;例题°,重物通三、相似三角形方法:找到与力的矢量三角形相似的几何三角形,根据相似三角形的性质,建立比例关系,进行讨论。
例题3如图所示,光滑的半球形物体固定在水平地面上,球心正上方有一光滑的小滑轮,轻绳的一端系一小球,靠放在半球上的A点,另一端绕过定滑轮,后用力拉住,使小球静止.现缓慢地拉绳,在使小球沿球面由A到半球的顶点B的过程中,半球对小球的支持力N和绳对小球的拉力T的大小变化情况是(????)。
(A)N变大,T变小???(B)N变小,T变大???(B)N变小,T先变小后变大??(D)N不变,T变小解析:小球受力如图所示,此三力使小球受力平衡.力矢量三角形如图乙,设球面半径为R ,BC=h,AC=L,AO=R.则由三角形相似有:R G h =L F T =RF NG 、h 、R 均为定值,故F N 为定值,不变,F T ∝L ,由题知:L ↓,故F T ↓.故D 正确.归纳:相似三角形法适用于物体受到的三个力中,一个力的大小、方向均不变,其他两个力的方向均发生变化,且三个力中没有两个力保持垂直关系,但可以找到与力构成的矢量三角形相似的几何解析:以结点O 为研究对角,受到三个拉力,如图所示分别为F M 、F N 、F 合,将三力构成矢量三角形(如图所示的实线三角形),以O 为圆心,F M 为半径作圆,需满足力F 合大小、方向不变,角α减小,则动态矢量三角形如图中画出的一系列虚线表示的三角形。
高中物理 动态平衡问题(含答案)
受力分析:动态平衡问题所谓动态平衡问题,是指通过控制某些物理量,使物体的状态发生缓慢变化,而在这个过程中物体又始终处于一系列的平衡状态,常用方法:1:公式法。
2:矢量三角形法。
3:相似三角形法。
4:拉密定理。
1.如图所示,一小球在斜面上处于静止状态,不考虑一切摩擦,如果把竖直挡板由竖直位置缓慢绕O 点转至水平位置,则此过程中球对挡板的压力F 1和球对斜面的压力F 2的变化情况是( ).答案 BA .F 1先增大后减小,F 2一直减小B .F 1先减小后增大,F 2一直减小C .F 1和F 2都一直减小D .F 1和F 2都一直增大2.如图所示,一光滑小球静止放置在光滑半球面的底端,用竖直放置的光滑挡板水平向右缓慢地推动小球,则在小球运动的过程中(该过程小球未脱离球面),木板对小球的推力F 1、半球面对小球的支持力F 2的变化情况正确的是( ). 答案 BA .F 1增大,F 2减小B .F 1增大,F 2增大C .F 1减小,F 2减小D .F 1减小,F 2增大3.如图,半圆形金属框竖直放在粗糙的水平地面上,套在其上的光滑小球P 在水平外力F 的作用下处于静止状态,P 与圆心O 的连线与水平面的夹角为θ,现用力F 拉动小球,使其缓慢上移到框架的最高点,在此过程中金属框架始终保持静止,下列说法中正确的是( ) 答案 DA .框架对小球的支持力先减小后增大B .水平拉力F 先增大后减小C .地面对框架的支持力先减小后增大D .地面对框架的摩擦力一直减小4.甲、乙两人用两绳aO 和bO 通过装在P 楼和Q 楼楼顶的定滑轮,将质量为m 的物块由O 点沿Oa 直线缓慢向上提升,如图.则在物块由O 点沿直线Oa 缓慢上升过程中,以下判断正确的是( ) 答案 DA .aO 绳和bO 绳中的弹力都逐渐减小B .aO 绳和bO 绳中的弹力都逐渐增大C .aO 绳中的弹力先减小后增大,bO 绳中的弹力一直在增大D .aO 绳中的弹力一直在增大,bO 绳中的弹力先减小后增大5.如图所示,A 是一均匀小球,B 是一14圆弧形滑块,最初A 、B 相切于圆弧形滑块的最低点,一切摩擦均不计,开始B 与A 均处于静止状态,用一水平推力F 将滑块B 向右缓慢推过一段较小的距离,在此过程中 ( ) 答案 BA .墙壁对球的弹力不变B .滑块对球的弹力增大C .地面对滑块的弹力增大D .推力F 减小6、(单选)如图所示,一物块受一恒力F 作用,现要使该物块沿直线AB 运动,应该再加上另一个力的作用,则加上去的这个力的最小值为( ).答案 BA .F cos θB .F sin θC .F tan θD .F cot θ7、(多选)如图所示,质量均为m 的小球A 、B 用两根不可伸长的轻绳连接后悬挂于O 点,在外力F 的作用下,小球A 、B 处于静止状态.