齿轮接触有限元分析外文翻译
(完整版)齿轮主要术语图解及英文翻译
![(完整版)齿轮主要术语图解及英文翻译](https://img.taocdn.com/s3/m/42c803cb6394dd88d0d233d4b14e852458fb396a.png)
(完整版)齿轮主要术语图解及英文翻译齿轮的主要术语轮齿(齿)——齿轮上的每一个用于啮合的凸起部分。
一般说来,这些凸起部分呈辐射状排列。
配对齿轮上轮齿互相接触,导致齿轮的持续啮合运转。
齿槽——齿轮上两相邻轮齿之间的空间。
端面——在圆柱齿轮或圆柱蜗杆上垂直于齿轮或蜗杆轴线的平面。
法面——在齿轮上,法面指的是垂直于轮齿齿线的平面。
齿顶圆——齿顶端所在的圆。
齿根圆——槽底所在的圆。
基圆——形成渐开线的发生线在其上作纯滚动的圆。
分度圆——在端面内计算齿轮几何尺寸的基准圆,对于直齿轮,在分度圆上模数和压力角均为标准值。
齿面——轮齿上位于齿顶圆柱面和齿根圆柱面之间的侧表面。
齿廓——齿面被一指定曲面(对圆柱齿轮是平面)所截的截线。
齿线——齿面与分度圆柱面的交线。
端面齿距——相邻两同侧端面齿廓之间的分度圆弧长。
模数m——齿距除以圆周率π所得到的商,以毫米计。
径节p——模数的倒数,以英寸计。
齿厚s ——在端面上一个轮齿两侧齿廓之间的分度圆弧长。
槽宽e——在端面上一个齿槽的两侧齿廓之间的分度圆弧长。
齿顶高hɑ──齿顶圆与分度圆之间的径向距离。
齿根高hf──分度圆与齿根圆之间的径向距离。
全齿高h──齿顶圆与齿根圆之间的径向距离。
齿宽b──轮齿沿轴向的尺寸。
端面压力角ɑt──过端面齿廓与分度圆的交点的径向线与过该点的齿廓切线所夹的锐角。
基准齿条(Standard Rack) ——只基圆之尺寸,齿形,全齿高,齿冠高及齿厚等尺寸均合乎标准正齿轮规格之齿条,依其标准齿轮规格所切削出来之齿条称为基准齿条.基准节圆(Standard Pitch Circle) ——用来决定齿轮各部尺寸基准圆.为齿数x模数基准节线(Standard Pitch Line) ——齿条上一条特定节线或沿此线测定之齿厚,为节距二分之一.作用节圆(Action Pitch Circle) ——一对正齿轮咬合作用时,各有一相切做滚动圆.基准节距(Standard Pitch) ——以选定标准节距做基准者,与基准齿条节距相等.节圆(Pitch Circle) ——两齿轮连心线上咬合接触点各齿轮上留下轨迹称为节圆.节径(Pitch Diameter) ——节圆直径.有效齿高(Working Depth) ——一对正齿轮齿冠高和.又称工作齿高.齿冠高(Addendum) ——齿顶圆与节圆半径差.齿隙(Backlash) ——两齿咬合时,齿面与齿面间隙.齿顶隙(Clearance) ——两齿咬合时,一齿轮齿顶圆与另一齿轮底间空隙.节点(Pitch Point) ——一对齿轮咬合与节圆相切点.节距(Pitch) ——相邻两齿间相对应点弧线距离.法向节距(Normal Pitch) ——渐开线齿轮沿特定断面同一垂线所测节距.A.1. abrasive tooth wear 齿面研磨磨损2. absolute tangential velocity 绝对切向速度3. accelerometer 加速表4. addendum 齿顶高5. addendum angle 齿顶角6. addendum circle 齿顶圆7. addendum surface 上齿面8. adhesive wear 粘着磨损9. adjustability 可调性10. adjustability coefficients 可调系数11. adjusting wedge 圆盘端铣刀的可调型楔块12. allowable stress 允许应力13. alternate blade cutter 双面刀盘14. angular backlash 角侧隙15. angular bevel gears 斜交锥齿轮16. angular displacement 角移位17. angular pitch 齿端距18. angular testing machine 可调角度试验机19. approach action 啮入20. arbor 心轴21. arbor distance 心轴距22. arc of approach 啮入弧23. arc of recess 啮出弧24. attraction 收紧25. average cutter diameter 平均刀尖直径26. axial displacement 轴向位移27. axial factor 轴向系数28. axial locating surface 轴向定位面29. axial pitch 轴向齿距30. axial plane 轴向平面31. axial rakeangle 轴向前角32. axial thrust 轴向推力33. axle testing machine 传动桥试验机B.1.back angle 背锥角2.Back angle distance 背角距(在背锥母线方向)3.Backcone 背锥4.Back cone distance 背锥距5.Back cone element 背锥母线6.Backlash 侧隙7.Backlash tolerance 侧隙公差8.Backlash variation 侧隙变量9.Backlash variation tolerance 侧隙变量公差10.Bandwidth 频带宽11.Base circle 基圆12.Base diameter 基圆直径13.Base pitch 基节14.Base radius 基圆半径15.Base spiral angle 基圆螺旋角16.Basic rack 基本齿条17.Bearing 轴承18.Bearing preload 轴承预负荷19.Bearing spacing/spread 轴承间距20.Bending fatigue 弯曲疲劳21.Bending stress 弯曲应力22.Bevel gears 锥齿轮23.Bias 对角接触24.Bias in 内对角接触25.Bias out 外对角接触26.Blade angle 刀齿齿廓角27.Blade edge radius 刀尖圆角半径28.Blade letter 刀尖凸角代号29.Blade life 刀尖寿命30.Blade point width 刀顶宽31.Blank offset 毛坯偏置距32.Bland position 毛坯位置33.Bottom land 齿槽底面34.Boundary lubrication 界面润滑35.Breakage 破裂36.Bridged contact pattern 桥型接触斑点37.Broach 拉刀38.Burnishing 挤齿C.1. Case crushing 齿面塌陷2. CBN 立方氮化硼3. chamfer 倒角4. chordal addendum 弦齿高5. chordal thickness 弦齿厚6. chuck 卡盘7. circular broach 圆拉刀8. circular face-mill 圆盘端面铣刀9. circular peripheral-mill 圆盘铣刀10. circular pitch 周节11. circular thickness 弧齿厚12. circular thickness factor 弧齿厚系数13. clearance 顶隙14. clearance angle 后角15. coarse pitch 大节距16. coast side 不工作齿侧17. combination 组合18. combined preload 综合预负荷19. complementary crown gears 互补冠状齿轮20. completing cycle 全工序循环21. composite action 双面啮合综合检验误差22. compressive stress 压应力23. concave side 凹面24. concentricity 同心度25. concentricity tester 同心度检查仪26. cone distance 锥距27. cone element 锥面母线28. conformal surfaces 共型表面29. coniskoid 斜锥齿轮30. conjugate gears 共轭齿轮31. conjugate racks 共轭齿条32. contact fatigue 接触疲劳33. contact norma 接触点法线34. contact pattern (tooth contact pattern) 轮齿接触斑点35. contact ratio 重合度36. contact stress 接触应力37. continuous index 连续分度38. control gear 标准齿轮,检验用齿轮39. convex side 凸面40. coolant 冷却液41. corrosive wear 腐蚀性磨损42. corrugated tool 阶梯刨刀43. counter forma surfaces 反法向表面44. cradle 摇台45. cradle test roll 摇台角46. cross 大小端接触47. crossing point 交错点48. crown 齿冠49. crown circle 锥齿轮冠圆50. crowned teeth 鼓形齿51. crown gear 冠轮52. crown to back (轮冠距)轮冠至安装定位面距离53. crown to crossing point 轮冠至相错点距离54. cutter 刀盘55. cutter axial 刀盘的轴向位置56. cutter axial plane 刀盘轴向平面57. cutter axis 刀盘轴线58. cutter diameter 刀盘直径59. cutter edge radius 刀刃圆角半径60. cutter head 刀盘体61. cutter number 刀号62. cutter parallel 刀盘平垫片63. cutter point diameter 刀尖直径64. cutter point radius 刀尖半径65. cutter point width 刀顶距66. cutter spindle 刀盘主轴67. cutter spindle rotation angle 刀盘主轴转角68. cutting distance 切齿安装距69. C.V. testing mashing 常速试验机70. cyclex 格里森粗铣精拉法圆盘端铣刀71. cylindrical gears 圆柱齿轮D.1.Datum tooth 基准齿2.Debur 去毛刺3.Decibel (CB) (噪音)分贝4.Decimal ratio 挂轮比值5.Dedendum 齿根高6.Dendendum angle 齿根角7.Dedendum surface 下齿面8.Deflection 挠曲9.Deflection test 挠曲试验10.Deflection testing machine 挠曲试验机11.Depthwise taper 齿高收缩12.Design data sheet 设计数据表13.Destructive pitting 破坏性点蚀14.Destructive wear 破坏性磨损15.Developed setting 试切调整16.Dial indicator 度盘式指示表17.Diametral pitch 径节18.Diamond 菱形接触19.Dinging ball check 钢球敲击检查20.Disc-mill cuter 盘铣刀21.Dish angle 凹角22.Displacement 位移23.Displacement error 位移误差24.Double index 双分度25.Double roll 双向滚动26.Down roll 向下滚动27.Drive side 工作齿侧28.Duplete 双刃刀29.Duplex 双重双面法30.Duplex helical 双重螺旋法(加工方法之一)31.Duplex spread blade 双重双面刀齿(加工/磨齿方法)32.Duplex taper 双重收缩齿33.Durability factor 耐久系数34.Dynamic factor 动载荷系数E1.Ease-off 修正、失配2.Eccentric 偏心3.Eccentric angle 偏心角4.Eccentricity 偏心度5.Edge radius 刀尖圆角半径6.Effective bearing spacing 轴承有效间距7.Effective face width 有效宽度(有效齿宽)8.Elastic coefficient 弹性系数9.Elastic deformation 弹性变形10.Elastic limit 弹性极限11.Elastohydrodynamic lubrication 弹性液压润滑12.Element 母线、要素13.End movement 轴向移动14.Endrem 修内端凸轮、导程凸轮15.Endurance life 耐久寿命16.Endurance limit 耐久极限17.Engine torque 发动机扭矩18.Enveloping 包络19.EP lubricant, EP 极压润滑剂20.EPG check, “EPG”检查21.Equal addendum teeth 等齿顶高齿22.Equicurv 等高齿大轮成形法23.Equidep 等高齿24.Equiside 等边25.Equivalent fear ratio 当量传动比26.Equivalent number of teeth 当量齿数27.Equivalent pitch radius 当量节圆半径28.Equivalent rack 当量齿条29.Expander 涨胎30.Expanding arbor 可张心轴31.Extreme pressure lubricant 极压润滑剂F.1.Face acvance 斜齿轮扭曲量2.Face angle 顶锥角(面锥角)3.Face angle distance 顶锥角距4.Face apex 顶锥顶5.Face apex beyond crossing point 顶锥顶至相错点距离6.Face cone 顶锥7.Face cone element 齿顶圆锥母线,面锥母线8.Face contact ratio 齿长重合度,轴向重合度(圆柱齿轮)9.Face line 齿面与轴面交线10.Face width 齿宽11.Factor of safety 安全系数12.Fatigue breakage 疲劳破裂13.Fatigue failure 疲劳失效14.Fatigue test 疲劳测试15.Feed cam 进给凸轮16.Feed gears 进给齿轮17.Fillet 齿根圆角18.Fillet curve 齿根过渡曲线19.Fillet radius 齿根圆角半径20.Film strength 液膜强度21.Filter (electronic) (电子的)滤波器22.Filter (mechanical) (机械的)滤波器23.Fine pitch (小模数)细径节24.Finisher 精切机床25.Fishtail 鱼尾形26.Fixed setting 固定安装法27.Flank 下齿面28.Flanking 下齿面加工29.Formarc 加工齿轮用的曲线齿廓刀具30.Formate 成形法31.Former 齿廓样板,靠模32.Forming 成型,在磨具内挤压成型33.Form tool 成形刀34.Fourier analysis 傅里叶分析35.Frequency 频率36.Friction load 摩擦负荷37.Front angle 前角38.Front cone 前锥39.Front crown 前锥齿冠40.Front crown to crossing point 前锥齿冠至交错点41.Full-depth teeth 全齿高齿42.Fundametal 基频G.1.Gable 山形齿沟底面2.Gear 齿轮3.Gear axial displacement 齿轮轴向位移4.Gear axial plane 齿轮轴向平面5.Gear axis 齿轮轴线6.Gear center 齿轮中心7.Gear combination 齿轮组合8.Gear cone 大轮锥距9.Geared index 齿轮系分度10.Gear finisher 成形法齿轮精切机床11.Gear manufacturing summary 齿轮加工调整卡12.Gear marking compound 检查齿轮啮合涂色剂13.Gear member 大轮14.Gear planer 成型刨齿机15.Gear ratio 齿数比16.Gear rougher 齿轮粗切机床17.Gears 齿轮组18.Gear tipping 齿轮倾斜@U UlsC|3. 19.Generated gear 展成法齿轮20.Generating cam 展成凸轮21.Generating gear 展成齿轮22.Generating pressure angle 产形轮压力角23.Generating train 展成传动键24.Generation 展成25.Generator 展成齿轮加工机床26.Geneva index 星形轮分度,槽轮分度27.Geometry factor-durability 齿面接触强度几何系数28.Geometry factor0-strength 强度几何系数29.G-flow 格里森制金属件的商标,采用冷挤压成形法30.G-form 采用热锻成形法制造31.GLE-sine 砂轮内外压力角正弦波进行修整用机构32.G-plete 全工序法33.Gradeability 托曳力34.Grinding cracks 磨削裂纹35.G-spin 精密主轴的机床36.G-trac 圆柱齿轮的无端链式机床的商标H.1.Hand of cutter 刀盘方向2.Hand of spiral 螺旋方向3.Hand-rolling tester 手动滚动试验机4.Hardac 镶篇淬硬刀体精切刀盘5.Hard finishing 硬齿面精加工6.Hardness ratio factor 硬度比系数7.Harmonic 谐振8.Harmonic search 谐振追踪9.Harmonic sweep 谐振扫描10.Heel 轮齿大端11.Heel pattern 大端接触12.Helical duplex 双重螺旋法13.Helical motion 螺旋运动14.Helixact 螺旋运动法15.Helixform 螺旋成形法16.Hertz (Hz) 赫兹17.Hook angle 断面前角18.Horizontal displacement 水平位移19.Horizontal offset 水平偏置20.HRH 高减速比准双曲面齿轮(大于10:1的减速比)21.Hunting tooth combination 大小齿轮齿数无公因数的齿轮副22.Hudrodynamic lubrication 液压润滑23.Hupermesh 超配合24.Hypoid gears 准双曲面齿轮25.Hypoid offset 准双曲面齿轮偏置距I.1.Imaginary generating gear 假想成形法2.Incremental index 逐齿分度3.Index gears 分度齿轮4.Index interval 分度跳跃齿齿数5.Index plate 分度盘6.Index tolerance 分度公差7.Index variation 分度变化量8.Indicator anchorage 指示表支撑座9.Inertia factor 惯量系数10.Initial pitting 初期点蚀11.Inner addendum 小端齿顶高12.Inner cone distance 小端锥距13.Inner dedendum 小端齿根高14.Inner slot width 小端槽宽15.Inner spiral angle 小端螺旋角16.Inserted blade cutter 镶片刀盘17.Inside blade 内切刀齿18.Inside point diameter 内切刀尖直径19.Instantaneous contact pattern 瞬时接触斑点20.Interference 干涉21.Interference point 干涉点22.Interlocking disc-mill cutters 交错齿盘形铣刀23.Intermittent index 间断分度24.Internal bevel gear 内锥齿轮25.Inverse gear ratio 反齿数比26.Involute 渐开线27.Involute gear 渐开线齿轮28.Involute interference point 渐开线干涉点29.Involute spiral angle 渐开线螺旋角30.Involute teeth 渐开线齿J.1.Jet lubrication 喷射润滑L.1.Lame 顶根接触2.Lapping 研磨3.Lead cam 导程凸轮4.Length of action 啮合长度5.Lengthwise bridge 纵向桥型接触6.Lengthwise mismatch 纵向失配7.Lengthwise sliding velocity 纵向滑动速度8.Life factor 寿命系数9.Lift 垂直位移10.Limit point width 极限刀顶距11.Limit pressure angle 极限压力角12.Linear displacement transducer 线性位移传感器13.Line of action 啮合线14.Line of centers 中心线15.Line of contact 接触线16.Load sharing ratio 负荷分配比17.Localized tooth contact 齿局部接触18.Locating surface 定位表面19.Long-and-short-addendum teeth 高变位齿轮20.Long-toe-short-heel 小端长,大端短接触21.Lubricant 润滑剂22.Lubrication 润滑23.Lubricity 润滑性M.1.Machine center 基床中心点2.Machine center to back 机床中心至工件安装基准面3.Machine plane 机床切削平面4.Machine root angle 毛坯安装角5.Marking compound 检查齿轮啮合型情况使用的涂色剂6.Master blade 标准刀齿7.Master gear 标准齿轮8.Mean addendum 中点齿顶高9.Mean cone distance 中点锥距10.Mean dedendum 中点齿根高11.Mean diametral pitch 中点径节12.Mean measuring addendum 中点测量齿顶高13.Mean measuring depth 中点测量齿高14.Mean measuring thickness 中点测量厚度15.Mean normal base pitch 中点法向基节16.Mean normal diameter pitch 中点法向径节17.Mean normal module 中点法向模数18.Mean point 中点,平均点19.Mean radius 中点半径20.Mean section 中点截面21.Mean slot width 中点齿槽宽22.Mean spiral angle 中点螺旋角23.Measuring addendum 测量齿顶高24.Measuring tooth thickness 测量齿厚25.Member 齿轮,元件26.Mesh point 啮合点27.Minimum slot width 最小槽宽28.Mismatch 失配29.Miter gears 等齿数整角锥齿轮副30.Mixed lubrication 混合润滑31.Modified contact ratio 修正总重合度32.Modified roll 滚修正比33.Module 模数34.Motion curves 运动曲线35.Motor torque 电机扭矩36.Mounting distance 安装距37.Mounting surface 安装面英语站N.1.Narrow-tow-wide-heel 小端窄大端宽接触2.No load 空载3.Nominal 名义4.Non-generated gear 非展成大轮5.Normal 法向,法线,法面6.Normal backlash 法向侧隙7.Normal backlash tolerance 法向侧隙公差8.Normal base pitch 法向基节9.Normal chordal addendum 法向弦齿高10.Normal chordal thickness 法向弦齿厚11.Normal circular pitch 法向周节12.Normal circular thickness 法向弧齿厚13.Normal contact ratio 法向重合度14.Normal diametral pitch 法向径节15.Normal direction 法线方向16.Normal (perpendicular) load 法向(垂直)负载17.Normal module 法向模数18.Normal plane 法向平面19.Normal pressure angle 法向压力角20.Normal section 法向截面21.Normal space-width taper 正常齿槽宽收缩22.Normal thickness taper 正常齿厚收缩23.Normal tilt 法向刀倾24.Normal wear 正常磨损25.No-roll roughing 无滚动粗切26.Number of teeth 齿数英语站O.1.Octoid teeth 锥齿轮的“8”字啮合2.Offset 偏置距3.Operating load 工作负荷4.Operating pressure angle 工作压力角5.Operating torque 工作扭矩6.Outer addendum 大端齿顶高7.Outer cone distance 外锥距8.Outer dedendum 大端齿根高9.Outer slot width 大端槽宽10.Outer spiral angle 大端螺旋角11.Outside blade 外切刃点12.Outside diameter 外径,大端直径14.Outside radius 齿顶圆半径15.Outside surface 外表面16.Overhung mounting 双支承安装17.Overload breakage 超负荷破裂18.Overload factor 超负荷系数英语站P.1.Path of action 啮合点轨迹2.Path of contact 接触迹3.Peak load 峰值负荷4.Peak torque 峰值扭矩5.Pedestal bearings 安装差速器壳的架座轴承6.Performance torque 性能扭矩7.Perim-mate 研磨锥齿轮和准双面齿轮用的全齿面研磨法8.Pinion 小轮9.Pinion axial displacement 小轮轴向位移10.Pinion cone 小轮锥距11.Pinion front bearing 小轮前端轴承12.Pinion head bearing 小轮后端前轴承13.Pinion rear bearing 小轮后端后轴承14.Pinion rougher 小轮粗切机15.Pinion offset 小轮偏置距16.Pitch 节距,齿距17.Pitch angle 节锥角18.Pitch apex 节锥顶19.Pitch apex beyond crossing point 节锥顶超出至相错点20.Pitch apex to back 节锥顶至安装端面21.Pitch apex to crown 节锥顶至轮冠22.Pitch circle 节圆23.Pitch cone 节锥24.Pitch curve 节面曲线25.Pitch diameter 节径26.Pitch element 节面母线27.Pitch line 节线28.Pitch-line chuck 节圆夹具u< ` da E29.Pitch-line runout 节线跳动30.Pitch plane 节面31.Pitch point 节点32.Pitch radius 节圆半径33.Pitch surfaces 节曲面34.Pitch tolerance 齿距公差35.Pitch trace 节线36.Pitch variation 齿距变化量37.Pitting 点蚀38.Plane of action 啮合平面39.Plane of rotation 旋转平面40.Planning generator 展成法刨齿机41.Plastic deformation 塑性变形42.Plastic flow 塑性流动43.Plate index 分度盘44.Point diameter 刀尖直径45.Point of contact 接触点46.Point radius 刀尖半径47.Point width 刀顶距48.Point width taper 刀顶距收缩49.Pressure lubrication 压力润滑50.Prime mover torque 原动机扭矩51.Profile angle 齿廓角52.Profile bridge 齿廓桥形接触53.Profile contact ratio 齿廓重合度54.Profile mismatch 齿廓啮合失配55.Profile radius of curvature 齿廓曲率半径56.Proof surface 检测基准面Q.1.Quality measurement system 质量检测系统2.Quenching cracks 淬火裂纹3.Quenching die 淬火压模4.Quenching press 淬火压床英语站R.1.Rack 齿条2.Radial 径向刀位3.Radial load 径向负荷4.Radial locating surface 径向定位表面5.Radial rake angle径向前角6.Ratio control roughing 变滚比粗切7.Ratio gears 滚比挂轮8.Ratio of roll 滚比9.Ratio of roll gears 滚比挂轮10.Recess action 啮出11.Relative displacement 相对位移12.Relative movement 相对运动13.Relative radius of curvature 相对曲率半径14.Residual stress 残余应力15.Revacycle 直齿锥齿轮圆拉法用机床及刀具16.Revex 直齿锥齿轮粗拉法17.Ridg-AC 镶片圆盘端面粗铣刀18.Ridging 沟条变形19.Ring gear 大轮,环形齿轮20.Rippling 振纹21.Roll centering 滚动定心22.Roll queching 滚动式淬火压床23.Roll gears 摆角挂轮24.Rolling 滚轧25.Rolling velocity 滚动速度26.Root angle 根锥角27.Root angle tilt 齿根角倾斜28.Root apex 根锥顶29.Root apex beyond crossing point 根锥顶至相错点的距离30.Root apex to back 根锥顶至安装基准面距离31.Root circle 齿根圆32.Root cone 根锥33.Root diameter 根圆直径34.Root line 齿根线35.Root radius 根圆半径36.Root surface 齿根曲面37.Roughac 弧齿锥齿轮粗切刀38.Rougher 粗切机39.RSR 弧齿锥齿轮条形刀齿铣刀盘40.Runout 径向跳动41.Runout tolerance 径向跳动公差S.1.Scoring 