诺奖级发现—量子反常霍尔效应Science-2013-Chang-science.1234414

合集下载

读“我国科学家首次在实验中发现量子反常霍尔效应”有感

读“我国科学家首次在实验中发现量子反常霍尔效应”有感

读“我国科学家首次在实验中发现量子反常霍尔效应”有感我仔细读了《我国科学家首次在实验中发现量子反常霍尔效应》一文,非常欣慰,这是我们中国人的骄傲,也是我们中国人科研能力的具体体现,中国人的科研能力必将走在世界的前列。

在凝聚态物理领域,量子霍尔效应(霍尔效应是电磁效应的一种,这一现象是美国物理学家霍尔(A.H.Hall,1855—1938)于1879年在研究金属的导电机制时发现的。

当电流垂直于外磁场通过导体时,在导体的垂直于磁场和电流方向的两个端面之间会出现电势差,这一现象就是霍尔效应。

)研究是一个非常重要的研究方向。

量子反常霍尔效应不同于量子霍尔效应,它不依赖于强磁场而由材料本身的自发磁化产生。

在零磁场中就可以实现量子霍尔态,更容易应用到人们日常所需的电子器件中。

通常情况下导体导电时,不易形成量子反常霍尔效应。

由于导体中的电子无规则运动,在外加电场的条件下,电子定向“移动”,但是在移动的过程中,电子仍然存在“无规则”的运动,所以不易产生量子反常霍尔效应。

其实,导体形成电流的本质是:导体外加电场后,由于导体内部形成了不只一列的电流波,电流波相互干涉、叠加损失能量,使导体发热,而并非电子真正在导体内部流动,电流波“流动”的速度应该等于(或大于)电磁波的速度,形成电流波的电子(即电子质点,电子质点并不随波迁移)。

所以形成反常量子霍尔效应必须至少具备下列条件之一:1、“通道”单一,即电流波只有一个通道。

2、单一方向的电流波——量子霍尔效应的诠释。

3、高电压。

4、宽“通道”。

只具备条件之一,要求应该特别高,难以实现。

建议应该向四个条件的近似方向努力,或能较容易实现,最后得到普及应用。

我的电流是导体中的电流波理论和原文报道的理论分析近似——“材料的能带结构必须具有拓扑特性从而具有导电的一维边缘态;材料必须具有长程铁磁序从而存在反常霍尔效应;材料的体内必须为绝缘态从而对导电没有任何贡献”近似。

高压输电——众说周知,高压输电能减少因发热损耗的电能,应该是一个很好的例证。

创新试题

创新试题
参考答案:物理, ②③④
5.在北京时间2012年06月27日5时29分开始的7000米级海试第5次下潜 中,蛟龙号再次刷新同类型潜水器下潜深度纪录,最大下潜深度为 7062米,已知“蛟龙号”潜艇总质量为22t。 (1)下潜过程中它受到海水的压强将 (选填“变大”、“变 小”或“不变”),当它悬浮在深海某处时,受到的浮力约为 N 。(g取10N/kg) (2)“蛟龙号”完成任务后,漂浮在海面上, 由起重装置将其匀速竖直调离水面,起重装 置起吊拉力的功率随时间变化的图像如图所 示,图中P2=2P1,求t1时刻蛟龙号的排水体积。
11.我们在驾驶汽车的时候经常会碰到前挡风玻璃内表面起 雾,从而影响驾驶,极易造成安全事故。根据你所学知识回 C 答一下问题,这种现象的产生是因为( ) A.车内水分遇热汽化 B.车外水蒸汽遇冷液化 C.车内水蒸气遇冷液化 D.车外水分遇热汽化
12.2012年8月12日伦敦奥运会闭幕,在奥运会上奖牌是对运动员的 成绩的肯定,我国共获金牌:38枚,银牌:27枚,铜牌:23枚,伦 敦奥运会上,金牌创历届奥运会中的金牌中几个之最,金牌总重最 大,由于金银价格走高,所以价值最高,但是含金量最低,金牌表 面积为5671毫米2、厚度7毫米;重量达到410克。所含黄金仅为6克, 92.5%都是银合金,还掺有一些铜。银牌93%是白银,其余为铜。铜 牌几乎都是铜。 (1)伦敦奥运会金牌的合金的密度 10.33 克/厘米3(保留2为小数) (2)金、银、铜曾长期作为货币金属进行流通,我国有着悠久的 金属货币历史和丰富的货币文化。下列关于金、银、铜三种金属的 说法中,错误的是( D ) A.金、银、铜都属于不活泼金属 B.单质铜可以将银从硝酸银溶液中置换出来 C.黄铜(为铜、锌合金)貌似黄金,有人以此冒充黄金行骗,其 真伪可用稀盐酸鉴别。 D.三种金属原子失去电子能力的大小顺序为:金原子>银原子> 铜原子。

中国首次发现量子反常霍尔效应 杨振宁

中国首次发现量子反常霍尔效应 杨振宁

中国首次发现量子反常霍尔效应杨振宁:诺贝尔奖级2013年04月10日13:36来源:中国新闻网分享到:更多0人参与0条主评论0条评论0条总评论正在看第1段共2段杨振宁:“量子反常霍尔效应”是诺奖级发现中国首次成功发现“量子反常霍尔效应”实验团队领衔者薛其坤院士和曾在该领域获诺奖的华人崔琦清华大学薛其坤院士发布量子反常霍尔效应实验成果原标题:中国科学家首次在实验中发现量子反常霍尔效应中新社北京4月10日电(记者马海燕)中国科学家首次在实验中发现量子反常霍尔效应引起国际物理学界巨大反响,著名物理学家、诺贝尔奖得主杨振宁10日称赞其是诺贝尔奖级的成绩。

清华大学和中国科学院物理研究所10日在北京联合宣布:由清华大学教授、中国科学院院士薛其坤领衔,清华大学物理系和中科院物理研究所联合组成的实验团队最近取得重大科研突破,在磁性掺杂的拓扑绝缘体薄膜中,从实验上首次观测到量子反常霍尔效应。

这一实验发现也证实了三年前中科院物理研究所与斯坦福大学理论团队的预言。

杨振宁表示,这让他想起很多年前接到物理学家吴健雄的电话,第一次告诉他在实验室做出了宇称不守恒的实验,这个发现震惊了世界。

今天薛其坤及其团队做出的实验成果,是从中国的实验室里第一次做出了诺贝尔奖级的物理学成绩,不仅是科学界的喜事,也是整个国家的喜事。

杨振宁说,获诺贝尔奖的具体条件无法定义,但他相信99%在前沿物理学做研究的人都会同意这是一个诺贝尔奖级的成果。

过去人们总认为中国人不擅于做实验,仿佛只会搞理论,其实中国已经有世界一流的实验室,加上中国人的勤奋和团队合作精神,是能够做出一流的实验的。

美国科学家霍尔分别于1879年和1880年发现霍尔效应和反常霍尔效应。

1980年,德国科学家冯·克利青发现整数量子霍尔效应,1982年,美国科学家崔琦和施特默发现分数量子霍尔效应,这两项成果分别于1985年和1998年获得诺贝尔物理学奖。

