【师说】2017高考数学(理)专题六 解析几何:课时巩固过关练(十五)
2017届高三数学(人教版理)二轮复习课时巩固过关练十五1.6.1Word版含解析
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
课时巩固过关练十五直线与圆(30分钟55分)一、选择题(每小题5分,共20分)1.(2016·衡水一模)已知圆x2+y2+mx-=0与抛物线y=x2的准线相切,则m=( ) A.±2 B.± C. D.【解析】选B.抛物线的准线为y=-1,将圆化为标准方程+y2=,圆心到直线的距离为1=⇒m=±.2.(2016·长春一模)若动点A,B分别在直线l1:x+y-7=0和l2:x+y-5=0上运动,则AB的中点M到原点的距离的最小值为( )A. B.2 C.3 D.4【解析】选C.由题意知AB的中点M的集合为到直线l1:x+y-7=0和l2:x+y-5=0的距离相等的直线,则点M到原点的距离的最小值为原点到该直线的距离.l1,l2间的距离为=.原点到l2的距离为=,所以点M到原点的距离最小值为+=3.3.(2016·承德二模)一条光线从点(-2,-3)射出,经y轴反射后与圆(x+3)2+ (y-2)2=1相切,则反射光线所在直线的斜率为( )A.-或-B.-或-C.-或-D.-或-【解析】选D.由光的反射原理知,反射光线的反向延长线必过点(2,-3),设反射光线所在直线的斜率为k,则反射光线所在直线方程为:y+3=k(x-2),即kx-y-2k-3=0.又因为光线与圆相切,圆心为(-3,2),所以=1.整理得12k2+25k+12=0,解得:k=-或k=-.4.(2016·湘潭二模)两圆x2+y2+2ax+a2-4=0和x2+y2-4by-1+4b2=0恰有三条公切线,若a∈R,b∈R且ab≠0,则+的最小值为( ) A.1 B.3 C. D.【解析】选A.x2+y2+2ax+a2-4=0即(x+a)2+y2=4,x2+y2-4by-1+4b2=0即x2+(y-2b)2=1,依题意可得,两圆外切,则两圆心距离等于两圆的半径之和,则=1+2=3,即a2+4b2=9,所以+==≥=1,当且仅当=,即a=±2b时取等号.二、填空题(每小题5分,共10分)5.(2016·天津高考)已知圆C的圆心在x轴的正半轴上,点M(0,)在圆C上,且圆心到直线2x-y=0的距离为,则圆C的方程为________.【解析】设C(a,0)(a>0),由题意知=,解得a=2,所以r==3,故圆C的方程为(x-2)2+y2=9.答案:(x-2)2+y2=96.(2016·长沙二模)若直线l1:y=x+a和直线l2:y=x+b将圆(x-1)2+(y-2)2=8分成长度相等的四段弧,则a2+b2=________.【解析】由题意得直线l1:y=x+a和直线l2:y=x+b截得圆的弦所对圆周角相等,皆为直角,因此圆心到两直线距离皆为r=2,即==2⇒a2+b2=(2+1)2+(-2+1)2=18.答案:18三、解答题(7题12分,8题13分,共25分)7.(2016·南昌一模)已知圆C:x2+y2-4x-6y+12=0,点A(3,5).(1)求过点A的圆的切线方程.(2)O点是坐标原点,连接OA,OC,求△AOC的面积S.【解析】(1)由圆C:x2+y2-4x-6y+12=0,配方,得(x-2)2+(y-3)2=1,圆心C(2,3).当斜率存在时,设过点A的圆的切线方程为y-5=k(x-3),即kx-y+5-3k=0.由d==1,得k=.又斜率不存在时直线x=3也与圆相切,故所求切线方程为x=3或3x-4y+11=0.(2)直线OA的方程为y=x,即5x-3y=0,点C到直线OA的距离为d==,又|OA|==,所以S=|OA|d=.8.(2016·洛阳一模)已知点P(0,5)及圆C:x2+y2+4x-12y+24=0.(1)若直线l过点P且被圆C截得的线段长为4,求l的方程.(2)求过P点的圆C的弦的中点的轨迹方程.【解析】(1)如图所示,|AB|=4,将圆C方程化为标准方程为(x+2)2+(y-6)2=16,所以圆C的圆心坐标为(-2,6),半径r=4,设D是线段AB的中点,则CD⊥AB,所以|AD|=2,|AC|=4.C点坐标为(-2,6).在Rt△ACD中,可得|CD|=2.若直线l的斜率存在,设为k,则直线l的方程为y-5=kx,即kx-y+5=0. 由点C到直线AB的距离公式:=2,得k=.故直线l的方程为3x-4y+20=0.直线l的斜率不存在时,也满足题意,此时方程为x=0.所以所求直线l的方程为x=0或3x-4y+20=0.(2)设过P点的圆C的弦的中点为D(x,y),则CD⊥PD,即·=0,所以(x+2,y-6)·(x,y-5)=0,化简得所求轨迹方程为x2+y2+2x-11y+30=0.【误区警示】在本题(1)的求解中不可忽视直线l斜率的存在性,在由距离公式求出一个k时应考虑直线斜率不存在的情况,否则会造成漏解.【加固训练】(2016·新乡二模)已知圆M的方程为x2+y2-2x-2y-6=0,以坐标原点O为圆心的圆O与圆M相切.(1)求圆O的方程.(2)圆O与x轴交于E,F两点,圆O内的动点D使得|DE|,|DO|,|DF|成等比数列,求·的取值范围.【解析】(1)圆M的方程可整理为(x-1)2+(y-1)2=8,故圆心M(1,1),半径R=2.圆O的圆心为O(0,0),因为|MO|=<2,所以点O在圆M内,故圆O只能内切于圆M.设圆O的半径为r,因为圆O内切于圆M,所以|MO|=R-r,即=2-r,解得r=.所以圆O的方程为x2+y2=2.(2)不妨设E(m,0),F(n,0),且m<n.由解得或故E(-,0),F(,0).设D(x,y),由|DE|,|DO|,|DF|成等比数列,得|DE|·|DF|=|DO|2,即·=x2+y2,整理得x2-y2=1.而=(--x,-y),=(-x,-y),所以·=(--x)(-x)+(-y)(-y)=x2+y2-2=2y2-1.由于点D在圆O内,故有得y2<,所以-1≤2y2-1<0,即·∈[-1,0).(30分钟55分)一、选择题(每小题5分,共20分)1.直线l1:ax-y-3=0,l2:2x+by+c=0,则ab=-2是l1∥l2的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】选B.当ab=-2且c=3时,l1与l2重合,而l1∥l2时一定有ab-2×(-1)=0,即ab=-2,所以ab=-2是l1∥l2的必要不充分条件.【加固训练】设向量a=(a,1),b=(1,b)(ab≠0),若a⊥b,则直线b2x+y=0与直线x-a2y=0的位置关系是( )A.平行B.相交且垂直C.相交但不垂直D.重合【解析】选B.由题意知两直线都经过点(0,0),因为a⊥b,所以a·b=a+b=0,所以a=-b,由于直线b2x+y=0的斜率为-b2,直线x-a2y=0的斜率为,则(-b2)·=-1,故两直线垂直.2.已知直线l:x·cosα+y·sinα=2(α∈R),圆C:x2+y2+2cosθ·x+2sin θ·y=0(θ∈R),则直线l与圆C的位置关系是( )A.相交B.相切C.相离D.相切或相离【解析】选D.x2+y2+2cosθ·x+2sinθ·y=(x+cosθ)2+(y+sinθ)2=1,所以圆的圆心坐标为(-cosθ,-sinθ),半径为1,则直线到圆心的距离为d==|2+cos(α-θ)|∈[1,3],所以直线l与圆C的位置关系是相切或相离.3.命题p:0<r<4,命题q:圆(x-3)2+(y-5)2=r2(r>0)上恰好有两个点到直线4x-3y=2的距离等于1,则q是p的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解题导引】先求出圆心到直线的距离,因为到直线4x-3y=2的距离等于1有两条,数形结合可得答案.【解析】选A.因为圆心(3,5)到直线4x-3y=2的距离等于1,所以圆(x-3)2+(y-5)2=r2上恰好有两个点到直线4x-3y=2的距离等于1时,0<r<2,所以q是p充分不必要条件.【加固训练】动圆C经过点F(1,0),并且与直线x=-1相切,若动圆C 与直线y=x+2+1总有公共点,则圆C的面积( )A.有最大值8πB.有最小值2πC.有最小值3πD.有最小值4π【解析】选D.由题意圆C的圆心在以F为焦点,以x=-1为准线的抛物线上,抛物线方程为y2=4x.因为与直线y=x+2+1总有公共点,所以圆C的面积有最小值,最小半径为抛物线上的点到直线的距离的最小值.设与直线y=x+2+1平行且与抛物线相切的直线方程为y=x+t,由得y2-4y+4t=0,由Δ=0得t=1.所以直线y=x+1与y=x+2+1间的距离=2即为最小半径. 所以圆C的最小面积为4π.4.已知直线x+y-k=0(k>0)与圆x2+y2=4交于不同的两点A,B,O为坐标原点,且有|+|≥||,则k的取值范围是( )A.(,+∞)B.[,2)C.[,+∞)D.[,2)【解析】选B.由已知得圆心到直线的距离小于半径,即<2,由k>0得0<k<2. ①如图,又由|+|≥||得|OM|≥|BM|⇒∠MBO≥,因为|OB|=2,所以|OM|≥1,故≥1⇒k≥, ②综合①②得≤k<2.二、填空题(每小题5分,共10分)5.已知直线x+y-a=0与圆x2+y2=2交于A,B两点,O是坐标原点,向量,满足|2-3|=|2+3|,则实数a的值为________.【解析】由|2-3|=|2+3|得·=0,即OA⊥OB,则直线x+y-a=0过圆x2+y2=2与x轴、y轴正半轴或负半轴的交点,故a=±.答案:±【加固训练】已知直线l1与圆x2+y2+2y=0相切,且与直线l2:3x+4y-6=0平行,则直线l1的方程是________.【解析】依题意,设所求直线l1的方程是3x+4y+b=0,则由直线l1与圆x2+(y+1)2=1相切,可得圆心(0,-1)到直线3x+4y+b=0的距离为1,即有=1,解得b=-1或b=9.因此,直线l1的方程是3x+4y-1=0或3x+4y+9=0.答案:3x+4y-1=0或3x+4y+9=06.已知圆C的圆心与抛物线y2=4x的焦点关于直线y=x对称,直线4x-3y-2=0与圆C相交于A,B两点,且=6,则圆C的方程为________.【解题导引】先求圆心坐标,再利用点到直线的距离公式求圆心到直线的距离,最后根据勾股定理求圆的半径.【解析】设所求圆的半径为r,抛物线y2=4x的焦点坐标为(1,0),则圆C 的圆心坐标是(0,1),圆心到直线4x-3y-2=0的距离d==1, 故圆C的方程是x2+(y-1)2=10.答案:x2+(y-1)2=10【加固训练】已知A(-2,0),B(0,2),实数k是常数,M,N是圆x2+y2+kx=0上两个不同点,P是圆x2+y2+kx=0上的动点,如果M,N关于直线x-y-1=0对称,则△PAB面积的最大值是________.【解析】依题意得圆x2+y2+kx=0的圆心位于直线x-y-1=0上,于是有--1=0,即k=-2,因此圆心坐标是(1,0),半径是1.由题意可得|AB|=2,直线AB的方程是-+=1,即x-y+2=0,圆心(1,0)到直线AB的距离等于=,点P到直线AB的距离的最大值是+1,△PAB面积的最大值为×2×=3+.答案:3+三、解答题(7题12分,8题13分,共25分)7.已知半径为2,圆心在直线y=-x+2上的圆C.(1)当圆C经过点A(2,2),且与y轴相切时,求圆C的方程.(2)已知E(1,1),F(1,-3),若圆C上存在点Q,使|QF|2-|QE|2=32,求圆心的横坐标a的取值范围.【解析】(1)因为圆心在直线y=-x+2上,半径为2,所以可设圆的方程为(x-a)2+[y-(-a+2)]2=4,其圆心坐标为(a,-a+2).因为圆C经过点A(2,2),且与y轴相切,所以有解得a=2,所以圆C的方程是(x-2)2+y2=4.(2)设Q(x,y),由|QF|2-|QE|2=32,得(x-1)2+(y+3)2-[(x-1)2+(y-1)2]=32,解得y=3,所以点Q在直线y=3上.又因为点Q在圆C:(x-a)2+[y-(-a+2)]2=4上,所以圆C与直线y=3必须有公共点.因为圆C的圆心的纵坐标为-a+2,半径为2,所以圆C与直线y=3有公共点的充要条件是1≤-a+2≤5,即-3≤a≤1.所以圆心的横坐标a的取值范围是[-3,1].8.已知△ABC的三个顶点A(-1,0),B(1,0),C(3,2),其外接圆为☉H.(1)若直线l过点C,且被☉H截得的弦长为2,求直线l的方程.(2)对于线段BH上的任意一点P,若在以点C为圆心的圆上都存在不同的两点M,N,使得点M是线段PN的中点,求☉C的半径r的取值范围. 【解析】(1)线段AB的垂直平分线方程为x=0,线段BC的垂直平分线方程为x+y-3=0,所以外接圆圆心为H(0,3),半径为=,☉H的方程为x2+(y-3)2=10.设圆心H到直线l的距离为d,因为直线l被☉H截得的弦长为2,所以d==3.当直线l垂直于x轴时,显然符合题意,即x=3为所求;当直线l不垂直于x轴时,设直线l的方程为y-2=k(x-3),则=3,解得k=,直线l的方程为4x-3y-6=0.综上,直线l的方程为x=3或4x-3y-6=0.(2)直线BH的方程为3x+y-3=0,设P(m,n)(0≤m≤1),N(x,y),因为点M是线段PN的中点,所以M,又M,N都在半径为r的☉C上,所以即因为此关于x,y的方程组有解,即以(3,2)为圆心,r为半径的圆与以(6-m,4-n)为圆心,2r为半径的圆有公共点,所以(2r-r)2≤(3-6+m)2+(2-4+n)2≤(r+2r)2,又3m+n-3=0,所以r2≤10m2-12m+10≤9r2对∀m∈[0,1]成立.而f(m)=10m2-12m+10在[0,1]上的值域为,故r2≤且10≤9r2.又线段BH与圆C无公共点,所以(m-3)2+(3-3m-2)2>r2对∀m∈[0,1]成立,即r2<.故☉C的半径r的取值范围为.【加固训练】已知过原点的动直线l与圆C1:x2+y2-6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标.(2)求线段AB的中点M的轨迹C的方程.(3)是否存在实数k,使得直线l:y=k(x-4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.【解析】方法一:(1)由x2+y2-6x+5=0得(x-3)2+y2=4,所以圆C1的圆心坐标为(3,0).(2)设M(x,y),因为点M为弦AB的中点,即C1M⊥AB,所以·k AB=-1,即·=-1,所以线段AB的中点M的轨迹的方程为+y2=.(3)由(2)知点M的轨迹是以C为圆心,r=为半径的部分圆弧EF(如图所示,不包括两端点),且E,F,又直线l:y=k(x-4)过定点D(4,0),当直线l与圆C相切时,由=得k=±,又k DE=-k DF=-=,结合上图可知当k∈∪[-,]时,直线l:y=k(x-4)与曲线C只有一个交点.方法二:(1)把圆C1的方程化为标准方程得(x-3)2+y2=4,所以圆C1的圆心坐标为C1(3,0).(2)设M(x,y),因为A,B为过原点的直线l与圆C1的交点,且M为AB 的中点,所以由圆的性质知:MC1⊥MO,所以·=0.又因为=(3-x,-y),=(-x,-y),所以由向量的数量积公式得x2-3x+y2=0.易知直线l的斜率存在,所以设直线l的方程为y=mx,当直线l与圆C1相切时,d==2,解得m=±.把相切时直线l的方程代入圆C1的方程化简得9x2-30x+25=0,解得x=.当直线l经过圆C1的圆心时,M的坐标为(3,0).又因为直线l与圆C1交于A,B两点,M为AB的中点,所以<x≤3.所以点M的轨迹C的方程为x2-3x+y2=0,其中<x≤3,其轨迹为一段圆弧.(3)由题意知直线l表示过定点(4,0),斜率为k的直线,把直线l的方程代入轨迹C的方程x2-3x+y2=0,其中<x≤3,化简得(k2+1)x2-(3+8k2)x+16k2=0,其中<x≤3,记f(x)=(k2+1)x2-(3+8k2)x+16k2,其中<x≤3.若直线l与曲线C只有一个交点,令f(x)=0.当Δ=0时,解得k2=,即k=±,此时方程可化为25x2-120x+144=0,即(5x-12)2=0,解得x=∈,所以k=±满足条件.当Δ>0时,①若x=3是方程的解,则f(3)=0⇒k=0⇒另一根为x=0<,故在区间上有且仅有一个根,满足题意.②若x=是方程的解,则f=0⇒k=±⇒另外一根为x=,<≤3,故在区间上有且仅有一个根,满足题意.③若x=3和x=均不是方程的解,则方程在区间上有且仅有一个根,只需f·f(3)<0⇒-<k<.故在区间上有且仅有一个根,满足题意.综上所述,k的取值范围是-≤k≤或k=±.关闭Word文档返回原板块。
2017年高考数学—立体几何(解答+答案)
2017年高考数学—立体几何(解答+答案)1.(17全国1理18.(12分))如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=o .(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,90APD ∠=o ,求二面角A -PB -C 的余弦值.2.(17全国1文18.(12分))如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=o(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,90APD ∠=o ,且四棱锥P-ABCD 的体积为83,求该四棱锥的侧面积.如图,四棱锥P ABCD -中,侧面PAD 为等比三角形且垂直于底面ABCD ,o 1,90,2AB BC AD BAD ABC ==∠=∠= E 是PD 的中点. (1)证明:直线//CE 平面PAB(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为o 45 ,求二面角M AB D --的余弦值4.17全国2文18.(12分)如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,12AB BC AD ==,90BAD ABC ∠=∠=o 。
(1) 证明:直线//BC 平面PAD ; (2) 若PCD ∆的面积为27,求四棱锥P ABCD -的体积。
