解析几何专题含答案

合集下载

高考数学《解析几何》专项训练及答案解析

高考数学《解析几何》专项训练及答案解析

高考数学《解析几何》专项训练一、单选题1.已知直线l 过点A (a ,0)且斜率为1,若圆224x y +=上恰有3个点到l 的距离为1,则a 的值为( )A .B .±C .2±D .2.已知双曲线2222:1x y C a b-=(0,0)a b >>,过右焦点F 的直线与两条渐近线分别交于A ,B ,且AB BF =uu u r uu u r,则直线AB 的斜率为( ) A .13-或13B .16-或16C .2D .163.已知点P 是圆()()22:3cos sin 1C x y θθ--+-=上任意一点,则点P 到直线1x y +=距离的最大值为( )AB .C 1D 2+4.若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为( )A .⎡⎣B .(C .33⎡-⎢⎣⎦D .33⎛⎫- ⎪ ⎪⎝⎭5.已知抛物线C :22x py =的焦点为F ,定点()M ,若直线FM 与抛物线C 相交于A ,B 两点(点B 在F ,M 中间),且与抛物线C 的准线交于点N ,若7BN BF =,则AF 的长为( )A .78B .1C .76D6.已知双曲线2222:1x y C a b-=(0,0)a b >>的两个焦点分别为1F ,2F ,以12F F 为直径的圆交双曲线C 于P ,Q ,M ,N 四点,且四边形PQMN 为正方形,则双曲线C 的离心率为( )A .2-BC .2D7.已知抛物线C :22(0)y px p =>的焦点F ,点00(2p M x x ⎛⎫>⎪⎝⎭是抛物线上一点,以M 为圆心的圆与直线2p x =交于A 、B 两点(A 在B 的上方),若5sin 7MFA ∠=,则抛物线C 的方程为( )A .24y x =B .28y x =C .212y x =D .216y x =8.已知离心率为2的椭圆E :22221(0)x y a b a b +=>>的左、右焦点分别为1F ,2F ,过点2F 且斜率为1的直线与椭圆E 在第一象限内的交点为A ,则2F 到直线1F A ,y 轴的距离之比为( )A .5B .35C .2D二、多选题9.已知点A 是直线:0l x y +=上一定点,点P 、Q 是圆221x y +=上的动点,若PAQ ∠的最大值为90o ,则点A 的坐标可以是( )A .(B .()1C .)D .)1,110.已知抛物线2:2C y px =()0p >的焦点为F ,F ,直线l 与抛物线C交于点A 、B 两点(点A 在第一象限),与抛物线的准线交于点D ,若8AF =,则以下结论正确的是( ) A .4p = B .DF FA =uuu r uu rC .2BD BF = D .4BF =三、填空题11.已知圆C 经过(5,1),(1,3)A B 两点,圆心在x 轴上,则C 的方程为__________.12.已知圆()2239x y -+=与直线y x m =+交于A 、B 两点,过A 、B 分别作x 轴的垂线,且与x轴分别交于C 、D 两点,若CD =m =_____.13.已知双曲线()2222:10,0x y C a b a b-=>>的焦距为4,()2,3A 为C 上一点,则C 的渐近线方程为__________.14.已知抛物线()220y px p =>,F 为其焦点,l 为其准线,过F 任作一条直线交抛物线于,A B 两点,1A 、1B 分别为A 、B 在l 上的射影,M 为11A B 的中点,给出下列命题: (1)11A F B F ⊥;(2)AM BM ⊥;(3)1//A F BM ;(4)1A F 与AM 的交点的y 轴上;(5)1AB 与1A B 交于原点. 其中真命题的序号为_________.四、解答题15.已知圆22:(2)1M x y ++=,圆22:(2)49N x y -+=,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C . (1)求曲线C 的方程;(2)设不经过点(0,Q 的直线l 与曲线C 相交于A ,B 两点,直线QA 与直线QB 的斜率均存在且斜率之和为-2,证明:直线l 过定点.16.已知椭圆方程为22163x y +=.(1)设椭圆的左右焦点分别为1F 、2F ,点P 在椭圆上运动,求1122PF PF PF PF +⋅u u u r u u u u r的值;(2)设直线l 和圆222x y +=相切,和椭圆交于A 、B 两点,O 为原点,线段OA 、OB 分别和圆222x y +=交于C 、D 两点,设AOB ∆、COD ∆的面积分别为1S 、2S ,求12S S 的取值范围.参考答案1.D 【解析】 【分析】因为圆224x y +=上恰有3个点到l 的距离为1,所以与直线l 平行且距离为1的两条直线,一条与圆相交,一条与圆相切,即圆心到直线l 的距离为1,根据点到直线的距离公式即可求出a 的值. 【详解】直线l 的方程为:y x a =-即0x y a --=.因为圆224x y +=上恰有3个点到l 的距离为1,所以与直线l 平行且距离为1的两条直线,一条与圆相交,一条与圆相切,而圆的半径为2,即圆心到直线l 的距离为1.1=,解得a =故选:D . 【点睛】本题主要考查直线与圆的位置关系的应用,以及点到直线的距离公式的应用,解题关键是将圆上存在3个点到l 的距离为1转化为两条直线与圆的位置关系,意在考查学生的转化能力与数学运算能力,属于中档题. 2.B 【解析】 【分析】根据双曲线的离心率求出渐近线方程,根据AB BF =u u u r u u u r,得到B 为AF 中点,得到B 与A 的坐标关系,代入到渐近线方程中,求出A 点坐标,从而得到AB 的斜率,得到答案. 【详解】因为双曲线2222:1x y C a b-=(0,0)a b >>,又222c e a =22514b a =+=,所以12b a =,所以双曲线渐近线为12y x =± 当点A 在直线12y x =-上,点B 在直线12y x =上时, 设(),A A Ax y (),B B B x y ,由(c,0)F 及B 是AF 中点可知22A B A B x c x y y +⎧=⎪⎪⎨⎪=⎪⎩,分别代入直线方程,得121222A A A A y x y x c ⎧=-⎪⎪⎨+⎪=⋅⎪⎩,解得24A Ac x c y ⎧=-⎪⎪⎨⎪=⎪⎩,所以,24c c A ⎛⎫-⎪⎝⎭, 所以直线AB 的斜率AB AFk k =42cc c =--16=-,由双曲线的对称性得,16k =也成立. 故选:B. 【点睛】本题考查求双曲线渐近线方程,坐标转化法求点的坐标,属于中档题. 3.D 【解析】 【分析】计算出圆心C 到直线10x y +-=距离的最大值,再加上圆C 的半径可得出点P 到直线10x y +-=的距离的最大值. 【详解】圆C 的圆心坐标为()3cos ,sin θθ+,半径为1,点C 到直线10x y +-=的距离为sin 14d πθ⎛⎫===++≤+ ⎪⎝⎭因此,点P 到直线1x y +=距离的最大值为12122++=+. 故选:D. 【点睛】本题考查圆上一点到直线距离的最值问题,当直线与圆相离时,圆心到直线的距离为d ,圆的半径为r ,则圆上一点到直线的距离的最大值为d r +,最小值为d r -,解题时要熟悉这个结论的应用,属于中等题. 4.D 【解析】设直线方程为(4)y k x =-,即40kx y k --=,直线l 与曲线22(2)1x y -+=有公共点,圆心到直线的距离小于等于半径22411k k d k -=≤+,得222141,3k k k ≤+≤,选择C 另外,数形结合画出图形也可以判断C 正确. 5.C 【解析】 【分析】由题意画出图形,求出AB 的斜率,得到AB 的方程,求得p ,可得抛物线方程,联立直线方程与抛物线方程,求解A 的坐标,再由抛物线定义求解AF 的长. 【详解】解:如图,过B 作'BB 垂直于准线,垂足为'B ,则'BF BB =,由7BN BF =,得7'BN BB =,可得1sin 7BNB '∠=, 3cos 7BNB '∴∠=-,tan 43BNB '∠=又()23,0M ,AB ∴的方程为2343y x =-, 取0x =,得12y =,即10,2F ⎛⎫ ⎪⎝⎭,则1p =,∴抛物线方程为22x y =. 联立223432y x x y ⎧=-⎪⎨⎪=⎩,解得23A y =.12172326A AF y ∴=+=+=. 故选:C . 【点睛】本题考查抛物线的简单性质,考查直线与抛物线位置关系的应用,考查计算能力,是中档题. 6.D 【解析】 【分析】设P 、Q 、M 、N 分别为第一、二、三、四象限内的点,根据对称性可得出22,22P c ⎛⎫⎪ ⎪⎝⎭,将点P 的坐标代入双曲线C 的方程,即可求出双曲线C 的离心率. 【详解】设双曲线C 的焦距为()20c c >,设P 、Q 、M 、N 分别为第一、二、三、四象限内的点, 由双曲线的对称性可知,点P 、Q 关于y 轴对称,P 、M 关于原点对称,P 、N 关于x 轴对称,由于四边形PQMN 为正方形,则直线PM 的倾斜角为4π,可得,22P c ⎛⎫ ⎪ ⎪⎝⎭, 将点P 的坐标代入双曲线C 的方程得2222122c c a b -=,即()22222122c c a c a -=-, 设该双曲线的离心率为()1e e >,则()2221221e e e -=-,整理得42420e e -+=,解得22e =,因此,双曲线C 故选:D. 【点睛】本题考查双曲线离心率的计算,解题的关键就是求出双曲线上关键点的坐标,考查计算能力,属于中等题. 7.C 【解析】 【分析】根据抛物线的定义,表示出MF ,再表示出MD ,利用5sin 7MFA ∠=,得到0x 和p 之间的关系,将M 点坐标,代入到抛物线中,从而解出p 的值,得到答案.【详解】抛物线C :22(0)y px p =>, 其焦点,02p F ⎛⎫⎪⎝⎭,准线方程2p x =-,因为点(002p M x x ⎛⎫> ⎪⎝⎭是抛物线上一点, 所以02p MF x =+AB所在直线2p x =, 设MD AB ⊥于D ,则02p MD x =-, 因为5sin 7MFA ∠=,所以57 MD MF=,即5272pxpx-=+整理得03x p=所以()3,66M p将M点代入到抛物线方程,得()26623p p=⨯,0p>解得6p=,所以抛物线方程为212y x=故选:C.【点睛】本题考查抛物线的定义,直线与圆的位置关系,求抛物线的标准方程,属于中档题.8.A【解析】【分析】结合椭圆性质,得到a,b,c的关系,设2AF x=,用x表示112,AF F F,结合余弦定理,用c表示x,结合三角形面积公式,即可。