在过去4年间,薛其坤和他的团队测试了1000多个样本,克服重重障碍,才在极其严格的实验要求下完成这一实验。

反常霍尔效应和量子反常霍尔效应

反常霍尔效应和量子反常霍尔效应

反常霍尔效应和量子反常霍尔效应
反常霍尔效应和量子反常霍尔效应是固态物理中两个重要的现象,两者结合了磁场效应、电子运动以及晶格结构等多种因素,对于开展材料物理研究有着重要的意义。

一、反常霍尔效应
反常霍尔效应即指在磁场中,电导率发生非线性变化的现象,通常被分为两种类型:
1. 非金属中的反常霍尔效应:非金属材料中的反常霍尔效应又被称为“正常”反常霍尔效应,表现为沿磁场方向的电流密度不随电场强度而呈线性变化,其导电机理是由于能带弯曲所致。

2. 金属中的反常霍尔效应:金属中的反常霍尔效应表现为在磁场中产生自旋反转,以此影响自由电子的运动轨迹,导致电子在材料内部形成电荷积累,从而产生反常霍尔电势。

这种自旋反转同时也会导致自旋集体行为的出现,反常霍尔现象因此往往被认为是自旋流产生效应的一种。

二、量子反常霍尔效应
量子反常霍尔效应是在二维强磁场下,电导率呈现分数分子分母的分数分子分母的分数分子分母的分数分子分母的分数分子分母的分数分子分母的分数分子分母的分数分子分母的分数分子分母的分数分子分母的分数分子分母的分数分子分母的分数分子分母的分数分子分母的分数分子分母的分数分子分母的分数分子分母的分数分子分母的分数变化,即在化学势谷的外围区域形成能带。

量子反常霍尔效应是由于较低维度信仰张量的几何性质使其在磁场下的行为不同于其在零磁场下的行为而产生的。

这种现象在半导体材料中尤其常见,能够广泛应用于电子输运,物理学和开发新型电子器件。

总之,反常霍尔效应和量子反常霍尔效应是国内外物理研究中的
热点,其发现为我们的科学技术进步创新注入了源源不断的动力,也为我们认识自然规律和科学本质提供了新的方向和思路。

科技改变生活改变世界

科技改变生活改变世界

比特币
比特币是一种由开源的P2P软件产生的电 子货币,是一种网络虚拟货币。它通过 特定算法的大量计算产生,它不属于任 何国家和金融机构,不依靠特定货币机 构发行,并且不受地域限制,可以在世 界上的任何地方兑换它。
起源
2008年,有人用笔名中本聪发表了一篇论文,论文中描述了比特币的使用方法。
去中心化
用触控和语音手势控制眼镜
谷歌眼镜的交互依赖语音手势和触控Байду номын сангаас “OK,GLASS”就是最典型的启 动操作语音。
第一视角解放双手式的随时拍照摄像
随时拍照、摄像也是智能眼镜的基本功能,所见即所得,无需依赖惹人 注意的手机或相机终端作为拍照工具,将会彻底颠覆世界,每一个人的 眼镜都可能是照相机、摄像机。
3D打印
3D打印即快速成型技术的一种,它是一种以数字模型文件为基础,运用 粉末状金属或塑料等可粘合材料,通过逐层打印的方式来构造物体的技 术。该技术在珠宝、鞋类、工业设计、建筑、工程和施工、汽车,航空 航天、牙科和医疗产业、教育、地理信息系统、土木工程、枪支以及其 他领域都有所应用。
3D打印
背景
3D打印并非是新鲜的技术,这个思想起源于19世纪末的美国,并在20世纪 80年代得以发展和推广。中国物联网校企联盟把它称作“上上个世纪的思 想,上个世纪的技术,这个世纪的市场”。
奇点大学
不像大学更像培训机构
它的培训项目短则几天,长则10周。在这么短的时间内,来自世界 各地的学生要向包括创始人科兹威尔在内的各领域著名专家学习未 来学、能源、空间、人工智能、生物技术等前沿科技,并运用这些 科技去解决包括卫生、能源、环境、贫困在内的世界性难题。为保 证前沿,奇点大学每次课程都会更改课程大纲。这也使得它不能成 为一所“有资质”颁发学位的大学。

量子反常霍尔效应诺贝尔奖

量子反常霍尔效应诺贝尔奖

量子反常霍尔效应诺贝尔奖量子反常霍尔效应诺贝尔奖:量子反常霍尔效应是固态物理领域的一个重要发现,因其对于理解拓扑相和拓扑量子计算的潜力而受到广泛关注。

这项发现对于量子物理学和拓扑学的研究有着深远的影响,并为新型纳米电子器件的发展提供了新的契机。

2016年,诺贝尔物理学奖授予了三位科学家David J. Thouless、F. Duncan Haldane和J. Michael Kosterlitz,以表彰他们对拓扑相和物质性质之间关联的理论发现。

他们的研究集中在量子反常霍尔效应上,这一发现改变了人们对固态物质性质的理解,并为量子计算和量子通信提供了新的可能性。

量子反常霍尔效应是指在某些材料中,当在低温下施加垂直于材料表面的磁场时,会发生电荷传输的现象。

这种现象是由拓扑性质导致的,即通过一种特殊的构型,电子在晶体中的运动形成了一种拓扑相。

在这种相中,电子的输运行为会呈现出量子反常霍尔效应,即导电方式与传统的欧姆电阻不同。

这项发现的意义在于,它揭示了电子态中存在一种全新的拓扑自由度,这种拓扑自由度不能通过连续的变形来改变。

这为实现拓扑电子学提供了基础,并在理论和实验研究中引起了广泛的兴趣。

此外,量子反常霍尔效应还为物质的自旋输运提供了可能性,这对于自旋电子学和自旋计算等领域的研究具有重要意义。

Thouless、Haldane和Kosterlitz的贡献主要体现在他们的理论工作上。

David J. Thouless在1970年代初提出了拓扑不变量的概念,为解释拓扑相的物理现象奠定了基础。

F. Duncan Haldane在1980年代提出了一种描述拓扑相的模型,即Haldane模型,该模型被广泛用于研究量子反常霍尔效应。

J. Michael Kosterlitz在1970年代提出了一个新的拓扑相变理论,即Kosterlitz-Thouless相变,该理论解释了在二维材料中量子反常霍尔效应的出现。

这些科学家的突破性研究成果不仅在学术界引起了广泛关注,还为实际应用提供了新的可能性。

量子反常霍尔效应的研究进展

量子反常霍尔效应的研究进展

量子反常霍尔效应的研究进展量子反常霍尔效应(QARHE)是一种特殊的电子物理现象,随着量子力学和凝聚态物理学的发展而存在。

一直以来,人们一直在探索QARHE,以更好地理解量子相干以及开发新型材料。

QARHE的形成可以简单地描述为:在一定的条件下,当电子在一定的磁场中移动时,会出现一种电子分布模式,称为Landau 能级,其中在电子能级的馈电中的一个特殊区域中,电流不会因一些杂质散射而损失能量。