如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形.ABDCBD ??,AB BD =.(1)证明:平面ACD ^平面ABC ;(2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分.求二面角D AE C --的余弦值.6.(17全国3文19.(12分))如图,四面体ABCD 中,△ABC 是正三角形,AD =CD .(1)证明:AC ⊥BD ;(2)已知△ACD 是直角三角形,AB =BD .若E 为棱BD 上与D 不重合的点,且AE ⊥EC ,求四面体ABCE 与四面体ACDE 的体积比.DABCE7.(17北京理(16)(本小题14分))如图,在四棱锥P ABCD -中,底面ABCD 为正方形,平面PAD ⊥平面ABCD ,点M 在线段PB 上,//PD 平面,6,4MAC PA PD AB ===(I )求证:M 为PB 的中点; (II )求二面角B PD A --的大小;(III )求直线MC 与平面BDP 所成角的正弦值.8.(17北京文(18)(本小题14分))如图,在三棱锥P ABC -中,,,,2PA AB PA BC AB BC PA AB BC ⊥⊥⊥===,D 为线段AC 的中点,E 为线段PC 上一点.(Ⅰ)求证:PA BD ⊥;(Ⅱ)求证:平面BDE ⊥平面PAC ;(Ⅲ)当//PA 平面BDE 时,求三棱锥E BCD -的体积.9.(17山东理17.)如图,几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以AB 边所在直线为旋转轴旋转120︒得到的,G 是»DF的中点. (Ⅰ)设P 是»CE上的一点,且AP BE ⊥,求CBP ∠的大小; (Ⅱ)当3AB =,2AD =,求二面角E AG C --的大小.10.(17山东文(18)(本小题满分12分))由四棱柱1111ABCD A B C D -截去三棱锥111C B CD -后得到的几何体如图所示,四边形ABCD 为正方形,O 为AC 与BD 的交点,E 为AD 的中点,1A E ⊥平面ABCD, (Ⅰ)证明:1A O ∥平面11B CD ;(Ⅱ)设M 是OD 的中点,证明:平面1A EM ⊥平面11B CD .11.(17天津理(17)(本小题满分13分))如图,在三棱锥P -ABC 中,PA ⊥底面ABC ,90BAC ∠=︒.点D ,E ,N 分别为棱PA ,P C ,BC 的中点,M 是线段AD 的中点,PA =AC =4,AB =2.(Ⅰ)求证:MN ∥平面BDE ; (Ⅱ)求二面角C -EM -N 的正弦值;(Ⅲ)已知点H 在棱PA 上,且直线NH 与直线BE 所成角的余弦值为7,求线段AH 的长.12.(17天津文(17)(本小题满分13分))如图,在四棱锥P ABCD -中,AD ⊥平面PDC ,AD BC ∥,PD PB ⊥,1AD =,3BC =,4CD =,2PD =.(Ⅰ)求异面直线AP 与BC 所成角的余弦值; (Ⅱ)求证:PD ⊥平面PBC ;(Ⅲ)求直线AB 与平面PBC 所成角的正弦值.如图,已知四棱锥P–ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.(Ⅰ)证明:CE∥平面PAB;(Ⅱ)求直线CE与平面PBC所成角的正弦值.14.(17江苏15.(本小题满分14分))-中,AB⊥AD,BC⊥BD,平如图,在三棱锥A BCD面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD。
【师说】2017届高考数学(文)二轮复习 课时巩固过关练(六) Word版含解析
课时巩固过关练(六) 导数的简单应用一、选择题1.(2016·广东六校联考)曲线y =ln x -2x 在点(1,-2)处的切线与坐标轴所围成的三角形的面积是( ) A.12 B.34 C .1 D .2解析:由题意得y ′=1x-2,则在点M (1,-2)处的切线斜率k =-1,故切线方程为y +2=-(x -1),即y =-x -1.令x =0,得y =-1;令y =0,得x =-1,∴切线与坐标轴围成三角形的面积S =12×1×1=12,故选A. 答案:A2.(2016·安徽安庆期中)已知函数f (x )的导函数为f ′(x ),且满足关系式f (x )=2x 3+x 2f ′(1)+ln x ,则f ′(2)的值等于( )A .-72 B.72C .-7D .7解析:由题意,f ′(x )=6x 2+2xf ′(1)+1x,则f ′(1)=6+2f ′(1)+1, ∴f ′(1)=-7,故f ′(2)=24+2×2×(-7)+12=-72,故选A. 答案:A3.(2016·河北期中)函数f (x )=2x log 2e -2ln x -ax +3的一个极值点在区间(1,2)内,则实数a 的取值范围是( )A .(1,3)B .(1,2)C .(0,3)D .(0,2)解析:因为f ′(x )=2x -2x-a ,若函数的一个极值点在区间(1,2)内,则f ′(1)f ′(2)<0,即(-a )(3-a )<0,解得0<a <3,所以选C.答案:C4.如果函数y =f (x )的导函数的图象如图所示,给出下列判断:①函数y =f (x )在区间⎝⎛⎭⎫-3,-12内单调递增 ②函数y =f (x )在区间⎝⎛⎭⎫-12,3内单调递减 ③函数y =f (x )在区间(4,5)内单调递增④当x =2时,函数y =f (x )有极小值⑤当x =-12时,函数y =f (x )有极大值. 则上述判断中正确的是( )A .①②B .②③C .③④⑤D .③ 解析:当x ∈(-3,-2)时,f ′(x )<0,f (x )单调递减,①错;当x ∈⎝⎛⎭⎫-12,2时,f ′(x )>0,f (x )单调递增,当x ∈(2,3)时,f ′(x )<0,f (x )单调递减,②错;当x =2时,函数y =f (x )有极大值,④错;当x =-12时,函数y =f (x )无极值,⑤错.故选D. 答案:D5.(2016·山东东营一中期中)设f (x )是一个三次函数,f ′(x )为其导函数,如图所示的是y =x ·f ′(x )的图象的一部分,则f (x )的极大值与极小值分别是( )A .f (1)与f (-1)B .f (-1)与f (1)C .f (-2)与f (2)D .f (2)与f (-2)解析:由y =x ·f ′(x )的图象知,x ∈(-∞,-2)时,f ′(x )>0;x ∈(-2,2)时,f ′(x )≤0;x ∈(2,+∞)时,f ′(x )>0,∴当x =-2时,f (x )有极大值f (-2);当x =2时,f (x )有极小值f (2),故选C.答案:C二、填空题6.(2015·湖北枣阳一中月考)函数y =1x在x =4处的导数是__________. 解析:∵y ′=-12x 3,∴y ′|x =4=-1243=-116,故答案为-116. 答案:-1167.(2016·四川眉山中学期中改编)设点P 是曲线y =x 3-3x +23上的任意一点,点P 处切线倾斜角为α,则角α的取值范围是__________.解析:∵y ′=3x 2-3≥-3,∴tan α≥- 3. 又0≤α<π,∴0≤α<π2或2π3≤α<π. 则角α的取值范围是⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫2π3,π. 答案:⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫2π3,π 8.设方程x 3-3x =k 有3个不等的实根,则实数k 的取值范围是__________.解析:设f (x )=x 3-3x ,对函数求导,f ′(x )=3x 2-3=0,x =-1或x =1.当x <-1时,f (x )单调递增;当-1<x <1时,f (x )单调递减;当x >1时,f (x )单调递增,f (-1)=2,f (1)=-2.方程x 3-2x -k 要有三个不等实根,则直线y =k 与f (x )的图象有三个交点,∴-2<k <2,故答案为(-2,2).答案:(-2,2)三、解答题9.(2016·北京海淀期中)已知函数f (x )=13x 3+x 2+ax +1. (1)若曲线y =f (x )在点(0,1)处切线的斜率为-3,求函数f (x )的单调区间;(2)若函数f (x )在区间[-2,a ]上单调递增,求a 的取值范围.解:(1)因为f (0)=1,所以曲线y =f (x )经过点(0,1),又f ′(x )=x 2+2x +a ,曲线y =f (x )在点(0,1)处切线的斜率为-3,所以f ′(0)=a =-3,所以f ′(x )=x 2+2x -3.当x 变化时,f ′(x ),f (x )的变化情况如下表:x (-∞,-3) -3 (-3,1) 1 (1,+∞) f ′(x ) + 0 - 0 +单调递减区间为(-3,1).(2)因为函数f (x )在区间[-2,a ]上单调递增,所以f ′(x )≥0对x ∈[-2,a ]成立,只要f ′(x )=x 2+2x +a 在[-2,a ]上的最小值大于等于0即可.因为函数f ′(x )=x 2+2x +a 的对称轴为直线x =-1,当-2≤a ≤-1时,f ′(x )在[-2,a ]上的最小值为f ′(a ),解f ′(a )=a 2+3a ≥0,得a ≥0或a ≤-3,所以此种情形不成立;当a >-1时,f ′(x )在[-2,a ]上的最小值为f ′(-1),解f ′(-1)=1-2+a ≥0,得a ≥1,所以a ≥1.综上,实数a 的取值范围是{a |a ≥1}.10.(2016·湖南株洲统测)设函数f (x )=a ln x +b (x 2-3x +2),其中a ,b ∈R .(1)若a =b ,讨论f (x )极值(用a 表示);(2)当a =1,b =-12,函数g (x )=2f (x )-(λ+3)x +2,若x 1,x 2(x 1≠x 2)满足g (x 1)=g (x 2)且x 1+x 2=2x 0,证明:g ′(x 0)≠0.解:(1)函数f (x )的定义域为(0,+∞),∵a =b ,∴f (x )=a ln x +a (x 2-3x +2),∴f ′(x )=a x +a (2x -3)=a (x -1)(2x -1)x. ①a =0时,f (x )=0,所以函数f (x )无极值;②当a >0时,f (x )在⎝⎛⎭⎫0,12和(1,+∞)上单调递增,在⎝⎛⎭⎫12,1上单调递减, ∴f (x )的极大值为f ⎝⎛⎭⎫12=-a ln2+34a ,f (x )的极小值为f (1)=0; ③当a <0时,f (x )在⎝⎛⎭⎫0,12和(1,+∞)上单调递减,在⎝⎛⎭⎫12,1上单调递增, ∴f (x )的极小值为f ⎝⎛⎭⎫12=-a ln2+34a ,f (x )的极大值为f (1)=0. 综上所述:当a =0时,函数f (x )无极值;当a >0时,函数f (x )的极大值为-a ln2+34a ,函数f (x )的极小值为0; 当a <0时,函数f (x )的极小值为-a ln 2+34a ,函数f (x )的极大值为0. (2)g (x )=2ln x -x 2-λx ,g ′(x )=2x -2x -λ.假设结论不成立,则有 ⎩⎪⎨⎪⎧ 2ln x 1-x 21-λx 1=2ln x 2-x 22-λx 2,①x 1+x 2=2x 0,②2x 0-2x 0-λ=0,③由①,得2ln x 1x 2-(x 21-x 22)-λ(x 1-x 2)=0,∴λ=2lnx 1x 2x 1-x 2-2x 0, 由③,得λ=2x 0-2x 0,∴ln x 1x 2x 1-x 2=1x 0,即ln x 1x 2x 1-x 2=2x 1+x 2,即ln x 1x 2=2x 1x 2-2x 1x 2+1④. 令t =x 1x 2,不妨设x 1<x 2,u (t )=ln t -2t -2t +1(0<t <1),则u ′(t )=(t -1)2t (t +1)2>0, ∴u (t )在0<t <1上是增函数,u (t )<u (1)=0,则ln x 1x 2<x 1x 2-2x 1x 2+1, ∴④式不成立,与假设矛盾.∴g ′(x 0)≠0.11.(2016·北京朝阳期末)已知函数f (x )=ax +ln x ,其中a ∈R .(1)若f (x )在区间[1,2]上为增函数,求a 的取值范围;(2)当a =-e 时.①证明:f (x )+2≤0;②试判断方程|f (x )|=ln x x +32是否有实数解,并说明理由. 解:函数f (x )的定义域为x ∈(0,+∞),f ′(x )=a +1x. (1)因为f (x )在区间[1,2]上为增函数,所以f ′(x )≥0在x ∈[1,2]上恒成立,即f ′(x )=a+1x ≥0,a ≥-1x 在x ∈[1,2]上恒成立,则a ≥-12.故a 的取值范围为⎣⎡⎭⎫-12,+∞. (2)当a =-e 时,f (x )=-e x +ln x ,f ′(x )=-e x +1x. ①令f ′(x )=0,得x =1e.令f ′(x )>0,得x ∈⎝⎛⎭⎫0,1e ,所以函数f (x )在⎝⎛⎭⎫0,1e 上单调递增; 令f ′(x )<0,得x ∈⎝⎛⎭⎫1e ,+∞,所以函数f (x )在⎝⎛⎭⎫1e ,+∞上单调递减. 所以f (x )max =f ⎝⎛⎭⎫1e =-e·1e +ln 1e=-2.所以f (x )+2≤0成立. ②由①知,f (x )max =-2,所以|f (x )|≥2.设g (x )=ln x x +32,x ∈(0,+∞),所以g ′(x )=1-ln x x 2. 令g ′(x )=0,得x =e.令g ′(x )>0,得x ∈(0,e),所以函数g (x )在(0,e)上单调递增;令g ′(x )<0,得x ∈(e ,+∞),所以函数g (x )在(e ,+∞)上单调递减.所以g (x )max =g (e)=lne e +32=1e +32<2,即g (x )<2. 所以|f (x )|>g (x ),即|f (x )|>ln x x +32. 所以方程|f (x )|=ln x x +32没有实数解.。
【师说】2017高考数学(理科)二轮专题复习 课时巩固过关练七 导数的综合应用 含解析
2e⎣⎭x)=e x(2x-1),由题知存在唯一的整数x0,使得所以f(x)单调递增,且至少存在一个数使f(x)<0,至少存在一个数使f(x)>0,所以f(x)=x3+ax+b必有一个零点,即方程x3+ax+b=0仅有一根,故④⑤正确;当a<0时,若a=-3,则f′(x)=3x2-3=3(x+1)·(x-1),易知,f(x)在(-∞,-1),(1,+∞)上单调递增,在[-1,1]上单调递减,所以f(x)极大值=f(-1)=-1+3+b=b+2,f(x)最小值=f(1)=1-3+b =b-2,要使方程仅有一根,则f(x)极大值=f(-1)=-1+3+b=b+2<0或者f(x)极小值=f(1)=1-3+b=b-2>0,解得b<-2或b>2,故①③正确,所以使得三次方程仅有一个实根的是①③④⑤.答案:①③④⑤三、解答题kG(x0)<G(0)=0,显然所要证不等式不恒成立,综上所述可知k的最大值为10.(2015·福建高考)已知函数有|f(x1)-f(x2)|≤e-1,求m的取值范围.解:(1)f′(x)=m(e mx-1)+2x.若m≥0,则当x∈(-∞,0)时,e mx -1≤0,f′(x)<0;当x∈(0,+∞)时,e mx-1≥0,f′(x)>0.若m<0,则当x∈(-∞,0)时,e mx -1>0,f′(x)<0;当x∈(0,+∞)时,e mx-1<0,f′(x)>0.所以,f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增.(2)由(1)知,对任意的m,f(x)在[-1,0]单调递减,在[0,1]单调递增,故f(x)在x=0处取得最小值.所以对于任意x1,x 2∈[-1,1],|f (x 1)-f (x 2)|≤e -1的充要条件是⎩⎪⎨⎪⎧ f (1)-f (0)≤e -1,f (-1)-f (0)≤e -1,即⎩⎪⎨⎪⎧e m -m ≤e -1,e -m +m ≤e -1.① 设函数g (t )=e t-t -e +1,则g ′(t )=e t-1. 当t <0时,g ′(t )<0;当t >0时, g ′(t )>0.故g (t )在(-∞,0)单调递减,在(0,+∞)单调递增.又g (1)=0,g (-1)=e -1+2-e<0, 故当t ∈[-1,1]时,g (t )≤0.当m ∈[-1,1]时,g (m )≤0,g (-m )≤0,即①式成立;当m>1时,由g(t)的单调性知,g(m)>0,即e m-m>e-1;当m<-1时,g(-m)>0,即e-m+m>e-1.综上,m的取值范围是[-1,1].When you are old and grey and full of sleep,And nodding by the fire, take down this book,And slowly read, and dream of the soft lookYour eyes had once, and of their shadows deep;How many loved your moments of glad grace,And loved your beauty with love false or true,But one man loved the pilgrim soul in you,And loved the sorrows of your changing face;And bending down beside the glowing bars,Murmur, a little sadly, how love fledAnd paced upon the mountains overheadAnd hid his face amid a crowd of stars.The furthest distance in the worldIs not between life and deathBut when I stand in front of youYet you don't know thatI love you.The furthest distance in the worldIs not when I stand in front of youYet you can't see my loveBut when undoubtedly knowing the love from both Yet cannot be together.The furthest distance in the worldIs not being apart while being in loveBut when I plainly cannot resist the yearningYet pretending you have never been in my heart. The furthest distance in the worldIs not struggling against the tidesBut using one's indifferent heartTo dig an uncrossable riverFor the one who loves you.。