若要使两小球处于静止状态且悬线OA 与竖直方向的夹角θ保持30°不变,则外力F 的大小( ).答案 BCDA .可能为33mgB .可能为52mgC .可能为2mgD .可能为mg8、(多选)如图所示,带有光滑竖直杆的三角形斜劈固定在水平地面上,放置于斜劈上的光滑小球与套在竖直杆上的小滑块用轻绳连接,开始时轻绳与斜劈平行.现给小滑块施加一竖直向上的拉力F ,使小滑块沿杆缓慢上升,整个过程中小球始终未脱离斜劈,则有( ) 答案ADA .轻绳对小球的拉力逐渐增大B .小球对斜劈的压力先减小后增大C .竖直杆对小滑块的弹力先增大后减小D .对小滑块施加的竖直向上的拉力逐渐增大9.重力都为G 的两个小球A 和B 用三段轻绳按如图所示连接后悬挂在O 点上,O 、B 间的绳子长度是A 、B 间的绳子长度的2倍,将一个拉力F 作用到小球B 上,使三段轻绳都伸直且O 、A 间和A 、B 间的两段绳子分别处于竖直和水平方向上,则拉力F 的最小值为( ) 答案 AA.12GB.33G C .G D.233G 10.如图所示,两个小球a 、b 的质量均为m ,用细线相连并悬挂于O 点.现用一轻质弹簧给小球a 施加一个拉力F ,使整个装置处于静止状态,且Oa 与竖直方向夹角为30°,已知弹簧的劲度系数为k ,重力加速度为g ,则弹簧的最短伸长量为( ) 答案 BA.mg 2kB.mg kC.3mg 3kD.3mg k11.用力F 拉小球b ,使两个小球都处于静止状态,且细线Oa 与竖直方向的夹角保持θ=30°,如图20所示,重力加速度为g ,则F 达到最小值时Oa 绳上的拉力为( ) 答案 AA.3mg B.mgC.32mg D.12mg12.[注意“活结”和“死结”的区别] (多选)如图所示,顶端附有光滑定滑轮的斜面体静止在粗糙水平地面上,三条细绳结于O点。
(完整版)高一物理力学受力分析之动态平衡问题
动态平衡一、三角形图示法(图解法)方法规律总结:常用于解三力平衡且有一个力是恒力,另一个力方向不变的问题。
例1、如图1-17所示,重G的光滑小球静止在固定斜面和竖直挡板之间。
若挡板逆时针缓慢转到水平位置,在该过程中,斜面和挡板对小球的弹力的大小F1 、F2各如何变化?答案:F1逐渐变小,F2先变小后变大变式:1、质量为m的物体用轻绳AB悬挂于天花板上.用水平向左的力F缓慢拉动绳的中点O,如图所示,用T表示OA段拉力的大小,在O点向左移动的过程中( A )A.F逐渐变大,T逐渐变大B。
F逐渐变大,T逐渐变小C。
F逐渐变小,T逐渐变大D。
F逐渐变小,T逐渐变小2、如图所示,一个球在两块光滑斜面板AB、AC之间,两板与水平面间的夹角均为60°,现使AB板固定,使AC板与水平面间的夹角逐渐减小,则下列说法中正确的是( A )A。
球对AC板的压力先减小再增大B.球对AC板的压力逐渐减小C.球对AB板的压力逐渐增大D.球对AB板的压力先增大再减小二、三角形相似法方法规律总结:在三力平衡问题中,如果有一个力是恒力,另外两个力方向都发生变化,且力的矢量三角形与题所给空间几何三角形相似,可以利用相似三角形对应边的比例关系求解.例2、如图所示,AC是上端带定滑轮的固定竖直杆,质量不计的轻杆AB一端通过铰链固定在A点,另一端B悬挂一重为G的重物,且B端系有一根轻绳并绕过定滑轮,用力F拉绳,开始时∠BAC>90°,现使∠BAC缓慢变小,直到杆AB接近竖直杆AC.此过程中,杆AB所受的力( A )A.大小不变 B.逐渐增大C.先减小后增大 D.先增大后减小变式:1、如图所示,固定在竖直平面内的光滑圆环的最高点有一个光滑的小孔.质量为m的小球套在圆环上.一根细线的下端系着小球,上端穿过小孔用手拉住.现拉动细线,使小球沿圆环缓慢上移.在移动过程中手对线的拉力F和轨道对小球的弹力N的大小变化情况是( C )A。
高中物理解决动态平衡问题的五种方法(带答案)
第03讲解决动态平衡问题的五种方法通过控制某些物理量,使物体的状态发生缓慢地变化,物体在这一变化过程中始终处于一系列的平衡状态中,这种平衡称为动态平衡。