这种损失不能通过经典几何实现,但在量子力学中是可以解释的,被称为量子反常霍尔效应。

近年来,QARHE的研究变得越来越活跃。

由于QARHE是一种新型的电子物理现象,并在许多方面都有着潜在的应用,因此它的研究成为了磁性材料、量子物理学和纳米技术等领域中的重要研究方向。

尽管已经取得了一些显着的成果,但是我们仍然在不断地深入研究中,以期更好地理解和应用QARHE。

对于QARHE的研究,我们能够快速地发现一些实验结果是我们可以利用的。

例如,通过使用新型材料和器件,研究人员可以设计出新的量子芯片、延长传统电子器件的寿命,并从中获得更好的性能。

此外,QARHE也可以用于开发量子计算机,因为它能够对电流进行精确的控制。

这种精确的控制是制造高速计算机的关键所在。

利用现代技术和传统材料的合成技术,我们已经能够在铜氧化物、钙钛矿和铁磁材料中观察到QARHE。

能够产生QARHE的一些关键特征是材料的反磁性或铁磁性,以及电场的存在。

这些特征要求我们使用先进的材料研究技术和理论模型来揭示QARHE的物理机制和控制方法。

研究人员们正在努力开发新的材料,并以不同的表面化合物和实验手段探索他们的用途。

例如,研究人员使用高品质的二元半金属材料,探索了钠氯化物镀层的QARHE。

他们发现,这种材料具有不同的QARHE特点,与以前发现的不同。

这样的研究有望进一步扩大我们对QARHE的了解,并为更好的制造和应用量子芯片提供帮助。

总的来说,QARHE开辟了一些新领域的研究和应用,为我们带来了更广泛的物理学、化学和材料科学等学科领域的研究课题。

量子反常霍尔效应世界难题被我国科学家攻克——中国本土科学家可能首次获得诺贝尔奖

量子反常霍尔效应世界难题被我国科学家攻克——中国本土科学家可能首次获得诺贝尔奖

向量子反常霍尔效应的实验发起冲击 。 截止到 2 0 1 3年的四年
中, 团队生长和测量 了 1 0 0 O多个样 品, 利用分子束外延的方 法使之长出一层几纳米厚 的薄膜 ,然后再掺进去铬离子 , 生
团 队, 历 时 4年完成 的研究报告在《 科学 》 杂志在线发表 。这
项被 3名匿名评审人给予高度评价 的成果 , 是在美 国物 理学 家霍尔于 1 8 8 0 年发现反常霍尔效应 1 3 3年后 ,首 次实现的 反 常霍 尔效应 的量子化 , 也 因此被视作 “ 世界基 础研究领域
教 育 学 术 视 窗
质上完全不同 , 反常霍尔效应是由于材料本身的 自发磁化而
产生 的 , 因此这 是一个全新 的量 子效 应 , 有可能是量 子霍尔
量 予反 市窄尔效 应世 界难题 被 我 国科 学家攻 克
— —
效应家族 的最后一个重要成员。如果能在实验上实现零磁场
中的量子霍尔效应 , 利用其无耗散的边缘态发展新一代的低
1 9 8 2 年, 美国物理学家崔琦和施特默等发现 了分数量子霍尔
效应 , 这个效应不久由另一 位美 国物理学 家劳弗林 给出理论 解释 , 他们三人荣获 1 9 9 8 年诺贝尔物理学奖 。
量子霍尔效应在未来 电子器件 中发挥特殊 的作用 , 可以 用 于制 备低 能耗 的高速 电子器件 。例如 , 如果把量子霍尔效 应 引入计算 机芯 片 ,将会克服 电脑 的发热和能量耗散 问题 。 然 而它需要 的强磁场设备不但 价格 昂贵 , 而且体 积庞大 ( 衣 柜大小 ) , 也不适合于个人 电脑和便携式计算机 。
能耗晶体管和电子学器件 , 从而解决电脑发热问题和其它 的

些瓶颈问题 , 推动信息技术的进步。但反常霍尔效应的量

2019高考物理全程备考二轮复习课余挤时加餐训练: 电学与原子物理学选择题押题练(二) 含解析

2019高考物理全程备考二轮复习课余挤时加餐训练: 电学与原子物理学选择题押题练(二) 含解析

电学与原子物理学选择题押题练(二)1.如图所示,一个带电荷量为-Q 的点电荷甲,固定在绝缘水平面上的O 点。

另一个带电荷量为+q 、质量为m的点电荷乙,从A 点以初速度v 0沿它们的连线向甲运动,运动到B 点时速度为v ,且为运动过程中速度的最小值。

已知点电荷乙受到的阻力大小恒为f ,A 、B 间距离为L 0,静电力常量为k ,则下列说法正确的是( )A .点电荷乙从A 点向甲运动的过程中,加速度逐渐增大B .点电荷乙从A 点向甲运动的过程中,其电势能先增大再减小C .OB 间的距离为 kQq fD .在点电荷甲形成的电场中,AB 间电势差U AB =fL 0+12mv 2q解析:选C 点电荷乙在向甲运动的过程中,受到点电荷甲的库仑力和阻力,且库仑力逐渐增大,由题意知,在B 点时速度最小,则点电荷乙从A 点向甲运动过程中先减速后加速,运动到B 点时库仑力与阻力大小相等,加速度为零,根据库仑定律,有k Qq r OB 2=f ,所以r OB = kQq f,选项A 错误,C 正确;点电荷乙向甲运动的过程中,库仑力一直做正功,点电荷乙的电势能一直减小,选项B 错误;根据动能定理,qU AB -fL 0=12mv 2-12mv 02,解得U AB =fL 0+12mv 2-12mv 02q ,选项D 错误。

2.如图所示,理想变压器原线圈两端A 、B 接在电动势为E =8 V ,内阻为r =2 Ω的交流电源上,理想变压器的副线圈两端与滑动变阻器R x 相连,变压器原、副线圈的匝数比为1∶2,当电源输出功率最大时( )A .滑动变阻器的阻值R x =2 ΩB .最大输出功率P =4 WC .变压器的输出电流I 2=2 AD .滑动变阻器的阻值R x =8 Ω解析:选 D 当外电路电压等于内电路电压时电源输出功率最大,即U 1=U r ,且U 1+U r =8 V ,故U 1=U r =4 V ,根据欧姆定律可得I 1=U rr =2 A ,故根据I 1I 2=n 2n 1可得副线圈中的电流为I 2=1 A ,根据U 1U 2=n 1n 2可得副线圈两端的电压U 2=8 V ,故R x =U 2I 2=81Ω=8 Ω,最大输出功率为P =U 2I 2=8 W ,故D 正确。