胶合2.Scoring index 胶合指数3.Scuffing 胶合4.Sector 扇形齿/齿弧5.Segment 扇形齿/体6.Segmental-blade cutter 大轮精切刀7.Separation 分离间隙8.Separating factor 分离系数9.Separating force 分离力10.Set-in 补充切入,进刀11.Set-over 补充转角,调整转换12.Shaft angle 轴转角13.Shot peening 喷丸强化14.Sidebank 边频15.Side movement 侧向位移16.Side rake angle 侧前角17.Single cycle 单循环法18.Single roll 单滚动19.Single setting 单面调整法20.Single side 单面精切法21.Single-side taper 齿槽收缩22.Size factor 尺寸系数23.Skew bevel gears 斜直齿锥齿轮24.Skip index 跳齿分度25.Slide-roll ratio 单位滑滚比,比滑26.Sliding base 床鞍,滑座27.Sliding base setting 床鞍调整,滑座调整28.Sliding velocity 滑动速度29.Slip-chip 直齿锥齿轮一次成形刀30.Slip torque 滑移扭矩31.Slotting tool 切槽刀32.Slot width 槽宽33.Slot-width taper 槽宽收缩34.Small cutter development 小刀盘试切,能产生接近渐开线的刀具35.Solid cutter 整体刀盘36.Sound test 噪声试验37.Space-width taper 齿距收缩38.Spacing tolerance 齿距公差39.Spacing variation 齿距变动量40.Spalling 剥落41.Specific sliding 单位滑动比42.Speed gears 速度挂轮43.Spherical involute teeth 球面渐开线齿44.Spherica limacon teeth 球面钳线齿45.Spindle rotation angle 主轴旋转角46.Spiral angle 螺旋角47.Spiral bevel gears 弧齿锥齿轮48.Splash lubrication 飞溅润滑49.Split profile 齿型中断50.Spread blade 双面刀51.Spread blade 双面刀渐缩52.Standard depthwise taper 标准深锥度53.Standard taper 正常收缩54.Standard thickness 正常齿厚收缩55.Stock allowance 毛坯加工流量56.Straddle cutter 双列刀齿刀盘57.Straddle mounting 跨装58.Straight bevel gears 直齿锥齿轮59.Strength factor 强度系数英语站60.Stress concentration factor 应力集中系数61.Stub teeth 短齿62.Subsurface initiated fatigue breakage 金属表面斜层初始疲劳破裂63.Summary of machine settings 机床调整卡64.Sump lubrication 油槽润滑65.Sum velocity 总速度66.Surface asperities 表面粗糙度67.Surface condition factor 表面条件系数68.Surface deformation 表面变形69.Surface durability 表面耐久度70.Surface fatigue 表面疲劳71.Surface initiated fatigue breakage 表面初始疲劳破裂72.Surface of action 啮合面73.Surface of revolution 回转面74.Surface treatment 表面处理75.Swinging base 回转底座76.Swing pinion cone 摆动小轮节锥法77.Swivel 刀转78.Swivel angle 刀转角79.Symmetrical rack 对称齿条80.Symmetrical rack proportions 对称齿条比例T.1.Tangential load 切向负荷2.Tangent plane 切平面3.Tanline 小轮夹具4.Tanruf 双联粗切刀,8.5模数一下5.Tan-tru 用在加工1016-2540mm的锥齿刀具6.Taper roughing 具有刀顶距收缩的大小轮粗切过程7.Temperature factor 温度系数8.Testing machine 试验机9.Thickness taper 齿厚收缩10.Tilt 刀倾11.Tilt angle 刀倾角12.Tilted rootline taper 倾斜齿根收缩13.Tip radius 齿顶圆角半径14.Toe 轮齿小端15.Toe pattern 小端接触16.Tool 刀具17.Tool advance 刀具进刀18.Tool edge radius 刀刃圆角半径19.Tool point width 刀顶距20.Tooth angle 齿角21.Tooth bearing 齿支撑面,轮齿接触面22.Tooth contact analysis 轮齿接触分析23.Tooth contact pattern 轮齿接触斑点24.Tooth horizontal 齿水平面25.Tooth layout 轮齿剖面图26.Tooth-mesh frequency 齿啮合频率27.Tooth number 齿数28.Tooth profile 齿形,齿廓29.Tooth spacing testing 齿距检查仪30.Tooth spiral 齿螺旋线31.Tooth surface 轮齿表面32.Tooth taper 轮齿收缩33.Tooth-to-tooth composite tolerance 一齿度量中心距公差34.Tooth-to- Tooth composite variation 一齿度量中心距变量35.Tooth trace 齿线36.Tooth vertical 齿垂直面37.Top 齿顶38.Topland 齿顶面39.Topland width 齿顶面宽度40.Topping 修顶41.Top relief angle 顶刃后角42.Toprem 修根刀片43.Toprem angle 刀齿突角角度44.Top slope angle 刀齿顶刃倾角45.Total composite tolerance 总综合公差46.Total composite variation 总度量中心距变动量47.Total contact ratio 总重合度48.Total index tolerance 总分度公差49.Total index variation 总分度变动量50.Tractive effort torque 牵引力扭矩51.Transverse circular pitch 端面周节52.Transverse circular thickness 端面弧齿厚53.Transverse contact ratio 端面重合度54.Transverse diametral pitch 端面径节55.Transverse module 端面模数56.Transverse plane 端平面57.Transverse pressure angle 端面压力角58.Transverse space-width taper 端面槽宽收缩59.Transverse thickness taper 端面齿厚收缩60.Tredgold’s approximation 背锥近似法61.Tribology 润滑与磨损学62.Triplex 三面刃圆盘端铣刀63.Two-tool generator 双刀展成加工机床U.1.Undercut 根切2.Undeveloped settings 试切前调整3.Uniform roll 匀速滚动4.Uniform velocity tester 匀速试验机5.Uni-spand 大轮心轴6.Unit load 单位负荷7.Unitool 曲面镶片刀8.Up-roll 向上滚动V.1.V and H check 锥齿轮啮合的VH检查2.Variable roll 变滚动3.Velocity factor 速度系数4.Versacut 弧齿锥齿轮加工多用刀盘5.Vers-grip 卡紧小齿轮用的卡盘(商标名称)6.Vertical direction 垂直方向7.Vertical displacement 垂直位移8.Vertical factor 垂直系数9.Vertical force 垂直力10.Vertical offset 垂直偏置距11.Vertical plane 垂直面12.Virtual number of teeth 当量齿数13.Virtual pitch radius 当量节圆半径14.Viscosity 粘度15.V-tool V型刀具W.1.Waveform 波形2.Wear 磨损3.Webless-type gear 无幅板式齿轮4.Web-type gear 幅板式齿轮5.Wheel slip torque 车轮打滑扭矩6.Whole depth 齿全高7.Workhead 工件头座8.Workhead offset 垂直轮位9.Workholding equipment 工件夹具10.Working depth 工作齿高11.Working stress 工作允许应力12.Work tests roll 检验工件主轴转角X.1.X-pandisk 大轮蝶形,涨胎心轴Z.1.Zero depthwise taper 等齿高2.Zerol 零度锥齿轮。
齿轮参数中英文对照
![齿轮参数中英文对照](https://img.taocdn.com/s3/m/f8277ccf27fff705cc1755270722192e45365872.png)
齿轮参数中英文对照EXTERNAL SPUR GEAR DATA(外圆柱齿轮参数)manufacturing data(制造参数)part number(零件号)tooth form(齿面)gear type(齿轮类型)number of teeth(齿数)normal module(法向模数)normal pressure angle (at ref circle)法向压力角(在分度圆上)helix angle (at ref circle)螺旋角(在分度圆上)helical lead(螺旋导程)hand of helix(旋向)reference face width(参考齿宽)outside diameter(齿顶圆直径)chamfer diameter(倒圆直径)reference(pitch)circle diameter(分度圆直径)或节圆start of active profile diameter有效渐开线起始圆直径form diameter 展成直径root diameter齿根圆直径base circle diameter基圆直径whole depth全齿高normal circular tooth thickness (at reference circle)法向弧齿厚(在分度圆上)root type齿根形式root fillet radius 齿根圆角半径lead crown齿向鼓形HOB DATA滚刀参数pressure angle压力角tooth thickness at reference line分圆齿厚protuberance凸角tip radius齿顶圆半径reference part number 零件号INSPECTION DATA检验数据profile tolerance and modifications齿形公差和修形profile hollow齿形中凹refernce pitch circle runout节圆跳动pitch variation齿距偏差lead variation齿向偏差lead hollow齿向中凹profile surface finish渐开线齿面精加工ball diameter量球直径dimension over two balls in same plane跨棒距REFERENCE DATA-MATING GEAR对啮齿的参考参数normal center distance 中心距mating gear part number对啮齿轮零件号mumber of teeth on mating gear对啮轮齿数backlash (nominal CD ,ROOM TEMP)侧隙(法线方向,室温)general notes(通用技术要求)not scale drawing(不要在图上量取尺寸)surfaces corners and edges must be free from burrsand sharp edges-break MM MAX(所有面,角和边不能有毛刺,锐边倒钝不超过otherwise stated(除非特别注明,否则)dimensions and tolerance are in millimeters perChinese standard(所有以毫米为单位的尺寸和公差均按中国标准) surface finishes to be micrometer or better(所有表面粗糙度不应低于dimension are finished dimensions;no allowance has beenmade for any change in maximum or least material condition due to heat treatment(所有尺寸均为最终尺寸;热处理导致的最大或最小实体条件的变化不应超出允差)D linear dimensions to be +/- MM(线性尺寸偏差为+/- MM)E angular dimensions to be +/- o(角度尺寸偏差为+/- o)part number as shown(如图作零件号)serial number as shown(如图作系列号)treatment to be applied to all surfaces(整体热处理)gear notes(齿轮技术要求)not grind roots and fillets after heat treatment(热处理后不得磨及齿根和圆角)steps or grooves permissible in root and fillet region afterhoning or grinding(珩磨后,齿根和圆角区域不允许有台阶或凹痕) tolerance based upon floating band fit(齿形误差应以公差带为计)must be free from grind burns and tempering(齿面不得烧伤) line runout and other tooth tolerances are with respect todatum A(节圆跳动和其它齿轮公差均以基准A为测量基准)tolerance to be measured between form and chamfer(齿形误差应由渐开线起始(或终止)圆测量至齿顶倒角) hardness must be achieved in tooth root and fillet region(齿根和圆角处的硬度不得低于硬度下差)radius tangent to profile not to extend above form diameter(齿根圆角要与齿面相切,而且不能超过渐开线起始(或终止)圆直径。
齿轮中英文对照
![齿轮中英文对照](https://img.taocdn.com/s3/m/5a909fe0f18583d04864599d.png)
齿轮基本术语中英文对照齿轮Toothed gear;Gear齿轮副Gear pair平行轴齿轮副Gear pair with parallel axes相交轴齿轮副Gear pair with intersecting axes 齿轮系Train of gears行星齿轮系Planetary gear train齿轮传动Gear drive;Gear transmission配对齿轮Mating gears小齿轮Pinion大齿轮Wheel;Gear主动齿轮Driving gear从动齿轮Driven gear行星齿轮Planet gear行星架Planet carrier太阳轮Sun gear内齿圈Ring gear;Annulus gear外齿轮External gear内齿轮Internal gear中心距Centre distance轴交角Shaft angle连心线Line of centres减速齿轮副Speed reducing gear pair增速齿轮副Speed increasing gear pair齿数比Gear ratio传动比Transmission ratio轴平面Axial plane基准平面Datum plane节平面Pitch plane端平面Transverse plane法平面Normal plane分度曲面Reference surface节曲面Pitch surface齿顶曲面Tip surface齿根曲面Root surface基本齿廓Basic tooth profile基本齿条Basic rack产形齿条Counterpart rack产形齿轮Generating gear of a gear产形齿面Generating flank基准线Datum line轮齿Gear teeth;Tooth齿槽Tooth space右旋齿Right-hand teeth左旋齿Left—hand teeth变位齿轮Gears with addendum modification;X-gears高度变位圆柱齿轮副X-gear pair with reference centre distance 角度变位圆柱齿轮副X-gear pair with modified centre distance 高度变位锥齿轮副X—gear pair without shaft angle modification 角度变位圆柱齿轮副X-gear pair with shaft angle modification变位系数Modification coefficient变位量Addendum modification径向变位系数Addendum modification coefficient中心距变位系数Centre distance modification coefficient圆柱齿轮Cylindrical gear顶圆Tip circle根圆Root circle齿距Pitch齿距角Angular pitch公法线长度Base tangent length分度圆直径Reference diameter节圆直径Pitch diameter基圆直径Base diameter顶圆直径Tip diameter根圆直径Root diameter齿根圆角半径Fillet radius齿高Tooth depth工作高度Working depth齿顶高Addendum齿根高Dedendum弦齿高Chordal height固定弦齿高Constant chord height齿宽Facewidth有效齿宽Effective facewidth端面齿厚Transverse tooth thickness法向齿厚Normal tooth thickness端面基圆齿厚Transverse base thickness法向基圆齿厚Normal base thickness端面弦齿厚Transverse chordal tooth thickness固定弦齿厚Constant chord端面齿顶厚Crest width法向齿顶厚Normal crest width端面齿槽宽Transverse spacewidth法向齿槽宽Normal spacewidth齿厚半角Tooth thickness half angle槽宽半角Spacewidth half angle压力角Pressure angle齿形角Nominal pressure angle圆弧圆柱蜗杆Arc—contact worm;hollow flank worm;ZC—worm直廓环面蜗杆Enveloping worm with straight line grneratrix;TA worm平面蜗杆Planar worm wheel;P-worm wheel平面包络环面蜗杆Planar double enveloping worm;TP—worm平面二次包络蜗杆Planar double—enveloping worm wheel;TP-worm wheel锥面包络环面蜗杆Toroid enveloping worm wheel;TK—worm wheel渐开线包络环面蜗杆Toroid enveloping worm hich involute holicoid generatrix;TI-worm锥蜗杆Spiroid锥蜗轮Spiroid gear锥蜗杆副Spiroid gear pair中平面Mid-plane长幅内摆线Prolate hypocycloid短幅内摆线Curtate hypocycloid渐开线Involute;Involute to a circle延伸渐开线Prolate involute缩短渐开线Curtate involute球面渐开线Spherical involute渐开螺旋面Involute helicoid阿基米德螺旋面Screw helicoid球面渐开螺旋面Spherical involute helicoid圆环面Toroid圆环面的母圈Generant of the toroit圆环面的中性圈Middle circle of the toroid圆环面的中间平面Middle—plane of the toroid圆环面的内圈Inner circle of the toroid啮合干涉Meshing interference切齿干涉Cutter interference齿廓修型Profile modification;Profile correction修缘Tip relief修根Root relief齿向修形Axial modification;Longitudinal correction齿端修薄End relief鼓形修整Crowning鼓形齿Crowned teeth挖根Undercut瞬时轴Instantaneous axis瞬时接触点Point of contact瞬时接触线Line of contact端面啮合线Transverse path of contact啮合曲面Surface of action啮合平面Plane of action啮合区域Zone of action总作用弧Total arc of transmission端面作用弧Transverse arc of transmission纵向作用弧Overlap arc总作用角Total angle of transmission端面作用角Transverse angle of transmission 纵向作用角Overlap angle总重合度Total contact ratio端面重合度Transverse ratio纵向重合度Overlap ratio标准齿轮Standard gears非变位齿轮X—gero gear标准中心距Referencr centre distance名义中心距Nominal centre distance分度圆柱面Reference cylinder节圆柱面Pitch cylinder基圆柱面Basic cylinder齿顶圆柱面Tip cylinder齿根圆柱面Root cylinder节点Pitch point节线Pitch line分度圆Reference circle节圆Pitch circle基圆Basic circle定位面Locating face外锥距Outer cone distance内锥距Inner cone distance中点锥距Mean cone distance背锥距Back cone distance安装距Locating distance轮冠距Tip distance;crown to back冠顶距Apex to crown偏置距Offset齿线偏移量Offset of tooth trace分锥角Reference cone angle节锥角Pitch cone angle顶锥角Tip angle根锥角Root angle背锥角Back cone angle齿顶角Addendum angel齿根角Dedendum angle任意点压力角Pressure angle at a point任意点螺旋角Spiral angle at a point中点螺旋角Mean spiral angle大端螺旋角Outer spiral angle小端螺旋角Inner spiral angle蜗杆Worm蜗轮Worm wheel蜗杆副Worm gear pair圆柱蜗杆Cylindrical worm圆柱蜗杆副Cylindrical worm pair环面蜗杆Enveloping worm环面蜗杆副Enveloping worm pair阿基米德蜗杆Straight sided axial worm;ZA—worm渐开线蜗杆Involute helicoid worm;ZI—worm法向直廓蜗杆Straight sided normal worm;ZN—worm锥面包络圆柱蜗杆Milled helicoid worm;ZK—worm椭圆齿轮Elliptical gear非圆齿轮副Non-circular gear pair圆柱针轮副Cylindsical lantern pinion and wheel针轮Cylindsical tan tein gear ;pin—wheel谐波齿轮副Harmoric gear drive波发生器Wave generator柔性齿轮Flexspine刚性齿轮Circular spline非圆齿轮Non—circular gear分度圆环面Reference tosoidinvolute spline data:渐开线花键参数flat root side fit :平齿根齿侧定心三维|cad|机械|汽车技术|catia|pro/e|ug|nventor|solidedge|soli dworks|caxa#u5 f9 E4 {6 p1 `, V;B2 |/ ^pith(应为pitch):径节14/32number of teeth:齿数195 d,b. w( @6 }# f9pressure angle :压力角30base cicle dia (ref) :基圆直径( K. M H' r!J$ \* S$ ]2 _cicular space width:分度圆齿槽宽min effective:最小作用齿槽宽0。
机械毕业设计英文外文翻译64超高速行星齿轮组合中内部齿轮的有限元分析
![机械毕业设计英文外文翻译64超高速行星齿轮组合中内部齿轮的有限元分析](https://img.taocdn.com/s3/m/ce9b1f1ecc7931b765ce15f4.png)
翻译部分英文原文Finite Element Analysis of internal Gear in High-Speed Planetary Gear UnitsAbstrac t: The stress and the elastic deflection of internal ring gear in high-speed spur planetary gear units are investigated. A rim thickness parameter is defined as the flexibility of internal ring gear and the gearcase. The finite element model of the whole internal ring gear is established by means of Pro/E and ANSYS. The loads on meshing teeth of internal ring gear are applied according to the contact ratio and the load-sharing coefficient. With the finite element analysis(FEA),the influences of flexibility and fitting status on the stress and elastic deflection of internal ring gear are predicted. The simulation reveals that the principal stress and deflection increase with the decrease of rim thickness of internal ring gear. Moreover, larger spring stiffness helps to reduce the stress and deflection of internal ring gear. Therefore, the flexibility of internal ring gear must be considered during the design of high-speed planetary gear transmissions. Keywords: planetary gear transmissions; internal ring gear; finite element method High-speed planetary gear transmissions are widely used in aerospace and automotive engineering due to the advantages of large reduction ratio, high load capacity, compactness and stability. Great attention has been paid to the dynamic prediction of gear units for the purpose of vibration reduction and noise control in the past decades(1-8).as one of the key parts, internal gear must be designed carefully since its flexibility has a strong influence on the gear train’s performance. studies have shown that the flexibility of internal gear significantly affects the dynamic behaviors of planetary gear trains(9).in order to get stresses and deflections of ring gear, several finite element analysis models were proposed(10-14).however, most of the models dealt with only a segment of the internal ring gear with a thin rim. the gear segment was constrained with corresponding boundary conditions and appoint load was exerted on a single tooth along the line of