解决此类问题的基本思路是化“动”为“静”,“静”中求“动”,具体有以下三种方法:(一)解析法对研究对象进行受力分析,先画出受力示意图,再根据物体的平衡条件列式求解,得到因变量与自变量的一般函数表达式,最后根据自变量的变化确定因变量的变化。
(二)结论法若合力不变,两等大分力夹角变大,则分力变大.*若分力大小不变,两等大分力夹角变大,则合力变小.1、粗细均匀的电线架在A、B两根电线杆之间。
由于热胀冷缩,电线在夏、冬两季呈现如图所示的两种形状,若电线杆始终处于竖直状态,下列说法中正确的是( )A.冬季,电线对电线杆的拉力较大B.夏季,电线对电线杆的拉力较大C.夏季与冬季,电线对电线杆的拉力一样大D.夏季,电线杆对地面的压力较大:2、如图所示,体操吊环运动有一个高难度的动作就是先双手撑住吊环(图甲),然后身体下移,双臂缓慢张开到图乙位置,则在此过程中,吊环的两根绳的拉力F T(两个拉力大小相等)及它们的合力F 的大小变化情况为( )A .F T 减小,F 不变B .F T 增大,F 不变C .F T 增大,F 减小D .F T 增大,F 增大3、如图所示,硬杆BC 一端固定在墙上的B 点,另一端装有滑轮C ,重物D用绳拴住通过滑轮固定于墙上的A 点。
若杆、滑轮及绳的质量和摩擦均不计,将绳的固定端从A 点稍向下移,则在移动过程中( )A.'B.绳的拉力、滑轮对绳的作用力都增大 B.绳的拉力减小,滑轮对绳的作用力增大 C.绳的拉力不变,滑轮对绳的作用力增大 D.绳的拉力、滑轮对绳的作用力都不变A C B(三)图解法此法常用于求解三力平衡且有一个力是恒力、另有一个力方向不变的问题。
一般按照以下流程解题。
{1、如图所示,小球用细绳系住放在倾角为θ的光滑斜面上,当细绳由水平方向逐渐向上偏移时,细绳上的拉力将()A.逐渐增大B.逐渐减小C.先增大后减小D.先减小后增大2、半圆柱体P放在粗糙的水平地面上,其右端有一固定放置的竖直挡板MN.在半圆柱体P和MN之间放有一个光滑均匀的小圆柱体Q,整个装置处于平衡状态,如图所示是这个装置的截面图.现使MN保持竖直并且缓慢地向右平移,在Q滑落到地面之前,发现P始终保持静止.则在此过程中,下列说法中正确的是()A.MN对Q的弹力逐渐减小B.P对Q的弹力逐渐增大C.地面对P的摩擦力逐渐增大D.Q所受的合力逐渐增大】3、如图所示,挡板固定在斜面上,滑块m在斜面上,上表面呈弧形且左端最薄,球M搁在挡板与弧形滑块上,一切摩擦均不计,用平行于斜面的拉力F拉住弧形滑块,使球与滑块均静止。
(完整)高中物理解决动态平衡问题的五种方法(带答案)
D.夏季,电线杆对地面的压力较大
2、如图所示,体操吊环运动有一个高难度的动作就是先双手撑住吊环(图甲) 移,双臂缓慢张开到图乙位置,则在此过程中,吊环的两根绳的拉力FT(两个拉力大小相等)及它们的合力F的大小变化情况为( )A.FT减小,F不变B.FT增大,F不变
C.地面对P的摩擦力逐渐增大D.Q所受的合力逐渐增大
3、如图所示,挡板固定在斜面上,滑块m在斜面上,上表面呈弧形且左端最薄,球M搁
在挡板与弧形滑块上,一切摩擦均不计,用平行于斜面的拉力F拉住弧形滑块,使球与滑
块均静止。现将滑块平行于斜面向上拉过一较小的距离,球仍搁在挡板 与滑块上且处于静止状态,则与原来相比( )
C、N变小,T先变小后变大D、N不变,T变小
2、如图所示, 固定在竖直平面内的光滑圆环的最高点有一个光滑的小孔。 质量为m的小球套在圆环上。 一根细线的下端系着小球,上端穿过小孔用 手拉住。现拉动细线,使小球沿圆环缓慢上移,在移动过程中手对线的拉 力F和轨道对小球的弹力FN的大小变化情况是( ) A.F不变,FN增大B.F不变,FN减小C.F减小,FN不变
缓慢地推动小球,则在小球运动的过程中(该过程小球未脱离球面),木板对小球的推力F1,
A.F1增大,F2减小
C.F1增大,F2增大
B.F1减小,F2减小
D.F1减小,F2增大
12、如图所示,用一根细线系住重力为G、半径为R的球,其与倾角为α的光滑斜面接触,处于静止状态,球与斜面的接触面非常小,当细线悬点O固定不动,斜面缓慢水平向左移 动直至绳子与斜面平行的过程中,下述正确的是( ). A.细绳对球的拉力先减小后增大B.细绳对球的拉力先增大后减小C.细绳对球的拉力一直减小D.细绳对球的拉力最小值等于G