走进神奇的量子世界

走进神奇的量子世界
会议 。 我. f f - j - 人 在 理 论 和 实 验 上 进 行 了 密 切 的 合 作 。由 于 我 们 有 好 的 实 验 技
发 现的 , 属于半 整数量 的霍尔效应 , 在
2 0 1 0 年 获得 诺贝尔奖 。所 以从 霍尔效 应 到 霍尔 效应 的量 子 化 , 不 管是 在硅 中、 砷 化镓 中, 还 是石 墨烯 中, 都 因为 奇 特的量子效应斩获诺贝尔奖 。 2 0 1 3 年, 我 们清 华 大学 的团队与 中国科 学 院物理 研 究所 合 作 , 加 上斯 坦福 大 学 的张 守晟教 授 , 在 反 常霍 尔 效 应 的量 子 化 实 验 上 做 出了重 大 的
绝 缘体也很 神奇 , 像 刚才, 陶瓷碗 上 的 这层 薄膜 去 不掉 。 而 如果 在 材料 中引 入磁 性 , 就 可 以把大 部分 的薄膜 自动 地去掉 , 虽然 边 缘上 的依 然 弄不 掉 。 这 就是 我 们2 0 0 5 年 从 理 论上 发 现 的 拓扑绝缘 体 。 说 到这 里 , 我 还 有一个 小故 事 跟 大家分享。人的一生有很 多机 遇。我们 当初是 感 觉到 张首晟老 师提 出的方 向 非常适合分子束外延 的成长 , 才进入 了 这个领域 。2 0 0 9 年6 月, 我在 一次 会议 上认识了张老师, 原来张老 师一直在寻 找 一个 合 适 的实验 合 作 者。因为这次
就 是2 0 世 纪8 0 年代 , 我 们 这 一 拨 人 刚
上, 直 接把 拓扑 物 质相 的材 料 通过 另

术, 2 0 多年的积 累很快 出了成 果 , 最 后 导致 量子反常霍尔效应的发现 。 所 以有
好朋友非常重要。
个 途 径提 了出来 。这在 科 学上是 一

中国最接近诺贝尔物理学奖的一次发现

中国最接近诺贝尔物理学奖的一次发现

中国最接近诺贝尔物理学奖的一次发现2013年3月14日,美国《科学》杂志在线发布了一则轰动科学界的新闻:由清华大学薛其坤院士领衔、清华大学物理系和中科院物理研究所组成的实验团队从实验上首次观测到量子反常霍尔效应。

著名美籍华裔物理学家、诺贝尔物理学奖获得者杨振宁甚至激情澎湃地宣称:“此次成果是从中国的实验室里,第一次发表出了诺贝尔奖级的物理学论文,不仅是科学界的喜事,也是整个国家的喜事。

”实验结果公布后,薛其坤曾应邀去日本作学术报告,日本科学家给他发来了邮件,称赞“这是我在过去十年里听到的最好的学术报告,我们真没有想到你们最终发现了这一美妙现象”。

另一位美国知名物理学家也向课题组发来邮件,“看到你们的结果,我真感觉有些嫉妒。

但回过头想起来,这个工作巨大的难度也确实让我们叹为观止。

”如果说,以上都是个人发表的评论,有些主观,不够说服力,可以看看美国《科学》杂志的匿名评审给出的评价,“这篇文章结束了对量子反常霍尔效应多年的探寻,这是一项里程碑式的工作。

我祝贺文章作者们在拓扑绝缘体研究中作出的重大突破。

”到底这个量子反常霍尔效应有多么神奇,引得众人围观并获得如此称赞,这还要从19世纪末说起。

1879年美国物理学家霍尔发现如果对通电的导体加上垂直于电流方向的磁场,电子的运动轨迹将产生偏转,这个电磁现象被称为“霍尔效应”。

霍尔效应是针对电子级别的一种微观粒子的物理现象,但值得注意的是,在当时,电子并没有被科学家发现。

①1980年德国科学家冯·克利青发现整数量子霍尔效应,获得1985年诺贝尔物理学奖,1982年美国科学家崔琦和施特默发现分数量子霍尔效应,获得1998年获得诺贝尔物理学奖。

