02197概率论与数理统计(二)(试题+答案)-201204

合集下载

概率论与数理统计(二)试题及答案.

概率论与数理统计(二)试题及答案.

全国2009年7月自学考试概率论与数理统计(二)试题课程代码:02197一、单项选择题(本大题共10小题小题,,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的在每小题列出的四个备选项中只有一个是符合题目要求的,,请将其代码填写在题后的括号内请将其代码填写在题后的括号内。

错选错选、、多选或未选均无分选均无分。

1.设A 与B 互不相容,且P(A)>0,P(B)>0,则有( )A.P(A)=1-P(B)B.P(AB)=P(A)P(B)C.P(A B )=1D.P(AUB)=P(A)+P(B)2.设A 、B 相互独立,且P(A)>0,P(B)>0,则下列等式成立的是( )A.P(AB)=0B.P(A-B)=P(A)P(B )C.P(A)+P(B)=1D.P(A | B)=03.同时抛掷3枚均匀的硬币,则恰好有两枚正面朝上的概率为( )A.0.125B.0.25C.0.375D.0.504.设函数f (x)在[a ,b]上等于sin x ,在此区间外等于零,若f (x)可以作为某连续型随机变量的概率密度,则区间[a ,b]应为( ) A.[2π−,0] B.[0,2π] C.[0,π] D.[0,2π3] 5.设随机变量X 的概率密度为≤<−≤<=其它021210)(x x x x x f ,则P(0.2<X<1.2)= ( ) A.0.5B.0.6C.0.66D.0.76.设在三次独立重复试验中,事件A 出现的概率都相等,若已知A 至少出现一次的概率为19/27,则事件A 在一次试验中出现的概率为( ) A.61 B.41 C.31 D.21 7.221 α β 则有( )A.α=91,β=92 B. α=92,β=91 C. α=31,β=32 D. α=32,β=31 8.已知随机变量X 服从参数为2的泊松分布,则随机变量X 的方差为( )A.-2B.0C.21D.2 9.设μn 是n 次独立重复试验中事件A 出现的次数,p 是事件A 在每次试验中发生的概率,则对于任意的ε>0,均有}|{|lim n εµ>−∞→p n P n ( )A.=0B.=1C.>0D.不存在 10.对正态总体的数学期望μ进行假设检验,如果在显著水平0.05下接受H 0:μ=μ0,那么在显著水平0.01下,下列结论中正确的是( )A.必接受H 0B.可能接受H 0,也可能拒绝H 0C.必拒绝H 0D.不接受,也不拒绝H 0二、填空题(本大题共15小题小题,,每小题2分,共30分)请在每小题的空格中填上正确答案请在每小题的空格中填上正确答案。

全国自学考试概率论与数理统计二历年真题及答案

全国自学考试概率论与数理统计二历年真题及答案

全国2010年7月高等教育自学考试 概率论与数理统计(二)试题课程代码:02197一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设A 、B 为两事件,已知P (B )=21,P (A ⋃B )=32,若事件A ,B 相互独立,则P (A )=( ) A .91B .61C .31D .21 2.对于事件A ,B ,下列命题正确的是( ) A .如果A ,B 互不相容,则A ,B 也互不相容 B .如果A ⊂B ,则B A ⊂ C .如果A ⊃B ,则B A ⊃D .如果A ,B 对立,则A ,B 也对立3.每次试验成功率为p (0<p <1),则在3次重复试验中至少失败一次的概率为( ) A .(1-p )3 B .1-p 3C .3(1-p )D .(1-p )3+p (1-p )2+p 2(1-p )4.已知离散型随机变量X则下列概率计算结果正确的是( ) A .P (X =3)=0 B .P (X =0)=0 C .P (X >-1)=1D .P (X <4)=1 5.已知连续型随机变量X 服从区间[a ,b ]上的均匀分布,则概率P =⎭⎬⎫⎩⎨⎧+<32b a X ( )A .0B .31C .32 D .1A .(51,151)B .(151,51)C .(101,152) D .(152,101) 7.设(X ,Y )的联合概率密度为f (x ,y )=⎩⎨⎧≤≤≤≤+,,0,10,20),(其他y x y x k 则k =( )A .31B .21 C .1D .38.已知随机变量X ~N (0,1),则随机变量Y =2X +10的方差为( ) A .1 B .2 C .4D .149.设随机变量X 服从参数为0.5的指数分布,用切比雪夫不等式估计P (|X -2|≥3)≤( )A .91B .92C .31D .94 10.由来自正态总体X ~N (μ,22)、容量为400的简单随机样本,样本均值为45,则未知参数μ的置信度为0.95的置信区间是(u 0.025=1.96,u 0.05=1.645)( ) A .(44,46)B .(44.804,45.196)C .(44.8355,45.1645)D .(44.9,45.1)二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。

全国自考概率论与数理统计(二)试题和答案

全国自考概率论与数理统计(二)试题和答案

B)14.设随机变量X 的分布律为,F (x )是X 的分布函数,则F (1)=______.正确答案:(2分) 2/315.设随机变量X 的概率密度为f (x )=2010,x x ≤≤⎧⎨⎩,,其他,则12P X ⎧⎫>⎨⎬⎩⎭=______.正确答案:(2分)3/416.已知随机变量X ~N (4,9),P {X >c }=P {X ≤c },则常数c =______. 正确答案:(2分) 417.设二维随机变量(X ,Y )的分布律为则常数a =______. 正确答案:(2分) 0.218.设随机变量X 与Y 相互独立,且X ~N (0,l),Y ~N (-1,1),记Z =X -Y ,则Z ~______. 正确答案:(2分) N(1,2)19.设随机变量X 服从参数为2的泊松分布,则E (X 2)=______. 正确答案:(2分) 620.设X ,Y 为随机变量,且E (X )=E (Y )=1,D (X )=D (Y )=5,ρXY =0.8,则E (XY )=______. 正确答案:(2分) 521.设随机变量X 服从区间[-1,3]上的均匀分布,随机变量Y =0111X X <⎧⎨≥⎩,,,,则E (Y )=______. 正确答案:(2分) 1/222.设随机变量X ~B (100,0.2),()x Φ为标准正态分布函数,()2.5Φ=0.9938,应用中心极限定理,可得P {20≤x ≤30)≈______. 正确答案:(2分) 0.493823.设总体X ~N (0,l),x 1,x 2,x 3,x 4为来自总体X 的样本,则统计量22221234x x x x +++~______.正确答案:(2分)x2(4)24.设总体X~N(μ,1),μ未知,x1,x2,…,x n为来自该总体的样本,x为样本均值,则μ的置信度为1-α的置信区间是______.正确答案:(2分)]1,1[22nuxnuxaa+-25.某假设检验的拒绝域为W,当原假设H0成立时,样本值(x1,x2,…,x n)落入W的概率为0.1,则犯第一类错误的概率为______.正确答案:(2分)0.1三、计算题(本大题共2小题,每小题8分,共16分)26.设二维随机变量(X,Y)的概率密度为26,01,01,()0,x y x yf x⎧≤≤≤≤⎪=⎨⎪⎩ 其他.求:(1)(X,Y)关于X的边缘概率密度f X(x);(2)P{X>Y}.正确答案:27.设总体X的概率密度为1,0,()0,0,xe xf xxθθ-⎧>⎪=⎨⎪≤⎩其中未知参数θ>0,x1,x2,…,x n是来自该总体的样本,求θ的极大似然估计.四、综合题(本大题共2小题,每小题12分,共24分)正确答案:28.有甲、乙两盒,甲盒装有4个白球1个黑球,乙盒装有3个白球2个黑球,从甲盒中任取1个球,放入乙盒中,再从乙盒中任取2个球.(1)求从乙盒中取出的是2个黑球的概率;(2)已知从乙盒中取出的是2个黑球,问从甲盒中取出的是白球的概率.正确答案:29.设随机变量X~N(0,l),记Y=2X.求:(1)P{X<-1>;(2)P{|X|<1};(3)Y的概率密度.(附:Φ(1)=0.8413)正确答案:五、应用题(10分)30.某产品的次品率为0.l,检验员每天抽检10次,每次随机取3件产品进行检验,且不存在误检现象,设产品是否为次品相互独立,若在一次检验中检出次品多于1件,则调整设备,以X表示一天调整设备的次数,求E(X).正确答案:。