(完整版)高中物理解决动态平衡问题的五种方法(带答案)
第03讲 解决动态平衡问题的五种方法通过控制某些物理量,使物体的状态发生缓慢地变化,物体在这一变化过程中始终处于一系列的平衡状态中,这种平衡称为动态平衡。
解决此类问题的基本思路是化“动”为“静”,“静”中求“动”,具体有以下三种方法:(一)解析法 对研究对象进行受力分析,先画出受力示意图,再根据物体的平衡条件列式求解,得到因变量与自变量的一般函数表达式,最后根据自变量的变化确定因变量的变化。
(二)结论法 若合力不变,两等大分力夹角变大,则分力变大.若分力大小不变,两等大分力夹角变大,则合力变小.1、粗细均匀的电线架在A 、B 两根电线杆之间。
由于热胀冷缩,电线在夏、冬两季呈现如图所示的两种形状,若电线杆始终处于竖直状态,下列说法中正确的是( )A .冬季,电线对电线杆的拉力较大B .夏季,电线对电线杆的拉力较大C .夏季与冬季,电线对电线杆的拉力一样大D .夏季,电线杆对地面的压力较大2、如图所示,体操吊环运动有一个高难度的动作就是先双手撑住吊环(图甲),然后身体下移,双臂缓慢张开到图乙位置,则在此过程中,吊环的两根绳的拉力F T (两个拉力大小相等)及它们的合力F 的大小变化情况为( )A .F T 减小,F 不变B .F T 增大,F 不变C .F T 增大,F 减小D .F T 增大,F 增大3、如图所示,硬杆BC 一端固定在墙上的B 点,另一端装有滑轮C ,重物D用绳拴住通过滑轮固定于墙上的A 点。
若杆、滑轮及绳的质量和摩擦均不计,将绳的固定端从A 点稍向下移,则在移动过程中( ) A.绳的拉力、滑轮对绳的作用力都增大 B.绳的拉力减小,滑轮对绳的作用力增大C.绳的拉力不变,滑轮对绳的作用力增大D.绳的拉力、滑轮对绳的作用力都不变A CB(三)图解法此法常用于求解三力平衡且有一个力是恒力、另有一个力方向不变的问题。
一般按照以下流程解题。
1、如图所示,小球用细绳系住放在倾角为θ的光滑斜面上,当细绳由水平方向逐渐向上偏移时,细绳上的拉力将()A.逐渐增大B.逐渐减小C.先增大后减小D.先减小后增大2、半圆柱体P放在粗糙的水平地面上,其右端有一固定放置的竖直挡板MN.在半圆柱体P和MN之间放有一个光滑均匀的小圆柱体Q,整个装置处于平衡状态,如图所示是这个装置的截面图.现使MN保持竖直并且缓慢地向右平移,在Q滑落到地面之前,发现P始终保持静止.则在此过程中,下列说法中正确的是()A.MN对Q的弹力逐渐减小B.P对Q的弹力逐渐增大C.地面对P的摩擦力逐渐增大D.Q所受的合力逐渐增大3、如图所示,挡板固定在斜面上,滑块m在斜面上,上表面呈弧形且左端最薄,球M搁在挡板与弧形滑块上,一切摩擦均不计,用平行于斜面的拉力F拉住弧形滑块,使球与滑块均静止。
动态平衡的几种解法
动态平衡问题的几种解法刘金艳在有关物体平衡的问题中,有一类涉及动态平衡。
这类问题中的一部分力是变力,是动态力,力的大小和方向均要发生变化,故这是力平衡问题中的一类难题。
解决这类问题的一般思路是:把“动”化为“静”,“静”中求“动”。
下面就介绍几种动态平衡问题的解题方法。
方法一:三角形法则。
原理:当物体受三力作用而处于平衡状态时,其合力为零,三个力的矢量依次恰好首尾相连,构成闭合三角形,当物体所受三个力中二个发生变化而又维持平衡关系时,这个闭合三角形总是存在,只不过形状发生改变而已,比较这些不同形状的矢量三角形,各力的大小及变化就一目了然了。
例1.如图1所示,一个重力G的匀质球放在光滑斜面上,斜面倾角为α,在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态。
今使板与斜面的夹角β缓慢增大,问:在此过程中,挡板和斜面对球的压力大小如何变化?图1解析:取球为研究对象,球受重力G、斜面支持力F1、挡板支持力F2。
因为球始终处于平衡状态,故三个力的合力始终为零,三个力构成封闭的三角形。
挡板逆时针转动时,F2的方向也逆时针转动,F1的方向不变,作出如图2所示的动态矢量三角形。
由图可知,F2先减小后增大,F1随β增大而始终减小。