综上,就知道杨振宁为什么对量子反常霍尔效应的发现如此震惊和不吝赞誉了。

量子霍尔效应不仅仅是高大上的理论,它跟我们的生活息息相关,尤其是现如今,各种各样五花八门的电器已经完全占据了我们的生活。

手机、电脑、电视,无所不在。

中国诺奖级别新科技—量子反常霍尔效应英语

中国诺奖级别新科技—量子反常霍尔效应英语

中国诺奖级别新科技—量子反常霍尔效应英语全文共6篇示例,供读者参考篇1The Magical World of Quantum PhysicsHave you ever heard of something called quantum physics? It's a fancy word that describes the weird and wonderful world of tiny, tiny particles called atoms and electrons. These particles are so small that they behave in ways that seem almost magical!One of the most important discoveries in quantum physics is something called the Quantum Anomalous Hall Effect. It's a mouthful, I know, but let me try to explain it to you in a way that's easy to understand.Imagine a road, but instead of cars driving on it, you have electrons zipping along. Now, normally, these electrons would bump into each other and get all mixed up, just like cars in a traffic jam. But with the Quantum Anomalous Hall Effect, something special happens.Picture a big, strong police officer standing in the middle of the road. This police officer has a magical power – he can makeall the electrons go in the same direction, without any bumping or mixing up! It's like he's directing traffic, but for tiny particles instead of cars.Now, you might be wondering, "Why is this so important?" Well, let me tell you! Having all the electrons moving in the same direction without any resistance means that we can send information and electricity much more efficiently. It's like having a super-smooth highway for the electrons to travel on, without any potholes or roadblocks.This discovery was made by a team of brilliant Chinese scientists, and it's so important that they might even win a Nobel Prize for it! The Nobel Prize is like the Olympic gold medal of science – it's the highest honor a scientist can receive.But the Quantum Anomalous Hall Effect isn't just about winning awards; it has the potential to change the world! With this technology, we could create faster and more powerful computers, better ways to store and transfer information, and even new types of energy篇2China's Super Cool New Science Discovery - The Quantum Anomalous Hall EffectHey there, kids! Have you ever heard of something called the "Quantum Anomalous Hall Effect"? It's a really cool andmind-boggling scientific discovery that scientists in China have recently made. Get ready to have your mind blown!Imagine a world where electricity flows without any resistance, like a river without any rocks or obstacles in its way. That's basically what the Quantum Anomalous Hall Effect is all about! It's a phenomenon where electrons (the tiny particles that carry electricity) can flow through a material without any resistance or energy loss. Isn't that amazing?Now, you might be wondering, "Why is this such a big deal?" Well, let me tell you! In our regular everyday world, when electricity flows through materials like wires or circuits, there's always some resistance. This resistance causes energy to be lost as heat, which is why your phone or computer gets warm when you use them for a long time.But with the Quantum Anomalous Hall Effect, the electrons can flow without any resistance at all! It's like they're gliding effortlessly through the material, without any obstacles or bumps in their way. This means that we could potentially have electronic devices and circuits that don't generate any heat or waste any energy. How cool is that?The scientists in China who discovered this effect were studying a special kind of material called a "topological insulator." These materials are like a secret passageway for electrons, allowing them to flow along the surface without any resistance, while preventing them from passing through the inside.Imagine a river flowing on top of a giant sheet of ice. The water can flow freely on the surface, but it can't pass through the solid ice underneath. That's kind of how these topological insulators work, except with electrons instead of water.The Quantum Anomalous Hall Effect happens when these topological insulators are exposed to a powerful magnetic field. This magnetic field creates a special condition where the electrons can flow along the surface without any resistance at all, even at room temperature!Now, you might be thinking, "That's all well and good, but what does this mean for me?" Well, this discovery could lead to some pretty amazing things! Imagine having computers and electronic devices that never overheat or waste energy. You could play video games or watch movies for hours and hours without your devices getting hot or draining their batteries.But that's not all! The Quantum Anomalous Hall Effect could also lead to new and improved ways of generating, storing, and transmitting energy. We could have more efficient solar panels, better batteries, and even a way to transmit electricity over long distances without any energy loss.Scientists all around the world are really excited about this discovery because it opens up a whole new world of possibilities for technology and innovation. Who knows what kind of cool gadgets and devices we might see in the future thanks to the Quantum Anomalous Hall Effect?So, there you have it, kids! The Quantum Anomalous Hall Effect is a super cool and groundbreaking scientific discovery that could change the way we think about electronics, energy, and technology. It's like something straight out of a science fiction movie, but it's real and happening right here in China!Who knows, maybe one day you'll grow up to be a scientist and help us unlock even more amazing secrets of the quantum world. Until then, keep learning, keep exploring, and keep being curious about the incredible wonders of science!篇3The Wonderful World of Quantum Physics: A Journey into the Quantum Anomalous Hall EffectHave you ever heard of something called quantum physics? It's a fascinating field that explores the strange and mysterious world of tiny particles called atoms and even smaller things called subatomic particles. Imagine a world where the rules we're used to in our everyday lives don't quite apply! That's the world of quantum physics, and it's full of mind-boggling discoveries and incredible phenomena.One of the most exciting and recent breakthroughs in quantum physics comes from a team of brilliant Chinese scientists. They've discovered something called the Quantum Anomalous Hall Effect, and it's like a magic trick that could change the way we think about technology!Let me start by telling you a bit about electricity. You know how when you turn on a light switch, the bulb lights up? That's because electricity is flowing through the wires and into the bulb. But did you know that electricity is actually made up of tiny particles called electrons? These electrons flow through materials like metals and give us the electricity we use every day.Now, imagine if we could control the flow of these electrons in a very precise way, like directing them to move in a specificdirection without any external forces like magnets or electric fields. That's exactly what the Quantum Anomalous Hall Effect allows us to do!You see, in most materials, electrons can move in any direction, like a group of kids running around a playground. But in materials that exhibit the Quantum Anomalous Hall Effect, the electrons are forced to move in a specific direction, like a group of kids all running in a straight line without any adults telling them where to go!This might not seem like a big deal, but it's actually a huge deal in the world of quantum physics and technology. By controlling the flow of electrons so precisely, we can create incredibly efficient electronic devices and even build powerful quantum computers that can solve problems much faster than regular computers.The Chinese scientists who discovered the Quantum Anomalous Hall Effect used a special material called a topological insulator. This material is like a magician's hat – it looks ordinary on the outside, but it has some really weird and wonderful properties on the inside.Inside a topological insulator, the electrons behave in a very strange way. They can move freely on the surface of the material, but they can't move through the inside. It's like having篇4The Coolest New Science from China: Quantum Anomalous Hall EffectHey kids! Have you ever heard of something called the Quantum Anomalous Hall Effect? It's one of the most amazing new scientific discoveries to come out of China. And get this - some scientists think it could lead to a Nobel Prize! How cool is that?I know, I know, the name sounds kind of weird and complicated. But trust me, once you understand what it is, you'll think it's just as awesome as I do. It's all about controlling the movement of tiny, tiny particles called electrons using quantum physics and powerful magnetic fields.What's Quantum Physics?Before we dive into the Anomalous Hall Effect itself, we need to talk about quantum physics for a second. Quantum physics is sort of like the secret rules that govern how the smallest things inthe universe behave - things too tiny for us to even see with our eyes!You know how sometimes grown-ups say things like "You can't be in two places at once"? Well, in the quantum world, particles actually can be in multiple places at the same time! They behave in ways that just seem totally bizarre and counterintuitive to us. That's quantum physics for you.And get this - not only can quantum particles be in multiple places at once, but they also spin around like tops! Electrons, which are one type of quantum particle, have this crazy quantum spin that makes them act sort of like tiny magnets. Mind-blowing, right?The Weirder Than Weird Hall EffectOkay, so now that we've covered some quantum basics, we can talk about the Hall Effect. The regular old Hall Effect was discovered way back in 1879 by this dude named Edwin Hall (hence the name).Here's how it works: if you take a metal and apply a magnetic field to it while also running an electrical current through it, the magnetic field will actually deflect the flow of electrons in the metal to one side. Weird, huh?Scientists use the Hall Effect in all kinds of handy devices like sensors, computer chips, and even machines that can shoot out a deadly beam of radiation (just kidding on that last one...I think). But the regular Hall Effect has one big downside - it only works at incredibly cold temperatures near absolute zero. Not very practical!The Anomalous Hall EffectThis is where the new Quantum Anomalous Hall Effect discovered by scientists in China comes into play. They found a way to get the same cool electron-deflecting properties of the Hall Effect, but at much higher, more realistic temperatures. And they did it using some crazy quantum physics tricks.You see, the researchers used special materials called topological insulators that have insulating interiors but highly conductive surfaces. By sandwiching these topological insulators