action without considering the changeover between the single and double contact zone in a complete mesh cycle of a given tooth. A finite element/semi-analytical nonlinear contract model was presented to investigate the effect of internal gear flexibility on the quasi-static behavior of a planetary gear set(15). By considering the deflections of all gears and support conditions of splines, the stresses and deflections were quantified as a function of rim thickness. Compared with the previous work, this model considered the whole transmission system. However, the method described in Ref. (15) requires a high level of expertise before it can even be successful.The purpose of this paper is to investigate the effects of rim thickness and support conditions on the stress and the deflection of internal gear in a high-speed spur planetary gear transmission. Firstly, a finite element model for a complete internal gear fixed to gearcase with straight splines is created by means of Pro/E and ANSYS. Then, proper boundary conditions are applied to simulating the actual support conditions. Meanwhile the contact ratio and load sharing are considered to apply suitable loads on meshing teeth. Finally, with the commercial finite element code of APDL in ANSYS, the influences of rim thickness and support condition oninternal ring gear stress and deflection are analyzed.1 finite element model1.1 example systemA three-planet planetary gear set (quenched and tempered steel 5140) defined in Tab. 1 is taken as an example to study the influence of rim thickness and support conditions.As shown in Fig.1, three planets are equally spaced around the sun gear with 120·apart from each other. Here, all the gears in the gear unit are standard involute spur gears. The sun gear is chosen as the input member while the carrier, which is not indicated in Fig.1 for the sake of clarity, is chosen as the output member. The internal ring gear is set stationary by using 6 splines evenly spaced round the outer circle to constrain the rigid body motion of ring gear.A dimensionless internal gear rim thickness parameter λis defined as the ratio of rim thickness to the tooth height as follows:(1)Where r0 ,r f ,r a are the outer , dedendum and addendum radius of internal gear, respectively.A smaller λindicates a more flexible ring gear and vice versa . internal gears with different values of λ=1.0,1.5,2.0,2.5 are investigated in this paper. In all these cases, the widths of ring gear are 44mm, and the connecting splines are 34mm in length and 14 mm inwidth, while the heights of splines in each case are 5mm, 6mm,7mm and 8mm, respectively.A finite element model for the internal gear with λ=1.5 is shown in Fig.2, which contains69 813 elements and 112 527 nodes.Fig.2 Finite element model of internal ring gear1.2 loads and boundary conditionsThe internal gear is fixed to gearcase through splines and meshes with planet gears. Assuming that the load is evenly distributed to each planet and all frictions are negligible, the meshing force between each planet and the ring is as follows:Where T c is the overall output torque; i sc is the overall reduction ratio; r s is the radius of sun gear; n p denotes the number of planets; is the pressure angle.In addition, by considering the contact ratio and load sharing factors, we can finally determine the mesh positions and the proportions of the load carried by each tooth of the ring. The load state of the ring is shown in Fig.3.Here, the phase angle between each planet is 120。
机械英语-齿轮英语句子和术语中英文对照
![机械英语-齿轮英语句子和术语中英文对照](https://img.taocdn.com/s3/m/2dbc753f0722192e4536f6c1.png)
机械英语-齿轮英语句子和术语一、齿轮英语句子1. At first, based on the analysis of the character of the tooth profile of Archimedes worm wheel, we prove that there is a unique common normal to the whole profile本文首先从分析阿基米德蜗轮齿面特性出发,论述了阿基米德蜗轮公法线在蜗轮齿面上的唯一性,并推导了阿基米德蜗轮公法线计算公式;2. It is important to ensure that the anchorage point can withstand the forces applied的。
3. Knowing the strength, it is possible to work backward and determine what factor of 由于知道其强度,便可以反过来求出所用的安全系数值。
4.Safe load capacity, strengths and application limits of accessories and components5.The deformation significantly increases electron mobility, making it possible to boost computer speed and reduce energy consumption.6.Although the cycloidal gear has much merits , the pure cycloidal gear is less used in正摆线齿轮。
7.Based on the tooth profile curve equation of inner rotors in cycloidal pump, the根据摆线泵内转子的齿廓曲线方程,推导出了摆线泵的排量计算公式。
齿轮参数中英文对照
![齿轮参数中英文对照](https://img.taocdn.com/s3/m/8d5af46b28ea81c759f57899.png)
A.1.abrasive tooth wear 齿面研磨磨损2.absolute tangential velocity 绝对切向速度3.accelerometer 力口速表4.addendum 齿顶高5.addendum angle 齿顶角6.addendum circle 齿顶圆7.addendum surface 上齿面8.adhesive wear 粘着磨损9.adjustability 可调性10.adjustability coefficients 可调系数11.adjusting wedge圆盘端铳刀的可调型楔块12.allowable stress 允许应力13.alternate blade cutter 双面刀盘14.angular backlash 角侧隙15.angular bevel gears 斜交锥齿轮16.angular displacement 角移位17.angular pitch 齿端距18.angular testing machine 可调角度试验机19.approach action 啮入20.arbor 心轴21.arbor distanee 心轴距22.arc of approach 啮入弧23.arc of recess 啮出弧24.attraction 收紧25.average cutter diameter 平均刀尖直径26.axial displacement 轴向位移27.axial factor 轴向系数28.axial locating surface 车由向定位面29.axial pitch 轴向齿距30.axial plane 轴向平面31.axial rakeangle 轴向前角32.axial thrust 轴向推力33.axle testing machine 传动桥试验机B.1.back angle 背锥角2.Back angle distanee 背角距(在背锥母线方向)3.Back cone 背锥4.Back cone distanee 背锥距5.Back cone element 背锥母线6.Backlash 侧隙7.Backlash tolera nee 侧隙公差8.Backlash variatio n 侧隙变量9.Backlash variati on tolera nee 侧隙变量公差10.Bandwidth 频带宽11 . Base circle 基圆12.Base diameter 基圆直径13.Base pitch 基节14.Base radius 基圆半径15.Base spiral angle 基圆螺旋角16. Basic rack基本齿条17. Beari ng 轴承18. Bearing preload 轴承预负荷19. Beari ng spaci ng / spread 车由承间距20. Bending fatigue 弯曲疲劳21. Bending stress 弯曲应力22. Bevel gears 锥齿轮23. Bias对角接触24. Bias in内对角接触25. Bias out外对角接触26. Blade angle刀齿齿廓角27. Blade edge radius 刀尖圆角半径28. Blade letter刀尖凸角代号29. Blade life刀尖寿命30. Blade point width 刀顶宽31. Blank offset毛坯偏置距32. Bland position 毛坯位置33. Bottom land 齿槽底面34. Bou ndary lubricatio n 界面润滑35. Breakage 破裂36. Bridged con tact pattern 桥型接触斑点37. Broach 拉刀38. Burnishi ng 挤齿C .1.Case crushing 齿面塌陷2.CBN立方氮化硼3.chamfer 倒角4.chordal addendum 弦齿高5.chordal thickness 弦齿厚6.chuck 卡盘7.circular broach 圆拉刀8.circular face-mill 圆盘端面铳刀9.circular peripheral-mill 圆盘铳刀10.circular pitch 周节11.circular thickness 弧齿厚12.circular thickness factor 弧齿厚系数clearance 顶隙clearance angle 后角 coarse pitch 大节距 coast side 不工作齿侧 combin ati on 组合 combined preload 综合预负荷 complementary crown gears 互补冠状齿轮 completing cycle 全工序循环 composite action 双面啮合综合检验误差 compressive stress 压应力 con cave side 凹面 concen tricity 同心度 concentricity tester 同心度检查仪 cone distanee 锥距 cone element 锥面母线 con formal surfaces 共型表面 con iskoid 斜锥齿轮 conjugate gears 共轭齿轮 conjugate racks 共轭齿条 con tact fatigue 接触疲劳 con tact norma 接触点法线 con tact pattern (tooth con tact pattern)轮齿接触斑点 con tact ratio 重合度 con tact stress 接触应力 continuous index 连续分度control gear 标准齿轮, 检验用齿轮convex side 凸面 coolant 冷却液 corrosive wear 腐蚀性磨损 corrugated tool 阶梯刨刀 counter forma surfaces 反法向表面 cradle 摇台 cradle test roll 摇台角cross 大小端接触crossing point 交错点crown 齿冠crown circle 锥齿轮冠圆 crowned teeth 鼓形齿 crown gear 冠轮 crown to back (轮冠距)轮冠至安装定位面距离 crown to crossing point 轮冠至相错点距离 cutter 刀盘 cutter axial 刀盘的轴向位置 cutter axial plane 刀盘轴向平面13. 14. 15.16.17.18.19.20.21.22.23. 24. 25. 26. 27. 28. 29. 30. 31.32.33.34.35.36.37.38.39.40.41.42.43.44.45.46.47.48.49.50.51.52.53.54.55.56.57.cutter axis 刀盘轴线58.cutter diameter 刀盘直径59.cutter edge radius 刀刃圆角半径60.cutter head 刀盘体61.cutter number 刀号62.cutter parallel 刀盘平垫片63.cutter point diameter 刀尖直径64.cutter point radius 刀尖半径65.cutter point width 刀顶距66.cutter spindle 刀盘主轴67.cutter spin die rotati on an gle 刀盘主轴转角68.cutting distanee 切齿安装距69. C.V. testing mashing 常速试验机70.cyclex格里森粗铳精拉法圆盘端铳刀71.cylindrical gears 圆柱齿轮D.1. Datum tooth 基准齿2. Debur去毛刺3. Decibel (CB)(噪音)分贝4. Decimal ratio 挂轮比值5. Dede ndum 齿根高6. Dendendum angle 齿根角7. Dedendum surface 下齿面& Deflection 挠曲9. Deflection test 挠曲试验10. Deflection testing machine 挠曲试验机11. Depthwise taper 齿高收缩12. Design data sheet 设计数据表13. Destructive pitting 破坏性点蚀14. Destructive wear 破坏性磨损15. Developed setting 试切调整16. Dial indicator度盘式指示表17. Diametral pitch 径节18. Diamo nd 菱形接触19. Dinging ball check 钢球敲击检查20. Disc-mill cuter 盘铳刀21. D ish angle 凹角22. Displacement 位移23. D isplacement error 位移误差24. D ouble index 双分度25. D ouble roll 双向滚动26. D own roll向下滚动27. D rive side工作齿侧28. D uplete 双刃刀Duplex 双重双面法 Duplex helical 双重螺旋法(加工方法之一) Duplex spread blade 双重双面刀齿(加工/磨齿方法) Duplex taper 双重收缩齿 Durability factor 耐久系数 Dynamic factor 动载荷系数 Ease-off 修正、失配 Ecce ntric 偏心Eccentric angle 偏心角 Eccen tricity 偏心度 Edge radius 刀尖圆角半径 Effective beari ng spaci ng 车由承有效间距 Effective face width 有效宽度(有效齿宽) Elastic coefficient 弹性系数 Elastic deformation 弹性变形 Elastic limit 弹性极限 Elastohydrody namic lubricatio n 弹性液压润滑 Element 母线、要素 End movement 车由向移动 En drem 修内端凸轮、导程凸轮 En dura nee life 耐久寿命 En dura nee limit 耐久极限 Engine torque 发动机扭矩 En velop ing 包络 EP lubricant, EP 极压润滑剂 EPG check, “ EPG 检查 Equal addendum teeth 等齿顶高齿 Equicurv 等高齿大轮成形法 Equidep 等高齿 Equiside 等边 Equivale nt fear ratio 当量传动比 Equivale nt nu mber of teeth 当量齿数 Equivale nt pitch radius 当量节圆半径 Equivale nt rack 当量齿条 Expa nder 涨胎 Expanding arbor 可张心车由 Extreme pressure lubrica nt 极压润滑剂 293031323334 E 。
齿轮参数中英文对照
![齿轮参数中英文对照](https://img.taocdn.com/s3/m/21c8bec46e1aff00bed5b9f3f90f76c661374ca8.png)
齿轮参数中英文对照WORD格式A.1.abrasivetoothwear齿面研磨磨损2.absolutetangentialvelocity绝对切向速度3.accelerometer加速表4.addendum齿顶高5.addendumangle齿顶角6.addendumcircle齿顶圆7.addendumsurface上齿面8.adhesivewear粘着磨损9.adjustability可调性10.adjustabilitycoefficients可调系数11.adjustingwedge圆盘端铣刀的可调型楔块12.allowablestress允许应力13.alternatebladecutter双面刀盘14.angularbacklash角侧隙15.angularbevelgears斜交锥齿轮16.angulardisplacement角移位17.angularpitch齿端距18.angulartestingmachine可调角度试验机19.approachaction啮入20.arbor心轴21.arbordistance心轴距22.arcofapproach啮入弧23.arcofrecess啮出弧24.attraction收紧25.averagecutterdiameter平均刀尖直径26.axialdisplacement轴向位移27.axialfactor轴向系数28.axiallocatingsurface轴向定位面29.axialpitch轴向齿距30.axialplane轴向平面31.axialrakeangle轴向前角32.axialthrust轴向推力33.axletestingmachine传动桥试验机B.1.backangle背锥角2.Backangledistance背角距(在背锥母线方向)3.Backcone 背锥4.Backconedistance背锥距5.Backconeelement背锥母线6.Backlash侧隙7.Backlashtolerance侧隙公差8.Backlashvariation侧隙变量WORD格式9.Backlashvariationtolerance侧隙变量公差10.Bandwidth 频带宽11.Basecircle基圆12.Basediameter基圆直径13.Basepitch基节14.Baseradius基圆半径15.Basespiralangle基圆螺旋角16.Basicrack基本齿条17.Bearing轴承18.Bearingpreload轴承预负荷19.Bearingspacing/spread轴承间距20.Bendingfatigue弯曲疲劳21.Bendingstress弯曲应力22.Bevelgears锥齿轮23.Bias对角接触24.Biasin内对角接触25.Biasout外对角接触26.Bladeangle刀齿齿廓角27.Bladeedgeradius刀尖圆角半径28.Bladeletter刀尖凸角代号29.Bladelife刀尖寿命30.Bladepointwidth刀顶宽31.Blankoffset毛坯偏置距32.Blandposition毛坯位置33.Bottomland齿槽底面34.Boundarylubrication界面润滑35.Breakage破裂36.Bridgedcontactpattern桥型接触斑点37.Broach拉刀38.Burnishing挤齿C.34.Casecrushing齿面塌陷35.CBN立方氮化硼36.chamfer倒角37.chordaladdendum弦齿高38.chordalthickness弦齿厚39.chuck卡盘40.circularbroach圆拉刀41.circularface-mill圆盘端面铣刀42.circularperipheral-mill圆盘铣刀43.circularpitch周节44.circularthickness弧齿厚45.circularthicknessfactor弧齿厚系数WORD格式46.clearance顶隙47.clearanceangle后角48.coarsepitch大节距49.coastside不工作齿侧/doc/e42456300.html,bination组合/doc/e42456300.html,binedpreload综合预负荷/doc/e42456300.html,plementarycro wngears互补冠状齿轮/doc/e42456300.html,pletingcycle全工序循环/doc/e42456300.html,positeaction双面啮合综合检验误差/doc/e42456300.html,pressivestress压应力56.concaveside凹面57.concentricity同心度58.concentricitytester同心度检查仪59.conedistance锥距60.coneelement锥面母线61.conformalsurfaces共型表面62.coniskoid斜锥齿轮63.conjugategears共轭齿轮64.conjugateracks共轭齿条65.contactfatigue接触疲劳66.contactnorma接触点法线67.contactpattern(toothcontactpattern)轮齿接触斑点68.contactratio重合度69.contactstress接触应力70.continuousindex连续分度71.controlgear标准齿轮,检验用齿轮72.convexside凸面73.coolant冷却液74.corrosivewear腐蚀性磨损75.corrugatedtool阶梯刨刀76.counterformasurfaces反法向表面77.cradle摇台78.cradletestroll摇台角79.cross大小端接触80.crossingpoint交错点81.crown齿冠82.crowncircle锥齿轮冠圆83.crownedteeth鼓形齿84.crowngear冠轮85.crowntoback(轮冠距)轮冠至安装定位面距离86.crowntocrossingpoint轮冠至相错点距离87.cutter刀盘88.cutteraxial刀盘的轴向位置89.cutteraxialplane刀盘轴向平面WORD格式90.cutteraxis刀盘轴线91.cutterdiameter刀盘直径92.cutteredgeradius刀刃圆角半径93.cutterhead刀盘体94.cutternumber刀号95.cutterparallel刀盘平垫片96.cutterpointdiameter刀尖直径97.cutterpointradius刀尖半径98.cutterpointwidth刀顶距99.cutterspindle刀盘主轴100.cutterspindlerotationangle刀盘主轴转角101.cuttingdistance切齿安装距102.C.V.testingmashing常速试验机103.cyclex格里森粗铣精拉法圆盘端铣刀104.cylindricalgears圆柱齿轮D.1.Datumtooth基准齿2.Debur去毛刺3.Decibel(CB)(噪音)分贝4.Decimalratio挂轮比值5.Dedendum齿根高6.Dendendumangle齿根角7.Dedendumsurface下齿面8.Deflection挠曲9.Deflectiontest挠曲试验10.Deflectiontestingmachine挠曲试验机11.Depthwisetaper齿高收缩12.Designdatasheet设计数据表13.Destructivepitting破坏性点蚀14.Destructivewear破坏性磨损15.Developedsetting试切调整16.Dialindicator度盘式指示表17.Diametralpitch径节18.Diamond菱形接触19.Dingingballcheck钢球敲击检查20.Disc-millcuter盘铣刀21.Dishangle凹角22.Displacement位移23.Displacementerror位移误差24.Doubleindex双分度25.Doubleroll双向滚动26.Downroll向下滚动27.Driveside工作齿侧28.Duplete双刃刀29.Duplex双重双面法30.Duplexhelical双重螺旋法(加工方法之一)31.Duplexspreadblade双重双面刀齿(加工/磨齿方法)32.Duplextaper双重收缩齿33.Durabilityfactor耐久系数34.Dynamicfactor动载荷系数E。
齿轮有限元分析
![齿轮有限元分析](https://img.taocdn.com/s3/m/7e56483403768e9951e79b89680203d8ce2f6af3.png)
齿轮有限元分析引言有限元分析(Finite Element Analysis,简称FEA)是一种工程分析方法,用于通过将复杂的结构分割为简单的有限元,利用力学原理进行计算和分析。
它在工程领域得到了广泛的应用,齿轮有限元分析便是其中之一。
齿轮是一种常见的传动装置,广泛应用于机械、汽车、冶金等领域。
传统的齿轮设计方法主要依赖于经验和试错,效果难以保证。
而有限元分析能够通过数值计算对齿轮进行全面的力学分析,为齿轮的设计与优化提供有力支持。
齿轮有限元分析原理齿轮有限元分析的基本原理是将齿轮进行离散化,将其分解为多个小块,每个小块称为一个有限元。
然后根据有限元理论,建立有限元模型。
将齿轮的物理性质、边界条件等输入有限元模型,并进行求解,得到齿轮的应力、变形等相关结果。
在齿轮有限元分析中,需要考虑的因素包括载荷、齿轮的几何形状、材料参数等。
其中载荷可以分为静态载荷和动态载荷,可以通过实际工况和使用要求确定。
几何形状是指齿轮的轮齿形状、齿顶高度、齿距等。
材料参数包括齿轮的弹性模量、泊松比等。
齿轮有限元分析采用有限元软件进行计算,常见的有ABAQUS、ANSYS、Nastran等。
通过建立合理的有限元模型和适当的边界条件,可以得到齿轮的应力分布、变形情况等结果,从而评估齿轮在工作过程中的可靠性。
齿轮有限元分析的应用齿轮有限元分析在齿轮设计与优化中扮演着重要的角色。
它能够帮助工程师更全面地了解齿轮在工作条件下的应力分布、变形情况,从而为设计提供指导。
具体应用包括以下几个方面:齿轮受力分析通过齿轮有限元分析,可以得到齿轮在受到静态或动态载荷作用时的应力分布情况。
这可以帮助工程师判断齿轮在工作过程中是否存在应力集中现象,以及是否满足材料的强度要求。