自考概率论与数理统计(二)(02197)及答案

自考概率论与数理统计(二)(02197)及答案

概率论与数理统计(二)(课程代码:02197)本试卷共五页,满分100分;考试时间150分钟。

一、单项选择题(每小题4分,共40分)1)、设事件A 、B 满足2.0)(=-A B P ,6.0)(=B P ,则)(AB P =( ) A )、0.12 B )、0.4 C )、0.6 D )、0.8 2)、设二维随机变量),(Y X 的分布律为 则}{Y X P ==( )A)、0.3 B )、0.5 C )、0.7 D )0.8 3)、设随机变量X 服从参数为2的泊松分布,则下列结论中正确的是( ) A )、5.0)(,5.0)(==X D X EB )、25.0)(,5.0)(==X D X EC )、4)(,2)(==XD X ED )、2)(,2)(==X D XE 4)、设随机变量X 服从正态分布(0,4)N ,()x Φ为标准正态分布函数,则{36}( ).P X ≤≤=. (6)(3) . (3)(1.5) 3. (1.5)(1) . (3)()4A B C D Φ-ΦΦ-ΦΦ-ΦΦ-Φ5)、设随机变量)2,1( ~2-N X ,则X 的概率密度=)(x f ( ) A )、4)1(241+-x eπB )、8)1(241+-x eπC )、8)1(2221+-x eπD )、8)1(2221--x eπ6)、设随机变量)1,0(~,)1,0(~N Y N X ,且X 与Y 相互独立,则~22Y X +( )A )、)2,0(NB )、)2(2χC )、)2(tD )、)1,1(F7)、设)2,1( ~2N X ,n X X ,,1 为X 的样本,记∑==n i i X n X 11则有( ) A )、)1,0(~/21N n X - B )、)1,0(~41N X - C )、)1,0(~21N X - D )、)1,0(~21N X - 8)、设总体),( ~2σμN X ,其中μ未知,4321,,,x x x x 为来自总体X的一个样本,则以下关于μ的四个估计:3211513151ˆx x x ++=μ,)(41ˆ43212x x x x +++=μ,1371ˆx =μ,2147261ˆx x +=μ中,哪一个是无偏估计?( )A )、1ˆμB )、2ˆμC )、3ˆμD )4ˆμ 9)、对随机变量X 来说,如果 EX DX ≠,则可断定X 不服从( )分布。

02197--概率论与数理统计(二)

02197--概率论与数理统计(二)

02197--概率论与数理统计(二)[单项选择题]1.设分别为随机变量的分布函数,为使是某一随机变量的分布函数,在下列给定的各组值中应取(A、)。

2.设是随机变量,其分布函数分别为,为使是某一随机变量的分布函数,在下列给定的各组数值中应取(C、)3.设随机变量的概率分布为且满足,则的相关系数为(A、0)4.设A、B、C为三个事件,P(AB)>0且P(C|AB)=1,则有(C、P(C)≥P (A)+P(B)-1)5.设x?,x?,··· ···,x?为正态总体N(μ,4)的一个样本,表示样本均值,则μ的置信度为1-α的置信区间为(D、)6.设总体X服从正态分布N(μ,σ2),X?,X?,··· ···,X n是来自X 的样本,则σ2的最大似然估计为( A、 )7.设是未知参数的一个估计量,若,则是的( D.有偏估计 )8.在对单个正态总体均值的假设检验中,当总体方差已知时,选用( B、u检验法)9.若X~t(n)那么χ2~(A、F(1,n))10.对于事件A,B,下列命题正确的是(D、)11.设X~N(μ,σ2),那么当σ增大时,P{|X-μ|<σ}=(C、不变)12.已知随机变量X的密度函数f(x)=(λ>0,A为常数),则概率P{λ<X<λ+a}(a>0)的值(C、与λ无关,随a的增大而增大)13.设随机事件A与B互不相容,且P(A)>0,P(B)>0,则 (D、)。

14.设 X1, X2为来自总体N(μ, 1) 的一个简单随机样本, 则下列估计量中μ的无偏估计量中最有效的是 ( A、设随机变量X的概率密度为f(x),则f(x)一定满足【C、】16.设随机变量X与Y的方差分别是25和16,协方差为8,则相关系数ρXY=【C、】17.已知随机变量与相互独立,且它们在区间[-1,3]和[2,4]上服从均匀分布,则【A、3】18.若X,Y相互独立,则下列正确的是【C、】设X~N(0,1), Y~N(μ,σ2), 则Y与X之间的关系是【A、】设A, B为随机事件, A错误!未找到引用源.B,(B、)A,B,C是任意事件,在下列各式中,不成立的是(B、(A∪B)-A=B)设随机变量且相互独立,根据切比雪夫不等式有(D、≥5/12)设A,B,C为三个事件,且A,B相互独立,则以下结论中不正确的是(D、)设离散型随机变量X和Y的联合概率分布为,若X,Y独立,则α,β的值为(A、)设总体X的数学期望为μ,X?,X?,··· ···,X n为来自X的样本,则下列结论中正确的是(A、X?是μ的无偏估计量)已知是来自总体的样本,则下列是统计量的是(B、)设X,Y是相互独立的两个随机变量,它们的分布函数分别为F x(x),F y(y),则Z = max {X,Y} 的分布函数是(C、)对于任意两个随机变量X和Y,若E(XY)=E(X)-E(Y),则(B、D(X+Y)=D(X)+D(Y) ) 设A,B为任二事件,则(D、)设Φ(x)是标准正态分布函数,则Φ(0)= 【B、】设随机变量X与Y相互独立,且P{X≤1}=1/4,P{Y≤1}=1/3,则P{X≤1,Y≤1}=【C、】设随机事件A与B互不相容,且, ,则【D、】设A和B相互独立,,,则【B、】袋中有5个白球和3个黑球,从中任取两个,则取到的两个球是白球的概率是【A、】下列关于“统计量”的描述中,不正确的是【C、统计量表达式中不含有参数】设A,B为随机事件,则下列说法正确的是【B、】设随机变量X的取值范围是[-1,1],以下函数可以作为X的概率密度的是【C、】已知随机变量X的分布函数为C、7/12设随机变量X服从参数为的指数分布,则下列各项中正确的是(D、)设二维随机变量(X, Y)的概率密度为,则常数c=(A、)将一枚硬币重复郑n次,以X和Y分别表示正面向上和反面向上的次数,则X 与Y的相关系数等于(A、-1)是来自总体X~N(0,1)的一部分样本,设:,则Z/Y~(D、F(8,8))X?,X?独立,且分布率为(i=1,2),那么下列结论正确的是(C、P{X?=X?}=1/2)下列二无函数中,( B、) 可以作为连续型随机变量的联合概率密度。