between two layers of magnets, they were able to produce a strange quantum phenomenon.Electrons on the surface of the materials started moving in one direction without any external energy needed to keep them going! It's like they created a perpetual motion machine for electrons on a quantum scale. The spinning quantum particlesget deflected by the magnetic layers and start flowing in weird looping patterns without any resistance.Why It's So AwesomeSo why is this Quantum Anomalous Hall Effect such a big deal? A few reasons:It could lead to way more efficient electronics that don't waste energy through heat and resistance like current devices do. Just imagine a computer chip that works with virtually no power at all!The effect allows for extremely precise control over the movement of electrons, which could unlock all kinds of crazy quantum computing applications we can barely even imagine yet.It gives scientists a totally new window into understanding the bizarre quantum realm and the funky behavior of particles at that scale.The materials used are relatively inexpensive and common compared to other cutting-edge quantum materials. So this isn't just a cool novelty - it could actually be commercialized one day.Some Science Celebrities Think It's Nobel-WorthyLots of big-shot scientists around the world are going gaga over this Quantum Anomalous Hall Effect discovered by the researchers in China. A few have even said they think it deserves a Nobel Prize!Now, as cool as that would be, we have to remember that not everyone agrees it's Nobel-level just yet. Science moves slow and there's always a ton of debate over what discoveries are truly groundbreaking enough to earn that high honor.But one thing's for sure - this effect is yet another example of how China is becoming a global powerhouse when it comes to cutting-edge physics and scientific research. Those Chinese scientists are really giving their counterparts in the US, Europe, and elsewhere a run for their money!The Future is QuantumWhether the Quantum Anomalous Hall Effect leads to a Nobel or not, one thing is certain - we're entering an age where quantum physics is going to transform technology in ways we can barely fathom right now.From quantum computers that could solve problems millions of times faster than today's machines, to quantum sensors that could detect even the faintest subatomic particles,to quantum encryption that would make data unhackable, this strange realm of quantum physics is going to change everything.So pay attention, kids! Quantum physics may seem like some weird, headache-inducing mumbo-jumbo now. But understanding these bizarre quantum phenomena could be the key to unlocking all the super-cool technologies of the future. Who knows, maybe one of you reading this could even grow up to be a famous quantum physicist yourselves!Either way, keep your eyes peeled for more wild quantum discoveries emerging from China and other science hotspots around the globe. The quantum revolution is coming, and based on amazing feats like the Anomalous Hall Effect, it's going to be one heckuva ride!篇5Whoa, Dudes! You'll Never Believe the Insanely Cool Quantum Tech from China!Hey there, kids! Get ready to have your minds totally blown by the most awesome scientific discovery ever - the quantum anomalous Hall effect! I know, I know, it sounds like a bunch of big, boring words, but trust me, this stuff is straight-upmind-blowing.First things first, let's talk about what "quantum" means. You know how everything in the universe is made up of tiny, tiny particles, right? Well, quantum is all about studying those teeny-weeny particles and how they behave. It's like a whole secret world that's too small for us to see with our eyes, but scientists can still figure it out with their mega-smart brains and super-powerful microscopes.Now, let's move on to the "anomalous Hall effect" part. Imagine you're a little electron (that's one of those tiny particles I was telling you about) and you're trying to cross a busy street. But instead of just going straight across, you get pushed to the side by some invisible force. That's kind of what the Hall effect is all about - electrons getting pushed sideways instead of going straight.But here's where it gets really cool: the "anomalous" part means that these electrons are getting pushed sideways even when there's no magnetic field around! Normally, you'd need a powerful magnet to make electrons move like that, but with this new quantum technology, they're doing it all by themselves. It's like they've got their own secret superpowers or something!Now, you might be wondering, "Why should I care about some silly electrons moving around?" Well, let me tell you, thisdiscovery is a huge deal! You see, scientists have been trying to figure out how to control the flow of electrons for ages. It's kind of like trying to herd a bunch of rowdy puppies - those little guys just want to go wherever they want!But with this new quantum anomalous Hall effect, scientists in China have finally cracked the code. They've found a way to make electrons move in a specific direction without any external forces. That means they can control the flow of electricity like never before!Imagine having a computer that never overheats, or a smartphone that never runs out of battery. With this new technology, we could create super-efficient electronic devices that waste way less energy. It's like having a magical power switch that can turn on and off the flow of electrons with just a flick of a wrist!And that's not even the coolest part! You know how sometimes your electronics get all glitchy and stop working properly? Well, with this quantum tech, those problems could be a thing of the past. See, the anomalous Hall effect happens in special materials called "topological insulators," which are like super-highways for electrons. No matter how many twists andturns they take, those little guys can't get lost or stuck in traffic jams.It's like having a navigation system that's so good, you could close your eyes and still end up at the right destination every single time. Pretty neat, huh?But wait, there's more! Scientists are also exploring the possibility of using this new technology for quantum computing. Now, I know you're probably thinking, "What the heck is quantum computing?" Well, let me break it down for you.You know how regular computers use ones and zeros to process information, right? Well, quantum computers use something called "qubits," which can exist as both one and zero at the same time. It's like having a coin that's heads and tails at the same exact moment - totally mind-boggling, I know!With this quantum anomalous Hall effect, scientists might be able to create super-stable qubits that can perform insanely complex calculations in the blink of an eye. We're talking about solving problems that would take regular computers millions of years to figure out. Imagine being able to predict the weather with 100% accuracy, or finding the cure for every disease known to humankind!So, what do you say, kids? Are you as pumped about this as I am? I know it might seem like a lot of mumbo-jumbo right now, but trust me, this is the kind of stuff that's going to change the world as we know it. Who knows, maybe one day you'll be the one working on the next big quantum breakthrough!In the meantime, keep your eyes peeled for more news about this amazing discovery from China. And remember, even though science can be super complicated sometimes, it's always worth paying attention to. After all, you never know when the next mind-blowing quantum secret might be revealed!篇6Title: A Magical Discovery in the World of Tiny Particles!Have you ever heard of something called the "Quantum Anomalous Hall Effect"? It might sound like a tongue twister, but it's actually a super cool new technology that was recently discovered by scientists in China!Imagine a world where everything is made up of tiny, tiny particles called atoms. These atoms are so small that you can't see them with your bare eyes, but they're the building blocks that make up everything around us – from the chair you're sitting on to the air you breathe.Now, these atoms can do some pretty amazing things when they're arranged in certain ways. Scientists have found that if they create special materials where the atoms are arranged just right, they can make something called an "electrical current" flow through the material without any resistance!You might be wondering, "What's so special about that?" Well, let me explain! Usually, when electricity flows through a material like a metal wire, it faces something called "resistance." This resistance makes it harder for the electricity to flow, kind of like trying to run through a thick forest – it's tough and you get slowed down.But with this new Quantum Anomalous Hall Effect, the electricity can flow through the special material without any resistance at all! It's like having a wide-open road with no obstacles, allowing the electricity to zoom through without any trouble.So, how does this magical effect work? It all comes down to the behavior of those tiny atoms and the way they interact with each other. You see, in these special materials, the atoms are arranged in a way that creates a kind of "force field" that protects the flow of electricity from any resistance.Imagine you're a tiny particle of electricity, and you're trying to move through this material. As you move, you encounter these force fields created by the atoms. Instead of slowing you down, these force fields actually guide you along a specific path, almost like having a team of tiny helpers clearing the way for you!This effect was discovered by a group of brilliant scientists in China, and it's considered a huge breakthrough in the field of quantum physics (the study of really, really small things). It could lead to all sorts of amazing technologies, like super-fast computers and more efficient ways to transmit electricity.But that's not all! This discovery is also important because it proves that China is at the forefront of cutting-edge scientific research. The scientists who made this discovery are being hailed as potential Nobel Prize winners, which is one of the highest honors a scientist can receive.Isn't it amazing how these tiny, invisible particles can do such incredible things? The world of science is full ofmind-blowing discoveries, and the Quantum Anomalous Hall Effect is just one example of the amazing things that can happen when brilliant minds come together to explore the mysteries of the universe.So, the next time you hear someone mention the "Quantum Anomalous Hall Effect," you can proudly say, "Oh, I know all about that! It's a magical discovery that allows electricity to flow without any resistance, and it was made by amazing Chinese scientists!" Who knows, maybe one day you'll be the one making groundbreaking discoveries like this!。