在设计中,可以根据这些分析结果调整齿轮的几何形状或材料参数,以提高齿轮的可靠性和寿命。
齿轮变形分析齿轮在受到载荷作用时,会发生一定的变形。
通过齿轮有限元分析,可以计算齿轮的变形情况,包括齿轮的轴向变形、径向变形等。
齿轮术语中英文对照
![齿轮术语中英文对照](https://img.taocdn.com/s3/m/7fab9a42ae1ffc4ffe4733687e21af45b307feec.png)
齿轮术语中英文对照阿基米德蜗杆Archimedes worm安全系数safety factor; factor of safety安全载荷safe load变形deformation摆线齿轮cycloidal gear摆线齿形cycloidal tooth profile背锥角back angle背锥距back cone distance比例尺scale变速speed change变速齿轮change gear ; change wheel变位齿轮modified gear变位系数modification coefficient标准齿轮standard gear标准直齿轮standard spur gear表面粗糙度surface roughness不完全齿轮机构intermittent gearing补偿compensation参数化设计parameterization design, PD 残余应力residual stress操纵及控制装置operation control device 槽数Geneva numerate侧隙backlash差动轮系differential gear train差动螺旋机构differential screw mechanism差速器differential常用机构conventional mechanism; mechanism in common use承载量系数bearing capacity factor承载能力bearing capacity成对安装paired mounting尺寸系列dimension series齿槽tooth space齿槽宽spacewidth齿侧间隙backlash齿顶高addendum齿顶圆addendum circle齿根高dedendum齿根圆dedendum circle 齿厚tooth thickness齿距circular pitch齿宽face width齿廓tooth profile齿廓曲线tooth curve齿轮gear齿轮变速箱speed-changing gear boxes 齿轮齿条机构pinion and rack齿轮插刀pinion cutter; pinion-shaped shaper cutter齿轮滚刀hob ,hobbing cutter齿轮机构gear齿轮轮坯blank齿轮传动系pinion unit齿轮联轴器gear coupling齿条传动rack gear齿数tooth number齿数比gear ratio齿条rack齿条插刀rack cutter; rack-shaped shaper cutter齿形链、无声链silent chain齿形系数form factor齿式棘轮机构tooth ratchet mechanism插齿机gear shaper重合点coincident points重合度contact ratio传动比transmission ratio, speed ratio传动装置gearing; transmission gear传动系统driven system传动角transmission angle传动轴transmission shaft创新设计creation design垂直载荷、法向载荷normal load从动带轮driven pulley从动件driven link, follower从动件平底宽度width of flat-face从动件停歇follower dwell从动件运动规律follower motion从动轮driven gear粗线bold line粗牙螺纹coarse thread大齿轮gear wheel打滑slipping带传动belt driving单列轴承single row bearing单位矢量unit vector当量齿轮equivalent spur gear; virtual gear当量齿数equivalent teeth number; virtual number of teeth 当量摩擦系数equivalent coefficient of friction当量载荷equivalent load刀具cutter导数derivative倒角chamfer导程lead导程角lead angle等效质量equivalent mass(疲劳)点蚀pitting垫圈gasket垫片密封gasket seal顶隙bottom clearance定轴轮系ordinary gear train; gear train with fixed axes 动力学dynamics动密封kinematical seal动能dynamic energy动力粘度dynamic viscosity动力润滑dynamic lubrication动载荷dynamic load端面transverse plane端面参数transverse parameters端面齿距transverse circular pitch端面齿廓transverse tooth profile端面重合度transverse contact ratio端面模数transverse module端面压力角transverse pressure angle锻造forge 惰轮idle gear额定寿命rating life额定载荷load rating发生线generating line发生面generating plane法面normal plane法面参数normal parameters法面齿距normal circular pitch法面模数normal module法面压力角normal pressure angle法向齿距normal pitch法向齿廓normal tooth profile法向直廓蜗杆straight sided normal worm 法向力normal force 反正切Arctan范成法generating cutting仿形法form cutting非标准齿轮nonstandard gear非接触式密封non-contact seal非周期性速度波动aperiodic speed fluctuation非圆齿轮non-circular gear粉末合金powder metallurgy分度线reference line; standard pitch line 分度圆reference circle; standard (cutting) pitch circle分度圆柱导程角lead angle at reference cylinder分度圆柱螺旋角helix angle at reference cylinder分母denominator分子numerator分度圆锥reference cone; standard pitch cone封闭差动轮系planetary differential复合应力combined stress复式螺旋机构Compound screw mechanism干涉interference刚度系数stiffness coefficient钢丝软轴wire soft shaft根切undercutting公称直径nominal diameter高度系列height series功work工况系数application factor工艺设计technological design工作循环图working cycle diagram工作机构operation mechanism工作载荷external loads工作空间working space工作应力working stress工作阻力effective resistance工作阻力矩effective resistance moment 公法线common normal line公制齿轮metric gears功率power功能分析设计function analyses design共轭齿廓conjugate profiles共轭凸轮conjugate cam惯性力矩moment of inertia ,shaking moment惯性力平衡balance of shaking force冠轮crown gear轨迹生成path generation轨迹发生器path generator滚刀hob过度切割undercutting耗油量oil consumption耗油量系数oil consumption factor横坐标abscissa互换性齿轮interchangeable gears花键spline滑键、导键feather key滑动率sliding ratio环面蜗杆toroid helicoids worm缓冲装置shocks; shock-absorber机械machinery机械平衡balance of machinery机械设计machine design; mechanical design机械特性mechanical behavior机械调速mechanical speed governors机械效率mechanical efficiency机械原理theory of machines and mechanisms机械无级变速mechanical stepless speed changes基础机构fundamental mechanism基本额定寿命basic rating life基于实例设计case-based design,CBD基圆base circle基圆半径radius of base circle基圆齿距base pitch基圆压力角pressure angle of base circle 基圆柱base cylinder 基圆锥base cone极限位置extreme (or limiting) position极位夹角crank angle between extreme (or limiting) positions 计算机辅助设计computer aided design, CAD计算机辅助制造computer aided manufacturing, CAM计算机集成制造系统computer integrated manufacturing system, CIMS计算力矩factored moment; calculation moment计算弯矩calculated bending moment间隙backlash减速比reduction ratio减速齿轮、减速装置reduction gear减速器speed reducer渐开螺旋面involute helicoid渐开线involute渐开线齿廓involute profile渐开线齿轮involute gear渐开线发生线generating line of involute 渐开线方程involute equation渐开线函数involute function渐开线蜗杆involute worm渐开线压力角pressure angle of involute 渐开线花键involute spline键key键槽keyway交变应力repeated stress交变载荷repeated fluctuating load交叉带传动cross-belt drive交错轴斜齿轮crossed helical gears胶合scoring角速度angular velocity角速比angular velocity ratio结构structure结构设计structural design截面section节点pitch point节距circular pitch; pitch of teeth节线pitch line节圆pitch circle节圆齿厚thickness on pitch circle节圆直径pitch diameter节圆锥pitch cone节圆锥角pitch cone angle解析设计analytical design紧边tight-side紧固件fastener径节diametral pitch径向radial direction径向当量动载荷dynamic equivalent radial load径向当量静载荷static equivalent radial load径向基本额定动载荷basic dynamic radial load rating 径向基本额定静载荷basic static radial load tating径向接触轴承radial contact bearing径向平面radial plane径向游隙radial internal clearance径向载荷radial load 径向载荷系数radial load factor 径向间隙clearance静力static force静平衡static balance静载荷static load绝对运动absolute motion绝对速度absolute velocity可靠性reliability可靠性设计reliability design, RD理论廓线pitch curve理论啮合线theoretical line of action 力矩moment 力平衡equilibrium力偶couple力偶矩moment of couple轮坯blank螺旋副helical pair螺旋机构screw mechanism螺旋角helix angle螺旋线helix ,helical line模块化设计modular design, MD模数module磨损abrasion ;wear; scratching耐磨性wear resistance内齿轮internal gear内齿圈ring gear内力internal force内圈inner ring啮合engagement, mesh, gearing 啮合点contact points 啮合角working pressure angle啮合线line of action啮合线长度length of line of action 盘形转子disk-like rotor 抛物线运动parabolic motion疲劳极限fatigue limit疲劳强度fatigue strength偏置式offset偏( 心) 距offset distance偏心率eccentricity ratio偏心质量eccentric mass偏距圆offset circle偏心盘eccentric切齿深度depth of cut曲齿锥齿轮spiral bevel gear曲率curvature曲率半径radius of curvature曲面从动件curved-shoe follower曲线运动curvilinear motion全齿高whole depth权重集weight sets球面副spheric pair球面渐开线spherical involute球面运动spherical motion人字齿轮herringbone gear润滑装置lubrication device润滑lubrication三角形花键serration spline三角形螺纹V thread screw少齿差行星传动planetary drive with small teeth difference 升程rise升距lift实际廓线cam profile输出轴output shaft实际啮合线actual line of action双曲面齿轮hyperboloid gear顺时针clockwise瞬心instantaneous center死点dead point太阳轮sun gear特性characteristics图册、图谱atlas图解法graphical method退火anneal陀螺仪gyroscope外力external force外形尺寸boundary dimension网上设计on-net design, OND微动螺旋机构differential screw mechanism位移displacement蜗杆worm蜗杆传动机构worm gearing蜗杆头数number of threads蜗杆直径系数diametral quotient蜗杆蜗轮机构worm and worm gear蜗杆形凸轮步进机构worm cam interval mechanism蜗杆旋向hands of worm蜗轮worm gear无级变速装置stepless speed changes devices相对速度relative velocity相对运动relative motion相对间隙relative gap象限quadrant橡皮泥plasticine小齿轮pinion小径minor diameter谐波齿轮harmonic gear谐波传动harmonic driving斜齿轮的当量直齿轮equivalent spur gear of the helical gear 心轴spindle行程速度变化系数coefficient of travel speed variation行程速比系数advance-to return-time ratio 行星齿轮装置planetary transmission行星轮planet gear行星轮变速装置planetary speed changing devices行星轮系planetary gear train旋转运动rotary motion压力角pressure angle应力图stress diagram应力—应变图stress-strain diagram优化设计optimal design油杯oil bottle有效圆周力effective circle force圆带传动round belt drive圆弧齿厚circular thickness圆弧圆柱蜗杆hollow flank worm圆角半径fillet radius圆盘摩擦离合器disc friction clutch圆盘制动器disc brake原动机prime mover原始机构original mechanism圆形齿轮circular gear圆柱滚子cylindrical roller圆柱滚子轴承cylindrical roller bearing 圆柱副cylindric pair 圆柱蜗杆cylindrical worm圆锥滚子tapered roller圆锥滚子轴承tapered roller bearing圆锥齿轮机构bevel gears圆锥角cone angle运动副kinematic pair运动粘度kenematic viscosity载荷load展成法generating直齿圆柱齿轮spur gear直齿锥齿轮straight bevel gear直径系数diametral quotient直径系列diameter series直廓环面蜗杆hindley worm质量mass中心距center distance中心距变动center distance change中径mean diameter终止啮合点final contact, end of contact 周节pitch轴shaft轴承盖bearing cup轴承合金bearing alloy轴承座bearing block轴承外径bearing outside diameter轴颈journal轴瓦、轴承衬bearing bush轴端挡圈shaft end ring 轴环shaft collar轴肩shaft shoulder轴角shaft angle轴向axial direction轴向齿廓axial tooth profile转动副revolute (turning) pair转速swiveling speed ; rotating speed转轴revolving shaft转子rotor装配条件assembly condition锥齿轮bevel gear锥顶common apex of cone锥距cone distance锥轮bevel pulley; bevel wheel锥齿轮的当量直齿轮equivalent spur gear of the bevel gear锥面包络圆柱蜗杆milled helicoids worm 准双曲面齿轮hypoid gear自由度degree of freedom, mobility总重合度total contact ratio总反力resultant force总效率combined efficiency; overall efficiency组成原理theory of constitution组合齿形composite tooth form组合安装stack mounting最少齿数minimum teeth number最小向径minimum radius作用力applied force坐标系coordinate frame上面是百度的以下是我自己翻译的肯定有错误···齿轮参数英文及部分翻译NUMER OF TEETH 齿数DIAMETRIAL PITCH 双径节PRESSURE ANGLE (NORM.) 压力角HELIX ANGLE 螺旋角LEAD 导程PITCH DIA. (STAND &MESHING) 节圆?BASE DIAMETER 基圆直径? OUTSIDE DIAMETER 齿顶圆直径? ROOT DIAMETER 齿根圆直径? WHOLE DEPTH 全齿高? CIRCULAR PITCH (NORM) 周节? CHORDAL THICKNESS 弦齿高? CHORDAL ADDENDUM 弦齿厚? WIRE SIZEMIC OVER WIRESLEAD CHK IN. @ 90°BLOCK MEASURE 3 TEETH 跨3齿公法线长度?CENTER DISTANCE 中心距BACKLASHNUMBER OF TEETH IN MA TE 配对齿轮齿数AGMA QUALITY (MIN.) 精度等级花键参数及部分翻译FLAT ROOT SIDE FITNUMBER OF TEETH 齿数SPINE PITCH 花键径节PRESSURE ANGLE 压力角BASE DIAMETER 基圆直径PITCH DIAMETER 节圆直径MAJOR DIAMETER 大径FORM DIAMETER ?MINOR DIAMETER 小径CIRCULAR SPACE WIDTH ?MAX. ACTUAL ?MIN. LEFECTIVE ?MEASUREMENT BETWEEN PINS 量棒距PIN DIAMETER 量棒直径LEAD 齿向WIRE SIZE 量棒直径MIC OVER WIRES 跨棒间距BACKLASH 齿侧间隙。
齿轮机械机构类外文翻译、中英文翻译
![齿轮机械机构类外文翻译、中英文翻译](https://img.taocdn.com/s3/m/956bf920bd64783e09122bd6.png)
外文原文GearsGears are vital factors in machinery ,which are uses to transmit power or motion from one shaft to another .They may be used only to transmit motion from one part of a machine to another,or they may be used to change the speed or the torque of one shaft with with relation to another.One of the first mechanism invented using gears wad the clock.In fact,a clock is little more than a train of gears.Considerable study and research have been made on gears in recent years because of their wide use under exacting conditions.They have to transmit heavier loads and run at high speeds than ever before.The engineers and the machinists all consider gearing the prime element in nearly all classes of machinery.Super GearsSpur gears will be considered first for several reasons.In the first place ,they are simplest and the least expensive of gears and they may be used to transmit power between parallel shafts,also,spur gears definitions are usually applicable to other types .It is important go understand the following definitions,since they are important factors in the design of any equipment utilizing gears.Diametric PitchThe number of teeth per inch of pitch cirle diameter .The diameter pitch is usually an integer .A small number for the pitch implies a large tooth size.Meshing spur gears must have the same diameter pitch .The speed ratio is based on the fact that meshing gears may have different-sized pitch circles and hence different number of teeth.Circular PitchThe distance from a point on one tooth to the corresponding point on an adjacent tooth ,measrued along the pitch circle.This is a liner dimension and thus bas liner units.Pitch CircleThe circle on which the ratio of the gear set is based,when two gears are meshing ,the two pitch circles must be exactly tangent if the gears are to function properly.The tangency point is known as the pitch point. Pressure AngleThe angle between the line of action and a line perpendicular to the centerlines of the two gears in mesing .Pressure Angles for spur gears are usually 14.5 or 20 degrees,although other values can be used.Meshing gears must have the same pressure angles.In the case of a rack,the teeth have the straight sides inclined at an angle corresponding to the pressure angle.Base CircleA circle tangent to the line of action (or pressure line ) .The base circle is the imaginary circle about which an involutes cure is developed .Most spur gears follow an involutes cure from the base circle to the top of the tootch,this cure can be visualized by observing a point on a taut cord an it is unwound from a cylinder .In a gear ,the cylinder is the best circle.AddendumThe radial distance form the pitch circle to the top of the tooth . DedendumThe radial distance from file pitch circle to the root of the tooth. ClearanceThe difference between the addendum and the addendum.Face WidthThe width of the tooth measured axially.FaceThe surface between the pitch circle and the top of the tooth. FlankThe surface between the pitch circle and the bottom of the tooth. Helical GearsThese gears have their tooth element at an angle or helix to the axis of the gear.They are more difficult and expensive to make than spur gears,but are quieter and stronger. They may be used to transmit power between parallel shafts at an angle to each in the same or different planes.Herringbone GearsA herringbone gear is equivalent to a right-hand and a left-hand helical gear placed side by side.Because of the angle of the tooth,helical gears create considerable side thrust on the shaft. A herringbone gear corrects this thrust by neutralizing it ,allowing the use of a small thrust bearing instead of a large one and perhaps eliminating one altogether.Often a central groove is made round the gear for ease in machining.Bevel GearsBevel gears are used to connect shafts, which are not parallel to each ually the shafts are 90 deg.To each other, but they may be more or less than 90 deg.The two meshing gears may have the same number of teeth for the purpose of changing direction of motion only,or they may have a different number of teeth for the purpose of changing both speed and direction .The faces of the teeth lie on the surface of the frustum of a cone,therefore the teeth elements are not parallel to each other it can be seen that this lack of parallelism creates a machining problem so that two passes with a tool must be made.The tooth elements may be straight or spiral ,so that we have plain anti spiral evel gears.Worm and Worm GearsA worm-and-worm-gear combination is used chiefly where it is desired to obtain a high gear reduction in a limited space,normally the worm drivers the worm gear and is not reversible ,that is to say,the worm gear can not drive the worm.Most worms can be rotated in either direction,clockwise or counterclockwise.RacksA rack is a gear with an infinite radius,or a gear with its perimeter stretched out into a straight line.It is used to change reciprocating motion to rotary motion or vice versa.A lathe rack and pinion is a good example of this mechanism.Various materials are used in manufacturing gears .Usually,the materials selected depends on the method used for making the gear and the application to which it will be put.Gears can be cast,cut,or extruded.Typical materials include cast iron,cast steel,plain carbon steel,alloy steel aluminum,phosphor bronze,laminated phonetics,and nylon.中文翻译齿轮齿轮是机器中的动力元件,用来传递轴与轴之间的运动及动力。