高中数学解析几何大题(附有答案及详解)

高中数学解析几何大题(附有答案及详解)

47. 已知椭圆E :()222210x y a b a b +=>>,其短轴为2.(1)求椭圆E 的方程;(2)设椭圆E 的右焦点为F ,过点()2,0G 作斜率不为0的直线交椭圆E 于M ,N 两点,设直线FM 和FN 的斜率为1k ,2k ,试判断12k k +是否为定值,若是定值,求出该定值;若不是定值,请说明理由.48. 如图,椭圆()2222:10x y C a b a b +=>>⎛ ⎝⎭,P 为椭圆上的一动点.(1)求椭圆C 的方程;(2)设圆224:5O x y +=,过点P 作圆O 的两条切线1l ,2l ,两切线的斜率分别为1k ,2k . ①求12k k 的值;①若1l 与椭圆C 交于P ,Q 两点,与圆O 切于点A ,与x 轴正半轴交于点B ,且满足OPA OQB S S =△△,求1l 的方程.49. 已知椭圆E :22221x y a b +=(a >b >0)的左、右焦点分別为12,F F ,离心率为e =左焦点1F 作直线1l 交椭圆E 于A ,B 两点,2ABF 的周长为8. (1)求椭圆E 的方程;(2)若直线2l :y =kx +m (km <0)与圆O :221x y +=相切,且与椭圆E 交于M ,N 两点,22MF NF +是否存在最小值?若存在,求出22MF NF +的最小值和此时直线2l 的方程.50. 已知动点M 与两个定点()0,0O ,()3,0A 的距离的比为12,动点M 的轨迹为曲线C .(1)求C 的轨迹方程,并说明其形状;(2)过直线3x =上的动点()()3,0P p p ≠分别作C 的两条切线PQ 、PR (Q 、R 为切点),N 为弦QR 的中点,直线l :346x y +=分别与x 轴、y 轴交于点E 、F ,求NEF 的面积S的取值范围.51. 在平面直角坐标系xOy 中,已知直线l :20x y ++=和圆O :221x y +=,P 是直线l 上一点,过点P 作圆C 的两条切线,切点分别为A ,B . (1)若PA PB ⊥,求点P 的坐标; (2)求线段PA 长的最小值;(3)设线段AB 的中点为Q ,是否存在点T ,使得线段TQ 长为定值?若存在,求出点T ;若不存在,请说明理由.52. 已知以1C 为圆心的圆221:1C x y +=.(1)若圆222:(1)(1)4C x y -+-=与圆1C 交于,M N 两点,求||MN 的值;(2)若直线:l y x m =+和圆1C 交于,P Q 两点,若132PC PQ ⋅=,求m 的值. 53. 已知圆()22:21M x y +-=,点P 是直线:20l x y +=上的一动点,过点P 作圆M 的切线P A ,PB ,切点为A ,B .(1)当切线P A P 的坐标;(2)若PAM △的外接圆为圆N ,试问:当P 运动时,圆N 是否过定点?若存在,求出所有的定点的坐标;若不存在,请说明理由; (3)求线段AB 长度的最小值.54. 已知圆22:2O x y +=,直线:2l y kx =-.(1)若直线l 与圆O 交于不同的两点,A B ,当90AOB ∠=︒时,求实数k 的值;(2)若1,k P =是直线l 上的动点,过P 作圆O 的两条切线PC 、PD ,切点为C 、D ,试探究:直CD 是否过定点.若存在,请求出定点的坐标;否则,说明理由.55. 在平面直角坐标系xOy中,(A,B ,C 是满足π3ACB ∠=的一个动点. (1)求ABC 垂心H 的轨迹方程;(2)记ABC 垂心H 的轨迹为Γ,若直线l :y kx m =+(0km ≠)与Γ交于D ,E 两点,与椭圆T :2221x y +=交于P ,Q 两点,且||2||DE PQ =,求证:||k > 56. 平面上一动点C的坐标为),sin θθ.(1)求点C 轨迹E 的方程;(2)过点()11,0F -的直线l 与曲线E 相交于不同的两点,M N ,线段MN 的中垂线与直线l 相交于点P ,与直线2x =-相交于点Q .当MN PQ =时,求直线l 的方程.答案及解析47.(1)2212x y +=;(2)是定值,该定值为0.【分析】(1)依题意求得,a b ,进而可得椭圆E 的方程;(2)设直线MN 的方程为()()20y k x k =-≠,与椭圆E 方程联立,利用韦达定理和斜率公式即可求得12k k +的值. 【详解】(1)由题意可知:22b =,1b =,椭圆的离心率c e a ==a =①椭圆E 的标准方程:2212x y +=;(2)设直线MN 的方程为()()20y k x k =-≠.22(2)12y k x x y =-⎧⎪⎨+=⎪⎩,消去y 整理得:()2222128820k x k x k +-+-=.设()11,M x y ,()22,N x y , 则2122812k x x k +=+,21228212k x x k -=+,()()()1212121212121212222211111k x k x y y x x k k k x x x x x x x x ⎡⎤--+-+=+=+=-⎢⎥-----++⎢⎥⎣⎦222222228242122208282111212k k k k k k k k k k ⎡⎤-⎢⎥⎛⎫-+=-=-=⎢⎥ ⎪--⎝⎭⎢⎥-+⎢⎥++⎣⎦. ①120k k +=为定值.【点睛】关键点点睛:第(2)问的关键点是:得出()12121212221x x k k k x x x x ⎡⎤+-+=-⎢⎥-++⎢⎥⎣⎦.48.(1)2214x y +=;(2)①14- ;①yy =+【分析】(1)根据已知条件结合222c a b =-列关于,a b 的方程,解方程即可求解;(2)①设()00,P x y ,切线:l 00()y y k x x -=-,利用圆心到切线的距离列方程,整理为关于k 的二次方程,计算两根之积结合点P 在椭圆上即可求12k k ;①由OPA OQB S S =△△可得PA BQ =,可转化为A B P Q x x x x +=+,设1l :y kx m =+,与椭圆联立可得P Q x x +,再求出A x 、B x ,即可求出k 的值,进而可得出m 的值,以及1l 的方程. 【详解】(1)因为22222234c a b e a a -===,所以2a b =,因为点⎛ ⎝⎭在椭圆上,所以221314a b +=即2213144b b +=, 解得:1b =,2a =,所以椭圆方程为:2214x y +=;(2)①设()00,P x y ,切线:l 00()y y k x x -=-即000kx y y kx -+-= 圆心()0,0O到切线的距离d r ==整理可得:2220000442055x k x y k y ⎛⎫--+-= ⎪⎝⎭,所以2020122200441451544455x y k k x x ⎛⎫-- ⎪-⎝⎭===---,①因为OPA OQB S S =△△所以PA BQ =,所以A P Q B x x x x -=-,所以A B P Q x x x x +=+, 设切线为1:l y kx m =+,由2244y kx m x y =+⎧⎨+=⎩可得:()222418440k x kmx m +++-= 所以2841P Q kmx x k -+=+, 令0y =可得B mx k=-,设(),A A A x kx m +, 则1A OA A kx m k x k +==-,所以21A km x k -=+, 所以228411P Q km m kmx x k k k --+==-+++, 整理可得:()()()2222814121k k k k +=++,所以221k =,解得:k =, 因为圆心()0,0O 到1:l y kx m =+距离d ,所以mm =,因为0B mx k=->,所以当k =m =k =时,m =;所以所求1l的方程为y =或y = 【点睛】思路点睛:圆锥曲线中解决定值、定点的方法(1)从特殊入手,求出定值、定点、定线,再证明定值、定点、定线与变量无关; (2)直接计算、推理,并在计算、推理的过程中消去变量是此类问题的特点,设而不求的方法、整体思想和消元思想的运用可以有效的简化运算.49.