2017-2019年高考真题数学(理)分项汇编_专题06 立体几何(解答题)
专题06立体几何(解答题)1.【2019年高考全国Ⅰ卷理数】如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ; (2)求二面角A −MA 1−N 的正弦值.【答案】(1)见解析;(2)5. 【解析】(1)连结B 1C ,ME . 因为M ,E 分别为BB 1,BC 的中点, 所以ME ∥B 1C ,且ME =12B 1C . 又因为N 为A 1D 的中点, 所以ND =12A 1D . 由题设知A 1B 1=DC ,可得B 1C =A 1D ,故ME =ND , 因此四边形MNDE 为平行四边形,MN ∥ED . 又MN ⊄平面EDC 1, 所以MN ∥平面C 1DE . (2)由已知可得DE ⊥DA .以D 为坐标原点,DA 的方向为x 轴正方向,建立如图所示的空间直角坐标系D −xyz ,则(2,0,0)A ,A 1(2,0,4),2)M ,(1,0,2)N ,1(0,0,4)A A =-,1(12)A M =--,1(1,0,2)A N =--,(0,MN =.设(,,)x y z =m 为平面A 1MA 的法向量,则1100A M A A ⎧⋅=⎪⎨⋅=⎪⎩m m ,所以2040x z z ⎧-+-=⎪⎨-=⎪⎩,.可取=m .设(,,)p q r =n 为平面A 1MN 的法向量,则100MN A N ⎧⋅=⎪⎨⋅=⎪⎩,.n n所以020p r ⎧=⎪⎨--=⎪⎩,.可取(2,0,1)=-n .于是cos ,||⋅〈〉===‖m n m n m n , 所以二面角1A MA N --【名师点睛】本题考查线面平行关系的证明、空间向量法求解二面角的问题.求解二面角的关键是能够利用垂直关系建立空间直角坐标系,从而通过求解法向量夹角的余弦值来得到二面角的正弦值,属于常规题型.2.【2019年高考全国Ⅱ卷理数】如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,求二面角B –EC –C 1的正弦值.【答案】(1)证明见解析;(2)2. 【解析】(1)由已知得,11B C ⊥平面11ABB A ,BE ⊂平面11ABB A , 故11B C ⊥BE .又1BE EC ⊥,所以BE ⊥平面11EB C .(2)由(1)知190BEB ∠=︒.由题设知Rt ABE △≌11Rt A B E △,所以45AEB ∠=︒, 故AE AB =,12AA AB =.以D 为坐标原点,DA 的方向为x 轴正方向,||DA 为单位长,建立如图所示的空间直角坐标系D –xyz ,则C (0,1,0),B (1,1,0),1C (0,1,2),E (1,0,1),(1,0,0)CB =,(1,1,1)CE =-,1(0,0,2)CC =.设平面EBC 的法向量为n =(x ,y ,x ),则0,0,CB CE ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,0,x x y z =⎧⎨-+=⎩所以可取n =(0,1,1)--.设平面1ECC 的法向量为m =(x ,y ,z ),则10,0,CC CE ⎧⋅=⎪⎨⋅=⎪⎩m m 即20,0.z x y z =⎧⎨-+=⎩ 所以可取m =(1,1,0). 于是1cos ,||||2⋅<>==-n m n m n m .所以,二面角1B EC C --. 【名师点睛】本题考查了利用线面垂直的性质定理证明线线垂直以及线面垂直的判定,考查了利用空间向量求二角角的余弦值,以及同角的三角函数关系,考查了数学运算能力.3.【2019年高考全国Ⅲ卷理数】图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°,将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2. (1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的二面角B −CG −A 的大小.【答案】(1)见解析;(2)30.【解析】(1)由已知得AD BE ,CG BE ,所以AD CG ,故AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB ⊥BE ,AB ⊥BC ,故AB ⊥平面BCGE . 又因为AB ⊂平面ABC ,所以平面ABC ⊥平面BCGE .(2)作EH ⊥BC ,垂足为H .因为EH ⊂平面BCGE ,平面BCGE ⊥平面ABC ,所以EH ⊥平面ABC . 由已知,菱形BCGE 的边长为2,∠EBC =60°,可求得BH =1,EH.以H 为坐标原点,HC 的方向为x 轴的正方向,建立如图所示的空间直角坐标系H –xyz ,则A (–1,1,0),C (1,0,0),G (2,0),CG =(1,0),AC =(2,–1,0). 设平面ACGD 的法向量为n =(x ,y ,z ),则0,0,CG AC ⎧⋅=⎪⎨⋅=⎪⎩n n即0,20.x x y ⎧+=⎪⎨-=⎪⎩ 所以可取n =(3,6,又平面BCGE 的法向量可取为m =(0,1,0),所以cos ,||||2⋅〈〉==n m n m n m . 因此二面角B –CG –A 的大小为30°.【名师点睛】本题是很新颖的立体几何考题,首先是多面体折叠问题,考查考生在折叠过程中哪些量是不变的,再者折叠后的多面体不是直棱柱,最后通过建系的向量解法将求二面角转化为求二面角的平面角问题,突出考查考生的空间想象能力.4.【2019年高考北京卷理数】如图,在四棱锥P –ABCD 中,PA ⊥平面ABCD ,AD ⊥CD ,AD ∥BC ,PA =AD =CD =2,BC =3.E 为PD 的中点,点F 在PC 上,且13PF PC =. (1)求证:CD ⊥平面PAD ; (2)求二面角F –AE –P 的余弦值; (3)设点G 在PB 上,且23PG PB =.判断直线AG 是否在平面AEF 内,说明理由.【答案】(1)见解析;(2)3;(3)见解析. 【解析】(1)因为PA ⊥平面ABCD ,所以PA ⊥CD . 又因为AD ⊥CD ,所以CD ⊥平面PAD . (2)过A 作AD 的垂线交BC 于点M .因为PA ⊥平面ABCD ,所以PA ⊥AM ,PA ⊥AD .如图建立空间直角坐标系A −xyz ,则A (0,0,0),B (2,-1,0),C (2,2,0),D (0,2,0),P (0,0,2).因为E 为PD 的中点,所以E (0,1,1). 所以(0,1,1),(2,2,2),(0,0,2)AE PC AP ==-=.所以1222224,,,,,3333333PF PC AF AP PF ⎛⎫⎛⎫==-=+= ⎪ ⎪⎝⎭⎝⎭.设平面AEF 的法向量为n =(x ,y ,z ),则0,0,AE AF ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,2240.333y z x y z +=⎧⎪⎨++=⎪⎩ 令z =1,则1,1y x =-=-.于是=(1,1,1)--n .又因为平面PAD 的法向量为p =(1,0,0),所以cos ,||⋅〈〉==‖n p n p n p . 由题知,二面角F −AE −P.(3)直线AG 在平面AEF 内. 因为点G 在PB 上,且2,(2,1,2)3PG PB PB ==--, 所以2424422,,,,,3333333PG PB AG AP PG ⎛⎫⎛⎫==--=+=- ⎪ ⎪⎝⎭⎝⎭. 由(2)知,平面AEF 的法向量=(1,1,1)--n . 所以4220333AG ⋅=-++=n . 所以直线AG 在平面AEF 内.【名师点睛】(1)由题意利用线面垂直的判定定理即可证得题中的结论;(2)建立空间直角坐标系,结合两个半平面的法向量即可求得二面角F −AE −P 的余弦值;(3)首先求得点G 的坐标,然后结合平面AEF 的法向量和直线AG 的方向向量即可判断直线是否在平面内.5.【2019年高考天津卷理数】如图,AE ⊥平面A B C D ,,CF AE AD BC ∥∥,,AD AB ⊥1,2AB AD AE BC ====.(1)求证:BF ∥平面ADE ;(2)求直线CE 与平面BDE 所成角的正弦值; (3)若二面角E BD F --的余弦值为13,求线段CF 的长.【答案】(1)见解析;(2)49;(3)87. 【解析】依题意,可以建立以A 为原点,分别以AB AD AE ,,的方向为x 轴,y 轴,z 轴正方向的空间直角坐标系(如图),可得(0,0,0),(1,0,0),(1,2,0),(0,1,0)A B C D ,(0,0,2)E .设(0)C F h h =>>,则()1,2,F h .(1)依题意,(1,0,0)AB =是平面ADE 的法向量,又(0,2,)BF h =,可得0BF AB ⋅=,又因为直线BF ⊄平面ADE ,所以BF ∥平面ADE . (2)依题意,(1,1,0),(1,0,2),(1,2,2)BD BE CE =-=-=--.设(,,)x y z =n 为平面BDE 的法向量,则0,0,BD BE ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,20,x y x z -+=⎧⎨-+=⎩不妨令1z =,可得(2,2,1)=n .因此有4cos ,9||||CE CE CE ⋅==-n n n .所以,直线CE 与平面BDE 所成角的正弦值为49. (3)设(,,)x y z =m 为平面BDF 的法向量,则0,0,BD BF ⎧⋅=⎪⎨⋅=⎪⎩m m 即0,20,x y y hz -+=⎧⎨+=⎩ 不妨令1y =,可得21,1,h ⎛⎫=-⎪⎝⎭m .由题意,有||1cos ,||||3⋅〈〉===m n m n m n ,解得87h =.经检验,符合题意. 所以,线段CF 的长为87.【名师点睛】本小题主要考查直线与平面平行、二面角、直线与平面所成的角等基础知识.考查用空间向量解决立体几何问题的方法.考查空间想象能力、运算求解能力和推理论证能力.6.【2019年高考江苏卷】如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.【答案】(1)见解析;(2)见解析.【解析】(1)因为D,E分别为BC,AC的中点,所以ED∥AB.在直三棱柱ABC−A1B1C1中,AB∥A1B1,所以A1B1∥ED.又因为ED⊂平面DEC1,A1B1 平面DEC1,所以A1B1∥平面DEC1.(2)因为AB=BC,E为AC的中点,所以BE⊥AC.因为三棱柱ABC−A1B1C1是直棱柱,所以CC1⊥平面ABC.又因为BE⊂平面ABC,所以CC1⊥BE.因为C1C⊂平面A1ACC1,AC⊂平面A1ACC1,C1C∩AC=C,所以BE ⊥平面A 1ACC 1.因为C 1E ⊂平面A 1ACC 1,所以BE ⊥C 1E .【名师点睛】本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力.7.【2019年高考浙江卷】如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是AC ,A 1B 1的中点. (1)证明:EF BC ⊥;(2)求直线EF 与平面A 1BC 所成角的余弦值.【答案】(1)见解析;(2)35. 【解析】方法一:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC . 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC , 所以,A 1E ⊥平面ABC ,则A 1E ⊥BC . 又因为A 1F ∥AB ,∠ABC =90°,故BC ⊥A 1F . 所以BC ⊥平面A 1EF . 因此EF ⊥BC .(2)取BC 中点G ,连接EG ,GF ,则EGFA 1是平行四边形. 由于A 1E ⊥平面ABC ,故A 1E ⊥EG ,所以平行四边形EGFA 1为矩形. 由(1)得BC ⊥平面EGFA 1,则平面A 1BC ⊥平面EGFA 1, 所以EF 在平面A 1BC 上的射影在直线A 1G 上.连接A 1G 交EF 于O ,则∠EOG 是直线EF 与平面A 1BC 所成的角(或其补角).不妨设AC =4,则在Rt △A 1EG 中,A 1E ,EG由于O 为A 1G 的中点,故12A G EO OG ===所以2223cos 25EO OG EG EOG EO OG +-∠==⋅.因此,直线EF 与平面A 1BC 所成角的余弦值是35. 方法二:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC . 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC .如图,以点E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系E –xyz .不妨设AC =4,则A 1(0,0,B1,0),1B,3,22F ,C (0,2,0).因此,33(,22EF =,(BC =. 由0EF BC ⋅=得EF BC ⊥. (2)设直线EF 与平面A 1BC 所成角为θ.由(1)可得1=(310)=(02BC A C --,,,,,. 设平面A 1BC 的法向量为n ()x y z =,,, 由100BC A C ⎧⋅=⎪⎨⋅=⎪⎩n n ,得00y y ⎧+=⎪⎨=⎪⎩, 取n (11)=,故||4sin |cos |=5|||EF EF EF θ⋅==⋅,n n n |,因此,直线EF 与平面A 1BC 所成的角的余弦值为35. 【名师点睛】本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力.8.【2018年高考全国Ⅰ卷理数】如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点P 的位置,且PF BF ⊥. (1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值.【答案】(1)见解析;(2. 【解析】方法一:(1)由已知可得,BF ⊥PF ,BF ⊥EF , 所以BF ⊥平面PEF . 又BF ⊂平面ABFD , 所以平面PEF ⊥平面ABFD .(2)在平面DEF 中,过P 作PH ⊥EF 于点H ,连接DH ,如图,由于EF 为平面ABCD 和平面PEF 的交线,PH ⊥EF , 则PH ⊥平面ABFD ,故PH ⊥DH . 则DP 与平面ABFD 所成的角为PDH ∠. 在三棱锥P -DEF 中,可以利用等体积法求PH . 因为DE ∥BF 且PF ⊥BF ,所以PF ⊥DE , 又△PDF ≌△CDF ,所以∠FPD =∠FCD =90°, 所以PF ⊥PD ,由于DE ∩PD =D ,则PF ⊥平面PDE , 故13F PDE PDE V PF S -=⋅△, 因为BF ∥DA 且BF ⊥平面PEF , 所以DA ⊥平面PEF , 所以DE ⊥EP .设正方形的边长为2a ,则PD =2a ,DE =a ,在△PDE 中,PE =,所以2PDE S a =△,故36F PDE V a -=, 又2122DEF S a a a =⋅=△,所以232F PDE V PH a a -==,所以在△PHD 中,sin 4PH PDH PD ∠==,故DP 与平面ABFD 所成角的正弦值为4. 方法二:(1)由已知可得,BF ⊥PF ,BF ⊥EF , 所以BF ⊥平面PEF . 又BF ⊂平面ABFD , 所以平面PEF ⊥平面ABFD .(2)作PH ⊥EF ,垂足为H .由(1)得,PH ⊥平面ABFD .以H 为坐标原点,HF 的方向为y 轴正方向,||BF 为单位长,建立如图所示的空间直角坐标系H −xyz .由(1)可得,DE ⊥PE .又DP =2,DE =1,所以PE 又PF =1,EF =2,故PE ⊥PF .可得322PH EH ==.则33(0,0,0),(1,,0),(1,22H P D DP --=HP =为平面ABFD 的法向量.设DP 与平面ABFD 所成角为θ,则34sin ||||||3HP DP HP DP θ⋅===.所以DP 与平面ABFD 所成角的正弦值为4. 9.【2018年高考全国II 卷理数】如图,在三棱锥P ABC -中,AB BC ==4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M PA C --为30︒,求PC 与平面PAM 所成角的正弦值.【答案】(1)见解析;(2)4. 【解析】(1)因为4AP CP AC ===,O 为AC 的中点,所以OP AC ⊥,且OP = 连结OB.因为2AB BC AC ==,所以ABC △为等腰直角三角形, 且OB AC ⊥,122OB AC ==. 由222OP OB PB +=知PO OB ⊥. 由,OP OB OP AC ⊥⊥知PO ⊥平面ABC .(2)如图,以O 为坐标原点,OB uu u r的方向为x 轴正方向,建立空间直角坐标系O xyz -.由已知得(0,0,0),(2,0,0),(0,2,0),(0,2,0),0,23),(0,2,O B A C P AP -=u u u r取平面PAC 的法向量(2,0,0)OB =u u u r.设(,2,0)(02)M a a a -<≤,则(,4,0)AM a a =-u u u r.设平面PAM 的法向量为(,,)x y z =n .由0,0AP AM ⋅=⋅=uu u r uuu rn n得20(4)0y ax a y ⎧+=⎪⎨+-=⎪⎩,可取,)a a =--n ,所以cos ,OB =uu u rn .由已知可得|cos ,|OB =uu u rn .2.解得4a =-(舍去),43a =.