齿轮术语中英文对照表
![齿轮术语中英文对照表](https://img.taocdn.com/s3/m/8980ffae804d2b160a4ec09f.png)
齿轮术语中英文对照表阿基米德蜗杆Archimedes worm安全系数safety factor;factor of safety安全载荷safe load变形deformation摆线齿轮cycloidal gear摆线齿形cycloidal tooth profile背锥角back angle背锥距back cone distance比例尺scale变速speed change变速齿轮change gear ;change wheel变位齿轮modified gear变位系数modification coefficient标准齿轮standard gear标准直齿轮standard spur gear表面粗糙度surface roughness不完全齿轮机构intermittent gearing补偿compensation参数化设计parameterization design,PD 残余应力residual stress操纵及控制装置operation control device槽数Geneva numerate侧隙backlash差动轮系differential gear train差动螺旋机构differential screw mechanism 差速器differential常用机构conventional mechanism; mechanism in common use承载量系数bearing capacity factor承载能力bearing capacity成对安装paired mounting尺寸系列dimension series齿槽tooth space齿槽宽spacewidth齿侧间隙backlash齿顶高addendum齿顶圆addendum circle齿根高dedendum齿根圆dedendum circle齿厚tooth thickness齿距circular pitch 齿宽face width齿廓tooth profile齿廓曲线tooth curve齿轮gear齿轮变速箱speed-changing gear boxes齿轮齿条机构pinion and rack齿轮插刀pinion cutter;pinion-shaped shaper cutter齿轮滚刀hob ,hobbing cutter齿轮机构gear齿轮轮坯blank齿轮传动系pinion unit齿轮联轴器gear coupling齿条传动rack gear齿数tooth number齿数比gear ratio齿条rack齿条插刀rack cutter; rack—shaped shaper cutter齿形链、无声链silent chain齿形系数form factor齿式棘轮机构tooth ratchet mechanism插齿机gear shaper重合点coincident points重合度contact ratio传动比transmission ratio,speed ratio传动装置gearing;transmission gear传动系统driven system传动角transmission angle传动轴transmission shaft创新设计creation design垂直载荷、法向载荷normal load从动带轮driven pulley从动件driven link,follower从动件平底宽度width of flat-face从动件停歇follower dwell从动件运动规律follower motion从动轮driven gear粗线bold line粗牙螺纹coarse thread大齿轮gear wheel打滑slipping带传动belt driving单列轴承single row bearing单位矢量unit vector当量齿轮equivalent spur gear; virtual gear 当量齿数equivalent teeth number; virtual number of teeth当量摩擦系数equivalent coefficient of friction当量载荷equivalent load刀具cutter导数derivative倒角chamfer导程lead导程角lead angle等效质量equivalent mass(疲劳)点蚀pitting垫圈gasket垫片密封gasket seal顶隙bottom clearance定轴轮系ordinary gear train;gear train with fixed axes动力学dynamics动密封kinematical seal动能dynamic energy动力粘度dynamic viscosity动力润滑dynamic lubrication动载荷dynamic load端面transverse plane端面参数transverse parameters端面齿距transverse circular pitch端面齿廓transverse tooth profile端面重合度transverse contact ratio端面模数transverse module端面压力角transverse pressure angle锻造forge惰轮idle gear额定寿命rating life额定载荷load rating发生线generating line发生面generating plane法面normal plane法面参数normal parameters法面齿距normal circular pitch法面模数normal module法面压力角normal pressure angle法向齿距normal pitch 法向齿廓normal tooth profile法向直廓蜗杆straight sided normal worm法向力normal force反正切Arctan范成法generating cutting仿形法form cutting非标准齿轮nonstandard gear非接触式密封non—contact seal非周期性速度波动aperiodic speed fluctuation非圆齿轮non-circular gear粉末合金powder metallurgy分度线reference line;standard pitch line 分度圆reference circle; standard (cutting)pitch circle分度圆柱导程角lead angle at reference cylinder分度圆柱螺旋角helix angle at reference cylinder分母denominator分子numerator分度圆锥reference cone; standard pitch cone 封闭差动轮系planetary differential复合应力combined stress复式螺旋机构Compound screw mechanism 干涉interference刚度系数stiffness coefficient钢丝软轴wire soft shaft根切undercutting公称直径nominal diameter高度系列height series功work工况系数application factor工艺设计technological design工作循环图working cycle diagram工作机构operation mechanism工作载荷external loads工作空间working space工作应力working stress工作阻力effective resistance工作阻力矩effective resistance moment公法线common normal line公制齿轮metric gears功率power功能分析设计function analyses design共轭齿廓conjugate profiles共轭凸轮conjugate cam惯性力矩moment of inertia ,shaking moment惯性力平衡balance of shaking force冠轮crown gear轨迹生成path generation轨迹发生器path generator滚刀hob过度切割undercutting耗油量oil consumption耗油量系数oil consumption factor横坐标abscissa互换性齿轮interchangeable gears花键spline滑键、导键feather key滑动率sliding ratio环面蜗杆toroid helicoids worm缓冲装置shocks; shock—absorber机械machinery机械平衡balance of machinery机械设计machine design; mechanical design 机械特性mechanical behavior机械调速mechanical speed governors机械效率mechanical efficiency机械原理theory of machines and mechanisms机械无级变速mechanical stepless speed changes基础机构fundamental mechanism基本额定寿命basic rating life基于实例设计case-based design,CBD基圆base circle基圆半径radius of base circle基圆齿距base pitch基圆压力角pressure angle of base circle基圆柱base cylinder基圆锥base cone极限位置extreme (or limiting) position极位夹角crank angle between extreme (or limiting)positions计算机辅助设计computer aided design,CAD 计算机辅助制造computer aided manufacturing,CAM计算机集成制造系统computer integrated manufacturing system, CIMS计算力矩factored moment;calculation moment计算弯矩calculated bending moment间隙backlash减速比reduction ratio减速齿轮、减速装置reduction gear减速器speed reducer渐开螺旋面involute helicoid渐开线involute渐开线齿廓involute profile渐开线齿轮involute gear渐开线发生线generating line of involute渐开线方程involute equation渐开线函数involute function渐开线蜗杆involute worm渐开线压力角pressure angle of involute渐开线花键involute spline键key键槽keyway交变应力repeated stress交变载荷repeated fluctuating load交叉带传动cross—belt drive交错轴斜齿轮crossed helical gears胶合scoring角速度angular velocity角速比angular velocity ratio结构structure结构设计structural design截面section节点pitch point节距circular pitch;pitch of teeth节线pitch line节圆pitch circle节圆齿厚thickness on pitch circle节圆直径pitch diameter节圆锥pitch cone节圆锥角pitch cone angle解析设计analytical design紧边tight-side紧固件fastener径节diametral pitch径向radial direction径向当量动载荷dynamic equivalent radial load径向当量静载荷static equivalent radial load 径向基本额定动载荷basic dynamic radial load rating径向基本额定静载荷basic static radial load tating径向接触轴承radial contact bearing径向平面radial plane径向游隙radial internal clearance径向载荷radial load径向载荷系数radial load factor径向间隙clearance静力static force静平衡static balance静载荷static load绝对运动absolute motion绝对速度absolute velocity可靠性reliability可靠性设计reliability design, RD理论廓线pitch curve理论啮合线theoretical line of action力矩moment力平衡equilibrium力偶couple力偶矩moment of couple轮坯blank螺旋副helical pair螺旋机构screw mechanism螺旋角helix angle螺旋线helix ,helical line模块化设计modular design, MD模数module磨损abrasion ;wear;scratching耐磨性wear resistance内齿轮internal gear内齿圈ring gear内力internal force内圈inner ring啮合engagement,mesh, gearing啮合点contact points啮合角working pressure angle 啮合线line of action啮合线长度length of line of action盘形转子disk-like rotor抛物线运动parabolic motion疲劳极限fatigue limit疲劳强度fatigue strength偏置式offset偏( 心) 距offset distance偏心率eccentricity ratio偏心质量eccentric mass偏距圆offset circle偏心盘eccentric切齿深度depth of cut曲齿锥齿轮spiral bevel gear曲率curvature曲率半径radius of curvature曲面从动件curved—shoe follower曲线运动curvilinear motion全齿高whole depth权重集weight sets球面副spheric pair球面渐开线spherical involute球面运动spherical motion人字齿轮herringbone gear润滑装置lubrication device润滑lubrication三角形花键serration spline三角形螺纹V thread screw少齿差行星传动planetary drive with small teeth difference升程rise升距lift实际廓线cam profile输出轴output shaft实际啮合线actual line of action双曲面齿轮hyperboloid gear顺时针clockwise瞬心instantaneous center死点dead point太阳轮sun gear特性characteristics图册、图谱atlas图解法graphical method退火anneal陀螺仪gyroscope外力external force外形尺寸boundary dimension网上设计on-net design, OND微动螺旋机构differential screw mechanism 位移displacement蜗杆worm蜗杆传动机构worm gearing蜗杆头数number of threads蜗杆直径系数diametral quotient蜗杆蜗轮机构worm and worm gear蜗杆形凸轮步进机构worm cam interval mechanism蜗杆旋向hands of worm蜗轮worm gear无级变速装置stepless speed changes devices相对速度relative velocity相对运动relative motion相对间隙relative gap象限quadrant橡皮泥plasticine小齿轮pinion小径minor diameter谐波齿轮harmonic gear谐波传动harmonic driving斜齿轮的当量直齿轮equivalent spur gear of the helical gear心轴spindle行程速度变化系数coefficient of travel speed variation行程速比系数advance—to return-time ratio 行星齿轮装置planetary transmission行星轮planet gear行星轮变速装置planetary speed changing devices行星轮系planetary gear train旋转运动rotary motion压力角pressure angle应力图stress diagram应力—应变图stress—strain diagram优化设计optimal design油杯oil bottle有效圆周力effective circle force 圆带传动round belt drive圆弧齿厚circular thickness圆弧圆柱蜗杆hollow flank worm圆角半径fillet radius圆盘摩擦离合器disc friction clutch圆盘制动器disc brake原动机prime mover原始机构original mechanism圆形齿轮circular gear圆柱滚子cylindrical roller圆柱滚子轴承cylindrical roller bearing圆柱副cylindric pair圆柱蜗杆cylindrical worm圆锥滚子tapered roller圆锥滚子轴承tapered roller bearing圆锥齿轮机构bevel gears圆锥角cone angle运动副kinematic pair运动粘度kenematic viscosity载荷load展成法generating直齿圆柱齿轮spur gear直齿锥齿轮straight bevel gear直径系数diametral quotient直径系列diameter series直廓环面蜗杆hindley worm质量mass中心距center distance中心距变动center distance change中径mean diameter终止啮合点final contact,end of contact 周节pitch轴shaft轴承盖bearing cup轴承合金bearing alloy轴承座bearing block轴承外径bearing outside diameter轴颈journal轴瓦、轴承衬bearing bush轴端挡圈shaft end ring轴环shaft collar轴肩shaft shoulder轴角shaft angle轴向axial direction轴向齿廓axial tooth profile转动副revolute (turning)pair转速swiveling speed ; rotating speed转轴revolving shaft转子rotor装配条件assembly condition锥齿轮bevel gear锥顶common apex of cone锥距cone distance锥轮bevel pulley;bevel wheel锥齿轮的当量直齿轮equivalent spur gear of the bevel gear锥面包络圆柱蜗杆milled helicoids worm准双曲面齿轮hypoid gear自由度degree of freedom,mobility总重合度total contact ratio总反力resultant force总效率combined efficiency;overall efficiency组成原理theory of constitution组合齿形composite tooth form组合安装stack mounting最少齿数minimum teeth number最小向径minimum radius作用力applied force坐标系coordinate frame。
齿轮参数术语中英文对照总结
![齿轮参数术语中英文对照总结](https://img.taocdn.com/s3/m/d3d73a8e2e3f5727a4e962a6.png)
齿轮参数术语中英文对照总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII齿轮参数中英对照英文齿轮参数中文齿轮参数number of teeth 齿数normal module 法向模数transverse module 端面模数addendum modification factor 变位系数reference diameter 分度圆直径tip diameter 齿顶圆直径root diameter 齿根圆直径base diameter 基圆直径prefinishing diameter 剃前渐开线起始圆直径control form diameter 渐开线检查有效直径effective outside diameter 渐开线终止圆直径lead 导程normal pressure angle 法向压力角transverse pressure angle 端面压力角helix angle 分度圆螺旋角base helix angle 基圆螺旋角hand of helix 旋向circular thickness on Dp 分度圆上弧齿厚chordal addendum 弦齿高normal circular thickness on Dp after finishing and heat treatment 分度圆弦齿厚base tangent measurement after finishing and heat treatment 公法线长度dimension over f diameter balls or pin after finishing and heat treament 跨棒距backlash 总侧系center distance 中心距tool tip radius 刀具齿顶圆角半径tooth tip fillet angle refered to axis 齿顶倒角number of teeth of mating gear 配对齿轮齿数Toothed gear;Gear 齿轮Gear pair 齿轮副Gear pair with parallel axes 平行轴齿轮副Gear pair with intersecting axes 相交轴齿轮副Train of gears 齿轮系Planetary gear train 行星齿轮系Gear drive;Gear transmission 齿轮传动Mating gears 配对齿轮Pinion 小齿轮Wheel;Gear 大齿轮Driving gear 主动齿轮Driven gear 从动齿轮Planet gear 行星齿轮Planet carrier 行星架Sun gear 太阳轮Ring gear;Annulus gear 内齿圈External gear 外齿轮Internal gear 内齿轮Centre distance 中心距Shaft angle 轴交角Line of centres 连心线Speed reducing gear pair 减速齿轮副Speed increasing gear pair 增速齿轮副Gear ratio 齿数比Transmission ratio 传动比Axial plane 轴平面Datum plane 基准平面Pitch plane 节平面Transverse plane 端平面Normal plane 法平面Reference surface 分度曲面Pitch surface 节曲面Tip surface 齿顶曲面Root surface 齿根曲面Basic tooth profile 基本齿廓Basic rack 基本齿条Counterpart rack 产形齿条Generating gear of a gear 产形齿轮Generating flank 产形齿面Right-hand teeth 右旋齿Left-hand teeth 左旋齿Gears with addendum modification;变位齿轮Addendum modification factor 变位系数X-gearsX-gear pair with reference centre distance 高度变位圆柱齿轮副X-gear pair with modified centre distance 角度变位圆柱齿轮副X-gear pair without shaft angle modification 高度变位锥齿轮副X-gear pair with shaft angle modification 角度变位圆柱齿轮副Modification coefficient 变位系数Addendum modification 变位量Addendum modification coefficient 径向变位系数Centre distance modification coefficient 中心距变位系数Cylindrical gear 圆柱齿轮Tip circle 顶圆Root circle 根圆Pitch 齿距Angular pitch 齿距角Base tangent length 公法线长度Reference diameter 分度圆直径Pitch diameter 节圆直径Fillet radius 齿根圆角半径Working depth 工作高度Addendum 齿顶高Dedendum 齿根高Chordal height 弦齿高Constant chord height 固定弦齿高Facewidth 齿宽Effective facewidth 有效齿宽Transverse tooth thickness 端面齿厚Normal tooth thickness 法向齿厚Transverse base thickness 端面基圆齿厚Normal base thickness 法向基圆齿厚Transverse chordal tooth thickness 端面弦齿厚Constant chord 固定弦齿厚Crest width 端面齿顶厚Normal crest width 法向齿顶厚Transverse spacewidth 端面齿槽宽Normal spacewidth 法向齿槽宽Tooth thickness half angle 齿厚半角Spacewidth half angle 槽宽半角Nominal pressure angle 齿形角Arc-contact worm;hollow flank worm;ZC-worm 圆弧圆柱蜗杆Enveloping worm with straight line grneratrix;TA worm 直廓环面蜗杆Planar worm wheel;P-worm wheel 平面蜗杆Planar double enveloping worm;TP-worm 平面包络环面蜗杆Planar double-enveloping worm wheel;TP-worm wheel 平面二次包络蜗杆Toroid enveloping worm wheel;TK-worm wheel 锥面包络环面蜗杆Toroid enveloping worm hich involute holicoid generatrix;TI-worm 渐开线包络环面蜗杆Spiroid 锥蜗杆Spiroid gear 锥蜗轮Spiroid gear pair 锥蜗杆副Mid-plane 中平面Prolate hypocycloid 长幅内摆线Curtate hypocycloid 短幅内摆线Involute;渐开线Involute to a circleProlate involute 延伸渐开线Curtate involute 缩短渐开线Spherical involute 球面渐开线Involute helicoid 渐开螺旋面Screw helicoid 阿基米德螺旋面Spherical involute helicoid 球面渐开螺旋面Toroid 圆环面Generant of the toroit 圆环面的母圈Middle circle of the toroid 圆环面的中性圈Middle-plane of the toroid 圆环面的中间平面Inner circle of the toroid 圆环面的内圈Meshing interference 啮合干涉Cutter interference 切齿干涉Profile modification;齿廓修型Profile correctionTip relief 修缘Root relief 修根Axial modification;齿向修形Longitudinal correctionEnd relief 齿端修薄Crowning 鼓形修整Crowned teeth 鼓形齿Undercut 挖根Instantaneous axis 瞬时轴Point of contact 瞬时接触点Line of contact 瞬时接触线Transverse path of contact 端面啮合线Surface of action 啮合曲面Plane of action 啮合平面Zone of action 啮合区域Total arc of transmission 总作用弧Transverse arc of transmission 端面作用弧Overlap arc 纵向作用弧Total angle of transmission 总作用角Transverse angle of transmission 端面作用角Overlap angle 纵向作用角Total contact ratio 总重合度Transverse ratio 端面重合度Overlap ratio 纵向重合度Standard gears 标准齿轮X-gero gear 非变位齿轮Referencr centre distance 标准中心距Nominal centre distance 名义中心距Reference cylinder 分度圆柱面Pitch cylinder 节圆柱面Basic cylinder 基圆柱面Tip cylinder 齿顶圆柱面Root cylinder 齿根圆柱面Pitch point 节点Pitch line 节线Reference circle 分度圆Pitch circle 节圆Basic circle 基圆Locating face 定位面Outer cone distance 外锥距Inner cone distance 内锥距Mean cone distance 中点锥距Back cone distance 背锥距Locating distance 安装距Tip distance;crown to back 轮冠距Apex to crown 冠顶距Offset 偏置距Offset of tooth trace 齿线偏移量Reference cone angle 分锥角Pitch cone angle 节锥角Tip angle 顶锥角Root angle 根锥角Back cone angle 背锥角Addendum angel 齿顶角Dedendum angle 齿根角Pressure angle at a point 任意点压力角Spiral angle at a point 任意点螺旋角Mean spiral angle 中点螺旋角Outer spiral angle 大端螺旋角Inner spiral angle 小端螺旋角Worm 蜗杆Worm wheel 蜗轮Worm gear pair 蜗杆副Cylindrical worm 圆柱蜗杆Cylindrical worm pair 圆柱蜗杆副Enveloping worm 环面蜗杆Enveloping worm pair 环面蜗杆副Straight sided axial worm;ZA-worm 阿基米德蜗杆Involute helicoid worm;ZI-worm 渐开线蜗杆Straight sided normal worm;ZN-worm 法向直廓蜗杆Milled helicoid worm;ZK-worm 锥面包络圆柱蜗杆Elliptical gear 椭圆齿轮Non-circular gear pair 非圆齿轮副Cylindsical lantern pinion and wheel 圆柱针轮副Cylindsical tan tein gear ;pin-wheel 针轮Harmoric gear drive 谐波齿轮副Wave generator 波发生器Flexspine 柔性齿轮Circular spline 刚性齿轮Non-circular gear 非圆齿轮Reference tosoid 分度圆环面11。