(1)2214x y +=;(2)最小值为2,0x =或0x +-=.【分析】(1)由椭圆定义结合已知求出a ,半焦距c 即可得解;(2)由直线2l 与圆O 相切得221m k =+,联立直线2l 与椭圆E 的方程消去y ,借助韦达定理表示出22MF NF +,利用函数思想方法即可作答. 【详解】(1)依题意,结合椭圆定义知2ABF 的周长为4a ,则有4a =8,即a =2,又椭圆的离心率为c e a =c =2221b a c =-=, 所以椭圆E 的方程为2214x y +=;(2)因直线2l :y =kx +m (km <0)与圆O :221x y +=1=,即221m k =+,设()()()112212,,,,2,2M x y N x y x x ≤≤,而点M 在椭圆E 上,则221114x y +=,即221114x y =-,又2F ,21|2|MF x =-=12x -,同理222NF x =,于是得)22124MF NF x x +=+, 由2214y kx mx y =+⎧⎪⎨+=⎪⎩消去y 得:()222148440k x kmx m +++-=,显然Δ0>,则122814km x x k +=-+, 又km <0,且221m k =+,因此得1228||14km x x k +=+令2411t k =+≥,则12x x +=113t =,即t =3时等号成立,于是得22MF NF +存在最小值,且)221242MF NF x x +=+≥,22MF NF +的最小值为2,由2221413m k k ⎧=+⎨+=⎩,且km <0,解得k m ⎧=⎪⎪⎨⎪=⎪⎩或k m ⎧=⎪⎪⎨⎪=⎪⎩. 所以所求直线2l的方程为y x =y x =0x =或0x +=.【点睛】关键点睛:解决直线与椭圆的综合问题时,要注意:(1)观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题. 50.(1)()2214x y ++=,曲线C 是以1,0为圆心,半径为2的圆;(2)5542⎡⎤⎢⎥⎣⎦,.【分析】(1)设出动点M 坐标,代入距离比关系式,化简方程可得;(2)先求切点弦方程,再根据切点弦过定点及弦中点性质得出N 点轨迹,然后求出动点N 到定直线EF 的距离最值,最后求出面积最值.切点弦方程的求法可用以下两种方法.法一:由两切点即为两圆公共点,利用两圆相交弦方程(两圆方程作差)求出切点弦方程;法二:先分别求过Q 、R 两点的切线方程,再代入点P 坐标,得到Q 、R 两点都适合的同一直线方程,即切点弦方程. 【详解】解:(1)设(),M x y ,由12MO MA =12=. 化简得22230x y x ++-=,即()2214x y ++=. 故曲线C 是以1,0为圆心,半径为2的圆.(2)法一(由两圆相交弦方程求切点弦方程):由题意知,PQ 、PR 与圆相切,Q 、R 为切点,则DQ PQ ⊥,DR PR ⊥,则D 、R 、P 、Q 四点共圆,Q 、R 在以DP 为直径的圆上(如图).设()1,0D -,又()()3,0P p p ≠,则DP 的中点为1,2p ⎛⎫⎪⎝⎭,DP .以线段DP 为直径的圆的方程为()22212p x y ⎛⎫-+-= ⎪⎝⎭⎝⎭, 整理得22230x y x py +---=①(也可用圆的直径式方程()()()()1300x x y y p +-+--=化简得. ) 又Q 、R 在C :22230x y x ++-=①上, 由两圆方程作差即①-①得:40x py +=. 所以,切点弦QR 所在直线的方程为40x py +=. 法二(求Q 、R 均满足的同一直线方程即切点弦方程): 设()1,0D -,()11,Q x y ,()22,R x y .由DQ PQ ⊥,可得Q 处的切线上任一点(,)T x y 满足0QT DQ ⋅=(如图), 即切线PQ 方程为()()()()1111100x x x y y y -++--=.整理得()221111110x x y y x y x ++---=.又22111230x y x ++-=,整理得()111130x x y y x +++-=.同理,可得R 处的切线PR 方程为()222130x x y y x +++-=. 又()3,P p 既在切线PQ 上,又在切线PR 上,所以()()11122231303130x py x x py x ⎧+++-=⎪⎨+++-=⎪⎩,整理得11224040x py x py +=⎧⎨+=⎩. 显然,()11,Q x y ,()22,R x y 的坐标都满足直线40x py +=的方程. 而两点确定一条直线,所以切点弦QR 所在直线的方程为40x py +=. 则QR 恒过坐标原点()0,0O .由()2240,14x py x y +=⎧⎪⎨++=⎪⎩消去x 并整理得()22168480p y py +--=. 设()11,Q x y ,()22,R x y ,则122816py y p +=+.点N 纵坐标1224216N y y py p +==+. 因为0p ≠,显然0N y ≠,所以点N 与点()1,0D -,()0,0O 均不重合.(或者由对称性可知,QR 的中点N 点在x 轴上当且仅当点P 在x 轴上,因为0p ≠,点P 不在x 轴上,则点N 也不在x 轴上,所以点N 与D 、O 均不重合.) 因为N 为弦QR 的中点,且()1,0D -为圆心,由圆的性质,可得DN QR ⊥,即DN ON ⊥(如图).所以点N 在以OD 为直径的圆上,圆心为1,02G ⎛⎫- ⎪⎝⎭,半径12r =.因为直线346x y +=分别与x 轴、y 轴交于点E 、F ,所以()2,0E ,30,2F ⎛⎫⎪⎝⎭,52EF =.又圆心1,02G ⎛⎫- ⎪⎝⎭到直线3460x y +-=的距离32d ==. 设NEF 的边EF 上的高为h ,则点N 到直线346x y +=的距离h 的最小值为31122d r -=-=; 点N 到直线346x y +=的距离h 的最大值为31222d r +=+=(如图).则S 的最小值min 1551224S =⨯⨯=,最大值max 1552222S =⨯⨯=.因此,NEF 的面积S 的取值范围是5542⎡⎤⎢⎥⎣⎦,.【点睛】设00(,)P x y 是圆锥曲线外一点,过点P 作曲线的两条切线,切点为A 、B 两点,则 A 、B 两点所在的直线方程为切点弦方程.常见圆锥曲线的切点弦方程有以下结论: 圆222()()x a y b r -+-=的切点弦方程:200()()()()x a x a y b y b r --+--=, 圆220x y Dx Ey F ++++=的切点弦方程: 0000022x x y yx x y y D E F ++++++= 椭圆22221x y a b+=的切点弦方程:00221x x y y a b +=;双曲线22221x y a b-=的切点弦方程:00221x x y y a b -=;抛物线22y px =的切点弦方程为:00()y y p x x =+.特别地,当00(,)P x y 为圆锥曲线上一点时,可看作两切线重合,两切点A 、B 重合,以上切点弦方程即曲线在P 处的切线方程.51.(1)()1,1P --;(2)1;(3)存在点11,44T ⎛⎫-- ⎪⎝⎭,使得线段TQ 长为定值.理由见解析.【分析】(1)依题意可得四边形PAOB 为正方形,设(),2P x x --,利用平面直角坐标系上两点的距离公式得到方程,计算可得;(2)由221PA PO =-可知当线段PO 长最小时,线段PA 长最小,利用点到线的距离公式求出PO 的最小值,即可得解;(3)设()00,2P x x --,求出以OP 为直径的圆的方程,即可求出公共弦AB 所在直线方程,从而求出动点Q 的轨迹方程,即可得解; 【详解】解:(1)若PA PB ⊥,则四边形PAOB 为正方形, 则P①P 在直线20x y ++=上,设(),2P x x --,则OP =,解得1x =-,故()1,1P --.(2)由221PA PO =-可知当线段PO 长最小时,线段PA 长最小. 线段PO 长最小值即点O 到直线l的距离,故min PO ==所以min 1PA =.(3)设()00,2P x x --,则以OP 为直径的圆的方程为()2222000022224x x x x x y +----⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭, 化简得()220020x x x x y y -+++=,与221x y +=联立,可得AB 所在直线方程为()0021x x x y -+=,联立()002221,1,x x x y x y ⎧-+=⎨+=⎩得()222000002443024x x x x x x x ++----=, ①Q 的坐标为002200002,244244x x x x x x --++++⎛⎫⎪⎝⎭,可得Q 点轨迹为22111448x y ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭,圆心11,44⎛⎫-- ⎪⎝⎭,半径R =.其中原点()0,0为极限点(也可以去掉).故存在点11,44T ⎛⎫-- ⎪⎝⎭,使得线段TQ 长为定值.