所以4()3=-n .又(0,2,PC =-u u u r,所以cos ,4PC =uu u r n .所以PC 与平面PAM所成角的正弦值为4. 10.【2018年高考全国Ⅲ卷理数】如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值.【答案】(1)见解析;(2. 【解析】(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD . 因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD , 故BC ⊥DM .因为M 为CD 上异于C ,D 的点,且DC 为直径, 所以DM ⊥CM .又BC CM =C ,所以DM ⊥平面BMC . 而DM ⊂平面AMD , 故平面AMD ⊥平面BMC .(2)以D 为坐标原点,DA 的方向为x 轴正方向,建立如图所示的空间直角坐标系D −xyz.当三棱锥M −ABC 体积最大时,M 为CD 的中点.由题设得(0,0,0),(2,0,0),(2,2,0),(0,2,0),(0,1,1)D A B C M ,(2,1,1),(0,2,0),(2,0,0)AM AB DA =-==设(,,)x y z =n 是平面MAB 的法向量,则0,0.AM AB ⎧⋅=⎪⎨⋅=⎪⎩n n 即20,20.x y z y -++=⎧⎨=⎩ 可取(1,0,2)=n .DA 是平面MCD 的法向量,因此5cos ,||||DA DA DA ⋅==n n n ,2sin ,DA =n , 所以面MAB 与面MCD . 11.【2018年高考江苏卷】如图,在正三棱柱ABC −A 1B 1C 1中,AB =AA 1=2,点P ,Q 分别为A 1B 1,BC 的中点.(1)求异面直线BP 与AC 1所成角的余弦值;(2)求直线CC 1与平面AQC 1所成角的正弦值.【答案】(1;(2.【解析】如图,在正三棱柱ABC −A 1B 1C 1中,设AC ,A 1C 1的中点分别为O ,O 1,则OB ⊥OC ,OO 1⊥OC ,OO 1⊥OB ,以1,{},OB OC OO 为基底,建立空间直角坐标系O −xyz . 因为AB =AA 1=2,所以1110,1,0,,0,1,0,0,1,())()()2,,0,1,2)()A B C A B C --.(1)因为P 为A 1B 1的中点,所以1,2)2P -, 从而131(,,2)(0,2,22),BP AC ==--,故111|||cos ,|||||5BP AC BP AC BP AC ⋅===⋅. 因此,异面直线BP 与AC 1 (2)因为Q 为BC 的中点,所以1,0)2Q ,因此33(,0)2AQ =,11(0,2,2),(0,0,2)AC CC ==. 设n =(x ,y ,z )为平面AQC 1的一个法向量, 则10,0,AQ AC ⎧⎪⎨⎪⎩⋅=⋅=n n 即30,2220.y y z +=⎪+=⎩不妨取1,1)=-n ,设直线CC 1与平面AQC 1所成角为θ,则111||sin |cos |,|||CCCC CC |θ==⋅⋅==n n n 所以直线CC 1与平面AQC 1. 12.【2018年高考江苏卷】在平行六面体1111ABCD A B C D -中,1111,AA AB AB B C =⊥.求证:(1)AB ∥平面11A B C ; (2)平面11ABB A ⊥平面1A BC . 【答案】(1)见解析;(2)见解析.【解析】(1)在平行六面体ABCD -A 1B 1C 1D 1中,AB ∥A 1B 1. 因为AB ⊄平面A 1B 1C ,A 1B 1⊂平面A 1B 1C , 所以AB ∥平面A 1B 1C .(2)在平行六面体ABCD -A 1B 1C 1D 1中,四边形ABB 1A 1为平行四边形. 又因为AA 1=AB ,所以四边形ABB 1A 1为菱形, 因此AB 1⊥A 1B .又因为AB 1⊥B 1C 1,BC ∥B 1C 1, 所以AB 1⊥BC .又因为A 1B ∩BC =B ,A 1B ⊂平面A 1BC ,BC ⊂平面A 1BC , 所以AB 1⊥平面A 1BC . 因为AB 1⊂平面ABB 1A 1, 所以平面ABB 1A 1⊥平面A 1BC .13.【2018年高考浙江卷】如图,已知多面体ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC =120°,A 1A =4,C 1C =1,AB =BC =B 1B =2.(1)证明:AB 1⊥平面A 1B 1C 1;(2)求直线AC 1与平面ABB 1所成的角的正弦值.【答案】(1)见解析;(2)13.【解析】方法一:(1)由11112,4,2,,AB AA BB AA AB BB AB ===⊥⊥得111AB A B ==, 所以2221111A B AB AA +=.故111AB A B ⊥.由2BC =,112,1,BB CC ==11,BB BC CC BC ⊥⊥得11B C =,由2,120AB BC ABC ==∠=︒得AC =由1CC AC ⊥,得1AC =,所以2221111AB B C AC +=,故111AB B C ⊥.因此1AB ⊥平面111A B C .(2)如图,过点1C 作111C D A B ⊥,交直线11A B 于点D ,连结AD .由1AB ⊥平面111A B C 得平面111A B C ⊥平面1ABB , 由111C D A B ⊥得1C D ⊥平面1ABB , 所以1C AD ∠是1AC 与平面1ABB 所成的角.由111111BC A B AC ==111111cos C A B C A B ∠=∠=,所以1C D ,故111sin 13C D C AD AC ∠==. 因此,直线1AC 与平面1ABB所成的角的正弦值是13. 方法二:(1)如图,以AC 的中点O 为原点,分别以射线OB ,OC 为x ,y 轴的正半轴,建立空间直角坐标系O -xyz.由题意知各点坐标如下:111(0,(1,0,0),(0,(1,0,2),A B A B C因此11111(1(12),3),AB A B AC ==-=-uuu r uuu u r uuu u r由1110AB A B ⋅=uuu r uuu u r得111AB A B ⊥. 由1110AB AC ⋅=uuu r uuu u r 得111AB AC ⊥. 所以1AB ⊥平面111A B C .(2)设直线1AC 与平面1ABB 所成的角为θ.由(1)可知11(1(0,0,2),AC AB BB ===uuu r uu u r uuu r设平面1ABB 的法向量(,,)x y z =n .由10,0,AB BB ⎧⋅=⎪⎨⋅=⎪⎩uu u r uuu rn n即0,20,x z ⎧+=⎪⎨=⎪⎩可取(=n .所以111|sin |cos ,|13|||AC AC AC θ⋅===⋅uuu ruuu r uuu rn |n n |. 因此,直线1AC 与平面1ABB所成的角的正弦值是13. 【名师点睛】本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力.14.【2018年高考北京卷理数】如图,在三棱柱ABC −111A B C 中,1CC ⊥平面ABC ,D ,E ,F ,G 分别为1AA ,AC ,11A C ,1BB 的中点,AB=BC,AC =1AA =2.(1)求证:AC ⊥平面BEF ; (2)求二面角B −CD −C 1的余弦值;(3)证明:直线FG 与平面BCD 相交. 【答案】(1)见解析;(2)21(3)见解析. 【解析】(1)在三棱柱ABC -A 1B 1C 1中, ∵CC 1⊥平面ABC , ∴四边形A 1ACC 1为矩形. 又E ,F 分别为AC ,A 1C 1的中点, ∴AC ⊥EF . ∵AB =BC . ∴AC ⊥BE , ∴AC ⊥平面BEF .(2)由(1)知AC ⊥EF ,AC ⊥BE ,EF ∥CC 1. 又CC 1⊥平面ABC ,∴EF ⊥平面ABC . ∵BE ⊂平面ABC ,∴EF ⊥BE . 如图建立空间直角坐标系E -xyz .由题意得B (0,2,0),C (-1,0,0),D (1,0,1),F (0,0,2),G (0,2,1). ∴=(201)=(120)CD CB uu u r uu r,,,,,, 设平面BCD 的法向量为()a b c =,,n , ∴00CD CB ⎧⋅=⎪⎨⋅=⎪⎩uu u ruur n n ,∴2020a c a b +=⎧⎨+=⎩,令a =2,则b =-1,c =-4,∴平面BCD 的法向量(214)=--,,n , 又∵平面CDC 1的法向量为=(020)EB uu r,,,∴cos =||||EB EB EB ⋅<⋅>=uu ruu r uu r n n n .由图可得二面角B -CD -C 1为钝角,所以二面角B -CD -C 1的余弦值为 (3)由(2)知平面BCD 的法向量为(214)=--,,n , ∵G (0,2,1),F (0,0,2), ∴=(021)GF -uuu r,,, ∴2GF ⋅=-uu u rn , ∴n 与GF uu u r 不垂直,∴GF 与平面BCD 不平行且不在平面BCD 内, ∴GF 与平面BCD 相交.15.【2018年高考天津卷理数】如图,AD BC ∥且AD =2BC ,AD CD ⊥,EG AD ∥且EG =AD ,CD FG ∥且CD =2FG ,DG ABCD ⊥平面,DA =DC =DG =2.(1)若M 为CF 的中点,N 为EG 的中点,求证:MN CDE ∥平面; (2)求二面角E BC F --的正弦值;(3)若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60°,求线段DP 的长.【答案】(1)见解析;(2;(3【解析】本小题主要考查直线与平面平行、二面角、直线与平面所成的角等基础知识.考查用空间向量解决立体几何问题的方法.考查空间想象能力、运算求解能力和推理论证能力.满分13分.依题意,可以建立以D 为原点,分别以DA ,DC ,DG 的方向为x 轴,y 轴,z 轴的正方向的空间直角坐标系(如图),可得D (0,0,0),A (2,0,0),B (1,2,0),C (0,2,0),E (2,0,2),F (0,1,2),G (0,0,2),M (0,32,1),N (1,0,2).(1)依题意DC =(0,2,0),DE =(2,0,2).设n 0=(x ,y ,z )为平面CDE 的法向量,则0000DC DE ⎧⋅=⎪⎨⋅=⎪⎩,,n n 即20220y x z =⎧⎨+=⎩,,不妨令z=–1,可得n 0=(1,0,–1).又MN =(1,32-,1),可得00MN ⋅=n ,又因为直线MN ⊄平面CDE ,所以MN ∥平面CDE .(2)依题意,可得BC =(–1,0,0),(122)BE =-,,,CF =(0,–1,2). 设n =(x ,y ,z )为平面BCE 的法向量,则00BC BE ⎧⋅=⎪⎨⋅=⎪⎩,,n n 即0220x x y z -=⎧⎨-+=⎩,,不妨令z =1,可得n =(0,1,1).设m =(x ,y ,z )为平面BCF 的法向量,则00BC CF ⎧⋅=⎪⎨⋅=⎪⎩,,m m 即020x y z -=⎧⎨-+=⎩,,不妨令z =1,可得m =(0,2,1).因此有cos<m ,n>=||||⋅=m n m n sin<m ,n.所以,二面角E –BC –F. (3)设线段DP 的长为h (h ∈[0,2]),则点P 的坐标为(0,0,h ),可得(12)BP h =--,,. 易知,DC =(0,2,0)为平面ADGE 的一个法向量,故 cos BP DC BP DC BP DCh ⋅<⋅>===sin60°,解得h ∈[0,2].所以线段DP 的长为3. 16.【2017年高考全国Ⅰ卷理数】如图,在四棱锥P −ABCD 中,AB//CD ,且90BAP CDP ∠=∠=.(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,90APD ∠=,求二面角A −PB −C 的余弦值.【答案】(1)见解析;(2)【解析】(1)由已知90BAP CDP ∠=∠=︒,得AB ⊥AP ,CD ⊥PD . 由于AB//CD ,故AB ⊥PD ,从而AB ⊥平面P AD . 又AB ⊂平面P AB ,所以平面P AB ⊥平面P AD . (2)在平面PAD 内作PF AD ⊥,垂足为F ,由(1)可知,AB ⊥平面PAD ,故AB PF ⊥,可得PF ⊥平面ABCD .以F 为坐标原点,FA 的方向为x 轴正方向,||AB 为单位长,建立如图所示的空间直角坐标系F xyz -.由(1)及已知可得A ,P ,B ,(C .所以(,1,)22PC =--,(2,0,0)CB =,2(22PA =-,(0,1,0)AB =. 设(,,)x y z =n 是平面PCB 的法向量,则0,0,PC CB ⎧⋅=⎪⎨⋅=⎪⎩n n即0,220,x y z ⎧-+-=⎪⎨=可取(0,1,=-n . 设(,,)x y z =m 是平面PAB 的法向量,则0,0,PA AB ⎧⋅=⎪⎨⋅=⎪⎩m m即0,220.x z y -=⎪⎨⎪=⎩可取(1,0,1)=m . 则cos ,||||3⋅==-<>n m n m n m ,所以二面角A PB C --的余弦值为3-. 【思路点拨】(1)根据题设条件可以得出AB ⊥AP ,CD ⊥PD .而AB//CD ,就可证明出AB ⊥平面P AD .进而证明出平面P AB ⊥平面P AD .(2)先找出AD 中点,找出相互垂直的线,建立以F 为坐标原点,FA 的方向为x 轴正方向,||AB 为单位长的空间直角坐标系,列出所需要的点的坐标,设(,,)x y z =n 是平面PCB 的法向量,(,,)xy z =m 是平面PAB 的法向量,根据垂直关系,求出(0,1,=-n 和(1,0,1)=m ,利用数量积公式可求出二面角的平面角.【名师点睛】高考对空间向量与立体几何的考查主要体现在以下几个方面: ①求异面直线所成的角,关键是转化为两直线的方向向量的夹角;②求直线与平面所成的角,关键是转化为直线的方向向量和平面的法向量的夹角;③求二面角,关键是转化为两平面的法向量的夹角.建立空间直角坐标系和表示出所需点的坐标是解题的关键.17.【2017年高考江苏卷】如图,在三棱锥A BCD -中,AB ⊥AD ,BC ⊥BD ,平面ABD ⊥平面BCD ,点E ,F (E 与A ,D 不重合)分别在棱AD ,BD 上,且EF ⊥AD . 求证:(1)EF ∥平面ABC ; (2)AD ⊥AC .【答案】(1)见解析;(2)见解析.⊥,【解析】(1)在平面ABD内,因为AB⊥AD,EF AD∥.所以EF AB又因为EF⊄平面ABC,AB⊂平面ABC,所以EF∥平面ABC.⊥,(2)因为平面ABD⊥平面BCD,平面ABD平面BCD=BD,BC⊂平面BCD,BC BD 所以BC⊥平面ABD.因为AD⊂平面ABD,所以BC⊥AD.=,AB⊂平面ABC,BC⊂平面ABC,又AB⊥AD,BC AB B所以AD⊥平面ABC,又因为AC⊂平面ABC,所以AD⊥AC.【名师点睛】垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直.18.【2017年高考江苏卷】如图,在平行六面体ABCD-A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1∠=︒.BAD120(1)求异面直线A1B与AC1所成角的余弦值;(2)求二面角B-A1D-A的正弦值.【答案】(1)17;(2. 【解析】在平面ABCD 内,过点A 作AE ⊥AD ,交BC 于点E . 因为AA 1⊥平面ABCD ,所以AA 1⊥AE ,AA 1⊥AD .如图,以1{,,}AE AD AA 为正交基底,建立空间直角坐标系A -xyz . 因为AB =AD =2,AA 1,120BAD ∠=︒.则11(0,0,0),1,0),(0,2,0),A B D E A C -.(1)11(3,1,3),(3,1A B AC =--=, 则111111(1cos ,7||||A B AC A B AC A B AC ⋅===-.因此异面直线A 1B 与AC 1所成角的余弦值为17. (2)平面A 1DA 的一个法向量为(3,0,0)AE =. 设(,,)x y z =m 为平面BA 1D 的一个法向量,又1(3,1,3),(3,3,0)A B BD =--=-,则10,0,A B BD ⎧⋅=⎪⎨⋅=⎪⎩m m即0,30.y y --=+=⎪⎩ 不妨取x =3,则2y z ==,所以2)=m 为平面BA 1D 的一个法向量,从而3cos ,4||||AE AE AE ⋅===m m m ,设二面角B -A 1D -A 的大小为θ,则3|cos |4θ=.因为[0,]θ∈π,所以sin 4θ==.因此二面角B -A 1D -A 的正弦值为4. 【名师点睛】利用法向量求解空间线面角、面面角的关键在于“四破”:①破“建系关”,构建恰当的空间直角坐标系;②破“求坐标关”,准确求解相关点的坐标;③破“求法向量关”,求出平面的法向量;④破“应用公式关”.(1)先根据条件建立空间直角坐标系,进而得相关点的坐标,求出直线A 1B 与AC 1的方向向量,根据向量数量积求出方向向量夹角,最后根据异面直线所成角与方向向量夹角之间相等或互补可得夹角的余弦值;(2)根据建立的空间直角坐标系,得相关点的坐标,求出各半平面的法向量,根据向量数量积求出法向量的夹角,最后根据二面角与法向量夹角之间关系确定二面角的正弦值.19.【2017年高考山东卷理数】如图,几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以AB 边所在直线为旋转轴旋转120︒得到的,G 是DF 的中点. (1)设P 是CE 上的一点,且AP BE ⊥,求CBP ∠的大小; (2)当3AB =,2AD =时,求二面角E AG C --的大小.【答案】(1)30°;(2)60°.【解析】(1)因为AP BE ⊥,AB BE ⊥,AB ,AP ⊂平面ABP ,AB AP A =,所以BE ⊥平面ABP , 又BP ⊂平面ABP , 所以BE BP ⊥, 又120EBC ∠=︒, 因此30CBP ∠=︒.(2)解法一:取EC 的中点H ,连接EH ,GH ,CH . 因为120EBC ∠=︒, 所以四边形BEHC 为菱形,所以AE GE AC GC =====取AG 中点M ,连接EM ,CM ,EC . 则EM AG ⊥,CM AG ⊥, 所以EMC ∠为所求二面角的平面角.