20外文文献翻译原文及译文参考样式
![20外文文献翻译原文及译文参考样式](https://img.taocdn.com/s3/m/2086ebc3370cba1aa8114431b90d6c85ed3a885f.png)
20外⽂⽂献翻译原⽂及译⽂参考样式华北电⼒⼤学科技学院毕业设计(论⽂)附件外⽂⽂献翻译学号: 0819******** 姓名:宗鹏程所在系别:机械⼯程及⾃动化专业班级:机械08K1指导教师:张超原⽂标题:Development of a High-PerformanceMagnetic Gear年⽉⽇⾼性能磁齿轮的发展1摘要:本⽂提出了⼀个⾼性能永磁齿轮的计算和测量结果。
上述分析的永磁齿轮有5.5的传动⽐,并能够提供27 Nm的⼒矩。
分析表明,由于它的弹簧扭转常数很⼩,因此需要特别重视安装了这种⾼性能永磁齿轮的系统。
上述分析的齿轮也已经被应⽤在实际中,以验证、预测其效率。
经测量,由于较⼤端齿轮传动引起的磁⼒齿轮的扭矩只有16 Nm。
⼀项关于磁齿轮效率损失的系统研究也展⽰了为什么实际⼯作效率只有81%。
⼀⼤部分磁损耗起源于轴承,因为机械故障的存在,此轴承的备⽤轴承在此时是必要的。
如果没有源于轴的少量磁泄漏,我们估计能得到⾼达96%的效率。
与传统的机械齿轮的⽐较表明,磁性齿轮具有更好的效率和单位体积较⼤扭矩。
最后,可以得出结论,本⽂的研究结果可能有助于促进传统机械齿轮向磁性齿轮发展。
关键词:有限元分析(FEA)、变速箱,⾼转矩密度,磁性齿轮。
⼀、导⾔由于永久磁铁能产⽣磁通和磁⼒,虽然⼏个世纪过去了,许多⼈仍然着迷于永久磁铁。
,在过去20年的复兴阶段,正是这些优点已经使得永久磁铁在很多实际中⼴泛的应⽤,包括在起重机,扬声器,接头领域,尤其是在永久磁铁电机⽅⾯。
其中对永磁铁的复兴最常见于效率和转矩密度由于永磁铁的应⽤显著提⾼的⼩型机器的领域。
在永久磁铁没有获取⾼度重视的⼀个领域是传动装置的领域,也就是说,磁⼒联轴器不被⼴泛⽤于传动装置。
磁性联轴器基本上可以被视为以传动⽐为1:1磁⼒齿轮。
相⽐标准电⽓机器有约10kN m/m的扭矩,装有⾼能量永久磁铁的磁耦有⾮常⾼的单位体积密度的扭矩,变化范围⼤约300–400 kN 。
齿轮标准术语翻译
![齿轮标准术语翻译](https://img.taocdn.com/s3/m/4c206202cc175527072208e3.png)
Contact angle:接触角Profile angle:齿形角Involute function:渐开线函数Backlash:齿隙Sliding factors:变化的因数Sliding velocities:变化速度Tooth height:齿高Tooth depth:齿高Chord:弦Addendum modification:齿高修正Bottom clearance:径向间隙Radii of curvature of involutes:渐开线曲率半径Roller:轴Gap width:间距Measuring ball:测量球Module:模数Profile modification coefficient:齿廓修正系数Face width:表面宽度Chordal tooth thickness:弦齿厚Helix angle:节面角Fluctuation:波动Specific sliding:特殊变动Ratio:传动比Helix slope:螺旋斜面Reference circle clearance factor:分度圆余隙系数Pitch:节距Pitch angle:节面角Tolerance:公差Radiant:辐射Grad:分度Overlap:重合面Overlap angle:重合角Transmission ratio:传动比Composite length:复合长度Tooth thickness error:齿厚误差Tooth thickness half angle:齿厚半角Tooth gap:齿间隙Space width half angle:间隙宽度半角Base tangent length:公法线长度Deviation:因数Deviation factor:偏差因数Centre distance:中心距Contact path:接触轨道tooth depth: 齿高stub pitch: 短径节Normal module: 模数Normal pressure angle: 压力角Number of teeth: 齿数Helix angle: 螺旋角Hand of helix: 旋向Standard pitch circle diameter: 分度圆直径Base circle diameter: 基圆直径Whole depth: 全齿高Root diameter:齿根圆直径Lead: 导程Addendum modification: 径向变位Spanned tooth count: 跨齿数Base tangent length: 公法线长度Quality grade:齿轮等级Geared ring radial tolerance: 齿圈径向跳动公差Limit base pitch distance: 基节极限偏差Limit circular pitch distance: 周节极限偏差Tooth profile tolerance: 齿形公差Tooth composite tolerance: 齿向公差Limit deviation of center distance: 中心距极限偏差Part number of mating gear: 配对齿轮号。
外文翻译(齿轮参数化设计及弯曲强度有限元分析)
![外文翻译(齿轮参数化设计及弯曲强度有限元分析)](https://img.taocdn.com/s3/m/21bde917fc4ffe473368abdb.png)
Analysis based on the ANSYS metal gears and plastic gears inherentvibration characteristics compared姓名:班级:Abstract: Using ANSYS software gear finite element model, modal analysis, the plastic gear gun and steel gear module .State of natural frequencies and mode shapes diagram, were analyzed. The conclusion for the dynamic design of gears and gear structure related equipment fault diagnosisOff basis.Key words: plastic gear steel gear gun modal analysis of vibration characteristics 0 IntroductionThe gear drive is the most important in the mechanical transmission drive gear transmission because of its high efficiency, compact structure, the transmission ratio stable and are widely used in engineering. Accelerated due to the development of high-performance engineering plastics, the proportion of the application process for plastic and steel, plastics in the field of mechanical engineering is increasing, the production of gear materials are no longer limited to metallic materials, has grown to the plastic gear. On the application and theoretical study of the plastic gears, and steel gear, late research time is also shorter, and domestic and foreign researchers on the understanding of the plastic gear performance and application very immature, but to imitate and improve ['] on the basis of the steel gear. Therefore, the experimental study of plastic gear is necessary. Plastic material with Bo, the elastic energy, and thus has obvious noise reduction and vibration damping performance. In fact, for the transmission of power in terms of gear when the gear body's natural frequencies and the frequency of exciting force is very close to the even drill the plastic material gear also have a resonance and noise [[2}}} 4321-437A. Therefore, during the plastic gear design, the vibration characteristics of the study is necessary. We use ANSYS software to gear finite element model, modal analysis, mode shapes and natural frequency of the plastic gears and alloy gear to provide a basis for the structural design and optimization of gear.1 A gear modal analysisModal analysis is used to determine the natural frequency of the vibration characteristics of structures or machine parts in the design and mode shapes. Withstand dynamic bearing load structure design parameters [3] 4321-4324. Finite element analysis software ANSYS, modal analysis is a linear analysis of prestressed structure and cyclic symmetry structure modal analysis, modal analysis process is divided into four steps: modeling, loading and solving, extended modal and results post-processing.1.1 gear finite element modelANSYS provides three kinds of ways: to generate a model generation method with ANSYS to create solid model, the model established by the input model system. The direct generation method suitable for small, simple model, the leaders of the other systems if the model is not suitable for meshing, requires a lot of repair work. Gear model is relatively complex, suitable for solid modeling method. Known by the finite element theory, the solid model can not be directly used for finite element calculation, so take it mesh to generate a finite element model, the mesh will directly affect the accuracy of the finite element calculation results .Define the element type for the Structural solid Brick 2 (} node 95, the input gear parameters, create the key points, connecting key points generated gear contour, gear tooth surface generated by the contour, surface generation bodies drag along the segment, showing a single tooth geometric mode} 'J, division of a single tooth mesh gear is the structure of the body of the loop extension cycle to generate the finite element model of the plastic gears in Figure 1 shows, the finite element model of the number of nodes on a single tooth 3f} tS8 . unit number 1994.1.2 gear finite element model of the moldState analysisModal analysis of ANSYS, you must specify the elastic modulus EX. ANSYS11.0 seven kinds of modal extraction method: the Block Ianczoe (block, t the sos France), Subspace is (subspace method) I'owerDvnamics (source of power law), Reduced (reduction method), Un2symmetric (non-symmetric France), the Dam Network (damping France), QRDam network (Qlt damping method). In this article to Block lanczos method to extract modal..Gear model is built, its modal analysis, modal analysis of the gear. Purpose is to find the order natural frequency of the gear and its corresponding vibration mode, and therefore does not need to load, only degrees of freedom constraints. Constraints: the gear inner hole circle cylinder constraint: s:. Set of modal extraction method for the Block Canczos France, set up to extract the number of modes of 5 want to get the unit to solve the results need to open "the calculate elem re-salts, the frequency range specified modal extraction 0 100 000, specify the mode state extraction method, ANSYS automatically select the appropriate equation solver.Figure 1 gear finite element modelSolve the calculations are complete, view the solution results. Modal analysis results in order to get the whole gear model, the modal expansion, extended for solving the advantages of each order, for the obtained natural frequency. Solving r its corresponding mode shape is reflected in the natural frequency of each node of the gear relative displacement and relative stress conditions. Set the mode of state expansion, extended frequency range 0 100 000. Again into the solver to calculate and view the solution results, including the natural frequency, r, has been extended modes and the corresponding relative)> il, power distribution2 Define the material properties2.1 Structure of alloy steelAlloy steel with high strength, high toughness, wear resistance, corrosion resistance, low temperature, high temperature, non-magnetic and other special properties. Used to produce withstand dynamic load and heavy load of automobile transmission gear and car rear axle gear commonly used in power transmission, and high reliability of mechanical equipment in the 2.2 engineering materials.Engineering materials, plastic is characterized by: (1) self-lubrication, lubrication operation when necessary; (2) to reduce noise; ③light weight with excellentcorrosion resistance of two-phase metal gears, plastic gears, light weight industrial noise , resistant to wear, no lubrication, forming a more complex shape, mass production and low cost but because of two plastic itself is demanding, the work environment more sensitive to temperature, the relative metal strength is weak. Thus, the plastic gear at the same time have low accuracy, short life, the use of environmental requirements of the disadvantages. 'Article lists the parameters and material parameters of the mechanical properties of the two materials.3 the two materials modal analysis results and compare3.1 Modal analysis resultsAfter the definition of material properties, the modal analysis of finite element model of the gear to get before the modal natural frequency to enter PaSI'1 processor to view the solution results from the results seen, the mode shapes of the plastic gears with alloy steel gear the same type listed gear mode shapes shown in Figure 2..Figure 2 modal graphTo reverse the type, the axis of its deformation in the end face of the performance for the relative torsional vibration mode; modal performance for radial vibration: the vibration of the side surface showing polygon shapes, almost no axial vibration. Due to space limitations, gear vibration data not shown, the vibration mode shapes of folded shapes, the performance of axial rules of wave modes, the rule in the end face of the polygon shapes.4 gear natural frequency testPercussion method and the two kinds of resonance method, using the percussion method is usually used to test the gear natural frequency, and specific practices: test gear is hung with a thin non-metallic line up, with adhesive accelerometer installed inthe the gear face, followed by a charge amplifier to amplify the signal, the output signal through the the oscillator light oscilloscopes records will be collected vibration signal input spectrum analyzer, and then playback the signal on the oscilloscope to spectrum analyzer, and then fast Fourier any TT ) transform to obtain its transfer function. Will be repeatedly measured transfer function curve fitting and parameter identification, can be obtained by the test-gear vibration modal parameters (natural frequencies, mode shapes, damping ratio, etc.).5 ConclusionANSYS software gear finite element model, modal analysis, and the two materials Gear modal analysis results were compared. The following conclusions: ①plastic gears with steel gears, the maximum stress in the two-tooth gap tooth root parts of the gear tooth root parts to withstand the maximum load, but the maximum stress of the alloy steel gear is much larger than the maximum stress of plastic gear value is about 103 times. The minimum stress in the gear shaft fixed position. The ② relative to the steel gear, plastic gear natural frequency is low; two materials gear order modal frequency tended to increase with the order increases, and obtained the plastic gears with steel gears, the natural frequencies and mode shapes type, to test the final analysis, the calculation results with the experimental results, created using the ANSYS model and computational results are correct.来源:JH.MINGTING;Analysis based on the ANSYS metal gears and plastic gears inherent vibration characteristics compared; MATERIALS SCIENCE 38 (2003)339–341外文翻译基于ANSYS的金属齿轮与塑料齿轮固有振动特性的对比分析姓名:**班级:**摘要:用ANSYS软件建立齿轮有限元模型,对其进行模态分析,分别得到塑料齿枪与钢质齿轮模态的固有频率和振型图,进行对比分析。