图2点评:三角形法则适用于物体所受的三个力中,有一力的大小、方向均不变(通常为重力,也可以是其它力),另一个力的大小变化,第三个力则大小、方向均发生变化的问题,对变化过程进行定性的分析。
方法二:解析法。
原理:物体处于动态平衡状态时,对研究对象的任一状态进行受力分析,根据具体情况引入参量,建立平衡方程,求出应变参量与自变参量的一般函数关系,然后根据自变量的变化确定应变量的变化。
例2. 如图3所示,小船用绳索拉向岸边,设船在水中运动时所受水的阻力不变,那么小船在匀速靠岸过程中,下面说法哪些是正确的( )图3A. 绳子的拉力F 不断增大B. 绳子的拉力F 不变C. 船所受的浮力不断减小D. 船所受的浮力不断增大解析:小船共受四个力作用:重力G 、浮力F 浮、水的阻力f 、绳子拉力F 。
动态平衡问题的基本解法五种
动态平衡问题的基本解法五种
1. 增加支撑点或重心:通过增加支撑点或调整重心位置来改善动态平衡问题。
2. 调整结构或重量分布:通过改变结构或重量分布来改善动态平衡问题。
3. 调整姿态或姿态控制:通过改变车辆或航天器的姿态或调整姿态控制来改善动态平衡问题。
4. 建立反馈控制系统:通过建立反馈控制系统来解决动态平衡问题,使系统能够自动调整。
5. 优化控制算法:通过优化控制算法来提高系统的响应速度和精度,改善动态平衡问题。
2I 动态平衡问题的几种解法
动态平衡问题的几种解法在有关物体平衡的问题中,有一类涉及动态平衡。
这类问题中的一部分力是变力,是动态力,力的大小和方向均要发生变化,故这是力平衡问题中的一类难题。
解决这类问题的一般思路是:把“动”化为“静”,“静”中求“动”。
下面就介绍几种动态平衡问题的解题方法。
方法一:图解法(三角形法则)原理:当物体受三力作用而处于平衡状态时,其合力为零,三个力的矢量依次恰好首尾相连,构成闭合三角形,当物体所受三个力中二个发生变化而又维持平衡关系时,这个闭合三角形总是存在,只不过形状发生改变而已,比较这些不同形状的矢量三角形,各力的大小及变化就一目了然了。
例题1:如图1所示,一个重力G的匀质球放在光滑斜面上,斜面倾角为,在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态。
今使板与斜面的夹角缓慢增大,问:在此过程中,挡板和斜面对球的压力大小如何变化?解析:取球为研究对象,球受重力G、斜面支持力F1、挡板支持力F2。
因为球始终处于平衡状态,故三个力的合力始终为零,三个力构成封闭的三角形。
挡板逆时针转动时,F2的方向也逆时针转动,F1的方向不变,作出如图2所示的动态矢量三角形。
由图可知,F2先减小后增大,F1随增大而始终减小。
点评:三角形法则适用于物体所受的三个力中,有一力的大小、方向均不变(通常为重力,也可以是其它力),另一个力的大小变化,第三个力则大小、方向均发生变化的问题,对变化过程进行定性的分析。
方法二:解析法原理:物体处于动态平衡状态时,对研究对象的任一状态进行受力分析,根据具体情况引入参量,建立平衡方程,求出应变参量与自变参量的一般函数关系,然后根据自变量的变化确定应变量的变化。
例题2:如图3所示,小船用绳索拉向岸边,设船在水中运动时所受水的阻力不变,那么小船在匀速靠岸过程中,下面说法哪些是正确的()A. 绳子的拉力F不断增大B. 绳子的拉力F不变C. 船所受的浮力不断减小D. 船所受的浮力不断增大解析:小船共受四个力作用:重力G、浮力F浮、水的阻力f、绳子拉力F。
动态平衡问题的解决办法-高考物理知识点
动态平衡问题的解决办法-高考物理知识点动态平衡问题的解决办法动态问题包括动态平衡问题的分析和动态非平衡问题的分析。
所谓动态平衡问题是指通过控制某些物理量,使物体的状态发生缓慢变化,而在这过程中物体有始终处于一系列的平衡状态中。
1.图解法
对研究对象在状态变化过程中的若干状态进行受力分析,依据某一参量的变化,在同一图中作出物体在若干状态下力的平衡图(力的三角形或平行四边形),再由动态力的平行四边形各边长度变化及角度变化确定力的大小及方向的变化情况。
2.解析法