概率论与数理统计(二)(02197)

概率论与数理统计(二)(02197)

概率论与数理统计(二)(02197)1[计算题]设随机变量X的概率密度为2[计算题]设随机变量X服从[0,0.2]上的均匀分布,随机变量Y的概率密度为且X与Y相互独立,求(X,Y)的概率密度。

综合题]设(X,Y)的分布律为:且X与Y相互独立,求常数和的值。

[综合题]设随机变量X与Y相互独立,且X,Y的分布律分别为求二维随机变量(X,Y)的分布律。

[应用题]五家商店联营,它们每两周售出的某种农产品的数量(以千克计)分别记为随机变量.已知,,,,,且它们相互独立,求这五家商店两周的总销量的均值和方差?解:设随机变量X指五家商店两周的总销量,则由已知可得(1)这五家商店两周的总销量的均值(2)这五家商店两周的总销量的方差[应用题]设电压(以计),将电压施加于一检波器,其输出电压为,求输出电压Y的均值?[计算题][计算题][综合题]设随机变量X的分布律为记综合题]设离散型随机变量X的分布律为[应用题]已知甲进行一次射击的命中率为,求:“甲进行三次独立的射击,至少一次命中”的概率?应用题]随机地取8只活塞环,测得它们的直径为(以mm计)74.001 74.005 74.003 74.001 74.000 73.998 74.006 74.002试求总体均值的矩估计值?[计算题][计算题]12把钥匙中有4把能打开门,今任取两把,求能打开门的概率。

综合题]设袋中有依次标着-1,0,1,2,3,4数字的6个球,现从中任取一球,记随机变量X为取得的球标有的数字,求:(1)X的分布律;(2)的概率分布。

[综合题]设二维随机变量(X,Y)的分布律为(1)求(X,Y)分别关于X,Y的边缘分布律;(2)试问X与Y是否相互独立,为什么?[应用题]已知男人中有5%是色盲患者,女人中有0.25%是色盲患者,今从男女人数相等的人群中随机地挑选一个人,恰好是色盲患者,问此人是男性的概率是多少?解:设A表示“男人”,B表示“女人”,C表示“这人有色盲”,则由贝叶斯公式可得:应用题]某同学的钥匙掉了,掉在宿舍里、掉在教室里、掉在路上的概率分别是0.7,0.2,0.1,而掉在上述三处地方被找到的概率分别是0.8,0.2,0.2,试求他找到钥匙的概率?解:设:A1 =“钥匙掉在宿舍里”,A2=“钥匙掉在教室里”,A3=“钥匙掉在路上”,B=“钥匙被找到”,已知。

最新 年月全国自考概率论与数理统计(二)试题及答案

最新 年月全国自考概率论与数理统计(二)试题及答案

1 / 10全国2018年7月自学考试概率论与数理统计(二)课程代码:02197试卷来自百度文库 答案由绥化市馨蕾園的王馨磊导数提供一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设A ={2,4,6,8},B ={1,2,3,4},则A -B =( ) A .{2,4} B .{6,8} C .{1,3}D .{1,2,3,4}.B AB A B A B A B A 中的元素,故本题选中去掉集合合说的简单一些就是在集的差事件,记作与事件不发生”为事件发生而解:称事件“-2.已知10件产品中有2件次品,从这10件产品中任取4件,没有取出次品的概率为( )A .15B .14C .13D .12.31789105678;844104104848410C C C P C C ,故选本题的概率件正品中取,共有从件中没有次品,则只能若种取法;件,共有件产品中任取解:从=⨯⨯⨯⨯⨯⨯== 3.设事件A ,B 相互独立,()0.4,()0.7,P A P A B =⋃=,则()P B =( ) A .0.2 B .0.3 C .0.4D .0.52 / 10()()()()()()()()()()()()()().5.04.04.07.0D B P B P B P B P A P B P A P AB P B P A P B A P B P A P AB P B A ,故选,解得代入数值,得,所以,相互独立,,解:=-+=-+=-+=⋃= 4.设某实验成功的概率为p ,独立地做5次该实验,成功3次的概率为( )A .35CB .3325(1)C p p -C .335C pD .32(1)p p -()()()()()().1335.,...2,1,0110~23355B p p C P k n n k p p C k P k A p p A n p n B X kn kk n n ,故选,所以,本题,次的概率恰好发生则事件,的概率为次检验中事件重贝努力实验中,设每定理:在,解:-====-=<<-5.设随机变量X 服从[0,1]上的均匀分布,Y =2X -1,则Y 的概率密度为( )A .1,11,()20,,Y y f y ⎧-≤≤⎪=⎨⎪⎩其他 B .1,11,()0,,Y y f y -≤≤⎧=⎨⎩其他C .1,01,()20,,Y y f y ⎧≤≤⎪=⎨⎪⎩其他D .1,01,()0,,Y y f y ≤≤⎧=⎨⎩其他()()[]()()()()()()[]()[][][]..01,121.01,1211.01,1212121.01,12121211,1212112010101110~A y y y y f y f y y h y h f y f y h y y h y y x x y x x f U X X Y X Y X 故选其他,,其他,,其他,,,得其他,,由公式,,即,其中,解得由其他,,,,,,解:⎪⎩⎪⎨⎧-∈=⎪⎩⎪⎨⎧-∈⨯=⎪⎩⎪⎨⎧-∈⎪⎭⎫ ⎝⎛+=⎩⎨⎧-∈'=='+=-∈+=-=⎪⎩⎪⎨⎧≤≤=-=3 / 106.设二维随机变量(X ,Y )的联合概率分布为( )则c =A .112B .16C .14 D .13()().611411211214161.1,...2,1,0B c c P j i P Y X jij iij ,故选,解得由性质②,得②,①:的分布律具有下列性质,解:==+++++==≥∑∑7.已知随机变量X 的数学期望E (X )存在,则下列等式中不恒成立....的是( ) A .E [E (X )]=E (X ) B .E [X +E (X )]=2E (X ) C .E [X -E (X )]=0D .E (X 2)=[E (X )]2()()()().D C B A XE X E E X E X 均恒成立,故本题选、、由此易知,即,期望的期望值不变,的期望是解:=8.设X 为随机变量2()10,()109E X E X ==,则利用切比雪夫不等式估计概率P{|X-10|≥6}≤( )A .14 B .518 C .34D .109364 / 10()()()()(){}(){}.416961091001092222A X P X D X E X P X E X E X D ,故选所以;切比雪夫不等式:,解:=≤≥-≤≥-=-=-=εε 9.设0,1,0,1,1来自X ~0-1分布总体的样本观测值,且有P {X =1}=p ,P {X =0}=q ,其中0<p <1,q =1-p ,则p 的矩估计值为( ) A .1/5 B .2/5 C .3/5D .4/5()()().53ˆ5301ˆC px p q p X E x X EX E x ,故选,所以,本题,,即估计总体均值用样本均值矩估计的替换原理是:解:===⨯+⨯== 10.假设检验中,显著水平α表示( ) A .H 0不真,接受H 0的概率 B .H 0不真,拒绝H 0的概率 C .H 0为真,拒绝H 0的概率D .H 0为真,接受H 0的概率{}.00C H H P ,故选为真拒绝即拒真,表示第一类错误,又称解:显著水平αα=二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。

02197概率论与数理统计(二)

02197概率论与数理统计(二)