齿轮基本术语(中英文对照)
![齿轮基本术语(中英文对照)](https://img.taocdn.com/s3/m/ed044f03c381e53a580216fc700abb68a982ad25.png)
齿轮基本术语(中英文对照)齿轮基本术语(中英文对照)齿轮基本术语(中英文对照)齿轮 Toothed gear;Gear齿轮副 Gear pair平行轴齿轮副 Gear pair with parallel axes相交轴齿轮副 Gear pair with intersecting axes 齿轮系 Train of gears行星齿轮系 Planetary gear train齿轮传动 Gear drive;Gear transmission配对齿轮 Mating gears小齿轮 Pinion大齿轮 Wheel;Gear主动齿轮 Driving gear从动齿轮 Driven gear行星齿轮 Planet gear行星架 Planet carrier太阳轮 Sun gear内齿圈 Ring gear;Annulus gear外齿轮 External gear内齿轮 Internal gear中心距 Centre distance轴交角 Shaft angle连心线 Line of centres减速齿轮副 Speed reducing gear pair增速齿轮副 Speed increasing gear pair齿数比 Gear ratio传动比 Transmission ratio轴平面 Axial plane基准平面 Datum plane节平面 Pitch plane端平面 Transverse plane法平面 Normal plane分度曲面 Reference surface节曲面 Pitch surface齿顶曲面 Tip surface齿根曲面 Root surface基本齿廓 Basic tooth profile基本齿条 Basic rack产形齿条 Counterpart rack产形齿轮 Generating gear of a gear产形齿面 Generating flank基准线 Datum line轮齿 Gear teeth;T ooth齿槽 Tooth space右旋齿 Right-hand teeth左旋齿 Left-hand teeth变位齿轮 Gears with addendum modification;X-gears高度变位圆柱齿轮副X-gear pair with reference centre distance角度变位圆柱齿轮副 X-gear pair with modified centre distance 高度变位锥齿轮副X-gear pair without shaft angle modification角度变位圆柱齿轮副 X-gear pair with shaft angle modification 变位系数 Modification coefficient变位量 Addendum modification径向变位系数 Addendum modification coefficient中心距变位系数 Centre distance modification coefficient 圆柱齿轮 Cylindrical gear顶圆 Tip circle根圆 Root circle齿距 Pitch齿距角 Angular pitch公法线长度 Base tangent length分度圆直径 Reference diameter节圆直径 Pitch diameter基圆直径 Base diameter顶圆直径 Tip diameter根圆直径 Root diameter齿根圆角半径 Fillet radius齿高 Tooth depth工作高度 Working depth齿顶高 Addendum齿根高 Dedendum弦齿高 Chordal height固定弦齿高 Constant chord height齿宽 Facewidth有效齿宽 Effective facewidth端面齿厚 Transverse tooth thickness法向齿厚 Normal tooth thickness端面基圆齿厚 Transverse base thickness法向基圆齿厚 Normal base thickness端面弦齿厚 Transverse chordal tooth thickness固定弦齿厚 Constant chord端面齿顶厚 Crest width法向齿顶厚 Normal crest width端面齿槽宽 Transverse spacewidth法向齿槽宽 Normal spacewidth齿厚半角 Tooth thickness half angle槽宽半角 Spacewidth half angle压力角 Pressure angle齿形角 Nominal pressure angle圆弧圆柱蜗杆Arc-contact worm;hollow flank worm;ZC-worm直廓环面蜗杆 Enveloping worm with straight line grneratrix;TA worm平面蜗杆 Planar worm wheel;P-worm wheel平面包络环面蜗杆 Planar double enveloping worm;TP-worm 平面二次包络蜗杆Planar double-enveloping worm wheel;TP-worm wheel锥面包络环面蜗杆 T oroid enveloping worm wheel;TK-worm wheel渐开线包络环面蜗杆Toroid enveloping worm hich involute holicoid generatrix;TI-worm锥蜗杆 Spiroid锥蜗轮 Spiroid gear锥蜗杆副 Spiroid gear pair中平面 Mid-plane长幅内摆线 Prolate hypocycloid短幅内摆线 Curtate hypocycloid渐开线 Involute;Involute to a circle延伸渐开线 Prolate involute缩短渐开线 Curtate involute球面渐开线 Spherical involute渐开螺旋面 Involute helicoid阿基米德螺旋面 Screw helicoid球面渐开螺旋面 Spherical involute helicoid 圆环面 T oroid圆环面的母圈 Generant of the toroit圆环面的中性圈 Middle circle of the toroid 圆环面的中间平面 Middle-plane of the toroid 圆环面的内圈 Inner circle of the toroid啮合干涉 Meshing interference切齿干涉 Cutter interference齿廓修型 Profile modification;Profile correction修缘 Tip relief修根 Root relief齿向修形 Axial modification;Longitudinal correction齿端修薄 End relief鼓形修整 Crowning鼓形齿 Crowned teeth挖根 Undercut瞬时轴 Instantaneous axis瞬时接触点 Point of contact瞬时接触线 Line of contact端面啮合线 Transverse path of contact啮合曲面 Surface of action啮合平面 Plane of action啮合区域 Zone of action总作用弧 Total arc of transmission端面作用弧 Transverse arc of transmission 纵向作用弧 Overlap arc总作用角 Total angle of transmission端面作用角 Transverse angle of transmission纵向作用角 Overlap angle总重合度 Total contact ratio端面重合度 Transverse ratio纵向重合度 Overlap ratio标准齿轮 Standard gears非变位齿轮 X-gero gear标准中心距 Referencr centre distance 名义中心距 Nominal centre distance 分度圆柱面 Reference cylinder节圆柱面 Pitch cylinder基圆柱面 Basic cylinder齿顶圆柱面 Tip cylinder齿根圆柱面 Root cylinder节点 Pitch point节线 Pitch line分度圆 Reference circle节圆 Pitch circle基圆 Basic circle定位面 Locating face外锥距 Outer cone distance内锥距 Inner cone distance中点锥距 Mean cone distance背锥距 Back cone distance安装距 Locating distance轮冠距 Tip distance;crown to back 冠顶距 Apex to crown偏置距 Offset齿线偏移量 Offset of tooth trace分锥角 Reference cone angle节锥角 Pitch cone angle顶锥角 Tip angle根锥角 Root angle背锥角 Back cone angle齿顶角 Addendum angel齿根角 Dedendum angle任意点压力角 Pressure angle at a point任意点螺旋角 Spiral angle at a point中点螺旋角 Mean spiral angle大端螺旋角 Outer spiral angle小端螺旋角 Inner spiral angle蜗杆 Worm蜗轮 Worm wheel蜗杆副 Worm gear pair圆柱蜗杆 Cylindrical worm圆柱蜗杆副 Cylindrical worm pair环面蜗杆 Enveloping worm环面蜗杆副 Enveloping worm pair阿基米德蜗杆 Straight sided axial worm;ZA-worm 渐开线蜗杆 Involute helicoid worm;ZI-worm法向直廓蜗杆 Straight sided normal worm;ZN-worm 锥面包络圆柱蜗杆 Milled helicoid worm;ZK-worm 椭圆齿轮 Elliptical gear非圆齿轮副 Non-circular gear pair圆柱针轮副 Cylindsical lantern pinion and wheel针轮 Cylindsical tan tein gear ;pin-wheel谐波齿轮副 Harmoric gear drive波发生器 Wave generator柔性齿轮 Flexspine刚性齿轮 Circular spline非圆齿轮 Non-circular gear分度圆环面 Reference tosoid。
有限元分析中英文对照资料
![有限元分析中英文对照资料](https://img.taocdn.com/s3/m/40c5259efad6195f312ba6b3.png)
The finite element analysisFinite element method, the solving area is regarded as made up of many small in the node connected unit (a domain), the model gives the fundamental equation of sharding (sub-domain) approximation solution, due to the unit (a domain) can be divided into various shapes and sizes of different size, so it can well adapt to the complex geometry, complex material properties and complicated boundary conditionsFinite element model: is it real system idealized mathematical abstractions. Is composed of some simple shapes of unit, unit connection through the node, and under a certain load.Finite element analysis: is the use of mathematical approximation method for real physical systems (geometry and loading conditions were simulated. And by using simple and interacting elements, namely unit, can use a limited number of unknown variables to approaching infinite unknown quantity of the real system.Linear elastic finite element method is a ideal elastic body as the research object, considering the deformation based on small deformation assumption of. In this kind of problem, the stress and strain of the material is linear relationship, meet the generalized hooke's law; Stress and strain is linear, linear elastic problem boils down to solving linear equations, so only need less computation time. If the efficient method of solving algebraic equations can also help reduce the duration of finite element analysis.Linear elastic finite element generally includes linear elastic statics analysis and linear elastic dynamics analysis from two aspects. The difference between the nonlinear problem and linear elastic problems:1) nonlinear equation is nonlinear, and iteratively solving of general;2) the nonlinear problem can't use superposition principle;3) nonlinear problem is not there is always solution, sometimes even no solution. Finite element to solve the nonlinear problem can be divided into the following three categories:1) material nonlinear problems of stress and strain is nonlinear, but the stress and strain is very small, a linear relationship between strain and displacement at this time, this kind of problem belongs to the material nonlinear problems. Due to theoretically also cannot provide the constitutive relation can be accepted, so, general nonlinear relations between stress and strain of the material based on the test data, sometimes, to simulate the nonlinear material properties available mathematical model though these models always have their limitations. More important material nonlinear problems in engineering practice are: nonlinear elastic (including piecewise linear elastic, elastic-plastic and viscoplastic, creep, etc.2) geometric nonlinear geometric nonlinear problems are caused due to the nonlinear relationship between displacement. When the object the displacement is larger, the strain and displacement relationship is nonlinear relationship. Research on this kind of problemIs assumes that the material of stress and strain is linear relationship. It consistsof a large displacement problem of large strain and large displacement little strain. Such as the structure of the elastic buckling problem belongs to the large displacement little strain, rubber parts forming process for large strain.3) nonlinear boundary problem in the processing, problems such as sealing, the impact of the role of contact and friction can not be ignored, belongs to the highly nonlinear contact boundary. At ordinary times some contact problems, such as gear, stamping forming, rolling, rubber shock absorber, interference fit assembly, etc., when a structure and another structure or external boundary contact usually want to consider nonlinear boundary conditions. The actual nonlinear may appear at the same time these two or three kinds of nonlinear problems.Finite element theoretical basisFinite element method is based on variational principle and the weighted residual method, and the basic solving thought is the computational domain is divided into a finite number of non-overlapping unit, within each cell, select some appropriate nodes as solving the interpolation function, the differential equation of the variables in the rewritten by the variable or its derivative selected interpolation node value and the function of linear expression, with the aid of variational principle or weighted residual method, the discrete solution of differential equation. Using different forms of weight function and interpolation function, constitute different finite element methods. 1. The weighted residual method and the weighted residual method of weighted residual method of weighted residual method: refers to the weighted function is zero using make allowance for approximate solution of the differential equation method is called the weighted residual method. Is a kind of directly from the solution of differential equation and boundary conditions, to seek the approximate solution of boundary value problems of mathematical methods. Weighted residual method is to solve the differential equation of the approximate solution of a kind of effective method.Hybrid method for the trial function selected is the most convenient, but under the condition of the same precision, the workload is the largest. For internal method and the boundary method basis function must be made in advance to meet certain conditions, the analysis of complex structures tend to have certain difficulty, but the trial function is established, the workload is small. No matter what method is used, when set up trial function should be paid attention to are the following: (1) trial function should be composed of a subset of the complete function set. Have been using the trial function has the power series and trigonometric series, spline functions, beisaier, chebyshev, Legendre polynomial, and so on.(2) the trial function should have until than to eliminate surplus weighted integral expression of the highest derivative low first order derivative continuity. (3) the trial function should be special solution with analytical solution of the problem or problems associated with it. If computing problems with symmetry, should make full use of it. Obviously, any independent complete set of functions can be used as weight function. According to the weight function of the different optionsfor different weighted allowance calculation method, mainly include: collocation method, subdomain method, least square method, moment method and galerkin method. The galerkin method has the highest accuracy.Principle of virtual work: balance equations and geometric equations of the equivalent integral form of "weak" virtual work principles include principle of virtual displacement and virtual stress principle, is the floorboard of the principle of virtual displacement and virtual stress theory. They can be considered with some control equation of equivalent integral "weak" form. Principle of virtual work: get form any balanced force system in any state of deformation coordinate condition on the virtual work is equal to zero, namely the system of virtual work force and internal force of the sum of virtual work is equal to zero. The virtual displacement principle is the equilibrium equation and force boundary conditions of the equivalent integral form of "weak"; Virtual stress principle is geometric equation and displacement boundary condition of the equivalent integral form of "weak". Mechanical meaning of the virtual displacement principle: if the force system is balanced, they on the virtual displacement and virtual strain by the sum of the work is zero. On the other hand, if the force system in the virtual displacement (strain) and virtual and is equal to zero for the work, they must balance equation. Virtual displacement principle formulated the system of force balance, therefore, necessary and sufficient conditions. In general, the virtual displacement principle can not only suitable for linear elastic problems, and can be used in the nonlinear elastic and elastic-plastic nonlinear problem.Virtual mechanical meaning of stress principle: if the displacement is coordinated, the virtual stress and virtual boundary constraint counterforce in which they are the sum of the work is zero. On the other hand, if the virtual force system in which they are and is zero for the work, they must be meet the coordination. Virtual stress in principle, therefore, necessary and sufficient condition for the expression of displacement coordination. Virtual stress principle can be applied to different linear elastic and nonlinear elastic mechanics problem. But it must be pointed out that both principle of virtual displacement and virtual stress principle, rely on their geometric equation and equilibrium equation is based on the theory of small deformation, they cannot be directly applied to mechanical problems based on large deformation theory. 