3动态平衡中的滑轮模型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第03讲 解决动态平衡问题的五种方法通过控制某些物理量,使物体的状态发生缓慢地变化,物体在这一变化过程中始终处于一系列的平衡状态中,这种平衡称为动态平衡。
解决此类问题的基本思路是化“动”为“静”,“静”中求“动”,具体有以下三种方法:(一)解析法 对研究对象进行受力分析,先画出受力示意图,再根据物体的平衡条件列式求解,得到因变量与自变量的一般函数表达式,最后根据自变量的变化确定因变量的变化。
(二)结论法 若合力不变,两等大分力夹角变大,则分力变大.若分力大小不变,两等大分力夹角变大,则合力变小.1、粗细均匀的电线架在A 、B 两根电线杆之间。
由于热胀冷缩,电线在夏、冬两季呈现如图所示的两种形状,若电线杆始终处于竖直状态,下列说法中正确的是( )A .冬季,电线对电线杆的拉力较大B .夏季,电线对电线杆的拉力较大C .夏季与冬季,电线对电线杆的拉力一样大D .夏季,电线杆对地面的压力较大2、如图所示,体操吊环运动有一个高难度的动作就是先双手撑住吊环(图甲),然后身体下移,双臂缓慢张开到图乙位置,则在此过程中,吊环的两根绳的拉力F T (两个拉力大小相等)及它们的合力F 的大小变化情况为( )A .F T 减小,F 不变B .F T 增大,F 不变C .F T 增大,F 减小D .F T 增大,F 增大3、如图所示,硬杆BC 一端固定在墙上的B 点,另一端装有滑轮C ,重物D用绳拴住通过滑轮固定于墙上的A 点。
若杆、滑轮及绳的质量和摩擦均不计,将绳的固定端从A 点稍向下移,则在移动过程中( ) A.绳的拉力、滑轮对绳的作用力都增大 B.绳的拉力减小,滑轮对绳的作用力增大C.绳的拉力不变,滑轮对绳的作用力增大D.绳的拉力、滑轮对绳的作用力都不变A CB(三)图解法此法常用于求解三力平衡且有一个力是恒力、另有一个力方向不变的问题。
一般按照以下流程解题。
1、如图所示,小球用细绳系住放在倾角为θ的光滑斜面上,当细绳由水平方向逐渐向上偏移时,细绳上的拉力将()A.逐渐增大B.逐渐减小C.先增大后减小D.先减小后增大2、半圆柱体P放在粗糙的水平地面上,其右端有一固定放置的竖直挡板MN.在半圆柱体P和MN之间放有一个光滑均匀的小圆柱体Q,整个装置处于平衡状态,如图所示是这个装置的截面图.现使MN保持竖直并且缓慢地向右平移,在Q滑落到地面之前,发现P始终保持静止.则在此过程中,下列说法中正确的是()A.MN对Q的弹力逐渐减小B.P对Q的弹力逐渐增大C.地面对P的摩擦力逐渐增大D.Q所受的合力逐渐增大3、如图所示,挡板固定在斜面上,滑块m在斜面上,上表面呈弧形且左端最薄,球M搁在挡板与弧形滑块上,一切摩擦均不计,用平行于斜面的拉力F拉住弧形滑块,使球与滑块均静止。
现将滑块平行于斜面向上拉过一较小的距离,球仍搁在挡板与滑块上且处于静止状态,则与原来相比()A.滑块对球的弹力增大B.挡板对球的弹力减小C.斜面对滑块的弹力增大D.拉力F不变4、如图,用细绳将重球悬挂在竖直光滑墙上,当绳伸长时()A.绳的拉力变小,墙对球的弹力变大、B.绳的拉力变小,墙对球的弹力变小C.绳的拉力变大,墙对球的弹力变小D.绳的拉力变大,墙对球的弹力变大5、如图所示,一小球用轻绳悬于O点,用力F拉住小球,使悬线保持偏离竖直方向75°角,且小球始终处于平衡状态.为了使F有最小值,F与竖直方向的夹角θ应该是()A.90° B.45° C.15° D.0°6、如图所示,电灯悬挂于两墙之间,更换水平绳OA使连接点A向上移动而保持O点的位置不变,则A点向上移动时()A.绳OA的拉力逐渐增大B.绳OA的拉力逐渐减小C.绳OA的拉力先增大后减小D.绳OA的拉力先减小后增大7、如图所示,用两个弹簧秤A和B,互成角度地拉橡皮条,使结点O达到图中所示位置,在保持O点位置和B弹簧秤拉力方向不变的情况下,将弹簧秤A缓慢地沿顺时针方向转动,那么在此过程中,A与B的示数将分别()A.变大;变小B.变小;变小C.先变小再变大;变小D.