【点睛】本题考查了直线与圆的位置关系、方程思想、数形结合方法、转化方法,考查运算求解能力和应用意识.52.(1;(2)m = 【分析】(1)由两个圆相交,可将两个圆的方程相减求得直线MN 的方程.利用圆心到直线的距离,结合垂径定理即可求得||MN 的值.(2)设()()1122,,,P x y Q x y ,利用向量的坐标运算表示出1,PC PQ .将直线方程与圆的方程联立,化简后由>0∆求得m 的取值范围,并表示出12x x +,12x x ,进而由直线方程表示出12y y .根据平面向量数量积的坐标运算,代入化简计算即可求得m 的值. 【详解】(1)直线MN 的方程为2222(1)(1)410x y x y -+----+=, 即2 2 10x y ++=;故圆1C 的圆心到2210x y ++=的距离d =故||MN == (2)设()()1122,,,P x y Q x y ,则()()1112121,,,PC x y PQ x x y y =--=--,由22,1,y x m x y =+⎧⎨+=⎩化简可得222210x mx m ++-=, 故()222481840,m m m ∆=--=->解得m < 12x x m +=-,2121,2m x x -=所以()()()212121212y y x m x m x x m x x m =++=+++,又()()2211121211212113,,2PC PQ x y x x y y x x y y x y ⋅=--⋅--=--++=, 又22111x y +=故121212x x y y +=-,故()21212122x x m x x m +++=-, 将12x x m +=-,2121,2m x x -=代入可得222112m m m --+=-,解得m =又因为m <所以2m =± 【点睛】本题考查了圆与圆的位置关系及公共弦长度的求法,直线与圆位置关系的综合应用,由韦达定理求参数的值,平面向量数量积的运算,综合性强,计算量大,属于难题.53.(1)()0,0P 或84,55P ⎛⎫- ⎪⎝⎭;(2)圆过定点()0,2,42,55⎛⎫- ⎪⎝⎭;(3)当25b =时,AB 有最小【分析】(1)设()2,P b b -,由MP b ,得出结果;(2)因为A 、P 、M 三点的圆N 以MP 为直径,所以圆N 的方程为()()222242224b b b x b y +-+⎛⎫++-=⎪⎝⎭,化简为()()222220x y b x y y -+++-=,由方程恒成立可知2222020x y x y y -+=⎧⎨+-=⎩,即可求得动圆所过的定点; (3)由圆M 和圆N 方程作差可得直线AB 方程,设点()0,2M 到直线AB 的距离d ,则AB =.【详解】(1)由题可知,圆M 的半径1r =,设()2,P b b -, 因为P A 是圆M 的一条切线,所以90MAP ∠=︒,所以2MP ==,解得0b =或45b =, 所以点P 的坐标为()0,0P 或84,55P ⎛⎫- ⎪⎝⎭.(2)设()2,P b b -,因为90MAP ∠=︒, 所以经过A 、P 、M 三点的圆N 以MP 为直径, 其方程为()()222242224b b b x b y +-+⎛⎫++-=⎪⎝⎭, 即()()222220x y b x y y -+++-=,由2222020x y x y y -+=⎧⎨+-=⎩, 解得02x y =⎧⎨=⎩或4525x y ⎧=-⎪⎪⎨⎪=⎪⎩,所以圆过定点()0,2,42,55⎛⎫- ⎪⎝⎭.(3)因为圆N 方程为()()222242224b b b x b y +-+⎛⎫++-=⎪⎝⎭, 即()222220x y bx b y b ++-++=①又圆22:430M x y y +-+=①①-①得圆M 方程与圆N 相交弦AB 所在直线方程为 ()22230bx b y b --+-=.点()0,2M 到直线AB的距离d =所以相交弦长AB == 所以当25b =时,AB【点睛】本题考查直线和圆的位置关系,考查定点问题和距离的最值问题,难度较难. 54.(1)k =(2)直线CD 过定点(1,1)- 【分析】(1)由已知结合垂径定理求得圆心到直线的距离,再由点到直线的距离公式列式求得k ; (2)解法1:设切点11(,)C x y ,22(,)D x y ,动点00(,)P x y ,求出两条切线方程,计算出直线CD 的方程,从而得到定点坐标;解法2:由题意可知,O 、P 、C 、D 四点共圆且在以OP为直径的圆上,求出公共弦所在直线方程,再由直线系方程求得定点坐标. 【详解】(1)2AOB π∠=,∴点O 到l 的距离2d r =,k = (2)解法1:设切点11(,)C x y ,22(,)D x y ,动点00(,)P x y ,则圆在点C 处的切线方程为 1111()()0y y y x x x -+-=,所以221111x x y y x y +=+,即112x x y y +=同理,圆在点D 处的切线方程为222x x y y += 又点00(,)P x y 是两条切线的交点, 10102x x y y ∴+=,20202x x y y +=,所以点()11,C x y ,()22,D x y 的坐标都适合方程002x x y y +=, 上述方程表示一条直线,而过C 、D 两点的直线是唯一的, 所以直线CD 的方程为:002x x y y +=. 设(,2)P t t -,则直线CD 的方程为(2)2tx t y +-=, 即()(22)0x y t y +-+=, ∴0220x y y +=⎧⎨+=⎩,解得11x y =⎧⎨=-⎩,故直线CD 过定点(1,1)-.解法2:由题意可知:O 、P 、C 、D 四点共圆且在以OP 为直径的圆上, 设(,2)P t t -,则此圆的方程为:()(2)0x x t y y t -+-+=, 即:22(2)0x tx y t y -+--=, 又C 、D 在圆22:2O x y +=上,两圆方程相减得():220CD l tx t y +--=, 即()(22)0x y t y +-+=, ∴0220x y y +=⎧⎨+=⎩,解得11x y =⎧⎨=-⎩,故直线CD 过定点(1,1)-. 【点睛】本题考查了直线与圆的相交问题,由弦长求直线斜率,只需结合弦长公式计算圆心到直线的距离,然后求得结果,在求直线恒过定点坐标时,一定要先表示出直线方程,然后在求解. 55.(1)22(1)4x y ++=(2y ≠-);(2)证明见解析. 【分析】(1)由题可求出顶点C 的轨迹方程,再利用相关点法可求垂心H 的轨迹方程;(2)利用弦长公式可求||DE ,再利用韦达定理法求||PQ ,由||2||DE PQ =得出2221m k ≥+,然后结合判别式大于零即可证. 【详解】设ABC 的外心为1O ,半径为R ,则有22sin ABR ACB==∠,所以1πcos 13OO R ==即1(0,1)O ,设(,)C x y ,()00,H x y ,有1O C R =,即有22(1)4x y +-=(0y ≠), 由CH AB ⊥,则有0x x =,由AH BC ⊥,则有(00(0AH BC x x y y ⋅=+=,所以有(220(3(1)12x x x y y y yy y---=-===-,则有()220014x y ++=(02y ≠-),所以ABC 垂心H 的轨迹方程为22(1)4x y ++=(2y ≠-); (2)记点(0,1)-到直线l 的距离为d ,则有d =所以||DE==,设()11,P x y,()22,Q x y,联立2221y kx mx y=+⎧⎨+=⎩,有()2222210k x kmx m+++-=,所以()224220k m∆=+->,||PQ==由||2||DE PQ=,可得()()()()()2222222222222418141(1)8412222k m k km mk k kk k++++-=-≤-+++++,所以()22222248(1)212m mk kk++≤+++,即有()()()22222224181(1)22k k mmk k+++≤+++,所以()()()22222222418122(1)22k k mm mk k+++--≥-++,即22222222222221(1)101222k k m k mm mk k k k⎛⎫-=-⇒-≥⇒≥+⎪+++⎝⎭又0∆>,可得2212km<+,所以222112kk+<+,解得22k>,故||k>56.(1)2212xy+=;(2)10x y±-=.【分析】(1)利用22sin cos1θθ+=求得点C的轨迹E的方程.(2)设直线l的方程为1x my=-,联立直线l的方程和曲线E的方程,化简写出根与系数关系,求得MN、PQ,由1PQMN=求得m的值,从而求得直线l的方程.【详解】 (1)设(),C x y ,则,sin x y θθ⎧=⎪⎨=⎪⎩,即cos sin yθθ⎧=⎪⎨⎪=⎩, 所以2212x y +=,所以E 的方程为2212x y +=.(2)由题意知,直线l 的斜率不为0,设直线:1l x my =-,()()()1122,,,,,p p M x y N x y P x y .联立2221,1x y x my ⎧+=⎨=-⎩,消去x ,得()22+2210m y my --=,此时()281m ∆=+0>,且12222m y y m +=+,12212y y m =-+又由弦长公式得MN =整理得2212m MN m ++. 又122+=22p y y m y m =+,所以2212p p x my m -=-=+,所以222222p m PQ x m ++=+,所以1PQMN =, 所以21m =,即1m =±.综上,当1m =±,即直线l 的斜率为±1时,MN PQ =, 此时直线l 为10x y ±-=. 【点睛】求解直线和圆锥曲线相交所得弦长,往往采用设而不求,整体代入的方法来求解.。