又1AM =,所以EM CM ===在BEC △中,由于120EBC ∠=︒,由余弦定理得22222222cos12012EC =+-⨯⨯⨯︒=,所以EC =EMC △为等边三角形, 故所求的角为60︒.解法二:以B 为坐标原点,分别以BE ,BP ,BA 所在的直线为x ,y ,z 轴,建立如图所示的空间直角坐标系.由题意得(0,0,3)A (2,0,0)E ,G ,(C -,故(2,0,3)AE =-,AG =,(2,0,3)CG =,设111(,,)y x z =m 是平面AEG 的一个法向量.由00AE AG ⎧⋅=⎪⎨⋅=⎪⎩m m可得1111230,0,x z x -=⎧⎪⎨=⎪⎩取12z =,可得平面AEG的一个法向量(3,2)=m . 设222(,,)y x z =n 是平面ACG 的一个法向量.由00AG CG ⎧⋅=⎪⎨⋅=⎪⎩n n可得22220,230,x x z ⎧+=⎪⎨+=⎪⎩取22z =-,可得平面ACG的一个法向量(3,2)=-n . 所以1cos ,||||2⋅==⋅m n m n m n .因此所求的角为60︒.20.【2017年高考全国Ⅱ理数】如图,四棱锥P -ABCD 中,侧面P AD 为等边三角形且垂直于底面ABCD ,o 1,90,2AB BC AD BAD ABC ==∠=∠=E 是PD 的中点.(1)证明:直线CE ∥平面P AB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为o 45,求二面角M AB D --的余弦值. 【答案】(1)见解析;(2). 【解析】(1)取PA 的中点F ,连结EF ,BF . 因为E 是PD 的中点,所以EF ∥AD ,12EF AD =, 由90BAD ABC ∠=∠=︒得BC ∥AD , 又12BC AD =, 所以EF BC ∥,四边形BCEF 是平行四边形,CE ∥BF . 又BF ⊂平面PAB ,CE ⊄平面PAB , 故CE ∥平面PAB .(2)由已知得BA AD ⊥,以A 为坐标原点,AB 的方向为x 轴正方向,AB 为单位长, 建立如图所示的空间直角坐标系A xyz -,则()0,0,0A ,()1,0,0B ,()1,1,0C,(P,(1,0,PC =,(1,0,0)AB =, 设()(),,01M x y z x <<,则()1,,,(,1,BM x y z PM x y z =-=-, 因为BM 与底面ABCD 所成的角为45°,而()0,0,1=n 是底面ABCD 的法向量, 所以cos ,sin 45BM =︒n2=,即()22210x y z -+-=.① 又M 在棱PC 上,设PM PCλ=,则,1,x y z λ===.②由①②解得1212x y z ⎧=+⎪⎪⎪=⎨⎪⎪=-⎪⎩(舍去),1212x y z ⎧=-⎪⎪⎪=⎨⎪⎪=⎪⎩.所以(12M -,从而(12AM =-. 设()000,,x y z =m 是平面ABM 的法向量,则0,0,AM AB ⎧⋅=⎪⎨⋅=⎪⎩m m即0000(220,0,x y x ⎧+=⎪⎨=⎪⎩所以可取(0,2)=m.于是cos ,5⋅==m n m n m n , 因此二面角M AB D --的余弦值为5. 【名师点睛】(1)求解本题要注意两点:①两平面的法向量的夹角不一定是所求的二面角,②利用方程思想进行向量运算,要认真细心、准确计算.(2)设m ,n 分别为平面α,β的法向量,则二面角θ与<m ,n >互补或相等,故有|cos θ|=|cos<m ,n >|=⋅m n m n.求解时一定要注意结合实际图形判断所求角是锐角还是钝角.21.【2017年高考全国Ⅲ理数】如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,∠ABD =∠CBD ,AB =BD .(1)证明:平面ACD ⊥平面ABC ;(2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角D –AE –C 的余弦值.【答案】(1)见解析;(2)7. 【解析】(1)由题设可得,ABD CBD △≌△,从而AD DC =.又ACD △是直角三角形,所以=90ADC ∠︒. 取AC 的中点O ,连接DO ,BO ,则DO ⊥AC ,DO =AO . 又由于ABC △是正三角形,故BO AC ⊥. 所以DOB ∠为二面角D AC B --的平面角. 在Rt AOB △中,222BO AO AB +=.又AB BD =,所以2222BO DO BO AO AB BD 22+=+==, 故90DOB ∠=. 所以平面ACD ⊥平面ABC .(2)由题设及(1)知,,,OA OB OD 两两垂直,以O 为坐标原点,OA 的方向为x 轴正方向,OA 为单位长,建立如图所示的空间直角坐标系O xyz -.则()()()()1,0,0,,1,0,0,0,0,1A B C D -.由题设知,四面体ABCE 的体积为四面体ABCD 的体积的12,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,即E 为DB的中点,得12E ⎛⎫ ⎪ ⎪⎝⎭. 故()()11,0,1,2,0,0,2AD AC AE ⎛⎫=-=-=- ⎪ ⎪⎝⎭. 设()=x,y,z n 是平面DAE 的法向量,则00AD AE ⎧⋅=⎪⎨⋅=⎪⎩,,n n即0,10.22x z x y z -+=⎧⎪⎨-++=⎪⎩可取⎛⎫= ⎪ ⎪⎝⎭n .设m 是平面AEC 的法向量,则00AC AE ⎧⋅=⎪⎨⋅=⎪⎩,,m m同理可取(0,=-m .则cos ,⋅==n m n m n m . 所以二面角D -AE -C【名师点睛】(1)求解本题要注意两点:一是两平面的法向量的夹角不一定是所求的二面角,二是利用方程思想进行向量运算时,要认真细心,准确计算.(2)设m ,n 分别为平面α,β的法向量,则二面角θ与,m n 互补或相等,故有cos cos ,||θ=⋅=m m n nm n.求解时一定要注意结合实际图形判断所求角是锐角还是钝角. 22.【2017年高考浙江卷】如图,已知四棱锥P –ABCD ,△PAD 是以AD 为斜边的等腰直角三角形,BC AD ∥,CD ⊥AD ,PC =AD =2DC =2CB ,E 为PD 的中点.(1)证明:CE ∥平面PAB ;(2)求直线CE 与平面PBC 所成角的正弦值. 【答案】(1)见解析;(2. 【解析】本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力.满分15分.(1)如图,设P A 中点为F ,连接EF ,FB . 因为E ,F 分别为PD ,P A 中点,所以EF AD ∥且12EF AD =, 又因为BC AD ∥,12BC AD =,所以 PABCDEEF BC ∥且EF BC ,即四边形BCEF 为平行四边形,所以CE BF ∥,因此CE ∥平面P AB .(2)分别取BC ,AD 的中点为M ,N .连接PN 交EF 于点Q ,连接MQ . 因为E ,F ,N 分别是PD ,P A ,AD 的中点,所以Q 为EF 中点, 在平行四边形BCEF 中,MQ//CE .由△P AD 为等腰直角三角形得PN ⊥AD .由DC ⊥AD ,N 是AD 的中点得BN ⊥AD .所以AD ⊥平面PBN ,由BC //AD 得BC ⊥平面PBN ,那么平面PBC ⊥平面PBN .过点Q 作PB 的垂线,垂足为H ,连接MH .MH 是MQ 在平面PBC 上的射影,所以∠QMH 是直线CE 与平面PBC 所成的角. 设CD =1.在△PCD 中,由PC =2,CD =1,得CE在△PBN 中,由PN =BN =1,PB QH =14,在Rt △MQH 中,QH=14,MQ 所以sin ∠QMH ,所以直线CE 与平面PBC .【名师点睛】本题主要考查线面平行的判定定理、线面垂直的判定定理及面面垂直的判定定理,属于中档题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面.本题(1)是就是利用方法①证明的.另外,本题也可利用空间向量求解线面角.23.【2017年高考北京卷理数】如图,在四棱锥P −ABCD 中,底面ABCD 为正方形,平面PAD ⊥平面ABCD ,点M 在线段PB 上,PD//平面MAC ,PA =PD ,AB =4. (1)求证:M 为PB 的中点; (2)求二面角B −PD −A 的大小;(3)求直线MC 与平面BDP 所成角的正弦值.【答案】(1)见解析;(2)π3;(3. 【解析】(1)设,AC BD 交点为E ,连接ME . 因为PD ∥平面MAC ,平面MAC 平面PDB ME ,所以PD ME ∥.因为ABCD 是正方形, 所以E 为BD 的中点, 所以M 为PB 的中点.(2)取AD 的中点O ,连接OP ,OE . 因为PA PD =,所以OP AD ⊥.又因为平面PAD ⊥平面ABCD ,且OP ⊂平面PAD , 所以OP ⊥平面ABCD .因为OE ⊂平面ABCD ,所以OP OE ⊥. 因为ABCD 是正方形,所以OE AD ⊥.如图建立空间直角坐标系O xyz -,则P ,(2,0,0)D ,(2,4,0)B -,(4,4,0)BD =-,(2,0,PD =.设平面BDP 的法向量为(,,)x y z =n ,则00BD PD ⎧⋅=⎪⎨⋅=⎪⎩n n,即44020x y x -=⎧⎪⎨=⎪⎩. 令1x =,则1y =,z =于是=n .平面PAD 的法向量为(0,1,0)=p ,所以1cos ,||||2⋅==<>n p n p n p .由题知二面角B PD A --为锐角,所以它的大小为3π.(3)由题意知(1,M -,(2,4,0)C,(3,2,MC =.设直线MC 与平面BDP 所成角为α,则||2sin |cos ,|9||||MC MC MC α⋅===<>n n n .所以直线MC 与平面BDP 所成角的正弦值为9. 【名师点睛】本题涉及立体几何中的线面平行与垂直的判定与性质,全面考查立体几何中的证明与求解,意在考查学生的空间想象能力和逻辑推理能力;利用空间向量解决立体几何问题是一种常见且有效的方法,要注意建立适当的空间直角坐标系以及运算的准确性.(1)设,AC BD 交点为E ,连接ME ,因为线面平行,即PD ∥平面MAC ,根据性质定理,可知线线平行,即PD ME ∥,再由E 为BD 的中点,可知M 为PB 的中点;(2)因为平面PAD ⊥平面ABCD ,PA PD =,所以取AD 的中点O 为原点建立空间直角坐标系,根据向量法先求两平面的法向量n ,p ,再根据公式cos ,n p ,求二面角的大小; (3)根据(2)的结论,直接求|cos ,|MC n 即可.24.【2017年高考天津卷理数】如图,在三棱锥P -ABC 中,P A ⊥底面ABC ,90BAC ∠=︒.点D ,E ,N分别为棱P A ,PC ,BC 的中点,M 是线段AD 的中点,P A =AC =4,AB =2. (1)求证:MN ∥平面BDE ; (2)求二面角C -EM -N 的正弦值;(3)已知点H 在棱P A 上,且直线NH 与直线BE ,求线段AH 的长.【答案】(1)证明见解析;(2;(3)85或12.【解析】如图,以A 为原点,分别以AB ,AC ,AP 方向为x 轴、y 轴、z 轴正方向建立空间直角坐标系.依题意可得A (0,0,0),B (2,0,0),C (0,4,0),P (0,0,4),D (0,0,2),E (0,2,。
2017年普通高等学校招生全国统一考试高考数学教师精校版含详解北京市高考理科数学真题试卷
2017年北京市高考理科数学真题试卷一、选择题(共8小题;共40分)1. 若全集U=R,集合A=x x2−x−2≥0,B=x log32−x≤1,则A∩∁U B= A. x x<2B. x x<−1或x≥2C. x x≥2D. x x≤−1或x>22. 若复数1−i a+i在复平面内对应的点在第二象限,则实数a的取值范围是 A. −∞,1B. −∞,−1C. 1,+∞D. −1,+∞3. 执行如图所示的程序框图,输出的S值为 A. 2B. 32C. 53D. 854. 若x,y满足x≤3,x+y≥2,y≤x,则x+2y的最大值为 A. 1B. 3C. 5D. 95. 已知函数f x=3x−13x,则f x A. 是奇函数,且在R上是增函数B. 是偶函数,且在R上是增函数C. 是奇函数,且在R上是减函数D. 是偶函数,且在R上是减函数6. 设m,n为非零向量,则“存在负数λ,使得m=λn”是“m⋅n<0”的 A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件7. 某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为 A. 3B. 2C. 2D. 28. 根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N最接近的是 (参考数据:lg3≈0.48)约为1080,则下列各数中与MNA. 1033B. 1053C. 1073D. 1093二、填空题(共6小题;共30分)=1的离心率为3,则实数m=.9. 若双曲线x2−y2m=.10. 若等差数列a n和等比数列b n满足a1=b1=−1,a4=b4=8,则a2b211. 在极坐标系中,点A在圆ρ2−2ρcosθ−4ρsinθ+4=0上,点P的坐标为1,0,则AP的最小值为.,则12. 在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα=13 cosα−β=.13. 能够说明“设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题的一组整数a,b,c的值依次为.14. 三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中A i的横、纵坐标分别为第i名工人上午的工作时间和加工的零件数,点B i的横、纵坐标分别为第i名工人下午的工作时间和加工的零件数,i=1,2,3.(1)记Q i为第i名工人在这一天中加工的零件总数,则Q1,Q2,Q3中最大的是.(2)记p i为第i名工人在这一天中平均每小时加工的零件数,则p1,p2,p3中最大的是.三、解答题(共6小题;共78分)a.15. 在△ABC中,∠A=60∘,c=37(1)求sin C的值;(2)若a=7,求△ABC的面积.16. 如图,在四棱锥P−ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=6,AB=4.(1)求证:M为PB的中点;(2)求二面角B−PD−A的大小;(3)求直线MC与平面BDP所成角的正弦值.17. 为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x和y的数据,并制成如图,其中“∗”表示服药者,“+”表示未服药者.(1)从服药的50名患者中随机选出一人,求此人指标y的值小于60的概率;(2)从图中A,B,C,D四人中随机选出两人,记ξ为选出的两人中指标x的值大于1.7的人数,求ξ的分布列和数学期望Eξ;(3)试判断这100名患者中服药者指标y数据的方差与未服药者指标y数据的方差的大小.(只需写出结论)作直线l与抛物线C交于不同的两点M,N,过点M 18. 已知抛物线C:y2=2px过点P1,1.过点0,12作x轴的垂线分别与直线OP,ON交于点A,B,其中O为原点.(1)求抛物线C的方程,并求其焦点坐标和准线方程;(2)求证:A为线段BM的中点.19. 已知函数f x=e x cos x−x.(1)求曲线y=f x在点0,f0处的切线方程;上的最大值和最小值.(2)求函数f x在区间0,π220. 设a n和b n是两个等差数列,记c n=max b1−a1n,b2−a2n,⋯,b n−a n n n=1,2,3,⋯,其中max x1,x2,⋯,x s表示x1,x2,⋯,x s这s个数中最大的数.(1)若a n=n,b n=2n−1,求c1,c2,c3的值,并证明c n是等差数列;>M;或者存在正整数m,使得(2)证明:或者对任意正数M,存在正整数m,当n≥m时,c nnc m,c m+1,c m+2,⋯是等差数列.答案第一部分1. B2. B3. C 【解析】第一次循环,k=1,S=2;第二次循环,k=2,S=32;第三次循环,k=3,S=53,结束循环,则输出的S=53.4. D5. A【解析】f x=3x−13x=3x−3−x,所以f−x=3−x−3x=−f x,即函数f x为奇函数,又由函数y=3x为增函数,y=13x为减函数,故函数f x=3x−13x为增函数.6. A 【解析】m,n为非零向量,存在负数λ,使得m=λn,则向量m,n共线且方向相反,可得m⋅n<0.反之不成立,非零向量m,n的夹角为钝角,满足m⋅n<0,而m=λn不成立.所以m,n 为非零向量,则“存在负数λ,使得m=λn”是“m⋅n<0”的充分不必要条件.7. B 【解析】由三视图可得直观图,在四棱锥P−ABCD中,最长的棱为PA,即PA=2+AB2=22+222=23.8. D 【解析】由题意:M≈3361,N≈1080,根据对数性质有:3=10lg3≈100.48,所以M≈3361≈100.48361≈10173,所以MN ≈1017310=1093.第二部分9. 210. 111. 112. −7913. −1,−2,−3【解析】设a,b,c是任意实数.若“a>b>c,则a+b>c”是假命题,则“若a>b>c,则a+b≤c”是真命题,可设a,b,c的值依次−1,−2,−3,(答案不唯一).14. Q1,p2【解析】(1)若Q i为第i名工人在这一天中加工的零件总数,Q1=A1的纵坐标+B1的纵坐标;Q2=A2的纵坐标+B2的纵坐标,Q3=A3的纵坐标+B3的纵坐标,由已知中图象可得:Q1,Q2,Q3中最大的是Q1;(2)若p i为第i名工人在这一天中平均每小时加工的零件数,则p i为A i B i中点与原点连线的斜率,故p1,p2,p3中最大的是p2.第三部分15. (1)∠A=60∘,c=37a,由正弦定理可得sin C=37sin∠A=37×32=3314.