量子反常霍尔效应实验

量子反常霍尔效应实验

量子反常霍尔效应实验作者:薛其坤来源:《科学中国人》 2014年第8期薛其坤量子反常霍尔效应要求材料的体导电和表面导电通道完全被抑制掉。

Bi2 Se3体系由于存在不可避免的Se空位缺陷导致的高浓度的电子型掺杂,不能满足实现量子反常霍尔效应的要求。

为了避免这个问题,研究组选择了(Bi1-x Sbx)2 Te3体系。

这个体系中,可以通过改变S b的组分x,能够将费米能级调到铁磁性导致的能隙内的电荷中性点上。

通过对材料各种参数进一步的不断优化,最终实现了无外加磁场情况下量子化的霍尔电阻。

研究观察到的量子反常霍尔效应的性质是非常稳定的。

首先,为了避免自旋翻转散射的影响,观测量子自旋霍尔效应需要微小尺寸的样品,而量子反常霍尔效应能够在几百微米量级的宏观尺度下实现。

其次,让人称奇的是,这种严格的量子化能够在具有相当低的迁移率和非零体导电通道的材料中实现。

这些都说明量子反常霍尔效应比量子自旋霍尔效应要稳定得多,可以媲美甚至比量子霍尔效应有更强的适应能力。

Science 12 April 2013: 167-170薛其坤院士清华大学副校长1984年毕业于山东大学光学系,1990年、1994年先后获中国科学院物理研究所硕士、博士学位。

中国科学院物理研究所研究员、清华大学教授。

长期从事超薄膜材料的制备、表征及其物理性能研究。

开展了第二代半导体薄膜GaAs、InAs/GaAs量子阱(点)、宽禁带半导体GaN和ZnO 薄膜生长动力学研究, 发展完善了III-V族化合物半导体表面再构的基本规律;开展了半导体S i衬底上金属超薄膜量子尺寸效应的研究,定量建立了金属薄膜体系量子效应和材料性能间内在联系,发现了薄膜热膨胀系数、功函数、超导转变温度等的量子振荡现象;开展了有序纳米结构的自组织生长研究,发明了若干原子尺度精确控制生长技术,解决了异质外延生长纳米有序结构的难题。

研制了几套低温生长及原子尺度原位检测装置。

现为北京邮电大学电子工程学院院长。

反常分数量子霍尔效应

反常分数量子霍尔效应

反常分数量子霍尔效应哎,说起这个反常分数量子霍尔效应啊,可真是个让人既头疼又着迷的家伙。

你可能觉得这个名字听起来就像是科幻小说里的某种神秘力量,但实际上,它是物理学中一个非常重要的现象,跟我们的日常生活,哦不,应该说跟现代科技,有着千丝万缕的联系。

一开始接触这个概念的时候,我真的是一头雾水。

什么反常分数啊,什么量子霍尔效应啊,这些词儿单独拿出来我都知道个大概,但凑在一起,我就完全懵了。

就像你突然听到一个外国人用方言在跟你聊天,每个字你都认识,但连在一起就不知道他在说啥了。

不过呢,咱也不能就这么轻易放弃啊,毕竟这可是个值得研究的宝贝。

于是,我就开始埋头苦读,查阅资料,试图揭开这个神秘现象的面纱。

慢慢地,我发现,这个反常分数量子霍尔效应啊,其实就像是物理学里的一个宝藏,你得一层一层地剥开它的外壳,才能看到里面璀璨的宝石。

咱们先说说这个霍尔效应吧。

霍尔效应啊,简单来说,就是当电流通过一个导体,并且这个导体处于磁场中时,导体的一侧会产生电势差,这个现象就被称为霍尔效应。

就像是你把一根磁铁放进一堆铁屑里,铁屑就会被吸引到磁铁的两端一样。

而这个反常分数呢,就比较复杂了,它涉及到的是电子在磁场中的行为,特别是当这些电子处于某种特殊的量子态时,它们的行为就会变得非常奇特。

说到这,你可能还是有点儿懵,别急,咱们继续。

这个反常分数量子霍尔效应啊,它其实是在极低的温度和极强的磁场下,电子在二维导体中表现出的一种特殊行为。

这些电子啊,就像是被某种神秘力量束缚在了一个个的小圈子里,而这些小圈子呢,又像是被分成了很多层,每一层都有一个特定的“分数”来描述它。

这个“分数”啊,可不是咱们平时说的那个分数,它是一个描述电子状态的物理量,跟咱们平时说的分数完全是两码事。

这些被束缚在圈子里的电子啊,它们的行为可有意思了。

你知道吗,它们就像是在跳一种神秘的舞蹈,每一个电子都按照自己特定的节奏和步伐在移动,而且啊,这些电子之间还有相互作用,它们会相互影响,共同维持着这个系统的稳定。

量子霍尔效应及量子反常霍尔效应的发展现状及前景展望

量子霍尔效应及量子反常霍尔效应的发展现状及前景展望

量子霍尔效应及量子反常霍尔效应的发展现状及前景展望摘要:本文首先介绍了量子霍尔效应的发现历程与物理特性,并简要阐述了其机理。

本文亦对量子霍尔效应的发生条件-二维电子气的构建方式进行了相应介绍,分析了量子霍尔效应的应用前景与主要发展问题。

最后,本文介绍了量子反常霍尔效应的发现与现阶段的实验成果,对该技术的应用化进行了展望。

关键词:量子霍尔效应;量子反常霍尔效应1引言量子霍尔效应发现于上个世纪80年代,其独特的物理特性为研制无能耗电子元器件带来了可能,此项研究成果为克里青斩获了1985年诺贝尔物理学奖。

之后,美籍华裔物理学家崔琦(Daniel Chee Tsui,1939- )和美国物理学家劳克林(Robert ughlin,1950-)、施特默(Horst L. Strmer,1949-)以此为基础,在强磁场下发现了分数量子霍尔效应,将人们对量子及霍尔效应的认知提升到了一个新的高度,他们因此项研究被授予了1998年的诺贝尔物理学奖。