高考数学-解析几何-专题练习及答案解析版

高考数学-解析几何-专题练习及答案解析版

高考数学解析几何专题练习解析版82页1.已知双曲线的方程为22221(0,0)x y a b a b-=>>, 过左焦点F 1的直线交双曲线的右支于点P , 且y 轴平分线段F 1P , 则双曲线的离心率是( ) A . 3B .32+C . 31+D . 322. 一个顶点的坐标()2,0, 焦距的一半为3的椭圆的标准方程是( ) A. 19422=+y x B. 14922=+y x C. 113422=+y x D. 141322=+y x3.已知过抛物线y 2 =2px (p>0)的焦点F 的直线x -my+m=0与抛物线交于A , B 两点, 且△OAB (O 为坐标原点)的面积为, 则m 6+ m 4的值为( ) A .1B . 2C .3D .44.若直线经过(0,1),(3,4)A B 两点, 则直线AB 的倾斜角为 A .30o B . 45o C .60o D .120o5.已知曲线C 的极坐标方程ρ=2θ2cos ,给定两点P(0, π/2), Q (-2, π), 则有 ( )(A)P 在曲线C 上, Q 不在曲线C 上 (B)P 、Q 都不在曲线C 上 (C)P 不在曲线C 上, Q 在曲线C 上 (D)P 、Q 都在曲线C 上 6.点M 的直角坐标为)1,3(--化为极坐标为( ) A .)65,2(π B .)6,2(π C .)611,2(π D .)67,2(π7.曲线的参数方程为⎩⎨⎧-=+=12322t y t x (t 是参数), 则曲线是( ) A 、线段 B 、直线 C 、圆 D 、射线 8.点(2,1)到直线3x-4y+2=0的距离是( ) A .54 B .45C .254 D .4259. 圆06422=+-+y x y x 的圆心坐标和半径分别为( )A.)3,2(-、13B.)3,2(-、13C.)3,2(--、13D.)3,2(-、1310.椭圆12222=+by x 的焦点为21,F F ,两条准线与x 轴的交点分别为M 、N , 若212F F MN ≤, 则该椭圆离心率取得最小值时的椭圆方程为 ( )A.1222=+y x B. 13222=+y x C.12222=+y x D.13222=+y x 11.过双曲线的右焦点F 作实轴所在直线的垂线, 交双曲线于A , B 两点, 设双曲线的左顶点M , 若MAB ∆是直角三角形, 则此双曲线的离心率e 的值为 ( )A .32B .2C .2D .312.已知)0(12222>>=+b a b y a x , N M ,是椭圆上关于原点对称的两点, P 是椭圆上任意一点且直线PN PM ,的斜率分别为21,k k , 021≠k k , 则21k k +的最小值为1,则椭圆的离心率为( ). (A)22 (B) 42 (C) 23 (D)43 13.设P 为双曲线11222=-y x 上的一点, F 1、F 2是该双曲线的两个焦点, 若2:3:21=PF PF , 则△PF 1F 2的面积为( )A .36B .12C .123D .2414.如果过点()m P ,2-和()4,m Q 的直线的斜率等于1,那么m 的值为( ) A .4B .1C .1或3D .1或415.已知动点(,)P x y 在椭圆2212516x y +=上,若A 点坐标为(3,0),||1AM =u u u u r ,且0PM AM ⋅=u u u u r u u u u r则||PM u u u u r 的最小值是( )A .2B .3C .2D .3 16.直线l 与抛物线交于A,B 两点;线段AB 中点为, 则直线l 的方程为A 、B 、、C 、D 、17.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为32, 过右焦点F 且斜率为(0)k k >的直线与C 相交于A B 、两点.若3AF FB =u u u r u u u r, 则k =( )(A )1 (B (C (D )2 18.圆22(2)4x y ++=与圆22(2)(1)9x y -+-=的位置关系为( )A.内切B.相交C.外切D.相离 19.已知点P 在定圆O 的圆内或圆周上,动圆C 过点P 与定圆O 相切,则动圆C 的圆心轨迹可能是( )(A)圆或椭圆或双曲线 (B)两条射线或圆或抛物线 (C)两条射线或圆或椭圆 (D)椭圆或双曲线或抛物线20.若直线l :y =kx 与直线2x +3y -6=0的交点位于第一象限, 则直线l 的倾斜角的取值范围是( ) A .[6π, 3π) B .(6π, 2π) C .(3π, 2π) D .[6π, 2π] 21.直线l 与两直线1y =和70x y --=分别交于,A B 两点, 若线段AB 的中点为(1,1)M -, 则直线l 的斜率为( )A .23B .32 C .32- D . 23- 22.已知点()()0,0,1,1O A -, 若F 为双曲线221x y -=的右焦点, P 是该双曲线上且在第一象限的动点, 则OA FP uu r uu r⋅的取值范围为( )A .)1,1 B .C .(D .)+∞23.若b a ,满足12=+b a , 则直线03=++b y ax 过定点( ).A ⎪⎭⎫ ⎝⎛-21,61 B .⎪⎭⎫ ⎝⎛-61,21 C .⎪⎭⎫ ⎝⎛61,21 .D ⎪⎭⎫ ⎝⎛-21,6124.双曲线1922=-y x 的实轴长为 ( ) A. 4 B. 3 C. 2 D. 125.已知F 1 、F 2分别是双曲线1by a x 2222=-(a>0,b>0)的左、右焦点, P 为双曲线上的一点, 若︒=∠9021PF F ,且21PF F ∆的三边长成等差数列, 则双曲线的离心率是( )A .2B . 3C . 4D . 526.过A(1, 1)、B(0, -1)两点的直线方程是( )A.B.C.D.y=x27.抛物线x y 122=上与焦点的距离等于6的点横坐标是( )A .1B .2 C.3 D.428.已知圆22:260C x y x y +-+=, 则圆心P 及半径r 分别为 ( ) A 、圆心()1,3P , 半径10r =; B 、圆心()1,3P , 半径10r =;C 、圆心()1,3P -, 半径10r =;D 、圆心()1,3P -, 半径10r =29.F 1、F 2是双曲线C :x 2- 22y b=1的两个焦点, P 是C 上一点, 且△F 1PF 2是等腰直角三角形, 则双曲线C 的离心率为 A .12 B .22C .32 D .3230.圆01222=--+x y x 关于直线032=+-y x 对称的圆的方程是( ) A.21)2()3(22=-++y x B.21)2()3(22=++-y x C.2)2()3(22=-++y xD.2)2()3(22=++-y x31.如图, 轴截面为边长为34等边三角形的圆锥, 过底面圆周上任一点作一平面α, 且α与底面所成二面角为6π, 已知α与圆锥侧面交线的曲线为椭圆, 则此椭圆的离心率为( )(A )43 (B )23 (C )33 (D ) 22 32.已知直线(2)(0)y k x k =+>与抛物线C :28y x =相交于A.B 两点, F 为C 的焦点,若2FA FB=, 则k =( )A. 13B. 2C. 23D. 2233.已知椭圆23)0(1:2222的离心率为>>=+b a by a x C , 过右焦点F 且斜率为)0(>k k 的直线与B A C ,相交于两点, 若3=, 则=k ( ) A. 1 B .2 C . 3 D .234.已知抛物线2:2(0)C y px p =>的准线为l , 过(1,0)M 且斜率为3的直线与l 相交于点A , 与C 的一个交点为B .若AM MB =u u u u r u u u r, 则P 的值为( )(A )1 (B )2 (C )3 (D )435.若动圆与圆(x -2)2+y 2=1外切, 又与直线x +1=0相切, 则动圆圆心的轨迹方程是 ( ) A.y 2=8x B.y 2=-8x C.y 2=4x D.y 2=-4x36.若R k ∈, 则方程12322=+++k y k x 表示焦点在x 轴上的双曲线的充要条件是( )A .23-<<-kB .3-<kC .3-<k 或2->kD .2->k 37.点(-1, 2)关于直线y =x -1的对称点的坐标是 (A )(3, 2) (B )(-3, -2) (C )(-3, 2) (D )(3, -2) 38.设圆422=+y x 的一条切线与x 轴、y 轴分别交于点B A 、, 则AB 的最小值为( )A 、4B 、24C 、6D 、839.圆220x y ax by +++=与直线220(0)ax by a b +=+≠的位置关系是 ( ) A .直线与圆相交但不过圆心. B . 相切. C .直线与圆相交且过圆心. D . 相离40.