选择题1、掷一颗骰子,观察出现的点数,A 表示“出现3点”,B 表示“出现奇数点”,则(B A ⊂)2、设A ,B 为随机事件,则A A B A =⋃)(3、设随机事件A 与B 互不相容,P(A)=0.4,P(B)=0.2,则P(A|B)=04、设随机变量X 服从参数为0.5的指数分布,则下列各项中正确的是:E(X)=2;D(X)=45、如果函数⎩⎨⎧≤≤=其他,0b x a 2x,(x)f ,是某连续型随机变量X 的概率密度,则区间[a,b]可能是:[0,1]6、已知D(X)=25,D(Y)=1,xy ρ=0.4,则D(X-Y)=227、已知随机变量X 与Y 相互独立,且它们分别在区间[1,3]和[2,4]上服从均匀分布,则E(XY)=68、设X~N(-1,2),Y~N(1,3),且X 与Y 相互独立,则2X+2Y~N(0,20)9、设(X,Y)为二维随机变量,则与Cov(X,Y)=0不等价的是(A )A. X 与Y 相互独立;B.D(X+Y)=D(X)+D(Y);B. D(X-Y)=D(X)+D(Y); D.E(XY)=E(X)E(Y) 填空题1、盒中共有3个黑球2个白球,从中任取2个,则取到的2个球同色的概率为:2/52、连续抛掷一枚硬币3次,则出现两次正面的概率为:3/83、设随机事件A 与B 相互独立,P(A)=0.3,P(B)=0.5,则P(A-B)=0.154、设A ,B 为随机事件,P(A)=1/2,P(B/A)=1/3,则P(AB)=1/55、设随机变量X~N(0,1) Φ(x)为其分布函数,则Φ(x)+Φ(-x)=16、已知二维随机变量(X,Y)服从区域G :0<=x<=2,0<=y<=2上的均匀分布,则P{X<=1,Y<=1}=1/47、设随机变量,⎩⎨⎧≤≤=其他,01x 1-2x,(x)f 则P{x>0.5}=1/8 8、已知随机变量X~N(2,4),P{X>c}=P{X<=c},则常数c=29、设随机变量(X,Y)的分布律为:则常数a=0.210、已知随机变量服从参数为4的泊松分布,则E(X^2)=2011、设随机变量X 与Y 相互独立,且D(Y)=D(X)=1,则D(X-2Y)=512、设X,Y 为随机变量,且E(Y)=E(X)=1,,D(Y)=D(X)=5,pxy=0.6,则E(XY)=13、设总体X~N(0,1),x1,x2,x3,x4为来自总体X 的样本,则统计量x1^2+x2^2+x3^2+x4^2~14、某假设检验的拒绝域为W ,当原假设H0不成立时,样本值(x1,x2,...,xn )不落入W 的概率为0.05,则犯第二类错误的概率为:论述题(16分)1、证明:D(X-Y)=D(X)+D(Y)-2Cov(X,Y)证明:2、已知一批产品中有90%是合格品,一个合格品被误判为次品的概率为0.02,一个次品被误判为合格萍的概率是0.03。

自考概率论与数理统计二试题及答案解析

自考概率论与数理统计二试题及答案解析

自考概率论与数理统计二试题及答案解析10月高等教育自学考试全国统一命题考试概率论与数理统计(二) 试卷(课程代码 02197)本试卷共4页,满分l00分,考试时间l50分钟。

考生答题注意事项:1.本卷所有试题必须在答题卡上作答。

答在试卷上无效,试卷空白处和背面均可作草稿纸。

2.第一部分为选择题。

必须对应试卷上的题号使用2B铅笔将“答题卡”的相应代码涂黑。

3.第二部分为非选择题。

必须注明大、小题号,使用0.5毫米黑色字迹签字笔作答。

4.合理安排答题空间,超出答题区域无效。

第一部分选择题(共20分)一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题卡”的相应代码涂黑。

错涂、多涂或未涂均无分。

1.设A与B是两个随机事件,则P(A-B)=2.设随机变量石的分布律为A.O.1 B.O.2 C.O.3 D.0.63.设二维随机变量∽,n的分布律为且X与y相互独立,则下列结论正确的是A.d=0.2,b=0,2 B.a=0-3,b=0.3C.a=0.4,b=0.2 D.a=0.2,b=0.44.设二维随机变量(x,D的概率密度为5.设随机变量X~N(0,9),Y~N(0,4),且X 与Y相互独立,记Z=X-Y,则Z~6.设随机变量x服从参数为jl的指数分布,贝JJ D(X)=7.设随机变量2服从二项分布召(10,0.6),Y服从均匀分布U(0.2),则E(X-2Y)=A.4 B.5 C.8 D.108.设(X,Y)为二维随机变量,且D(.固>0,D(功>0,为X与y的相关系数,则第二部分非选择题(共80分)二、填空题(本大题共l5小题,每小题2分,共30分)11.设随机事件A,B互不相容,P(A)=0.6,P(B)=0.4,则P(AB)=_______。