先变大再变小;变大8、如图,运动员的双手握紧竖直放置的圆形器械,在手臂OA沿由水平方向缓慢移到A′位置过程中,若手臂OA、OB的拉力分别为F A和F B,下列表述正确的是()A.F A一定小于运动员的重力GB.F A与F B的合力始终大小不变C.F A的大小保持不变D.F B的大小保持不变9、如图所示,用AO、BO两根细线吊着一个重物P,AO与天花板的夹角θ保持不变,用手拉着BO线由水平逆时针的方向逐渐转向竖直向上的方向,在此过程中,BO和AO中张力的大小变化情况是()A.都逐渐变大B.都逐渐变小C.BO中张力逐渐变大,AO中张力逐渐变小D.BO中张力先变小后变大,AO中张力逐渐减小到零10、如图所示,小球放在光滑的墙与装有铰链的光滑薄板之间,当墙与薄板之间的夹角θ缓慢地增大到90°的过程中()①小球对薄板的正压力增大①小球对墙的正压力减小①小球对墙的压力先减小,后增大①小球对木板的压力不可能小于球的重力A.①① B.①① C.①① D.①①11、如图所示,一光滑小球静止放置在光滑半球面的底端,用竖直放置的光滑挡板水平向右缓慢地推动小球,则在小球运动的过程中(该过程小球未脱离球面),木板对小球的推力F1,半球面对小球的支持力F2的变化情况正确的是()A.F1增大,F2减小B.F1减小,F2减小C.F1增大,F2增大D.F1减小,F2增大12、如图所示,用一根细线系住重力为G、半径为R的球,其与倾角为α的光滑斜面接触,处于静止状态,球与斜面的接触面非常小,当细线悬点O固定不动,斜面缓慢水平向左移动直至绳子与斜面平行的过程中,下述正确的是().A.细绳对球的拉力先减小后增大B.细绳对球的拉力先增大后减小C.细绳对球的拉力一直减小D.细绳对球的拉力最小值等于G13、(多选)如下图所示,在粗糙水平地面上放着一个截面为四分之一圆弧的柱状物体A,A 的左端紧靠竖直墙,A与竖直墙壁之间放一光滑球B,整个装置处于静止状态.若把A向右移动少许后,它们仍处于静止状态,则()A.A对B的支持力减小B.A对B的支持力增大C.墙对B的弹力减小D.墙对B的弹力增大14、(多选)如图所示.在倾角为θ的光滑斜面和档板之间放一个光滑均匀球体,档板与斜面夹角为α.初始时α+θ<90°.在档板绕顶端逆时针缓慢旋转至水平位置的过程,下列说法正确的是()A.斜面对球的支持力变大B.档板对球的弹力变大C.斜面对球的支持力变小D.档板对球的弹力先变小后变大(四)相似三角形法 在三力平衡问题中,如果有一个力是恒力,另外两个力方向都变化,且题目给出了空间几何关系,多数情况下力的矢量三角形与空间几何三角形相似,可利用相似三角形对应边成比例进行计算。
1、如图所示,光滑的半球形物体固定在水平地面上,球心正上方有一光滑的小滑轮,轻绳的一端系一小球,靠放在半球上的A 点,另一端绕过定滑轮,后用力拉住,使小球静止.现缓慢地拉绳,在使小球沿球面由A 到半球的顶点B 的过程中,半球对小球的支持力N 和绳对小球的拉力T 的大小变化情况是( D )。
A 、N 变大,T 变小B 、N 变小,T 变大C 、N 变小,T 先变小后变大D 、N 不变,T 变小2、如图所示,固定在竖直平面内的光滑圆环的最高点有一个光滑的小孔。
质量为m 的小球套在圆环上。
一根细线的下端系着小球,上端穿过小孔用手拉住。
现拉动细线,使小球沿圆环缓慢上移,在移动过程中手对线的拉力F 和轨道对小球的弹力F N 的大小变化情况是( )A .F 不变,F N 增大B .F 不变,F N 减小C .F 减小,F N 不变D .F 增大,F N 减小3、如图,墙上有两个钉子a 和b ,它们的连线与水平方向的夹角为45°,两者的高度差为l 。
一条不可伸长的轻质细绳一端固定于a 点,另一端跨过光滑钉子b 悬挂一质量为m1的重物。
在绳子距a 端2l 得c 点有一固定绳圈。
若绳圈上悬挂质量为m2的钩码,平衡后绳的ac段正好水平,则重物和钩码的质量比12m m 为( ) A.5 B. 2 C.D.24、如图所示,在竖直放置的穹形光滑支架上,一根不可伸长的轻绳通过光滑的轻质滑轮悬挂一重物G 。
现将轻绳的一端固定于支架上的A 点,另一端从B 点沿支架缓慢地向C 点靠近。