椭圆的长轴为A1A2, B 为短轴的一个端点, 若∠A1BA2=120°, 则椭圆的离心率为A .36B .21C .33D .2341.已知圆C 与圆(x -1)2+y 2=1关于直线y =-x 对称, 则圆C 的方程为( ) A .(x +1)2+y 2=1 B .x 2+y 2=1 C .x 2+(y +1)2=1 D .x 2+(y -1)2=142.已知直线l 经过坐标原点, 且与圆22430x y x +-+=相切, 切点在第四象限, 则直线l 的方程为( )A.3y x = B .3y x =- C .3y x =D .3y x =- 43.当曲线214y x =+-与直线240kx y k --+=有两个相异的交点时, 实数k 的取值范围是 ( ) A .5(0,)12 B .13(,]34 C .53(,]124 D .5(,)12+∞ 44.已知F 1、F 2分别是双曲线22221x y a b-=的左、右焦点,P 为双曲线右支上的任意一点且212||8||PF a PF =, 则双曲线离心率的取值范围是( ) A. (1,2]B. [2 +∞)C. (1,3]D. [3,+∞)45.已知P 是圆22(3)(3)1x y -+-=上或圆内的任意一点, O 为坐标原点,1(,0)2OA =u u u r , 则OA OP ⋅u u u r u u u r 的最小值为( )A .12B .32C .1D .246.已知0AB >且0BC <, 则直线0Ax By C ++=一定不经过( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限47.[2012·课标全国卷]等轴双曲线C 的中心在原点, 焦点在x 轴上, C 与抛物线y 2=16x 的准线交于A , B 两点, |AB|=43, 则C 的实轴长为( )A.2B.22C.4D.8 48.双曲线具有光学性质:“从双曲线的一个焦点发出的光线经过双曲线反射后, 反射光线的反向延长线都汇聚到双曲线的另一个焦点。

解析几何练习题及答案

解析几何练习题及答案

解析几何一、选择题1.已知两点A (-3,3),B (3,-1),则直线AB 的斜率是()A.3B.-3C.33D.-33解析:斜率k =-1-33--3=-33,故选D.答案:D2.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是()A.1B.-1C.-2或-1D.-2或1解析:①当a =0时,y =2不合题意.②a ≠0,x =0时,y =2+a .y =0时,x =a +2a,则a +2a=a +2,得a =1或a =-2.故选D.答案:D3.两直线3x +y -3=0与6x +my +1=0平行,则它们之间的距离为()A.4B.21313C.51326D.71020解析:把3x +y -3=0转化为6x +2y -6=0,由两直线平行知m =2,则d =|1--6|62+22=71020.故选D.4.(2014皖南八校联考)直线2x -y +1=0关于直线x =1对称的直线方程是()A.x +2y -1=0B.2x +y -1=0C.2x +y -5=0D.x +2y -5=0解析:由题意可知,直线2x -y +1=0与直线x =1的交点为(1,3),直线2x -y +1=0的倾斜角与所求直线的倾斜角互补,因此它们的斜率互为相反数,直线2x -y +1=0的斜率为2,故所求直线的斜率为-2,所以所求直线的方程是y -3=-2(x -1),即2x +y -5=0.故选C.答案:C5.若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值围是()A.π6,D.π3,π2解析:由题意,可作直线2x +3y -6=0的图象,如图所示,则直线与x 轴、y 轴交点分别为A (3,0),B (0,2),又直线l 过定点(0,-3),由题知直线l 与线段AB 相交(交点不含端点),从图中可以看出,直线l B.答案:B6.(2014一模)过点A (2,3)且垂直于直线2x +y -5=0的直线方程为()A.x -2y +4=0B.2x +y -7=0C.x -2y +3=0D.x -2y +5=0解析:直线2x +y -5=0的斜率为k =-2,∴所求直线的斜率为k ′=12,∴方程为y -3=12(x -2),即x -2y +4=0.答案:A7.过点(2,1)且在x 轴上截距与在y 轴上截距之和为6的直线方程为____________.解析:由题意知截距均不为零.设直线方程为x a +yb =1,b =6,+1b=1,=3=3=4=2.故所求直线方程为x +y -3=0或x +2y -4=0.答案:x +y -3=0或x +2y -4=08.(2014质检)若过点A (-2,m ),B (m,4)的直线与直线2x +y +2=0平行,则m 的值为________.解析:∵过点A ,B 的直线平行于直线2x +y +2=0,∴k AB =4-m m +2=-2,解得m =-8.答案:-89.若过点P (1-a,1+a )与Q (3,2a )的直线的倾斜角为钝角,则实数a 的取值围是________.解析:由直线PQ 的倾斜角为钝角,可知其斜率k <0,即2a -1+a 3-1-a <0,化简得a -1a +2<0,∴-2<a <1.答案:(-2,1)10.已知k ∈R ,则直线kx +(1-k )y +3=0经过的定点坐标是________.解析:令k =0,得y +3=0,令k =1,得x +3=0.+3=0,+3=0,=-3,=-3,所以定点坐标为(-3,-3).答案:(-3,-3)三、解答题11.已知两直线l 1:x +y sin α-1=0和l 2:2x sin α+y +1=0,试求α的值,使(1)l 1∥l 2;(2)l 1⊥l 2.解:(1)法一当sin α=0时,直线l 1的斜率不存在,l 2的斜率为0,显然l 1不平行于l 2.当sin α≠0时,k 1=-1sin α,k 2=-2sin α.要使l 1∥l 2,需-1sin α=-2sin α,即sin α=±22,∴α=k π±π4,k ∈Z .故当α=k π±π4,k ∈Z 时,l 1∥l 2.法二由l 1∥l 22α-1=0,α≠0,∴sin α=±22,∴α=k π±π4,k ∈Z .故当α=k π±π4,k ∈Z 时,l 1∥l 2.(2)∵l 1⊥l 2,∴2sin α+sin α=0,即sin α=0.∴α=k π,k ∈Z .故当α=k π,k ∈Z 时,l 1⊥l 2.12.设直线l 1:y =k 1x +1,l 2:y =k 2x -1,其中实数k 1,k 2满足k 1k 2+2=0.(1)证明l 1与l 2相交;(2)证明l 1与l 2的交点在椭圆2x 2+y 2=1上.证明:(1)假设l 1与l 2不相交,则l 1∥l 2即k 1=k 2,代入k 1k 2+2=0,得k 21+2=0,这与k 1为实数的事实相矛盾,从而k 1≠k 2,即l 1与l 2相交.(2)法一=k 1x +1,=k 2x -1解得交点P而2x 2+y 2=8+k 22+k 21+2k 1k 2k 22+k 21-2k 1k 2=k 21+k 22+4k 21+k 22+4=1.即P (x ,y )在椭圆2x 2+y 2=1上.即l 1与l 2的交点在椭圆2x 2+y 2=1上.法二交点P 的坐标(x ,y-1=k 1x ,+1=k 2x ,故知x ≠0.1=y -1x,2=y +1x.代入k 1k 2+2=0,得y -1x ·y +1x+2=0,整理后,得2x 2+y 2=1.所以交点P 在椭圆2x 2+y 2=1上.第八篇第2节一、选择题1.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为()A.x 2+(y -2)2=1B.x 2+(y +2)2=1C.(x -1)2+(y -3)2=1D.x 2+(y -3)2=1解析:由题意,设圆心(0,t ),则12+t -22=1,得t =2,所以圆的方程为x 2+(y -2)2=1,故选A.答案:A2.(2014模拟)动点P 到点A (8,0)的距离是到点B (2,0)的距离的2倍,则动点P 的轨迹方程为()A.x 2+y 2=32B.x 2+y 2=16C.(x -1)2+y 2=16D.x 2+(y -1)2=16解析:设P (x ,y ),则由题意可得2x -22+y 2=x -82+y 2,化简整理得x 2+y 2=16,故选B.答案:B3.(2012年高考卷)已知圆C :x 2+y 2-4x =0,l 是过点P (3,0)的直线,则()A.l 与C 相交B.l 与C 相切C.l 与C 相离D.以上三个选项均有可能解析:x 2+y 2-4x =0是以(2,0)为圆心,以2为半径的圆,而点P (3,0)到圆心的距离为d =3-22+0-02=1<2,点P (3,0)恒在圆,过点P (3,0)不管怎么样画直线,都与圆相交.故选A.答案:A4.(2012年高考卷)将圆x 2+y 2-2x -4y +1=0平分的直线是()A.x +y -1=0B.x +y +3=0C.x -y +1=0D.x -y +3=0解析:由题知圆心在直线上,因为圆心是(1,2),所以将圆心坐标代入各选项验证知选项C 符合,故选C.答案:C5.