12.设随机事件A,B相互独立,且P(A)=0.5,P(B)=0.6,则=________。

02197概率论与数理统计(二)复习资料

02197概率论与数理统计(二)复习资料

02197概率论与数理统计(二)复习资料一、选择题1.随机事件A 与B 的关系为相互独立事件,则A 与B 的关系为( ) A .对立 B .包含 C .独立 D .相等2.已知随机变量X 服从B(5,p),且E(X)=1.6,则参数p=( ) A .0.32 B .0.6 C .1.6 D .83.设P(A)=P (B)=0.6,则P( A U B )=( ) A .0.6 B .0.64 C .0.84 D .1.24.设随机变量X 服从参数为31的泊松分布,则)()(X D X E =( ) A .61 B .31C . 1D .35.设随机变量X 服从参数为3 的指数分布,则D(3X-3)=( ) A .0 B .1 C .3 D .96.设随机变量X , Y 相互独立,则下列等式不成立的有( ) A .E(XY)=E(X) E(Y) B .D(X+Y) = D(X)+D(Y) C .E(X+Y)=E(X)+E(Y) D .D(X-Y)=D(X)-D(Y) 7.设X 服从N (8 ,9) ,则P(X ≤8)=( ) A .0 B .0.5 C .1 D .1.28. 设A ,B 为随机事件,则P (A-B )=( ) A .P (A )- P (B ) B .P (A )- P (AB )C .P (A )- P (B )+ P (AB )D .P (A )+ P (B )- P (AB )9. 设随机变量X 的概率密度为f (x )= ⎪⎩⎪⎨⎧<<其他,,,0,6331x 则P {3<X ≤4}=( )A .P {1<X ≤2}B .P {4<X ≤5}C .P {3<X ≤5}D .P {2<X ≤7}10. 已知随机变量X 服从参数为λ的指数分布, 则X 的分布函数为 ( )A .F (x )=⎩⎨⎧≤>-.0,00,e x x λx ,λB .F (x )=⎩⎨⎧≤>--.0,00,e 1x x λx ,λ C .F (x )=⎩⎨⎧≤>--.0,00,e 1x x λx ,D .F (x )=⎩⎨⎧≤>+-.0,00,e 1x x λx ,11. 设总体X ~N (2,32),x1,x2,…,xn 为来自总体X 的样本,x 为样本均值,则下列统计量中服从标准正态分布的是( )A .32-xB .92-xC .n x /32-D .n x /92-12.设二维随机变量(X ,Y )的联合概率分布为( )则c=A .112B .16C .14D .1313.设A={2,4,6,8},B={1,2,3,4},则A-B=( ) A .{2,4} B .{6,8} C .{1,3} D .{1,2,3,4}14.在假设检验中, H0为原假设, 则显著性水平α的意义是 ( ) A .P{拒绝H0|H0为真} B .P{接受H0|H0为真} C .P{接受H0|H0不真} D .P{拒绝H0|H0不真}15.设二维随机变量 (X, Y)的概率密度为⎩⎨⎧≤≤≤≤=,,0,20,20,),(其他y x c y x f 则常数c=( )A .41B .21C .2D .416.设A , B , C 为任意三个随机事件,则用A , B , C 的运算关系表示“A , B , C 都发生”为( )A . ABCB . A U B UC C . A ∩B ∩CD . A-B-C17.设随机变量X 服从0—1 分布,P(X=0)=21,则P(X=l )=A . 0B . 1—pC . 0.5D . 118.己知随机变量X 的所有取值为1 和x ,且P (X=l)=0.4 ,E (X)=0.2,则x =A .-31B .61C .41D .2119.设A 与B 为互不相容事件,已知P(A) = 0.8 , P(B) = 0.2 , P(B/A) = A . 0 B . 0.2 C . 0.4 D . 0.8 20.若X ~N (2,l) ,则E (3X 一2)= A . 2 B .4 C . 6 D .821.若X 与Y 为两个相互独立的随机变量,则D(2X-3Y)= A . 2D(X)—3D(Y) B .4D(X)—9D(Y) C . 4D(X)+9D(Y) D .2D(X)+3D(Y)22.设随机变量X , Y 相互独立,且E(X)=20 , E(Y )=5 ,则E(2XY )= A . 5 B .20 C . 100 D .200 23.设事件A,B 互不相容,则P (AB )= A . 0 B . 0.5 C . 1 D . 1.224.设随机变量X 服从均匀分布U(0,4),则E (2X —3)=A .1B .2C .4D .525.设随机变量X 服从N (25,0.25),则D (-2X —1)= A .0 B .0.25 C .1 D .2526.已知连续型随机变量X 服从区间[a ,b]上的均匀分布,则概率P =⎭⎬⎫⎩⎨⎧+<32b a X ( ) A .0 B .31C .32D .127.设(X,Y)的联合概率密度为f (x,y)=⎩⎨⎧≤≤≤≤+,,0,10,20),(其他y x y x k 则k=( )A .31B .21C .1D .328.设随机变量X 服从参数为0.5的指数分布,用切比雪夫不等式估计P(|X-2|≥3)≤( )A .91B .92C .31D .9429.设函数f (x)在[a ,b]上等于sin x ,在此区间外等于零,若f (x)可以作为某连续型随机变量的概率密度,则区间[a ,b]应为( )A.[2π-,0] B.[0,2π]C.[0,π]D.[0,2π3]30.设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤<-≤<=其它021210)(x x x xx f ,则P(0.2<X<1.2)= ( )A.0.5B.0.6C.0.66D.0.7二、填空题1.设A , B , C 为三个随机事件,则AB B =_______.2.设事件A 与B 独立,且P(A )=0.4,P(B )=0.7,则P(A ∪B )=_______. 3.设随机变量X, Y 相互独立,且D(X )=20, D(Y)=5 ,则D(2X 一Y)= _______. 4.设X 服从参数为λ(λ>0 )的指数分布,则其密度函数ϕ(x )= _______.5.设X 服从二项分布B(n,p),则其方差D(X )=_______.6.设随机变量X 服从参数为10 的泊松分布,则E (一X 一2)=_______.7.若随机变量X 服从二项分布B(10,0.2),存在常数C > 0,使E(CX + l) =2,则C=_______. 8.设F(x )为随机变量X 的分布函数,则有F(+∞)=_______. 9.已知随机变量X 服从参数为2 的指数分布,则D(3X 一3)= _______. 10.设随机变量X ~B(100,0.2),应用中心极限定理计算P{X ≥30)≈_______. (已知Φ(2.0)=0.9772,Φ(2.5)=0.9938,Φ(2.6)=0.9953)11.设A 与B 为两相互独立随机事件,且P(A )=31,P (A U B )=32,则P(B )______.12.箱中有1到9号彩球,设A 表示{取得偶数号码彩球}, B 表示{取得号码小于6 的彩球},则A B = ______.13.设二维随机变量X 与Y 为相互独立,且X 在[0 ,2]上服从均匀分布,Y 服从参数为λ=3 的指数分布,则E(XY)= ______.14.在假设检验中,当H O 成立的情况下,样本值落入了W ,因而H O 被拒绝,称这种错误为______错误。

概率论与数理统计(二)02197

概率论与数理统计(二)02197

《概率论与数理统计(二)》课程习题集 西南科技大学成人、网络教育学院 版权所有习题【说明】:本课程《概率论与数理统计(二)》(编号为02197)共有单选题,计算题,综合业务题, 填空题等多种试题类型,其中,本习题集中有[单选题,计算题,综合业务题, 填空题]等试题类型未进入。

一、单选题 1.设A ,B为随机事件,P(A)>0,P (B|A )=1,则必有( A )A.P(A ∪B)=P(B)B.A ⊂BC.P(A)=P(B)D.P(AB)=P(A)2. 设随机事件A 与B 互不相容,P(A)=0.2,P(B)=0.3,则P(A|B)=( A )A. 0 B 0.2 C 0.4 D 0.53. 设事件{X=K}表示在n 次独立重复试验中恰好成功K 次,则称随机变量X 服从 ( B ) A.两点分布 B.二项分布 C.泊松分布D.均匀分布4. 某人连续向一目标射击,每次命中目标的概率为34,他连续射击直到命中为止,则射击次数为3的概率是( C ) A.()343 B.()34142⨯C.()14342⨯D.C 4221434()5. 袋中有2个白球,3个黑球,从中依次取出3个,则取出的三个都是黑球的概率为( A ) A.101B.41C. 52 D.536. 将两封信随机地投入四个邮筒中,则向后面两个邮筒投信的概率为 ( A )A .2242 B .2412C C C .24A 2! D .4!2!7. 设A ,B 为两个随机事件,且P (A )>0,则P (A ∪B |A )= ( D ) A.P (AB )B.P (A )C.P (B )D.18. 某人连续向一目标射击,每次命中目标的概率为23,他连续射击直到命中为止,则射击次数为4的概率是 ( C ) A.42()3B.321()33⨯ C.312()33⨯D.33412()33C 9. 10粒围棋子中有2粒黑子,8粒白子,将这10粒棋子随机地分成两堆,每堆5粒,则两堆中各有1粒黑子的概率为 ( A ) A.95 B.85 C.94 D. 51 10. 设A 、B 是两个随机事件,则()A B A =( B ) A .ABB .AC .BD .AB11. 设事件A 与B 互不相容,且P(A)>0,P(B)>0,则有 ( A ) A.P(A ⋃B)=P(A)+P(B) B.P(AB)=P(A)P(B) C.A=BD.P(A|B)=P(A)12. 设A ,B 为随机事件,且A ⊂B ,则B A 等于 ( B ) A.A B.B C.ABD.B A13. 已知P(A)=0.3,P(B)=0.5,P(A ∪B)=0.6,则P(AB)= ( A ) A. 0.15 B. 0.2 C. 0.8 D. 114. 设随机事件A 与B 互不相容,P(A)=0.4,P(B)=0.2,则P(A|B)= ( A ) A. 0 B 0.2 C 0.4 D 0.515. 从0,1,…,9十个数字中随机地有放回地连续抽取四个数字,则“8”至少出现一次的概率为 ( B ) A. 0.1 B 0.3439 C 0.4 D 0.656116. 某种动物活到25岁以上的概率为0.8,活到30岁的概率为0.4,则现年25岁的这种动物活到30岁以上的概率是 ( D ) A .0.76 B .0.4 C .0.32 D .0.517. 对于任意两个事件A 与B,必有P(A-B)=( C )A .()()-P A P BB .()()()P A P B P AB -+C .()()P A P AB -D .()()P A P B +18. 同时抛掷3枚质地均匀的硬币,则恰好3次都为正面的概率是 ( A ) A .0.125 B .0.25 C .0.375 D .0.5 19. 设A 和B 是任意两个概率不为零的互不相容事件,则下列结论中肯定正确的是( B )。