则绳中拉力大小变化的情况是( )A .先变小后变大B .先变小后不变C .先变大后不变D .先变大后变小 52A CB O5、在做“验证力的平行四边形定则”的实验时,用M、N两个测力计通过细线拉橡皮条的结点,使其到达O点,此时α+β= 90°.然后保持M的读数不变,而使α角减小,为保持结点位置不变,可采用的办法是()A、减小N的读数同时减小β角B、减小N的读数同时增大β角C、增大N的读数同时增大β角D、增大N的读数同时减小β角6、一轻杆BO,其O端用光滑铰链固定在竖直轻杆AO上,B端挂一重物,且系一细绳,细绳跨过杆顶A处的光滑小滑轮,用力F拉住,如图所示。
现将细绳缓慢往左拉,使杆BO与杆A O间的夹角θ逐渐减少,则在此过程中,拉力F及杆BO所受压力F N的大小变化情况是( )A.F N先减小,后增大B.F N始终不变C.F先减小,后增大 D.F始终不变7、如图所示,轻杆BC的一端用铰链接于C,另一端悬挂重物G,并用细绳绕过定滑轮用力拉住,开始时,①BCA>90°,现用拉力F使①BCA缓慢减小,直线BC接近竖直位置的过程中,杆BC所受的压力()A.保持不变B.逐渐增大C.逐渐减小D.先增大后减小8、某欧式建筑物屋顶为半球形,一警卫人员为执行特殊任务,必须冒险半球形屋顶上向上缓慢爬行(如图),他在向上爬过程中()A.屋顶对他的支持力变大B.屋顶对他的支持力变小C.屋顶对他的摩擦力变大D.屋顶对他的摩擦力不变9、如图所示,小圆环A吊着一个质量为m2的物块并套在另一个竖直放置的大圆环上,有一细线,一端拴在小圆环A上,另一端跨过固定在大圆环最高点B的一个小滑轮后吊着一个质量为m1的物块.如果小圆环、滑轮、细线的大小和质量以及相互之间的摩擦都可以忽略不计,细线又不可伸长,若平衡时弦AB所对应的圆心角为α,则两物块的质量之比应为()A.cos B.sinC.2sin D.2sinα10、如图所示,竖直绝缘墙壁上的Q 处有一固定点A ,在Q 的正上方的P 处用绝缘细线悬挂另一质点B ,A 、B 两质点因带电而相互排斥,致使悬线与竖直方向成θ角,由于漏电使A 、B 两质点的带电量减少,在电荷漏完之前悬线对悬点P 的拉力为( )A . 不变B . 变小C . 变大D . 先变小后变大11、如图所示,A 、B 是带有等量的同种电荷的两小球,它们的质量都是m ,它们的悬线长度是L ,悬线上端都固定在同一点O ,B 球悬线竖直且被固定,A 球在力的作用下,在偏离B 球x 的地方静止平衡,此时A 受到绳的拉力为F T ;现保持其他条件不变,用改变A 球质量的方法,使A 球在距离B 为2x 处静止平衡,则A 受到绳的拉力为( )A . F TB . 2F TC . 4F TD . 8F T12、如图所示,光滑绝缘半球形的碗固定在水平地面上,可视为质点的带电小球1、2的电荷分别为Q 1、Q 2,其中小球1固定在碗底A 点,小球2可以自由运动,平衡时小球2位于碗内的B 位置处,如图所示.现在改变小球2的带电量,把它放置在图中C 位置时也恰好能平衡,已知AB 弦是AC弦的两倍,则( )A . 小球在C 位置时的电量是B 位置时电量的一半B . 小球在C 位置时的电量是B 位置时电量的四分之一C . 小球2在B 点对碗的压力大小等于小球2在C 点时对碗的压力大小D . 小球2在B 点对碗的压力大小大于小球2在C 点时对碗的压力大小13、质量为m 1、m 2的小球分别带同种电荷q 1和q 2,它们用等长的细线吊在同一点O ,由于静电斥力的作用,使m 1球靠在竖直光滑墙上,m 1球的拉线L 1呈竖直方向,使m 2球的拉线L 2与竖直方向成θ角,m 1、m 2均处于静止,如图所示.由于某种原因,m 2球的带电量q 2逐渐减少,于是两球拉线之间夹角θ也逐渐小直到零.在θ角逐渐减小的过程中,关于L 1、L 2中的张力F T 1、F T2的变化是( )A .F T1不变,F T2不变B .F T1不变,F T2变小C .F T1变小,F T2变小D .F T1变小,F T2不变β α abc θ (五)作辅助圆法1、如图,在力的三角形中,若力a 不变,α 角不变,则力b 、c 的变化可以用图解法来解决;2、如图,在力的三角形中,若力a 不变,β 角不变,则力b 、c 的变化如何解决?1、如图所示,物体G 用两根绳子悬挂,开始时绳OA 水平,现将两绳同时顺时针转过90°,且保持两绳之间的夹角α不变)90(0>α,物体保持静止状态,在旋转过程中,设绳OA 的拉力为F 1,绳OB的拉力为F 2,则( )。