(2013年高考卷)垂直于直线y =x +1且与圆x 2+y 2=1相切于第一象限的直线方程是()A.x +y -2=0B.x +y +1=0C.x +y -1=0D.x +y +2=0解析:与直线y =x +1垂直的直线方程可设为x +y +b =0,由x +y +b =0与圆x 2+y 2=1相切,可得|b |12+12=1,故b =± 2.因为直线与圆相切于第一象限,故结合图形分析知b =-2,则直线方程为x +y -2=0.故选A.答案:A6.(2012年高考卷)直线x +3y -2=0与圆x 2+y 2=4相交于A 、B 两点,则弦AB 的长度等于()A.25B.23C.3D.1解析:因为圆心到直线x +3y -2=0的距离d =|0+3×0-2|12+32=1,半径r =2,所以弦长|AB |=222-12=2 3.故选B.答案:B 二、填空题7.(2013年高考卷)直线y =2x +3被圆x 2+y 2-6x -8y =0所截得的弦长等于________.解析:圆的方程可化为(x -3)2+(y -4)2=25,故圆心为(3,4),半径r =5.又直线方程为2x -y +3=0,∴圆心到直线的距离为d =|2×3-4+3|4+1=5,∴弦长为2×25-5=220=4 5.答案:458.已知直线l :x -y +4=0与圆C :(x -1)2+(y -1)2=2,则圆C 上各点到l 的距离的最小值为________.解析:因为圆C 的圆心(1,1)到直线l 的距离为d =|1-1+4|12+-12=22,又圆半径r = 2.所以圆C 上各点到直线l 的距离的最小值为d -r = 2.答案:29.已知圆C 的圆心在直线3x -y =0上,半径为1且与直线4x -3y =0相切,则圆C 的标准方程是________.解析:∵圆C 的圆心在直线3x -y =0上,∴设圆心C (m,3m ).又圆C 的半径为1,且与4x -3y =0相切,∴|4m -9m |5=1,∴m =±1,∴圆C 的标准方程为(x -1)2+(y -3)2=1或(x +1)2+(y +3)2=1.答案:(x -1)2+(y -3)2=1或(x +1)2+(y +3)2=110.圆(x -2)2+(y -3)2=1关于直线l :x +y -3=0对称的圆的方程为________.解析:已知圆的圆心为(2,3),半径为1.则对称圆的圆心与(2,3)关于直线l 对称,由数形结合得,对称圆的圆心为(0,1),半径为1,故方程为x 2+(y -1)2=1.答案:x 2+(y -1)2=1三、解答题11.已知圆C :x 2+(y -2)2=5,直线l :mx -y +1=0.(1)求证:对m ∈R ,直线l 与圆C 总有两个不同交点;(2)若圆C 与直线相交于点A 和点B ,求弦AB 的中点M 的轨迹方程.(1)证明:法一直线方程与圆的方程联立,消去y 得(m 2+1)x 2-2mx -4=0,∵Δ=4m 2+16(m 2+1)=20m 2+16>0,∴对m ∈R ,直线l 与圆C 总有两个不同交点.法二直线l :mx -y +1恒过定点(0,1),且点(0,1)在圆C :x 2+(y -2)2=5部,∴对m ∈R ,直线l 与圆C 总有两个不同交点.(2)解:设A (x 1,y 1),B (x 2,y 2),M (x ,y ),由方程(m 2+1)x 2-2mx -4=0,得x 1+x 2=2mm 2+1,∴x =mm 2+1.当x =0时m =0,点M (0,1),当x ≠0时,由mx -y +1=0,得m =y -1x,代入x =m m 2+1,得+1=y -1x,化简得x 2=14.经验证(0,1)也符合,∴弦AB 的中点M 的轨迹方程为x 2=14.12.已知圆C :x 2+y 2-8y +12=0,直线l :ax +y +2a =0.(1)当a 为何值时,直线l 与圆C 相切;(2)当直线l 与圆C 相交于A 、B 两点,且|AB |=22时,求直线l 的方程.解:将圆C 的方程x 2+y 2-8y +12=0配方得标准方程为x 2+(y -4)2=4,则此圆的圆心为(0,4),半径为2.(1)若直线l 与圆C 相切,则有|4+2a |a 2+1=2.解得a =-34.(2)过圆心C 作CD ⊥AB ,则根据题意和圆的性质,|=|4+2a |a 2+1,|2+|DA |2=22,|=12|AB |=2,解得a =-7,或a =-1.故所求直线方程为7x -y +14=0或x -y +2=0.第八篇第3节一、选择题1.设P 是椭圆x225+y216=1上的点.若F 1、F 2是椭圆的两个焦点,则|PF 1|+|PF 2|等于()A.4B.5C.8D.10解析:由方程知a =5,根据椭圆定义,|PF 1|+|PF 2|=2a =10.故选D.答案:D2.(2014二模)P 为椭圆x24+y23=1上一点,F 1,F 2为该椭圆的两个焦点,若∠F 1PF 2=60°,则PF 1→·PF 2→等于()A.3B.3C.23D.2解析:由椭圆方程知a =2,b =3,c =1,1|+|PF 2|=4,1|2+|PF 2|2-4=2|PF 1||PF 2|cos 60°∴|PF 1||PF 2|=4.∴PF 1→·PF 2→=|PF 1→||PF 2→|cos 60°=4×12=2.答案:D3.(2012年高考卷)椭圆x 2a 2+y2b 2=1(a >b >0)的左、右顶点分别是A 、B ,左、右焦点分别是F 1,F 2.若|AF 1|,|F 1F 2|,|F 1B |成等比数列,则此椭圆的离心率为()A.14B.55C.12D.5-2解析:本题考查椭圆的性质与等比数列的综合运用.由椭圆的性质可知|AF 1|=a -c ,|F 1F 2|=2c ,|F 1B |=a +c ,又|AF 1|,|F 1F 2|,|F 1B |成等比数列,故(a -c )(a +c )=(2c )2,可得e =c a =55.故应选B.答案:B4.(2013年高考卷)已知椭圆C :x 2a 2+y2b2=1(a >b >0)的左焦点为F ,C 与过原点的直线相交于A ,B 两点,连接AF ,BF .若|AB |=10,|BF |=8,cos∠ABF =45,则C 的离心率为()A.35B.57C.45D.67解析:|AF |2=|AB |2+|BF |2-2|AB ||BF |cos∠ABF =100+64-2×10×8×45=36,则|AF |=6,∠AFB =90°,半焦距c =|FO |=12|AB |=5,设椭圆右焦点F 2,连结AF 2,由对称性知|AF 2|=|FB |=8,2a =|AF 2|+|AF |=6+8=14,即a =7,则e =c a =57.故选B.答案:B5.已知椭圆E :x2m +y24=1,对于任意实数k ,下列直线被椭圆E 截得的弦长与l :y =kx+1被椭圆E 截得的弦长不可能相等的是()A.kx +y +k =0B.kx -y -1=0C.kx +y -k =0D.kx +y -2=0解析:取k =1时,l :y =x +1.选项A 中直线:y =-x -1与l 关于x 轴对称,截得弦长相等.选项B 中直线:y =x -1与l 关于原点对称,所截弦长相等.选项C 中直线:y =-x +1与l 关于y 轴对称,截得弦长相等.排除选项A、B、C,故选D.答案:D6.(2014省实验中学第二次诊断)已知椭圆x 2a 2+y2b 2=1(a >b >0)的左、右焦点分别为F 1(-c,0),F 2(c,0),若椭圆上存在点P ,使asin∠PF 1F 2=csin∠PF 2F 1,则该椭圆的离心率的取值围为()A.(0,2-1)D.(2-1,1)解析:由题意知点P 不在x 轴上,在△PF 1F 2中,由正弦定理得|PF 2|sin∠PF 1F 2=|PF 1|sin∠PF 2F 1,所以由a sin∠PF 1F 2=csin∠PF 2F 1可得a|PF 2|=c |PF 1|,即|PF 1||PF 2|=c a =e ,所以|PF 1|=e |PF 2|.由椭圆定义可知|PF 1|+|PF 2|=2a ,所以e |PF 2|+|PF 2|=2a ,解得|PF 2|=2a e +1.由于a -c <|PF 2|<a +c ,所以有a -c <2ae +1<a +c ,即1-e <2e +1<1+e ,1-e 1+e<2,1+e2,解得2-1<e .又0<e <1,∴2-1<e <1.故选D.答案:D 二、填空题7.设F 1、F 2分别是椭圆x225+y216=1的左、右焦点,P 为椭圆上一点,M 是F 1P 的中点,|OM |=3,则P 点到椭圆左焦点距离为________.解析:∵|OM |=3,∴|PF 2|=6,又|PF 1|+|PF 2|=10,∴|PF 1|=4.答案:48.椭圆x 2a 2+y2b2=1(a >b >0)的左、右焦点分别是F 1、F 2,过F 2作倾斜角为120°的直线与椭圆的一个交点为M ,若MF 1垂直于x 轴,则椭圆的离心率为________.解析:不妨设|F 1F 2|=1,∵直线MF 2的倾斜角为120°,∴∠MF 2F 1=60°.∴|MF 2|=2,|MF 1|=3,2a =|MF 1|+|MF 2|=2+3,2c =|F 1F 2|=1.∴e =ca=2- 3.答案:2-39.(2014模拟)过点(3,-5),且与椭圆y225+x29=1有相同焦点的椭圆的标准方程为________________.