3,,,,, the minimum total potential energy method of minimum total potential energy method, the minimum strain energy method of minimum total potential energy method, the potential energy function in the object on the external load will cause deformation, the deformation force during the work done in the form of elastic energy stored in the object, is the strain energy.The convergence of the finite element method, the convergence of the finite element method refers to when the grid gradually encryption, the finite element solution sequence converges to the exact solution; Or when the cell size is fixed, the more freedom degree each unit, the finite element solutions tend to be more precise solution. Convergence condition of the convergence condition of the finite element finite element convergence condition of the convergence condition of the finite element finite element includes the following four aspects: 1) within the unit, thedisplacement function must be continuous. Polynomial is single-valued continuous function, so choose polynomial as displacement function, to ensure continuity within the unit. 2) within the unit, the displacement function must include often strain. Total can be broken down into each unit of the state of strain does not depend on different locations within the cell strain and strain is decided by the point location of variables. When the size of the units is enough hours, unit of each point in the strain tend to be equal, unit deformation is uniform, so often strain becomes the main part of the strain. To reflect the state of strain unit, the unit must include the displacement functions often strain. 3) within the unit, the displacement function must include the rigid body displacement. Under normal circumstances, the cell for a bit of deformation displacement and displacement of rigid body displacement including two parts. Deformation displacement is associated with the changes in the object shape and volume, thus producing strain; The rigid body displacement changing the object position, don't change the shape and volume of the object, namely the rigid body displacement is not deformation displacement. Spatial displacement of an object includes three translational and three rotational displacement, a total of six rigid body displacements. Due to a unit involved in the other unit, other units do rigid body displacement deformation occurs will drive unit, thus, to simulate real displacement of a unit, assume that the element displacement function must include the rigid body displacement. 4) the displacement function must be coordinated in public boundary of the adjacent cell. For general unit of coordination is refers to the adjacent cell in public node have the same displacement, but also have the same displacement along the edge of the unit, that is to say, to ensure that the unit does not occur from cracking and invade the overlap each other. To do this requires the function on the common boundary can be determined by the public node function value only. For general unit and coordination to ensure the continuity of the displacement of adjacent cell boundaries. However, between the plate and shell of the adjacent cell, also requires a displacement of the first derivative continuous, only in this way, to guarantee the strain energy of the structure is bounded. On the whole, coordination refers to the public on the border between neighboring units satisfy the continuity conditions. The first three, also called completeness conditions, meet the conditions of complete unit is complete unit; Article 4 is coordination requirements, meet the coordination unit coordination unit; Otherwise known as the coordinating units. Completeness requirement is necessary for convergence, all four meet, constitutes a necessary and sufficient condition for convergence. In practical application, to make the selected displacement functions all meet the requirements of completeness and harmony, it is difficult in some cases can relax the requirement for coordination. It should be pointed out that, sometimes the coordination unit than its corresponding coordination unit, its reason lies in the nature of the approximate solution. Assumed displacement function is equivalent to put the unit under constraint conditions, the unit deformation subject to the constraints, this just some alternative structure compared to the real structure. But the approximate structure due to allow cell separation, overlap, become soft, the stiffness of the unit or formed (suchas round degree between continuous plate unit in the unit, and corner is discontinuous, just to pin point) for the coordination unit, the error of these two effects have the possibility of cancellation, so sometimes use the coordination unit will get very good results. In engineering practice, the coordination of yuan must pass to use "small pieces after test". Average units or nodes average processing method of stress stress average units or nodes average processing method of stress average units or nodes average processing method of stress of the unit average or node average treatment method is the simplest method is to take stress results adjacent cell or surrounding nodes, the average value of stress.1. Take an average of 2 adjacent unit stress. Take around nodes, the average value of stressThe basic steps of finite element method to solve the problemThe structural discretization structure discretization structure discretization structure discretization to discretization of the whole structure, will be divided into several units, through the node connected to each other between the units; 2. The stiffness matrix of each unit and each element stiffness matrix and the element stiffness matrix and the stiffness matrix of each unit (3) integrated global stiffness matrix integrated total stiffness matrix integrated overall stiffness matrix integrated total stiffness matrix and write out the general balance equations and write out the general balance equations and write out the general balance equations and write a general equation 4. Introduction of supporting conditions, the displacement of each node 5. Calculate the stress and strain in the unit to get the stress and strain of each cell and the cell of the stress and strain and the stress and strain of each cell.For the finite element method, the basic ideas and steps can be summarized as: (1) to establish integral equation, according to the principle of variational allowance and the weight function or equation principle of orthogonalization, establishment and integral expression of differential equations is equivalent to the initial-boundary value problem, this is the starting point of the finite element method. Unit (2) the area subdivision, according to the solution of the shape of the area and the physical characteristics of practical problems, cut area is divided into a number of mutual connection, overlap of unit. Regional unit is divided into finite element method of the preparation, this part of the workload is bigger, in addition to the cell and node number and determine the relationship between each other, also said the node coordinates, at the same time also need to list the natural boundary and essential boundary node number and the corresponding boundary value.(3) determine the unit basis function, according to the unit and the approximate solution of node number in precision requirement, choose meet certain interpolation condition basis function interpolation function as a unit. Basis function in the finite element method is selected in the unit, due to the geometry of each unit has a rule in the selection of basis function can follow certain rules. (4) the unit will be analysis: to solve the function of each unit with unit basis functions toapproximate the linear combination of expression; Then approximate function generation into the integral equation, and the unit area integral, can be obtained with undetermined coefficient (i.e., cell parameter value) of each node in the algebraic equations, known as the finite element equation. (5) the overall synthesis: after the finite element equation, the area of all elements in the finite element equation according to certain principles of accumulation, the formation of general finite element equations. (6) boundary condition processing: general boundary conditions there are three kinds of form, divided into the essential boundary conditions (dirichlet boundary condition) and natural boundary conditions (Riemann boundary conditions) and mixed boundary conditions (cauchy boundary conditions). Often in the integral expression for natural boundary conditions, can be automatically satisfied. For essential boundary conditions and mixed boundary conditions, should be in a certain method to modify general finite element equations satisfies. Solving finite element equations (7) : based on the general finite element equations of boundary conditions are fixed, are all closed equations of the unknown quantity, and adopt appropriate numerical calculation method, the function value of each node can be obtained.有限元分析有限元法求解区域是由许多小的节点连接单元(域),该模型给出了切分的基本方程(子域名)的近似解,由于单位(域)可以分为不同的形状和大小不同的尺寸,所以它能很好的适应复杂的几何形状、材料特性和边界条件复杂,复杂有限元模型:它是真实系统的理想化的数学抽象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2 网格的曲率半径
在有关直齿轮的情况下,在齿轮副啮合期间,啮合齿轮的曲率半径是连续变化的,根据下列公式 表达为: ������������ =������������ sin ������������ (3) 该表达式和等式(4)表示的齿面接触是一致的: q=
Fbn ������
; ρ=
1 2������
小齿轮 20 4.5 20 0 91.5 20 91.5 1.556 302N.m 1000rpm
大齿轮 20 4.5 20 0 91.5 20
表 1-2 齿轮副的材料性能
序号 参数 1 材料 45 钢 2 弹性模量 210 210 3 泊松比 0.3 0.3
小齿轮 45 钢
大齿轮
4 密度������������ ������3 7830 7830
3 结果与分析
3.1 模型验证
在目前使用有限元分析模型计算作用线上接触应力可以使用理论分析来进行验证, 而该理论来源于 赫兹的两圆柱接触理论。图 2 中的理论结果被用于验证分析。使用有限元分析计算得到的应力结果见 图 3 。冯米塞斯等效应力云见表 4 。这可以清晰地看到啮合齿轮特征节点等效应力云分布。每幅图 上的最大应力点用红色来表示,具体数值在每一个图的下方显示,在论文上所描述的齿轮可以看作是 理想齿轮,所以有限元分析得到的结果可以和理论分析得到的结果进行比较。所选择的特征接触节点 的具体数值均有表示,因为每个节点的数值的计算和每一个接触节点的是一致的,在计算时是单调的 并且耗费大量时间。图 5 表示良好的重合度存在于有限元分析计算结果和理论计算结果之间。
=������ 1+������2 , ������������ =
1 2
������ .������
1−������������2 ������������
, i=1 ,2(4)
1.3 赫兹接触理论
对于两根圆柱体在接触情况下, 根据赫兹接触理论 ( [5] Hertz1881 年 ) 得出最大的压力������������������������ 等式(5)中表示出来: ������������������������ =
2������ ������ .������ 2 ������ ������ ������ 1 +������ 2
在
=
. ������.
(5)
将等式(2) (3) (4) 和等式(3) 进行合并,之后它适用于计算在啮合区域的最大赫兹接触应力, 并且对于单个齿轮啮合是不出现打齿现象。公式如下: ������������ = ρ表示在接触节点的等效曲率半径。 运用公式(1)和(2)在等式(6)中的应用,这可以进行应力计算,当接触点位于节点 C,对 应的应力值������������������ 可以从等式(7)中计算: ������������������ =
2T2 2T2 ������������������������������ ������������ 1 ������������ 2 ������������������������������
=
=
=
������������������������������������������������������������ ������������������������������
2 齿轮副的有限元分析模型
2.1 齿轮参数化语言设计
齿轮副采用精确参数化三维接触有限元分析模型。表中提到了齿轮副的详细规范。齿轮副所使用 的结构钢参数见表 2。齿轮齿廓的成型运用了有限元参数化设计语言。涉及的配置文件被进一步用于 形成完整的齿形,然后进行三次复制成一个面。将这个面进行拉伸成三维的小齿轮,用相同的步骤拉 伸成另外一个齿轮,最终形成一对完整的齿轮副。离散化齿轮模型使用 Solid 185 (ANSYS 2009)设 计的以及使用不带有中间节点的八节点有限元软件,这可以有效的测定应力,应变和变形,使计算时 间和资源得到最佳的利用。
.
1+������ ������
.
2 cos 2 ������ .������������������ ������
(7)
在任何接触点的应力������������������ 和在节点的有效接触应力������������������ 之间的比值 可以从齿廓上应力的变化上得 出。在进行恒等变化后,应力比可以表示为如下:
1
2 1 −������ 2 1 +1 −������ 2 ) ������ .( ������ 1 ������ 2
Fbn ������ .������
.
1 ������ .(
2 1 −������ 2 1 +1 −������ 2 ) ������ 1 ������ 2
(6)
.
Ftamx ������ .������ 1
3.2 摩擦系数对接触应力的影响
有限元分析模型更多的是分析在不同摩擦系数的情况下接触应力的变化。在摩擦系数变化范围为 0.3-1 之间的情况下对齿轮的齿面接触应力的灵敏性进行评价, 不同摩擦系数的情况下分析结果如图 6 所示。从中可以看出,当摩擦系数从 0.3-1 之间发生变化时,接触应力也随之发生相应的改变。在计 算啮合齿轮接触应力时,由于摩擦系数的存在,节点的接触应力增加,因此得到一个摩擦因数������������ 。相 应的接触应力增加了 1.4%,5% 和 10%,对应的摩擦系数分别为 0.1 ,0.2 和 0.3 。对不同齿轮组的 参数化研究,需要一个合适的参数值在计算变化的接触应力。
基于接触齿面作用线的直齿轮有限元分析
摘要目前人们正在探索新的方法研究通过圆柱直齿轮接触作用线的摩擦静态系数对齿轮的影响。 这项研究的其基本任务是分析和确定接触应力沿啮合齿轮副作用线变化的形状函数。 我们对一对渐开 线直齿轮副接触齿面运用有限元方法进行三维建模并且进行接触分析。 运用了 ANSYS 参数化语言设计 直齿轮的轮廓线。由于拉格朗日乘子接触算法广泛被运用到计算齿轮副接触应力,所以通过对建立的 摩擦接触模型进行有限元求解,得到的结果与拉格朗日乘子法理论计算的结果进行来验证,比较结果 的准确性。在确认结果的精确度之后,这项分析才可以被扩展到摩擦的案例当中。结果表明,随着摩 擦系数的增大,齿轮副接触应力也随之增大。而且当摩擦系数由 0 增大到 0.3 时 ,啮合齿轮副间的 接触应力增大了 10%。 关键词有限元分析;接触应力;作用线;齿轮副 一直以来齿轮问题成为一项热点研究问题已经有几十年了,而且现在仍然是一个热点问题。对接 触应力的测定可以了解了齿轮表面的抗蚀性和表面硬度的要求。如果在啮合齿轮副中,改变主动齿轮 的应力变化,我们将有可能测量得到的最大接触应力点。这有助于在精确研究评估接触点的抗蚀性。 ( [1]Atanasovaka and Nikolic 2003) 载荷分布状况是进行应力分析前要进行评估的主要参数之一。([2]Risti vojevic et al 2013)曾研 究圆柱直齿轮齿面负载能力和超过齿面部分的荷载分布因素。 他们曾研究测量通过直齿轮副啮合作用 线的接触应力变化。在 2003 年的时候,Nikolicand Atanasovska 中曾经使用理论分析和有限元方法研 究通过啮合齿轮接触作用线齿面的接触应力。研究表明,有限元方法求解得到的结果和分析理论计算 得到的结果一样精确,因此在啮合齿轮中,有限元模型的方法能高效的计算出齿轮副的接触应力。其 他的研究著作同样研究了运用有限元方法计算通过齿轮副作用线的接触应力。在啮合齿轮当中,在接 触应力的计算可以完全忽略摩擦系数。 几乎没有研究者能尝试在计算接触应力的时候纳入齿面摩擦系 数。([3]Velex et al 2000)对高速动力直齿轮下对摩擦的影响效果进行了实验和大量的研究。他们注 意到,啮合齿轮副接触摩擦在低的中等速度下影响更大,在高速时完全可以忽略不计。 ( [ 4 ] Vijaryarangan and Ganesan 1994)致力于在静态情况下,使用二维有限元分析方法和拉格朗日乘子法对 直齿圆柱齿轮接触应力进行研究。研究结果表明,当摩擦系数由 0 增大到 0.3 时 ,齿轮的静态接触 应力增大了 5%。在研究报告中还对三维直齿轮副采用同样的方法进行研究。 在这部分研究论文中, 主要目的是去研究摩擦系数对通过啮合直齿轮副作用线的接触应力的影响。 运用理论分析和有限元分析方法到对参数化的齿轮副进行分析。 理论分析的结果常被用于和用有限元 分析得到的结果进行验证比对。进一步的,运用已验证的有限元方法,得出摩擦系数对接触应力的变 化的作用的影响。
4
结论
基于在当前研究中引入的理论分析方法和有限元分析方法,得到结果如下: (1) 目前的有限元模型分析方法所得的结果与理论分析结果高度重合;因此该模型适合对啮合齿轮
副齿面主动接触应力的分析。 (2)对于不同摩擦系数的情况下,计算得到的接触应力表明:随着摩擦静态系数数值的增大,接触 应力也增大。当摩擦系数由 0 增大到 0.3 时 ,齿轮副间的接触应力增大了 10%。 (3) 在计算啮合齿轮中的接触应力时,随着摩擦系数增加的接触应力增加给我们提供了一个理念: 在齿轮接触有限元分析中结合摩擦因数。 [1] Atanasovska, V. Nikolic The analysis of contact stress on meshed teeth's flanks along the path of contact for a tooth pairFacta Universitatis- Mechanics, Automatic Control and Robotics, 3 (15) (2003), pp. 1055–1066 [2] M. Ristivojevic, T. Lazovic, A. Vencl Studying the load carrying capacity of spur gear tooth flanks Mechanism and Machine Theory, 59 (2013), pp. 125–137 [3] P. Velex, V. Cahouet Experimental and numerical investigation on the influence of tooth friction in spur and helical gear dynamicsJournal of Mechanical Design, 122 (2000), pp. 515–522 [4] S. Vijayarangan, N. Ganesan Static contact stress analysis of a spur gear tooth using the finite element method, including frictional effectsComputers and Structures, 51 (6)(1994), pp. 765–770 [5] Hertz, H., 1881. Fixed on the contact of elastic bodies, Gesammelte Werke (P. Lenard,ed.), Bd. 1, (J.A. Barth, Leipzig, 1895) pp. 155-173.