2023年10月全国自考《02197概率论与数理统计二》真题及答案

2023年10月全国自考《02197概率论与数理统计二》真题及答案

2023年10月全国自考《02197概率论与数理统计二》真题及答案一、概率论部分选择题1. 在伯努利试验中,试验次数和事件的关系是()A. 试验次数越多,事件发生的概率越大B. 试验次数越多,事件发生的概率越小C. 试验次数和事件的概率无关D. 不能确定答案:C解析:在伯努利试验中,每次试验的结果只有两个可能的情况,且各次试验之间相互独立。

试验次数和事件发生的概率无关。

2. 设A和B为两个事件,且P(A)=0.4,P(B)=0.6,如果A和B相互独立,则P(A且B)=()A. 0.24B. 0.16C. 0.4D. 0.6答案:A解析:如果事件A和B相互独立,则P(A且B) = P(A) ×P(B) = 0.4 × 0.6 = 0.24。

论述题1. 离散随机变量与连续随机变量有哪些区别?离散随机变量与连续随机变量是概率论中的两个重要概念,它们有以下区别:•取值方式:离散随机变量的取值是有限的或可列的,而连续随机变量的取值是连续的。

•概率密度函数和概率质量函数:离散随机变量用概率质量函数描述,连续随机变量用概率密度函数描述。

•概率计算:对于离散随机变量,可以通过概率质量函数计算各取值的概率,并通过求和得到整体概率。

对于连续随机变量,需要通过概率密度函数计算某一区间内的概率,通过积分得到整体概率。

•可数性:离散随机变量的取值可以一一列举,而连续随机变量的取值是无限的,无法一一列举。

•概率分布:离散随机变量的概率可以用概率分布列或概率质量函数表示,连续随机变量的概率可以用概率密度函数表示。

综上所述,离散随机变量和连续随机变量在取值方式、概率表示和概率计算等方面有明显的区别。

二、数理统计部分选择题1. 样本均值的分布称为()A. 参数估计B. 假设检验C. 正态分布D. 抽样分布答案:D解析:样本均值的分布称为抽样分布,它是对总体均值的估计。

2. 如何计算样本的方差?A. 样本方差等于样本标准差的平方B. 样本方差等于样本标准差除以样本大小减一C. 样本方差等于样本标准差除以样本大小D. 样本方差等于样本标准差的平方除以样本大小减一答案:D解析:样本的方差等于样本标准差的平方除以样本大小减一。

全国历年自学考试概率论与数理统计(二)02197试题与答案

全国历年自学考试概率论与数理统计(二)02197试题与答案

全国历年⾃学考试概率论与数理统计(⼆)02197试题与答案全国2011年4⽉⾃学考试概率论与数理统计(⼆)课程代码:02197 选择题和填空题详解试题来⾃百度⽂库答案由王馨磊导师提供⼀、单项选择题(本⼤题共10⼩题,每⼩题2分,共20分)在每⼩题列出的四个备选项中只有⼀个是符合题⽬要求的,请将其代码填写在题后的括号内。

错选、多选或未选均⽆分。

1.设A , B , C , 为随机事件, 则事件“A , B , C 都不发⽣”可表⽰为() A .C B A B .C B A C .C B A D .C B A.A BC A A ABC CB AC B A C B A C B A ABC C B A A A A 故本题选;不发⽣,记作④仅;不全发⽣,记作,,不多于两个发⽣,即,,③;都不发⽣,记作,,②;都发⽣,记作,,①;的对⽴事件,记作不发⽣”为事件解:事件“2.设随机事件A 与B 相互独⽴, 且P (A )=51, P (B )=53, 则P (A ∪B )= ( )A .253B .2517C .54D .2523故本题选B.3.设随机变量X ~B (3, 0.4), 则P {X ≥1}= ( ) A .0.352 B .0.432 C .0.784 D .0.936解:P{X ≥1}=1- P{X=0}=1-(1-0.4)3=0.784,故选C. 4.已知随机变量X 的分布律为 , 则P {-2<X ≤4}= ( ) A .0.2 B .0.35 C .0.55 D .0.8解:P {-2<X ≤4}= P {X =-1}+ P {X =2}=0.2+0.35=0.55,故选C. 5.设随机变量X 的概率密度为4)3(2e2π21)(+-=x x f , 则E (X ), D (X )分别为( ) A .2,3-B .-3, 2.251753515351)()()()()()()()(=?-+=-+=-+=B P A P B P A P AB P B P A P B A P B A 相互独⽴,与事件解:事件C .2,3D .3, 2()(),,度为解:正态分布的概率密+∞<<∞=--x ex f x -21222σµσπ与已知⽐较可知:E(X)=-3,D(X)=2,故选B. 6.设⼆维随机变量 (X , Y )的概率密度为?≤≤≤≤=,,0,20,20,),(其他y x c y x f 则常数c =( )A .41C .2D .4解:设D 为平⾯上的有界区域,其⾯积为S 且S>0,如果⼆维随机变量(X ,Y )的概率密度为则称(X ,Y )服从区域D 上的均匀分布,由0≤x ≤2,0≤y ≤2,知S=4,所以c=1/4,故选A.7.设⼆维随机变量 (X , Y )~N (-1, -2;22, 32;0), 则X -Y ~ ( ) A .N (-3, -5) B .N (-3,13) C .N (1, 13) D .N (1,13)解:由题设知,X~N(-1,22),Y~N(-2,32),且X 与Y 相互独⽴,所以E(X-Y)=E(X)-E(Y)=-1-(-2)=1,D(X-Y)=D(X)+D(Y)=13,故选D. 8.设X , Y 为随机变量, D (X )=4, D (Y )=16, Cov (X ,Y )=2, 则XY ρ=( ) A .321 B .161C .81D .41..41422)()()(D Y D X D Y X Cov xy 故选,解:直接代⼊公式=?==ρ 9.设随机变量X ~2χ(2), Y ~2χ(3), 且X 与Y 相互独⽴, 则3/2/Y X ~ ( ) A .2χ (5) B .t (5) C .F (2,3)D .F (3,2).)(~)(~)(~21212221C n m F F F n m nX mX F X X n x X m x X ,据此定义易知选,记为分布,的与的分布是⾃由度为独⽴,则称与,,解:设=10.在假设检验中, H 0为原假设, 则显著性⽔平α的意义是 ( ) A .P {拒绝H 0|H 0为真} B .P {接受H 0|H 0为真} C .P {接受H 0|H 0不真} D .P {拒绝H 0|H 0不真}解:在0H 成⽴的情况下,样本值落⼊了拒绝域W 因⽽0H 被拒绝,称这种错误为第⼀类错误;()??∈=其他,,),,(0,1D y x S x f.}|{..,""}|{0002002A H H P H W u u u H H u u P ,故本题选为真拒绝即即为显著⽔平,⽽概率即为误的由此可见,犯第⼀类错,从⽽拒绝了即样本值落⼊了拒绝域满⾜本值算得的成⽴的条件下,根据样,在成⽴因为αααααα=>=>⼆、填空题 (本⼤题共15⼩题, 每⼩题2分, 共30分)请在每⼩题的空格中填上正确答案。