(2)a=7,则c=3,c<a,所以C<∠A,C为锐角,由(1)可得cos C=1314,所以sin B=sin∠A+C=sin∠A cos C+cos∠A sin C=3×13+1×33=43,所以S△ABC=12ac sin B=12×7×3×437=63.16. (1)如图1,设AC∩BD=O,因为ABCD为正方形,所以O为BD的中点,连接OM,因为PD∥平面MAC,PD⊂平面PBD,平面PBD∩平面AMC=OM,所以PD∥OM,则BOBD =BMBP=12,即M为PB的中点;(2)取AD中点G,因为PA=PD,所以PG⊥AD,因为平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,所以PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG,由G是AD的中点,O是AC的中点,可得OG∥DC,则OG⊥AD.如图2,以G为坐标原点,分别以GD,GO,GP所在直线为x,y,z轴建立空间直角坐标系,由PA=PD=6,AB=4,得D2,0,0,A−2,0,0,P 0,0,2,C2,4,0,B−2,4,0,M −1,2,22,DP= −2,0,2,DB=−4,4,0.设平面PBD的一个法向量为m=x,y,z,则由m⋅DP=0,m⋅DB=0得−2x+2z=0,−4x+4y=0,取z=2,得m=1,1,2.由题可知平面PAD的一个法向量为n=0,1,0.所以cos m,n=m ⋅nm n =12×1=12.所以二面角B−PD−A的大小为60∘;(3)CM= −3,−2,22,平面BDP的一个法向量为m=1,1,2.所以直线MC与平面BDP所成角的正弦值为cos CM,m=CM⋅mCM⋅ m =9+4+1×2=269.17. (1)由图知:在50名服药患者中,有15名患者指标y的值小于60,则从服药的50名患者中随机选出一人,此人指标小于60的概率为:p=1550=310.(2)由图知:A,C两人指标x的值大于1.7,而B,D两人则小于1.7,可知在四人中随机选出的2人中指标x的值大于1.7的人数ξ的可能取值为0,1,2,Pξ=0=1C42=16,Pξ=1=C21C21C42=23,Pξ=2=1C42=16,所以ξ的分布列如下:ξ012P 162316Eξ=0×16+1×23+2×16=1.(3)由图知100名患者中服药者指标y数据的方差比未服药者指标y数据的方差大.18. (1)因为y2=2px过点P1,1,所以1=2p,解得p=12,所以抛物线方程为y2=x,所以焦点坐标为14,0,准线为x=−14.(2)设过点0,12的直线方程为y=kx+12,M x1,y1,N x2,y2,所以直线OP为y=x,直线ON为:y=y2x2x,由题意知A x1,x1,B x1,x1y2x2,由y=kx+12,y2=x可得k2x2+k−1x+14=0,所以x1+x2=1−kk2,x1x2=14k2,所以y1+x1y2x2=kx1+12+x1 kx2+12x2=2kx1+x1+x22x2=2kx1+1−kk22×14k2x1=2kx1+1−k⋅2x1=2x1,所以A为线段BM的中点.19. (1)函数f x=e x cos x−x的导数为fʹx=e x cos x−sin x−1,可得曲线y=f x在点0,f0处的切线斜率为k=e0cos0−sin0−1=0,切点为0,e0cos0−0,即为0,1,所以曲线y=f x在点0,f0处的切线方程为y=1;(2)函数f x=e x cos x−x的导数为fʹx=e x cos x−sin x−1,令g x=e x cos x−sin x−1,则g x的导数为gʹx=e x cos x−sin x−sin x−cos x=−2e x⋅sin x,当x∈0,π2时,可得gʹx=−2e x⋅sin x≤0,即有g x在0,π2上递减,可得g x≤g0=0,则f x在0,π2上递减,即有函数f x在区间0,π2上的最大值为f0=e0cos0−0=1;最小值为fπ2=eπcosπ2−π2=−π2.20. (1)a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,当n=1时,c1=max b1−a1=max0=0,当n=2时,c2=max b1−2a1,b2−2a2=max−1,−1=−1,当n=3时,c3=max b1−3a1,b2−3a2,b3−3a3=max−2,−3,−4=−2,下面证明:对∀n∈N∗,且n≥2,都有c n=b1−na1,当n∈N∗,且2≤k≤n时,则b k−na k−b1−na1=2k−1−nk−1+n=2k−2−n k−1=k−12−n,由k−1>0,且2−n≤0,则b k−na k−b1−na1≤0,则b1−na1≥b k−na k,因此,对∀n∈N∗,且n≥2,c n=b1−na1=1−n,c n+1−c n=−1,又c2−c1=−1,所以c n+1−c n=−1对∀n∈N∗均成立,所以数列c n是等差数列.(2)设数列a n和b n的公差分别为d1,d2,下面考虑c n的取值,由b1−a1n,b2−a2n,⋯,b n−a n n,考虑其中任意b i−a i n(i∈N∗,且1≤i≤n),则b i−a i n=b1+i−1d2−a1+i−1d1×n=b1−a1n+i−1d2−d1×n,下面分d1=0,d1>0,d1<0三种情况进行讨论,①若d1=0,则b i−a i n=b1−a1n+i−1d2,当d2≤0,b i−a i n−b1−a1n=i−1d2≤0,则对于给定的正整数n而言,c n=b1−a1n,此时c n+1−c n=−a1,所以数列c n是等差数列;当d2>0,b i−a i n−b n−a n n=i−n d2≤0,则对于给定的正整数n而言,c n=b n−a n n=b n−a1n,此时c n+1−c n=d2−a1,所以数列c n是等差数列;此时取m=1,则c1,c2,⋯,是等差数列,命题成立;②若d1>0,则此时−d1n+d2为一个关于n的一次项系数为负数的一次函数,故必存在m∈N∗,使得n≥m时,−d1n+d2<0,则当n≥m时,b i−a i n−b1−a1n=i−1−d1n+d2≤0i∈N∗,1≤i≤n,因此当n≥m时,c n=b1−a1n,此时c n+1−c n=−a1,故数列c n从第m项开始为等差数列,命题成立;③若d1<0,此时−d1n+d2为一个关于n的一次项系数为正数的一次函数,故必存在s∈N∗,使得n≥s时,−d1n+d2>0,则当n≥s时,b i−a i n−b n−a n n=i−n−d1n+d2≤0i∈N∗,1≤i≤n,因此,当n≥s时,c n=b n−a n n,此时c n=b n−a n n=−a n+b n n=−d2n+d1−a1+d2+b1−d2,令−d1=A>0,d1−a1+d2=B,b1−d2=C,下面证明:c nn =An+B+Cn对任意正整数M,存在正整数m,使得n≥m,c nn>M,若C≥0,取m= M−BA+1,x表示不大于x的最大整数,当n≥m时,c n n ≥An+B≥Am+B=AM−B+1+B >A⋅M−BA+B=M,此时命题成立;若C<0,取m= M−C−BA+1,当n≥m时,c n n =An+B+Cn≥Am+B+C>A⋅M−C−BA+B+C =M−C−B+B+C≥M−C−B+B+C=M,此时命题成立,因此对任意正数M,存在正整数m,使得当n≥m时,c nn>M;综合以上三种情况,命题得证.。
【师说】2017高考数学(理)二轮专题复习 课时巩固过关练(一)集合、常用逻辑用语 Word版含解析
7.(2016·黑龙江大庆期中)给出下列命题:(1)等比数列{a n}的公比为q,则“q>1”是“a n+1>a n(n∈N*)”的既不充分也不必要条件;(2)“x≠1”是“x2≠1”的必要不充分条件;(3)函数y=lg(x2+ax+1)的值域为R,则实数-2<a<2;(4)“a=1”是“函数y=cos2ax-sin2ax的最小正周期为π”的充要条件.其中真命题的个数是()A.1 B.2C.3 D.4解析:若首项为负,则公比q>1时,数列为递减数列,a n+1<a n(n∈N*),当a n >a n(n∈N*)时,包含首项为正,公比q>1+1和首项为负,公比0<q<1两种情况,故(1)正确;“x≠1”时,“x2≠1”在x=-1时不成立,“x2≠1”时,“x≠1”一定成立,故(2)正确;函数y=lg(x2+ax +1)的值域为R,则x2+ax+1=0的Δ=a2-4≥0,解得a≥2或a≤-2,故(3)错误;“a=1”时,“函数y=cos2x-sin2x=cos2x的最小正周期为π”,但“函数y=cos2ax-sin2ax的最小正周期为π”时,“a=±1”,故“a=1”是“函数y=cos2ax-sin2ax的最小正周期为π”的充分不必要条件,故(4)错误.故选B.答案:B8.(2016·广东惠州模拟)下列命题中的假命题是()A.∃x∈R,lg x=0 B.∃x∈R,tan x=0C.∀x∈R,2x>0 D.∀x∈R,x2>0解析:对于A,x=1时,lg1=0,∴A是真命题;对于B,x=0时,tan0=0,∴B是真命题;对于C,∀x∈R,2x>0,∴C是真命题;对于D,当x=0时,x2=0,∴D是假命题.故选D.答案:D9.(2016·山东济南期中)下列有关命题的叙述错误的是()10.(2016·辽宁实验中学期中)已知△ABC为钝角三角形,命题p:“对△ABC的任意两个内角α,β,都有cosα+cosβ>0”,下列结论正确的是() A.綈p:对△ABC的任意两个内角α,β,cosα+cosβ≤0;假命题B.綈p:△ABC中存在两个内角α,β,cosα+cosβ≤0;真命题C.綈p:对△ABC的任意两个内角α,β,cosα+cosβ≤0;真命题D.綈p:△ABC中存在两个内角α,β,cosα+cosβ≤0;假命题解析:∵p:对△ABC的任意两个内角α,β,都有cosα+cosβ>0,∴綈p:在△ABC中存在两个内角α,β,有cosα+cosβ≤0;假命题,理由是α+β<180°,α<180°-β,∴cosα>cos(180°-β),∴cosα+cosβ>0,故选D.答案:D11.(2016·山西怀仁期中)已知命题则“m=n=1”是“m2-1-2n i=-2i”的__________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”)解析:由m,n∈R,m2-1-2n i=-2i,可得m2-1=0且-2n=-2,解得n=1,m=±1.∴“m=n=1”是“m2-1-2n i=-2i”的充分不必要条件.答案:充分不必要14.(2016·浙江绍兴期中)已知“命题p:(x-m)2>3(x-m)”是“命题q:x2+3x-4<0”成立的必要不充分条件,则实数m的取值范围为__________.解析:由命题p中的不等式(x-m)2>3(x-m),变形,得(x-m)(x-m-3)>0,解得x>m+3或x<m;由命题q中的不等式x2+3x-4<0,变形,得(x-1)(x +4)<0,解得-4<x<1,因为命题p是命题q的必要不充分条件,所以m+3≤-4或m≥1,解得m≤-7或m≥1.所以m 的取值范围为{m|m≥1或m≤-7}.答案:{m|m≥1或m≤-7}5.(2016·广东东莞期中)下列有关命题的说法正确的是()A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”B.命题“若x=y,则sin x=sin y”的逆否命题为真命题C.命题“存在x∈R,使得x2+x +1<0”的否定是:“对任意x∈R,均有x2+x+1<0”D.“x=-1”是“x2-5x-6=0”的必要不充分条件解析:A.命题“若x2=1,则x=1”的否命题为:“若x2≠1,则x≠1”,A 错误;B.命题“若x=y,则sin x=sin y”的逆否命题为“若sin x≠sin y,则x≠y”,为真命题,B正确;C.对于特称命题的否定,存在改为任意,同时也要否定结论,则命题的否定为“对任意x ∈R,均有x2+x+1≥0”,C错误;D.“x2-5x-6=0”⇔“x=-1或x=6”,“x =-1”是“x2-5x-6=0”的充分不必要条件,D错误.故选B.C.(綈p)∨q D.(綈p)∨(綈q)解析:对于命题p,由平面向量数量积a·b=0易得a⊥b,则命题p为真命题;对于命题q,∵a,b,c为非零向量,则q为真命题,故(綈p)∨(綈q)为假命题,故选D.答案:D9.(2016·吉林长春期中)下列命题中正确的个数是()(1)命题“任意x∈(0,+∞),2x>1”的否定是“任意x∉(0,+∞),2x≤1”;(2)命题“若cos x=cos y,则x=y”的逆否命题是真命题;(3)若命题p为真,命题綈q为真,则命题p且q为真;(4)命题“若x=3,则x2-2x-3=0”的否命题是“若x≠3,则x2-2x-3≠0”.A.1 B.2C.3 D.4解析:①命题“任意x∈(0,+∞),河北邯郸模拟;命题q:+2)e x+3x-4在(1,2)上存在零点.故∃x0∈(1,2),使得(x20-3x0+2)e x0+3x0-4=0成立,故④正确.故答案为①④.答案:①④。
【山东省】2017学年高考数学年(理科)算法初步、复数、推理与证明专题练习答案
山东省2017年高考数学(理科)专题练习算法初步、复数、推理与证明[A 组高考题、模拟题重组练] 一、程序框图(流程图)1.(2016·全国甲卷)中国古代有计算多项式值的秦九韶算法,如图21-1是实现该算法的程序框图.执行该程序框图,若输入的22x n =,=,依次输入的a 为2,2,5,则输出的s = ( )图21-1 A .7 B .12 C .17D .342.(2016·全国乙卷)执行如图21-2所示的程序框图,如果输入的0,1,1x y n ===,则输出x ,y 的值满足( )图21-2 A .2y x = B .3y x = C .4y x =D .5y x =3.(2016·全国丙卷)执行如图21-3所示的程序框图,如果输入的46a b =,=,那么输出的n = ( )图21-3 .4 .6所示的程序框图,若输入的a图21-4 在复平面内对应的点在第四象限,B .(13)-, D .()3∞-,-图21-5B.2 015D.2 017所示,则输出的S的值为(图21-6B.3 2D.32 -所示的程序框图,若输出的S=图21-7B.7k>?D.8k<?56789},,,,,,,,,在集合Aa,现将组成a的三个数字按从小到大排成的三位数记为219129I A D=,则()=,(图21-8B.693D.495的所有正约数之和可按如下方法得到:因为22+=++⨯23122)(图21-92013B.图21-10丙、丁四名学生去西安参加自主招生考试,学生了解考试情况.四名学生回答如下:”结果,四名学生中有两人说对了,则这四名学生中的________两人说对了.观察下列等式:图21-11从第2行起,每一行中的数字均等于其“肩上”两数之和,。
【师说】2017高考数学(理)专题七 概率与统计:课时巩固过关练(十九)
411 12 23 3 35若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间139,151]上的运动员人数为()A.3 B.4C.5 D.6解析:根据茎叶图中的数据,得成绩在区间139,151]上的运动员人数是20,用系统抽样方法从35人中抽取7人,成绩在区间139,151]上的运动员应抽取7×2035=4(人),故选B.答案:B4.(2015·山东高考)为比较甲、乙两地某月14时的气温状况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下结论:30)2+(32-30)2]=2.即正确的有①④,故选B.答案:B5.(2016·广东惠州调研二)惠州市某机构对两千多名出租车司机的年龄进行调查,现从中随机抽出100名司机.已知抽到的司机年龄都在20,45)岁之间,根据调查结果得出司机的年龄情况残缺的频率分布直方图如图所示,利用这个残缺的频率分布直方图估计该市出租车司机年龄的中位数大约是()A.31.6岁B.32.6岁C.33.6岁D.36.6岁解析:由面积为1,知25,30)的频率为0.2,为保证中位数的左右两边面积都是0.5,必须把30,35)的面积0.35划分为0.25+0.1,此时划分边界为30+5×0.25 0.35≈33.6,故选C.答案:C6.(2016·广西梧州、崇左联考)某教育机构随机选取某校20个班级,调查各班关注汉字听写大赛的学生人数,根据所得数据的茎叶图,以组距为5将数据分组成0,5),5,10),10,15),15,20),20,25),25,30),30,35),35,40)所作的频率分布直方图如图所示,则原始茎叶图可能是()解析:由频率分布直方图可知:0,5)的频数为20×0.01×5=1,5,10)的频数为20×0.01×5=1,10,15)的频数为其中一定不正确的结论的序号是()A.①②B.②③C.③④D.①④解析:①y与x负相关且y^=2.347x-6.423,此结论错误,由线性回归方程知,此两变量的关系是正相关;②y与x负相关且y^=-3.476x+5.648,此结论正确,线性回归方程符合负相关的特征;③y与x正相关且y^=5.437x+8.493,此结论正确,线性回归方程符合正相关的特征;④y 与x正相关且y^=-4.326x-4.578,此结论不正确,线性回归方程符合负相关的特征.综上判断知,①④一定不正确,故选D.答案:D9.通过随机询问110名性别不同的人,对过马路是愿意走斑马线还是愿意走人行天桥进行抽样调查,得到如下的列联表:C.在犯错误的概率不超过0.1%的前提下,认为“选择过马路的方式与性别有关”D.在犯错误的概率不超过0.1%的前提下,认为“选择过马路的方式与性别无关”答案:A10.设(x1,y1),(x2,y2),…,(x n,y n)是变量x和y的n个样本点,直线l是由这些样本点通过最小二乘法得到的线性回归直线(如图),以下结论中正确的是()A.x和y的相关系数为直线l的斜率B.x和y的相关系数在0到1之间C.当n为偶数时,分布在l两侧的样本点的个数一定相同D.直线l过点(x,y)解析:选项具体分析结论A相关系数用来衡量两个变量之不副队长,则这两人体重不在同一组内的概率为__________.解析:设平均值为X,X=45×0.05+55×0.35+65×0.3+75×0.2+85×0.1=64.5,身高在60,70)的男生有100×0.3=30(人),身高在70,80)的男生有100×0.2=20(人),身高在80,90]的男生有100×0.1=10(人),抽样比为1260=15,这12人中,身高在60,70)的有6人,身高在70,80)的有4人,身高在80,90]的有2人,从这12人中选两人当正副队长,则这两人体重不在同一组内的概率为1-C24+C26+C22C212=1-6+15+166=23.。
【山东省】2017学年高考数学年(理科)算法初步、复数、推理与证明专题练习
1 1 1 1 25 满足条件,k=8,S=2+4+6+8=24.