由于对条件要求十分苛刻,在量子霍尔效应的实际应用方面进展受限,科学家们致力于寻求新的突破。

在这个领域我们中国人也做出了卓越贡献,尤其是清华大学的薛其坤院士带领的团队首次观测到量子反常霍尔效应并将成果发表在《Science》上。

这一成果更是被杨振宁先生称为“诺贝尔奖级的成果”。

本文以量子霍尔效应为始,介绍了现阶段在量子霍尔效应及反常霍尔效应上已经取得的成果并对其机理进行了简要概述,分析了其发展前景及主要问题。

2量子霍尔效应根据经典电磁理论,运动的电子在磁场中受到洛伦兹力作用,因此当在一块金属导体施加垂直于电流方向的磁场时,会在第三个方向出现累计电荷因而产生电压。

这就是经典的霍尔效应。

同样在半导体中,由载流子(电子和空穴)堆积依然可形成类似的偏转电场,在这里我们不再赘述。

在经典理论里,霍尔电压正比于磁感应强度B与电流I,即霍尔电压满足,其系数,该比例系数被称为霍尔系数。

霍尔系数具有与电阻相同的量纲,反应了在相同条件下不同材料产生霍尔电压大小的能力,由材料的物理特性决定,与材料中载流子密度n成反比。

量子霍尔效应的发现及进展

量子霍尔效应的发现及进展

毕业论文题目量子霍尔效应的发现及进展学生姓名唐紫汉学号 1110014055 所在学院物理与电信工程学院专业班级物理学1102班指导教师王剑华完成地点陕西理工学院2015年 6月5日量子霍尔效应的发现及进展唐紫汉(陕理工物理与电信工程学院物理学专业1102班,陕西 汉中 723001)指导教师:王剑华[摘要]量子霍尔效应一直是科学家们热衷于研究的课题,它的发现及研究进展是凝聚态物理研究中最重大的成就之一。

这一领域的研究成果曾两次获得诺贝尔物理学奖,引起了科学界的极大反响。

本文对整数、分数、反常量子霍尔效应等量子霍尔效应家族进行回顾和总结,扼要地介绍它们的发现、发展历程以及应用情况和研究进展,全面系统地展现量子霍尔效应的精彩图像。

[关键词]霍尔效应;量子霍尔效应;量子反常霍尔效应引言量子霍尔效应作为过去二十多年中,凝聚态物理领域内最为重要的研究成果之一,人们对它的探索显然不是十分顺利的。

距霍尔效应被发现,过去了约100年后,德国物理学家冯·克利青(Klaus von Klitzing )终于在这一领域有了突破性的研究进展。

他在研究强磁场和极低温中的半导体时,发现了这一量子现象,作为当时最令人惊异的凝聚态物理学领域成果之一,冯·克利青因此被授予了1985年的诺贝尔物理学奖[1]。

1982年,美籍华裔物理学家崔琦(Daniel Chee Tsui )同物理学家劳克林(Robert ughlin )、施特默(Horst L.Strmer )合作,通过在实验中施加更强的磁场,进而发现了分数量子霍尔效应[1],这一发现让人们更加清晰的认识了量子现象,他们也因为这项工作而获得了1998年的诺贝尔物理学奖。

由于这一领域曾两度被授予诺贝尔奖,而使得人们对它产生了极大的兴趣,许多科学家投身于此项研究。

2006年,斯坦福大学张首晟教授与其所领导的团队,预测了二维拓扑绝缘体中的量子自旋霍尔效应,并于2008年指出,可以尝试在磁性掺杂的拓扑绝缘体的基础上,来实现量子反常霍尔效应[2]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

film systems, this will further induce QAH effect if the magnetic exchange field is perpendicular to the plane and overcomes the semiconductor gap. Here we investigate thin films of Cr0.15(Bi0.1Sb0.9)1.85Te3 (19, 20) with a thickness of 5 quintuple layers (QL), which are grown on dielectric SrTiO3 (111) substrates by molecular beam epitaxy (MBE) (20, 21) (fig. S1). With
One way to realize a Chern insulator is to start from a time-reversalinvariant TI. These materials, whose topological properties are induced by spin-orbit coupling, were experimentally realized soon after the theoretical predictions in both 2D and 3D systems (12, 13). Breaking the
Magnetic field induced Landau quantization drives a 2D electron system into an insulating phase that is topologically different from the vacuum (14, 15); as a consequence, dissipationless states appear at sample edges. The topologically non-trivial electronic structure can also occur in certain 2D insulators with time reversal symmetry (TRS) broken by current loops (4) or by magnetic ordering (6), requiring neither Landau levels nor external magnetic field. This type of QHE induced by spontaneous magnetization is considered the quantized version of the conventional (non-quantized) anomalous Hall effect (AHE) discovered in 1881 (16). The quantized Hall conductance is directly given by a topological characteristic of the band structure called the first Chern number. Such insulators are called Chern insulators.
1State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China. 2Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, The Chinese Academy of Sciences, Beijing 100190, China. 3Department of Physics, Stanford University,
however, an external magnetic field was still required to align the Mn moments in order to realize the QAH ef-
Stanford, CA 94305–4045, USA.
fect (18). As proposed in (9), due to the
Bi2Te3 family TIs with isovalent 3d magnetic ions can lead to a ferromagnetic insulator ground state, and for thin
The quantized version of the anomalous Hall effect has been predicted to occur in magnetic topological insulators, but the experimental realization has been challenging. Here, we report the observation of the quantum anomalous Hall (QAH) effect in thin films of Cr-doped (Bi,Sb)2Te3, a magnetic topological insulator. At zero magnetic field, the gate-tuned anomalous Hall resistance reaches the predicted quantized value of h/e2, accompanied by a considerable drop of the longitudinal resistance. Under a strong magnetic field, the longitudinal resistance vanishes whereas the Hall resistance remains at the quantized value. The realization of the QAH effect may lead to the development of low-power-consumption electronics.
charge neutral so that the chemical potential can be fine-tuned to the electron- or hole-conductive regime by a positive or negative gate voltage, respectively, applied on the backside of the SrTiO3 substrate (20). The films are manually cut into a Hall bar configuration (Fig. 1C) for transport measurements. Varying the width (from 50 μm to 200 μm) and the aspect ratio (from 1:1 to 2:1) of the Hall bar does not influence the result. Figure 1D displays a series of measurements, taken at different temperatures, of the Hall resistance (ρyx) of the sample in Fig. 1C, as a function of the magnetic field (μ0H). At high temperatures, ρyx exhibits linear magnetic field dependence due to the ordinary Hall effect (OHE). The film mobility is ~760 cm2/(Vs), as estimated from the measured longitudinal sheet resistance (ρxx) and the carrier density determined from the OHE. The value is much enhanced compared with the samples in our previous study (20, 21), but still much lower than that necessary for QHE (2, 3). With decreasing temperature, ρyx develops a hysteresis loop characteristic of the AHE, induced by the ferromagnetic order in the film (22). The square-shaped loop with large coercivity (Hc = 970 Oersted at 1.5 K) indicates a long-range ferromagnetic order with out-of-plane magnetic anisotropy. The Curie temperature is estimated to be ~15 K (Fig. 1D, inset) from the temperature dependence of the zero field ρyx that reflects spontaneous magnetization of the film.
Magnetic Topological Insulator
the density of states, one is expected to
相关文档
最新文档