最新4月全国自考概率论与数理统计(二)试题及答案解析

最新4月全国自考概率论与数理统计(二)试题及答案解析

1全国2018年4月自考概率论与数理统计(二)试题课程代码:02197一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设A 与B 是任意两个互不相容事件,则下列结论中正确的是( ) A.)(1)(B P A P -= B. )()(B P B A P =- C. )()()(B P A P AB P =D. )()(A P B A P =-2.设A ,B 为两个随机事件,且0)(,>⊂B P A B ,则=)(B A P ( ) A.1 B.)(A P C.)(B PD.)(AB P3.下列函数中可作为随机变量分布函数的是( ) A.⎩⎨⎧≤≤=.,0;10,1)(1其他x x FB.⎪⎩⎪⎨⎧≥<≤<-=.1,1;10,;0,1)(2x x x x x FC. ⎪⎩⎪⎨⎧≥<≤<=.1,1;10,;0,0)(3x x x x x FD. ⎪⎩⎪⎨⎧≥<≤<=.1,2;10,;0,0)(4x x x x x F4.设离散型随机变量X 的分布律为则{}=≤<-11X P ( ) A.0.3 B.0.4 C.0.6D.0.75.设二维随机变量(X ,Y )的分布律为( )2且X 与Y 相互独立,则下列结论正确的是 A.a =0.2,b =0.6 B.a =-0.1,b =0.9 C.a =0.4,b =0.4D.a =0.6,b =0.2 6.设二维随机变量(X ,Y )的概率密度为⎪⎩⎪⎨⎧<<<<=,,0;20,20,41),(其他y x y x f则P {0>X <1,0<Y <1}=( )A.41B.21 C.43 D.17.设随机变量X 服从参数为21的指数分布,则E (X )=( ) A. 41 B.21 C.2D.48.设随机变量X 与Y 相互独立,且X ~N (0,9),Y ~N (0,1),令Z =X -2Y ,则D (Z )=( ) A.5 B.7 C.11D.139.设(X ,Y )为二维随机变量,且D (X )>0,D (Y )>0,则下列等式成立的是( ) A.E (XY )=E (X )·E (Y ) B.Cov )()(),(Y D X D Y X XY ••=ρ C. D (X +Y )=D (X )+D (Y )D.Cov(2X ,2Y )=2Cov(X ,Y )10.设总体X 服从正态分布N (2,σμ),其中2σ未知,x 1,x 2,…,x n 为来自该总体的样本,x 为样本均值,S 为样本标准差,欲检验假设0H :0μμ=,1H :0μμ≠,则检验统计量为3 ( ) A.σμ0-x n B. sx nμ- C.)(10μ--x n D.)(0μ-x n二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。

02197-概率论与数理统计(二)

02197-概率论与数理统计(二)

第一部分 自学指导自学指导见教材中的自学考试大纲第二部分 复习思考题一.单选题:1.设A, B, C, 为随机事件, 则事件“A, B, C 都不发生”可表示为( )。

A 、C B A B 、C B A C 、C B AD 、C B A2.设随机事件A 与B 相互独立, 且P (A)=51, P (B)=53, 则P (A ∪B)= ( )。

A 、253B 、2517C 、54 D 、2523 3.设随机变量X~B (3, 0.4), 则P{X≥1}= ( )。

A 、0.352 B 、0.432 C 、0.784 D 、0.9364.已知随机变量X 的分布律为 ,则P{-2<X≤4}= ( )。

A 、0.2 B 、0.35 C 、0.55D 、0.8 5.设随机变量X 的概率密度为4)3(2e2π21)(+-=x x f , 则E (X), D (X)分别为 ( )。

A 、2,3-B 、-3, 2C 、2,3D 、3, 26.设二维随机变量 (X, Y)的概率密度为⎩⎨⎧≤≤≤≤=,,0,20,20,),(其他y x c y x f 则常数c= ( )。

A 、41B 、21 C 、2 D 、47.设二维随机变量 (X, Y)~N (-1, -2;22, 32;0), 则X-Y~ ( )。

A 、N (-3, -5)B 、N (-3,13)C 、N (1, 13)D 、N (1,13)8.设X, Y 为随机变量, D (X)=4, D (Y)=16, Cov (X,Y)=2, 则XY ρ=( )。

A 、321 B 、161 C 、81D 、41 9.设随机变量X~2χ(2), Y~2χ(3), 且X 与Y 相互独立, 则3/2/Y X ~ ( )。

A 、2χ (5) B 、t (5) C 、F (2,3)D 、F (3,2)10.在假设检验中, H 0为原假设, 则显著性水平α的意义是 ( )。

02197概率论与数理统计二

02197概率论与数理统计二

1.设随机事件A, B互不相容,且P(A) > 0, P(B) > 0,则下列各式中正确的是A. P(AB)=P(A)P(B)B. P(AB)=0C. P(AB)=1D. P(AB)=P(A)P(A}B)2.设X,Y为两独立随机变量,且P(X=2,Y=1)=0.4,P(X=2)=0.8,则P(Y=1)=A. 0.4B. 0.8C.0.6D. 0.55.2次独立重复的试验中,每次成功的概率为p,在这2次试验中至少有一次成功的概率是A.2pB. p(1一p)C. 1一p2D. 2p-p27. 设X是任意随机变量,且有有穷方差,则下列各式中正确的是A. D(2X+1)=2D(X)+lB. D(X-3)=D(X)-3C. D(2X-1)=4DXD. D(X+3)=3D(X)10.设随机变量x服从参数为0.5的指数分布,则下列各项中正确的是A. E(X) =0.5. D(X) = 0.25B. E(X) =2. D(X) =2C. E(X) =0.5. D(X)= O.5D. E(X) =2. D(X) =4填空题11.设A与B是两个随机事件,已知P(A) =0.4. P(B) =0.5. P(A U B) =0.7,则P(AB)=_12.设事件A与B互不相容.且P(A) =0.3. P(B) =0.1.则P(AUB)=_.13.一袋中有3个红球和6个白球.从袋中不放回地取两次球,每次取一个,则第一次取得红球且第二次取得白球的概率P=_.14.设随机变量X~U[1,5],则P(X>3) =_.15.设随机变量X~N(0,1),则该随机变量X的密度函数为_.18.已知随机变Ax的概率密度为fx (x),假设Y=-2X,则Y的概率密度函数fy(y)为_. l9.设X~N(-1,2),Y~N(1,3),且X与Y相互独立,则X+2Y~_。

20. 1Cov(X,Y) =36,则Cov(2X,-Y)=_.21.己知随机变量X的方差为2.5,利用切比雪夫不等式估计P{|X一E(X)|>=2}=<_._25·设X1,X2,…,Xn是来自U(-1,1)的样本,试求D(x) =_.27.一电子产品在电压稳定的情况下损坏的可能性为0.01,当电压不稳定时,该产品损坏的可能性为0.2,测试该电子产品时,电压稳定的可能性为0.7,试求该电子产品损坏的概率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