25 由题意,此时应不满足条件,退出循环,输出 S 的值为24.
结合选项可得判断框内填入的条件可以是 k<8.]
8.D
[对于选项 A,如果输出 b 的值为 792,则 a=792,
I(A)=279,D(A)=972,b=D(A)-I(A)=972-279=693,不满足题意.
山东省 2017 年高考数学(理科)专题练习 算法初步、复数、推理与证明 答案
[A 组高考题、模拟题重组练] 一、程序框图(流程图) 1~3.CCB 4.3 二、复数 5~9.ADABB 三、合情推理 10.B 11.1 和 3 12. 4 n(n+1)
3 [B 组“10+5”模拟题提速练] 一、选择题 1~5.DDDBD 6~10.CDDCC 二、填空题 11.-1 12.24 13.乙丙 14. 1 n(n+1)(n+2)(n+3)(n+4)(n N*)
1 014-2
0115=1-2
12 015=2
014 015,故选
C.]
二、填空题
11.-1
[∵z=1-i(i 为虚数单位),
5/6
z
1+i
+2
2i
∴ z +z2=1-i+(1-i)2= -
+ -2i= 2 -2i=-i,
故其虚部为-1.] 12.24 [由程序框图得第一次循环,n=6,S=3sin 60 °≈2.598<3.10;第二次循环,n=12,S=6sin 30 °= 3<3.10;第三次循环,n=24,S=12sin 15 °≈3.105 6>3.10,此时循环结束,输出 n 的值为 24.] 13.乙丙 [甲与乙的关系是对立事件,二人说话矛盾,必有一对一错,如果选丁正确,则丙也是对的,所以丁错 误,可得丙正确,此时乙正确.故答案为乙,丙.]
【师说】2017高考数学(理)二轮专题复习 课时巩固过关练(十)等差数列、等比数列 Word版含解析
答案:D2.(2016·云南玉溪一中月考)已知函数f (x )=⎩⎪⎨⎪⎧ 2x -1(x ≤0),f (x -1)+1(x >0),把函数g (x )=f (x )-x +1的零点按从小到大的顺序排列成一个数列,该数列的前n 项的和为S n ,则S 10=( )A .45B .55C .210-1D .29-1解析:当x ≤0时,g (x )=f (x )-x +1=x ,故a 1=0;当0<x ≤1时,有-1<x -1≤0,则f (x )=f (x -1)+1=2(x -1)-1+1=2x -2,g (x )=f (x )-x +1=x -1,故a 2=1;当1<x ≤2时,有0<x -1≤1,则f (x )=f (x -1)+1=2(x -1)-2+1=2x -3,g (x )=f (x )-x +1=x -2,故a 3=2;当2<x ≤3时,有1<x -1≤2,则f (x )=f (x -1)+1=2(x -1)-3+1=2x -4,g (x )=f (x )-x +1=x -3,故a 4=3;…,以此类推,当n <x ≤n +1(其中n ∈N )时,则f (x )=2x -(n +2),故数列的前n 项构成一个以0为首项,以1为公差的等差解析:由S n =n 2-6n ,得{a n }是等差数列,且首项为-5,公差为2,∴a n =-5+(n -1)×2=2n -7,∴当n ≤3时,a n <0;当n ≥4时,a n >0,∴T n =⎩⎪⎨⎪⎧6n -n 2,1≤n ≤3,n 2-6n +18,n ≥4. 答案:⎩⎪⎨⎪⎧ 6n -n 2,1≤n ≤3,n 2-6n +18,n ≥4三、解答题9.(2016·北京海淀期末)等差数列{a n }的首项a 1=1,其前n 项和为S n ,且a 3+a 5=a 4+7.(1)求{a n }的通项公式;(2)求满足不等式S n <3a n -2的n 的值.解:(1)设数列{a n }的公差为d .因为a 3+a 5=a 4+7,所以2a 1+6d =a 1+3d +7.因为a 1=1,所以3d =6,即d =2,所以a n =a 1+(n -1)d =2n -1.(2)因为a 1=1,a n =2n -1,所以S n。
2017届高三数学(理)二轮复习课时巩固过关练七1.2.5含解析
温馨提示:此套题为Word 版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word 文档返回原板块.课时巩固过关练 七 导数的综合应用(35分钟 55分)一、选择题(每小题5分,共20分)1.(2016·襄阳一模)函数f(x )=xcosx 在[-π,π]上的大致图象为 ( )【解析】选B 。
因为f (x )=xcosx 为奇函数,所以排除A 。
因为f(π)=πcos π=-π,所以排除C 。
f ′(x )=cosx —xsinx=cosx(1-xtanx),因为x ∈(0,π4),f ′(x)>0,f(x )在(0,π4)单调递增,所以排除D 。
2.(2016·黄冈一模)定义在区间(0,+∞)上的函数f (x )使不等式2f(x)〈xf ′(x )<3f(x)恒成立,其中f ′(x )为f(x )的导数,则 ( )A 。
8<f (2)f(1)<16 B.4<f (2)f(1)〈8 C 。
3〈f (2)f(1)〈4 D.2〈f (2)f(1)<3【解题指南】令g(x)=f (x)x 3,h(x )=f (x)x 2,求出g(x ),h (x)的导数,得到函数g (x),h(x)的单调性,可得g(2)<g (1),h(2)〉h (1),由f (1)〉0,即可得到4<f (2)f(1)<8.【解析】选B.令g (x)=f (x)x 3,则g ′(x)=f ′(x)·x 3−3x 2f(x)x 6=x f′(x)−3f(x)x 4,因为xf ′(x)<3f (x ),即xf ′(x)—3f (x)<0, 所以g ′(x)〈0在(0,+∞)恒成立,即有g(x)在(0,+∞)上递减,可得g(2)<g(1),即f (2)8<f (1)1,由2f (x)〈3f (x),可得f (x )>0,则f (2)f(1)〈8;令h(x )=f (x)x 2,h ′(x )=f ′(x)·x 2−2xf(x)x 4=x f′(x)−2f(x)x 3,因为xf ′(x )〉2f (x ),即xf ′(x)—2f (x )〉0,所以h ′(x )>0在(0,+∞)恒成立,即有h(x )在(0,+∞)上递增,可得h(2)〉h (1),即f (2)4>f (1),则f (2)f(1)>4。
【师说】2017届高考数学(人教版文科)二轮专项训练:课时巩固过关练(二)
如图,在△ABC 中,已知BD =
AC
AC →
AB 于点E .由AN →=
a·b=0,|a|=2,|b|=
4
由程序框图得:第一次运行i=1,a=4;第二次运行
整除,结束运行,输出a=12,i
i
在复平面上对应的点位于
2-i
2i
=2;第二次运行:S=
+…+2×7=56,故m 的取值范围是(42,56].
黑龙江大庆实验中学期末)化简2+4i
(1+i)2
的结果是
的外接圆半径为
,c 的最大值.∵输出的结果是
≠π2
,
)
+44+46+47+48)=44对应的向量如图所示,则复数z +1所对应的向量正确的是
z =-2+i ,所以z +1=-1+i ,则复数z +1所对应的向量的坐标为安徽三校联考)已知复数3+i
x -i
(x ∈R )在复平面内对应的点位于以原点为半径的圆周上,则x 的值为( )
如图,在△ABC 中,AM →=λAB →,AN →=μ
填一个数字).
由题意知判断框中的条件需在i =4,即S =9时执行此判断框后的”.
定义一种运算如下:⎣⎢⎡a c
i )-(-1)×2=-1+3i ,其共轭复数为-答案:-1-3i。
2017年高考数学解析几何圆锥曲线真题汇编
2017年高考数学《解析几何》真题汇编1.(北京卷(理))已知抛物线2:2C y px =过点(1,1)P ,过点1(0,)2作直线l 与抛物线C 交于不同的两点,M N ,过点M 作x 轴的垂线分别与直线,OP ON 交于点,A B ,其中O 为原点. (Ⅰ)求抛物线C 的方程,并求其焦点坐标和准线方程; (Ⅱ)求证:A 为线段BM 的中点.解:(Ⅰ)因为抛物线C 过点(1,1)P ,把(1,1)P 代入22y px =,得12p =∴2:C y x =∴焦点坐标1(,0)4,准线为14x =-。
(Ⅱ)设过点1(0,)2的直线方程为1:2l y kx =+,1122(,),(,)M x y N x y 直线:OP y x =,直线22:y ON y x x =由题意知121112(,),(,)x y A x y B x x 由212y kx y x⎧=+⎪⎨⎪=⎩,可得221(1)04k x k x +-+=12122211,4k x x x x k k-∴+== 1212121112221()12222x kx x y x x y kx kx x x x ++∴+=++=+ 2111121122(1)22124kk kx kx k x x k x -=+=+-⋅=⨯ ∴A 为线段BM 中点。
2.(北京卷(文))已知椭圆C 的两个顶点分别为A (−2,0),B(2,0),焦点在x轴上,离心率为2. (Ⅰ)求椭圆C 的方程;(Ⅱ)点D 为x 轴上一点,过D 作x 轴的垂线交椭圆C 于不同的两点,M N ,过D 作AM 的垂线交BN 于点E .求证:△BDE 与△BDN 的面积之比为4:5. 解:(Ⅰ)焦点在x 轴上,且顶点为(2,0)±2a ∴=2c e a ==c ∴=222a b c =+1b ∴=∴椭圆方程为2214x y +=(Ⅱ)设()()()00000,0,,,,D x M x y N x y - , 直线AM 的方程是()0022y y x x =++ , DE AM ∴⊥,002DE x k y +∴=-, 直线DE 的方程是()0002x y x x y +=-- ,直线BN 的方程是()0022yy x x -=-- , 直线BN 与DE 直线联立()()00000222x y x x y y y x x +⎧=--⎪⎪⎨-⎪=-⎪-⎩, 整理为:()()00000222x yx x x y x +-=-- ,即()()()2200042x x x y x --=- 即()()()220004424x x x x x ---=-,解得0425E x x +=,代入求得045E y y ==- ∴54N E y y =又4S 5BDE E BDN N S y y ==△△BDE ∴∆和BDN ∆面积的比为4:53.(全国卷Ⅰ)已知椭圆C :(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,),P 4(1,)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点。
【师说】2017届高考数学(人教版文科)二轮专项训练:课时巩固过关练(十五)
5.设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点.
C. D.
解析:由题意可知直线AB的方程为y= ,代入抛物线的方程得4y2-12 y-9=0,设A(x1,y1),B(x2,y2),则y1+y2=3 ,y1y2=- ,S△OAB= |OF||y1-y2|= × × = .故选D.
答案:A
8.经过椭圆 +y2=1的一个焦点作倾斜角为45°的直线l,交椭圆于A、B两点.设O为坐标原点,则 · 等于()
A.-3 B.- C.- 或-3 D.±
解析:由 +y2=1,得a2=2,b2=1,c2=a2-b2=1,焦点为(±1,0).不妨设直线l过右焦点,倾斜角为45°,则直线l的方程为y=x-1.代入 +y2=1得x2+2(x-1)2-2=0,即3x2-4x=0.设A(x1,y1),B(x2,y2),则x1·x2=0,x1+x2= ,y1y2=(x1-1)(x2-1)=x1x2-(x1+x2)+1=1- =- , · =x1x2+y1y2=0- =- .同理,可得直线l过左焦点时, · =- .故选B.
课时巩固过关练(十五)圆锥曲线的概念与
性质、与弦有关的计算问题
一、选择题
1.已知椭圆C: + =1(a>b>0)的左、右焦点分别为F1,F2,其中F1(-2 ,0),P为C上一点,满足|OP|=|OF1|且|PF1|=4,则椭圆C的方程为()
A. + =1 B. + =1 C. + =1 D. + =1
答案:
三、解答题
10.(2015·江苏高考)如图,在平面直角坐标系xOy中,已知椭圆 + =1(a>b>0)的离心率为 ,且右焦点F到左准线l的距离为3.
(1)求椭圆的标准方程;
【师说】2017届高考数学(文)二轮复习 课时巩固过关练(六) Word版含解析
课时巩固过关练(六) 导数的简单应用一、选择题 1.(2016·广东六校联考)曲线y =ln x -2x 在点(1,-2)处的切线与坐标轴所围成的三角形的面积是( )A.12B.34 C .1 D .2解析:由题意得y ′=1x -2,则在点M (1,-2)处的切线斜率k =-1,故切线方程为y+2=-(x -1),即y =-x -1.令x =0,得y =-1;令y =0,得x =-1,∴切线与坐标轴围成三角形的面积S =12×1×1=12,故选A.答案:A 2.(2016·安徽安庆期中)已知函数f (x )的导函数为f ′(x ),且满足关系式f (x )=2x 3+x 2f ′(1)+ln x ,则f ′(2)的值等于( )A .-72 B.72C .-7D .7解析:由题意,f ′(x )=6x 2+2xf ′(1)+1x,则f ′(1)=6+2f ′(1)+1,∴f ′(1)=-7,故f ′(2)=24+2×2×(-7)+12=-72,故选A.答案:A 3.(2016·河北期中)函数f (x )=2x log 2e -2ln x -ax +3的一个极值点在区间(1,2)内,则实数a 的取值范围是( )A .(1,3)B .(1,2)C .(0,3)D .(0,2)解析:因为f ′(x )=2x -2x -a ,若函数的一个极值点在区间(1,2)内,则f ′(1)f ′(2)<0,即(-a )(3-a )<0,解得0<a <3,所以选C.答案:C4.如果函数y =f (x )的导函数的图象如图所示,给出下列判断:①函数y =f (x )在区间⎝⎛⎭⎫-3,-12内单调递增 ②函数y =f (x )在区间⎝⎛⎭⎫-12,3内单调递减 ③函数y =f (x )在区间(4,5)内单调递增 ④当x =2时,函数y =f (x )有极小值⑤当x =-12时,函数y =f (x )有极大值.则上述判断中正确的是( )A .①②B .②③C .③④⑤D .③解析:当x ∈(-3,-2)时,f ′(x )<0,f (x )单调递减,①错;当x ∈⎝⎛⎭⎫-12,2时,f ′(x )>0,f (x )单调递增,当x ∈(2,3)时,f ′(x )<0,f (x )单调递减,②错;当x =2时,函数y =f (x )有极大值,④错;当x =-12时,函数y =f (x )无极值,⑤错.故选D.答案:D 5.(2016·山东东营一中期中)设f (x )是一个三次函数,f ′(x )为其导函数,如图所示的是y =x ·f ′(x )的图象的一部分,则f (x )的极大值与极小值分别是( )A .f (1)与f (-1)B .f (-1)与f (1)C .f (-2)与f (2)D .f (2)与f (-2)解析:由y =x ·f ′(x )的图象知,x ∈(-∞,-2)时,f ′(x )>0;x ∈(-2,2)时,f ′(x )≤0;x ∈(2,+∞)时,f ′(x )>0,∴当x =-2时,f (x )有极大值f (-2);当x =2时,f (x )有极小值f (2),故选C. 答案:C 二、填空题6.(2015·湖北枣阳一中月考)函数y =1x在x =4处的导数是__________. 解析:∵y ′=-12x 3,∴y ′|x =4=-1243=-116,故答案为-116. 答案:-1167.(2016·四川眉山中学期中改编)设点P 是曲线y =x 3-3x +23上的任意一点,点P 处切线倾斜角为α,则角α的取值范围是__________.解析:∵y ′=3x 2-3≥-3,∴tan α≥- 3.又0≤α<π,∴0≤α<π2或2π3≤α<π.则角α的取值范围是⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫2π3,π. 答案:⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫2π3,π 8.设方程x 3-3x =k 有3个不等的实根,则实数k 的取值范围是__________. 解析:设f (x )=x 3-3x ,对函数求导,f ′(x )=3x 2-3=0,x =-1或x =1.当x <-1时,f (x )单调递增;当-1<x <1时,f (x )单调递减;当x >1时,f (x )单调递增,f (-1)=2,f (1)=-2.方程x 3-2x -k 要有三个不等实根,则直线y =k 与f (x )的图象有三个交点,∴-2<k <2,故答案为(-2,2).答案:(-2,2) 三、解答题9.(2016·北京海淀期中)已知函数f (x )=13x 3+x 2+ax +1.(1)若曲线y =f (x )在点(0,1)处切线的斜率为-3,求函数f (x )的单调区间; (2)若函数f (x )在区间[-2,a ]上单调递增,求a 的取值范围. 解:(1)因为f (0)=1,所以曲线y =f (x )经过点(0,1),又f ′(x )=x 2+2x +a ,曲线y =f (x )在点(0,1)处切线的斜率为-3,所以f ′(0)=a =-3,所以f ′(x )=x 2+2x -3. 当x 变化时,f ′(x ),f (x )的变化情况如下表:单调递减区间为(-3,1).(2)因为函数f (x )在区间[-2,a ]上单调递增, 所以f ′(x )≥0对x ∈[-2,a ]成立,只要f ′(x )=x 2+2x +a 在[-2,a ]上的最小值大于等于0即可. 因为函数f ′(x )=x 2+2x +a 的对称轴为直线x =-1, 当-2≤a ≤-1时,f ′(x )在[-2,a ]上的最小值为f ′(a ), 解f ′(a )=a 2+3a ≥0,得a ≥0或a ≤-3,所以此种情形不成立; 当a >-1时,f ′(x )在[-2,a ]上的最小值为f ′(-1), 解f ′(-1)=1-2+a ≥0,得a ≥1,所以a ≥1. 综上,实数a 的取值范围是{a |a ≥1}.10.(2016·湖南株洲统测)设函数f (x )=a ln x +b (x 2-3x +2),其中a ,b ∈R . (1)若a =b ,讨论f (x )极值(用a 表示);(2)当a =1,b =-12,函数g (x )=2f (x )-(λ+3)x +2,若x 1,x 2(x 1≠x 2)满足g (x 1)=g (x 2)且x 1+x 2=2x 0,证明:g ′(x 0)≠0.解:(1)函数f (x )的定义域为(0,+∞), ∵a =b ,∴f (x )=a ln x +a (x 2-3x +2), ∴f ′(x )=ax +a (2x -3)=a (x -1)(2x -1)x.①a =0时,f (x )=0,所以函数f (x )无极值;②当a >0时,f (x )在⎝⎛⎭⎫0,12和(1,+∞)上单调递增,在⎝⎛⎭⎫12,1上单调递减, ∴f (x )的极大值为f ⎝⎛⎭⎫12=-a ln2+34a ,f (x )的极小值为f (1)=0; ③当a <0时,f (x )在⎝⎛⎭⎫0,12和(1,+∞)上单调递减,在⎝⎛⎭⎫12,1上单调递增, ∴f (x )的极小值为f ⎝⎛⎭⎫12=-a ln2+34a ,f (x )的极大值为f (1)=0. 综上所述:当a =0时,函数f (x )无极值;当a >0时,函数f (x )的极大值为-a ln2+34a ,函数f (x )的极小值为0;当a <0时,函数f (x )的极小值为-a ln 2+34a ,函数f (x )的极大值为0.(2)g (x )=2ln x -x 2-λx ,g ′(x )=2x-2x -λ.假设结论不成立,则有⎩⎪⎨⎪⎧2ln x 1-x 21-λx 1=2ln x 2-x 22-λx 2,①x 1+x 2=2x 0,②2x 0-2x 0-λ=0,③由①,得2ln x 1x 2-(x 21-x 22)-λ(x 1-x 2)=0,∴λ=2ln x 1x 2x 1-x 2-2x 0, 由③,得λ=2x 0-2x 0,∴lnx 1x 2x 1-x 2=1x 0,即lnx 1x 2x 1-x 2=2x 1+x 2,即ln x 1x 2=2x 1x 2-2x 1x 2+1④.令t =x 1x 2,不妨设x 1<x 2,u (t )=ln t -2t -2t +1(0<t <1),则u ′(t )=(t -1)2t (t +1)2>0, ∴u (t )在0<t <1上是增函数,u (t )<u (1)=0,则ln x 1x 2<x 1x 2-2x 1x 2+1,∴④式不成立,与假设矛盾. ∴g ′(x 0)≠0.11.(2016·北京朝阳期末)已知函数f (x )=ax +ln x ,其中a ∈R . (1)若f (x )在区间[1,2]上为增函数,求a 的取值范围; (2)当a =-e 时. ①证明:f (x )+2≤0;②试判断方程|f (x )|=ln x x +32是否有实数解,并说明理由.解:函数f (x )的定义域为x ∈(0,+∞),f ′(x )=a +1x.(1)因为f (x )在区间[1,2]上为增函数,所以f ′(x )≥0在x ∈[1,2]上恒成立,即f ′(x )=a+1x ≥0,a ≥-1x 在x ∈[1,2]上恒成立,则a ≥-12.故a 的取值范围为⎣⎡⎭⎫-12,+∞. (2)当a =-e 时,f (x )=-e x +ln x ,f ′(x )=-e x +1x .①令f ′(x )=0,得x =1e.令f ′(x )>0,得x ∈⎝⎛⎭⎫0,1e ,所以函数f (x )在⎝⎛⎭⎫0,1e 上单调递增; 令f ′(x )<0,得x ∈⎝⎛⎭⎫1e ,+∞,所以函数f (x )在⎝⎛⎭⎫1e ,+∞上单调递减. 所以f (x )max =f ⎝⎛⎭⎫1e =-e·1e +ln 1e =-2.所以f (x )+2≤0成立. ②由①知,f (x )max =-2,所以|f (x )|≥2.设g (x )=ln x x +32,x ∈(0,+∞),所以g ′(x )=1-ln x x 2.令g ′(x )=0,得x =e.令g ′(x )>0,得x ∈(0,e),所以函数g (x )在(0,e)上单调递增; 令g ′(x )<0,得x ∈(e ,+∞),所以函数g (x )在(e ,+∞)上单调递减.所以g (x )max =g (e)=lne e +32=1e +32<2,即g (x )<2. 所以|f (x )|>g (x ),即|f (x )|>ln x x +32.所以方程|f (x )|=ln x x +32没有实数解.。
【师说】2017高考数学(理)二轮专题复习 课时巩固过关练(十一)数列求和及综合应用
(1)求数列{an}的通项公式;
(2)记Sn为数列{an}的前n项和,是否存在正整数n,使得Sn>60n+800?若存在,求n的最小值;若不存在,说明理由.
解:(1)设数列{an}的公差为d,依题意,2,2+d,2+4d成等比数列,所以(2+d)2=2(2+4d),解得d=0或d=4.当d=0时,an=2;当d=4时,an=2+(n-1)×4=4n-2,所以数列{an}的通项公式为an=2或an=4n-2.
(2)设数列{bn}的前n项和为Tn,且Tn+ =λ(λ为常数).令cn=b2n(n∈N*),求数列{cn}的前n项和Rn.
解:(1)设等差数列{an}的首项为a1,公差为d,由S4=4S2,a2n=2an+1得
解得a1=1,d=2.因此an=2n-1,n∈N*.
(2)由题意知Tn=λ- ,所以n≥2时,bn=Tn-Tn-1=- + = .故cn= =(n-1) n-1,n∈N*.
答案:D
2.(2016·山东济宁期中)已知在数列{an}中,an= ,其前n项和为 ,则在平面直角坐标系中,直线nx+y+(n+1)=0在y轴上的截距是()
A.-10 B.-9
C.10 D.9
解析:an= = - ,前n项和为Sn=1- + - +…+ - =1- ,由题意可得1- = ,解得n=9,直线nx+y+(n+1)=0,即为9x+y+10=0,令x=0,可得y=-10.故选A.
(1)∵b7=2a7=2-2+6d,∴4×2-2+6d=2-2+7d,∴d=2,∴Sn=-2n+n(n-1)=n(n-3).
(2)将f(x)=2x求导得f′(x)=2xln2,∴f(x)=2x在(a2,b2)处的切线方程为y-b2=2a2(x-a2)ln2,令y=0,得-b2=(2a2ln2)×(x-a2),x=a2- ,∴a2=2,∴d=2-1=1,∴an=n,bn=2n,∴ = ,其前n项和Tn= + + +…+ + ①,两边同乘2得2Tn= + + +…+ ②,②-①得2Tn-Tn= + + +…+ - =2- - ,∴Tn= .
【师说】高中数学人教A版选修课时作业第章圆锥曲线与方程《直线与抛物线的位置关系》
课时作业(十五) 直线与抛物线的位置关系A 组 基础巩固1.已知直线y =kx -k 及抛物线y 2=2px (p >0),则( )A .直线与抛物线有一个公共点B .直线与抛物线有两个公共点C .直线与抛物线有一个或两个公共点D .直线与抛物线可能没有公共点解析:∵直线y =kx -k =k (x -1),∴直线过点(1,0).又点(1,0)在抛物线y 2=2px 的内部.∴当k =0时,直线与抛物线有一个公共点;当k ≠0,直线与抛物线有两个公共点.答案:C2.过点(1,0)作斜率为-2的直线,与抛物线y 2=8x 交于A ,B 两点,则弦AB 的长为( )A .213B .215C .217D .219解析:设A ,B 两点坐标分别为(x 1,y 1),(x 2,y 2),由直线AB 斜率为-2,且过点(1,0)得直线AB 的方程为y =-2(x -1),代入抛物线方程y 2=8x 得4(x -1)2=8x ,整理得x 2-4x +1=0,则x 1+x 2=4,x 1x 2=1,|AB |=5(x 1+x 2)2-4x 1x 2=516-4=215.答案:B3.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A .⎣⎡⎦⎤-12,12 B .[-2,2] C .[-1,1] D .[-4,4]解析:准线x =-2,Q (-2,0),设l :y =k (x +2),由⎩⎪⎨⎪⎧ y =k (x +2),y 2=8x , 得k 2x 2+4(k 2-2)x +4k 2=0.当k =0时,x =0,即交点为(0,0),当k ≠0时,Δ≥0,-1≤k <0或0<k ≤1.综上,k 的取值范围是[-1,1].答案:C4.与直线2x -y +4=0平行的抛物线y =x 2的切线方程为( )A .2x -y +3=0B .2x -y -3=0C .2x -y +1=0D .2x -y -1=0解析:设切线方程为2x -y +m =0,与y =x 2联立得x 2-2x -m =0,Δ=4+4m =0,m =-1,即切线方程为2x -y -1=0.答案:D5.过点(0,-2)的直线与抛物线y 2=8x 交于A 、B 两点,若线段AB 中点的横坐标为2,则|AB |等于( )A .217 B.17C .215 D.15解析:设直线方程为y =kx -2,A (x 1,y 1)、B (x 2,y 2).由⎩⎪⎨⎪⎧y =kx -2,y 2=8x ,得k 2x 2-4(k +2)x +4=0.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
+15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的取值范围是( )
A.⎣⎢⎡⎦⎥⎤0,43
B.⎝ ⎛⎭
⎪⎫0,43 C.⎣⎢⎡⎭⎪⎫0,43 D.⎝ ⎛⎦
⎥⎤0,43
解析:设直线y =kx -2上至少存在一
点,使得以该点为圆心,1为半径的圆为圆M ,又圆C 的标准方程为(x -4)2+y 2=1,则圆心C 的坐标为(4,0),半径R =1,如图,若圆M 与圆C 有公共点,则圆M
与圆C 的临界点为圆M 与圆C 的外切点,即等价为圆心C 到直线y =kx -2的距离d ≤R +1=2,即圆心到直线kx -y -2=0的距离d =|4k -2|
1+k 2≤2,即|2k -
答案:D
7.(2016·湖北一联)已知圆C1:(x-2)2+(y-3)2=1,圆C2:(x-3)2+(y-4)2=9,M,N分别是圆C1,C2上的动点,P 为x轴上的动点,则|PM|+|PN|的最小值为()
A.52-4 B.17-1
C.6-2 2 D.17
解析:如图,圆C1关于x轴的对称圆的圆心坐标A(2,-3),半径为1,圆C2的圆心坐标(3,4),半径为3.连接AC2,设直线AC2与x轴的交点为P,可知|AC2|=|PC2|+|PC1|.而|PM|+|PN|=|PC2|-3+
|PC1|-1=|AC2|-4,即|PM|+|PN|的最小值为圆A与圆C2的圆心距减去两个圆的
圆心距|C 1C 2|=(2cos θ)2+(2sin θ)2=2,|C 1C 2|=r 1+r 2,故对于任意的θ,圆C 1与圆C 2始终相切.对于②结论是不正确的,由①可知两圆外切,只有3条公切线.对于③结论是正确的,由直线l :2(m +3)x +3(m +2)y -(2m +5)=0可化为m (2x +3y -2)+6x +6y -5=0.解方程组
⎩
⎪⎨⎪⎧ 2x +3y -2=0,6x +6y -5=0,得交点M ⎝ ⎛⎭⎪⎫12,13,则|MO |=⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭
⎪⎫132=136<1,故点M 在圆C 2内,所以直线l 与圆C 2一定相交于两个不同的点.对于④结论是正确的,如图所示,当P ,Q 两点与公切点共线时距离最大,为|PQ |=2(r 1+r 2)=4.综上,正确的结论是①③④.故选B.
答案:B
解析:圆C 2:(x -3-cos θ)2+(y -
sin θ)2=125(θ∈R ),圆心C 2(3+cos θ,sin θ),
半径等于15.由题意可知∠MPN 最小时,
|PC 1|最大,最大为|C 1C 2|+15=65,∴PM =
3625-425=425,∴tan ∠MPC 1=24
, ∴tan ∠MPN =2×241-⎝ ⎛⎭
⎪⎫242=427. 答案:427
11.(2016·贵州遵义一模)如图,已知
圆M :(x -3)2+(y -3)2=4,四边形ABCD 为圆M 的内接正方形,E ,F 分别为AB ,AD 的中点,当正方形ABCD 绕圆心M 转
动时,ME →·OF →的最大值是__________.
解析:由题意可得OF →=OM →+MF →,
数学备课大师【全免费】
“备课大师”全科【9门】:免注册,不收费!/。