页眉内容
2012年4月全国自考概率论与数理统计(二)参考答案
()()()()()
()()()()()()
(){}{}{}{}{}
()()()()()
{}{}()()()()
()()()()()[]()()()()()()()()()()()()
n x D n x C x B x A x X x x x N X D C B A X Y X D X D X D C B A p n X D X E p n B X y f x f D y f x f C y f x f B y f x f A Y X y f x f Y X D C B A Y X Y X D C B A X P X P N X x x e X F D x x e X F C x x e X F B x x e X F A X X X P D X P C X P B X P A X P x x f X AB P B P A P D AB P B P A P C AB P A P B B P A P A B A P B A A
D A C B B B A A AB B A B A n XY Y X Y X Y X Y X Y X x x x x 92
.32.92.32
....32~.102.1.0.1-.0.98.03.3.08.4.06.6.04.
44.14.2~.8.2
1..21.
.75,1.5,0.1,1.10.~
12.684.0.68.0.32.0.16.0.084.042~.5.0001..0001..0001..000..472.53.54.21.43.
06331.3....2.....12122-----=>==+++-≤=≤⎩⎨⎧≤>+=⎩⎨⎧≤>-=⎩⎨⎧≤>-=⎩⎨⎧≤>=≤<≤<≤<≤<≤<⎪⎩⎪⎨⎧<<=-++---=
-⊂----中服从正态分布的是
计量
为样本均值,则下列统的样本,为来自总体,,,,,设总体等于
,则,令存在,且的设随机变量和和和和的值为和,则参数,,且,设的概率密度为
,,则、分别为相互独立,其概率密度、设随机变量,准正态分布,则相互独立,且都服从标、设随机变量等于
,则,,设,
,,,,
,,,的分布函数为
的指数分布,则服从参数为设随机变量等于
,则其他,,,的概率密度为设随机变量是随机变量,则、设等于
,则是随机变量,且、设ρσλλλλλλλ选择题答案:1.C 2.B 3.B 4.C 5.A 6D 7D 8.B 9.A 10.C
()()()()()()().
_______.232.14___
8.04.05.0.13.
______3.05.0.12.
_________242.11一个黑球的概率为取到
,每次取一个,则至少次取个白球,有放回地连续个黑球,设袋中有,则,,,且、设随机变量,则,相互独立,且、设随机变量是的书都是科技书的概率本,则选中
本文艺书中任选本科技书,同学从在一次读书活动中,某=======A B P B A P B P A P Y X A P B A P A P Y X
15.设
则()._________12=≥X P
()()()()()().
_______.17._____11220.16===≤≤≤≤Y X P Y X f y x f Y X y o x D D Y X ,则、设二维离散型随机变量,,则,的概率密度为、设,
,:上服从均匀分布,其中,在、设二维随机变量
()()()(){}()().__0.20.
______3,3.19.
__________1100011.18=-==-=≤≤⎩
⎨⎧>>--=--b a X E b a X X E X Y X P y x e e xy F Y X y x ,则为常数,且,的分布律为,设离散型随机变量则的泊松分布服从参数等于设随机变量,则其他,,,的分布函数为、
设二维随机变量
()(){}()()
()().___~10~.23.______32~.22.
_____211~.212232221321=++=≤≥-n n x x x X x x x N X X E x B X X E X P N X ,则且的一个样本,
为来自总体,,,,设总体为样本均值,则,,设随机变量估计概率
,应用切比雪夫不等式,设随机变量χ
().
_____01.0.25._____3
231ˆ2121ˆ1~.240021221121的概率为接受成立,,则在原假设类错误的概率为在假设检验中,犯第一是,则方差较小的估计量,,估计量
为来自总体的一个样本,,,设总体H H x x x x x x N X +=+=μμ
μ
()99
.0.25ˆ.243.236.0.2241
.212.0.200.19-1.184.0.170.168.0.1564.0.1464.0.134
.0.12151
.11121μ-e
()()()()()()的分布律为,设二维随机变量;的分布函数;常数求,其他,,,的概率密度设随机变量Y X x P X F X c x cx x f X .27.210.3.2.10
10.262⎭
⎬⎫⎩
⎨⎧<<⎩⎨⎧≤≤=
()()()()()()()()()()()()().
.2.15.0,5.0,9.022.30.
(10)
101.29.
21.28.2.12121p p B C B A B C C B A x x x x x x f X D D E E Y X Y X Y X Y X X Y X n 概率抽检后设备不需调试的;
类产品的概率抽到两件产品都是影响。

,且各产品的质量互补的概率分别为类产品
类、类、产每件试,已知该生产线上生需调试设备,否则不调类产品,就
件都是类产品或现其中含有件产品进行抽检,若发任取生产线上
三类,检验员定时从该,,量分某生产线上的产品按质计的矩估计和极大似然估参数是来自总体的样本,求,,,其中参数其他,,;的概率密度为设总体;,,,求,,正态分布,令相互独立且都符合标准与设的分布律;的分布律;
关于,求:θθθθρηξηξηξθξη->⎩⎨⎧<<+=-=+=+
()()(){}()(){}()(){}()()⎪⎩
⎪⎨⎧≥<≤<====≥=≥===<≤=<≤==<=<====⎰⎰⎰⎰⎰⎰∞
-.111
000131131010000233
1311.2631
02030201
03
102x x x x X F X dx x dx x f X P x F x x dx x dx x f X P x F x dx x f X P x F x c x c dx cx x x x
,,,,的分布函数为即;时,当;时,当;
时,当;,得由解:
()()的分布律为解:
X x dx x X P 1.27.813210321032102===⎭⎬⎫⎩⎨⎧<<⎰
()的分布律为Y X +2
()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()().
00022211211000000101.2822222222==-=-====+==+=+=-==+=+=+==-=-=-==+=+=+====ξηρξηηςηξ故,
所以,
,因为;
;;

,所以
,由题意得解:
Y E X E Y X Cov Cov X E Y E X E X D X E Y D X D Y X D D Y D X D Y X D D Y E X E Y X E E Y E X E Y X E E Y D X D Y E X E
()()()()()()()()()().1ln -ˆ0ln 1ln ln 1ln 11112ˆ212
1211.2911
1
111021
0-==++=++=⎪⎪⎭
⎫ ⎝⎛+=+=--==++=++=++=+=∑∑∑∏∏⎰=====+n i i n i i n i i n i i n n i i
x
n
x n d L d x n L x x L x
x x x X E x dx x x X E θθθθθθθθθθθθθθθθθθθθθθ
θθθ的极大似然估计
由上似然方程解得,,
,的似然函数为易求;的矩估计,故,得由矩估计法,解:总体期望为
.30解决这道题最简单的思维角度是设产品总数为100,则A 类有90件,B 类有5件,C 类有5件, 第一问的概率=从B 类的5件中抽取2件比上从100件中抽取2件=1/495;
在求第二问之前,应先求取到含有C 类产品的概率=(从C 类的5件中抽取2件+从A 、B 类的95件中抽取1件×从C 类的5件中抽取1件)比上从100件中抽取2件=97/990;
所以第二问的概率=1-1/495-97/990=9/10=0.9.
()().10
9990991990974951119909799509759950475102495
199501013122100
151952532100251=-=--
=--==⨯⨯=⨯+=+==⨯==p p p C C C C p C C p ;设;。

相关文档
最新文档