解析:由题意可设椭圆方程为y225-m+x29-m=1(m <9),代入点(3,-5),得525-m +39-m=1,解得m =5或m =21(舍去),∴椭圆的标准方程为y220+x24=1.答案:y220+x24=110.已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF 1→⊥PF 2→.若△PF 1F 2的面积为9,则b =________.解析:1|+|PF 2|=2a ,1|2+|PF 2|2=4c 2,∴(|PF 1|+|PF 2|)2-2|PF 1||PF 2|=4c 2,即4a 2-2|PF 1||PF 2|=4c 2,∴|PF 1||PF 2|=2b 2,∴S △PF 1F 2=12|PF 1||PF 2|=b 2=9,∴b =3.答案:3三、解答题11.(2012年高考卷)在平面直角坐标系xOy 中,已知椭圆C 1:x 2a 2+y2b2=1(a >b >0)的左焦点为F 1(-1,0),且点P (0,1)在C 1上.(1)求椭圆C 1的方程;(2)设直线l 同时与椭圆C 1和抛物线C 2:y 2=4x 相切,求直线l 的方程.解:(1)由椭圆C 1的左焦点为F 1(-1,0),且点P (0,1)在C 12-b 2=1,=1,2=2,2=1.故椭圆C 1的方程为x22+y 2=1.(2)由题意分析,直线l 斜率存在且不为0,设其方程为y =kx +b ,由直线l 与抛物线C 2=kx +b ,2=4x ,消y 得k 2x 2+(2bk -4)x +b 2=0,Δ1=(2bk -4)2-4k 2b 2=0,化简得kb =1.①由直线l 与椭圆C 1kx +b ,y 2=1,消y 得(2k 2+1)x 2+4bkx +2b 2-2=0,Δ2=(4bk )2-4(2k 2+1)(2b 2-2)=0,化简得2k 2=b 2-1.②=1,k 2=b 2-1,解得b 4-b 2-2=0,∴b 2=2或b 2=-1(舍去),∴b =2时,k =22,b =-2时,k =-22.即直线l 的方程为y =22x +2或y =-22x - 2.12.(2014海淀三模)已知椭圆C :x2a 2+y2b 2=1(a >b >0)的四个顶点恰好是一边长为2,一角为60°的菱形的四个顶点.(1)求椭圆C 的方程;(2)若直线y =kx 交椭圆C 于A ,B 两点,在直线l :x +y -3=0上存在点P ,使得△PAB 为等边三角形,求k 的值.解:(1)因为椭圆C :x 2a 2+y2b2=1(a >b >0)的四个顶点恰好是一边长为2,一角为60°的菱形的四个顶点.所以a =3,b =1,椭圆C 的方程为x23+y 2=1.(2)设A (x 1,y 1),则B (-x 1,-y 1),当直线AB 的斜率为0时,AB 的垂直平分线就是y 轴,y 轴与直线l :x +y -3=0的交点为P (0,3),又因为|AB |=23,|PO |=3,所以∠PAO =60°,所以△PAB 是等边三角形,所以直线AB 的方程为y =0,当直线AB 的斜率存在且不为0时,则直线AB 的方程为y =kx ,y 2=1,kx ,化简得(3k 2+1)x 2=3,所以|x 1|=33k 2+1,则|AO |=1+k233k 2+1=3k 2+33k 2+1.设AB 的垂直平分线为y =-1kx ,它与直线l :x +y -3=0的交点记为P (x 0,y 0),=-x +3,=-1k x ,0=3k k -1,0=-3k -1.则|PO |=9k 2+9k -12,因为△PAB 为等边三角形,所以应有|PO |=3|AO |,代入得9k 2+9k -12=33k 2+33k 2+1,解得k =0(舍去),k =-1.综上,k =0或k =-1.第八篇第4节一、选择题1.设P 是双曲线x216-y220=1上一点,F 1,F 2分别是双曲线左右两个焦点,若|PF 1|=9,则|PF 2|等于()A.1B.17C.1或17D.以上答案均不对解析:由双曲线定义||PF 1|-|PF 2||=8,又|PF 1|=9,∴|PF 2|=1或17,但应注意双曲线的右顶点到右焦点距离最小为c -a =6-4=2>1,∴|PF 2|=17.故选B.答案:B2.(2013年高考卷)已知0<θ<π4,则双曲线C 1:x 2sin 2θ-y 2cos 2θ=1与C 2:y 2cos 2θ-x2sin 2θ=1的()A.实轴长相等B.虚轴长相等C.离心率相等D.焦距相等解析:双曲线C 1的半焦距c 1=sin 2θ+cos 2θ=1,双曲线C 2的半焦距c 2=cos 2θ+sin 2θ=1,故选D.答案:D3.(2012年高考卷)已知双曲线C :x 2a 2-y2b2=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为()A.x220-y25=1B.x25-y220=1C.x280-y220=1D.x220-y280=1解析:由焦距为10,知2c =10,c =5.将P (2,1)代入y =bax 得a =2b .a 2+b 2=c 2,5b 2=25,b 2=5,a 2=4b 2=20,所以方程为x220-y25=1.故选A.答案:A4.已知F 1、F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2等于()A.14B.35C.34D.45解析:∵c 2=2+2=4,∴c =2,2c =|F 1F 2|=4,由题可知|PF 1|-|PF 2|=2a =22,|PF 1|=2|PF 2|,∴|PF 2|=22,|PF 1|=42,由余弦定理可知cos∠F 1PF 2=422+222-422×42×22=34.故选C.答案:C5.设椭圆C 1的离心率为513,焦点在x 轴上且长轴长为26,若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为()A.x242-y232=1B.x2132-y252=1C.x232-y242=1D.x2132-y2122=1解析:在椭圆C 1中,因为e =513,2a =26,即a =13,所以椭圆的焦距2c =10,则椭圆两焦点为(-5,0),(5,0),根据题意,可知曲线C 2为双曲线,根据双曲线的定义可知,双曲线C 2中的2a 2=8,焦距与椭圆的焦距相同,即2c 2=10,可知b 2=3,所以双曲线的标准方程为x242-y232=1.故选A.答案:A6.(2014八中模拟)若双曲线x29-y216=1渐近线上的一个动点P 总在平面区域(x -m )2+y 2≥16,则实数m 的取值围是()A.[-3,3]B.(-∞,-3]∪[3,+∞)C.[-5,5]D.(-∞,-5]∪[5,+∞)解析:因为双曲线x 29-y 216=1渐近线4x ±3y =0上的一个动点P 总在平面区域(x -m )2+y 2≥16,即直线与圆相离或相切,所以d =|4m |5≥4,解得m ≥5或m ≤-5,故实数m 的取值围是(-∞,-5]∪[5,+∞).选D.答案:D 二、填空题7.(2013年高考卷)已知F 为双曲线C :x29-y216=1的左焦点,P ,Q 为C 上的点.若PQ的长等于虚轴长的2倍,点A (5,0)在线段PQ 上,则△PQF 的周长为________.解析:由题知,双曲线中a =3,b =4,c =5,则|PQ |=16,又因为|PF |-|PA |=6,|QF |-|QA |=6,所以|PF |+|QF |-|PQ |=12,|PF |+|QF |=28,则△PQF 的周长为44.答案:448.已知双曲线C :x 2a 2-y2b2=1(a >0,b >0)的离心率e =2,且它的一个顶点到较近焦点的距离为1,则双曲线C 的方程为________.解析:双曲线中,顶点与较近焦点距离为c -a =1,又e =ca=2,两式联立得a =1,c =2,∴b 2=c 2-a 2=4-1=3,∴方程为x 2-y23=1.答案:x 2-y23=19.(2014市第三次质检)已知点P 是双曲线x2a 2-y2b2=1(a >0,b >0)和圆x 2+y 2=a 2+b 2的一个交点,F 1,F 2是该双曲线的两个焦点,∠PF 2F 1=2∠PF 1F 2,则该双曲线的离心率为________.解析:依题意得,线段F 1F 2是圆x 2+y 2=a 2+b 2的一条直径,故∠F 1PF 2=90°,∠PF 1F 2=30°,设|PF 2|=m ,则有|F 1F 2|=2m ,|PF 1|=3m ,该双曲线的离心率等于|F 1F 2|||PF 1|-|PF 2||=2m3m -m =3+1.答案:3+110.(2013年高考卷)设F 1,F 2是双曲线C :x2a 2-y2b 2=1(a >0,b >0)的两个焦点.若在C 上存在一点P ,使PF 1⊥PF 2,且∠PF 1F 2=30°,则C 的离心率为________.解析:设点P 在双曲线右支上,由题意,在Rt△F 1PF 2中,|F 1F 2|=2c ,∠PF 1F 2=30°,得|PF 2|=c ,|PF 1|=3c ,根据双曲线的定义:|PF 1|-|PF 2|=2a ,(3-1)c =2a ,e =ca =23-1=3+1.答案:3+1三、解答题11.已知双曲线x 2-y22=1,过点P (1,1)能否作一条直线l ,与双曲线交于A 、B 两点,且点P 是线段AB 的中点?解:法一设点A (x 1,y 1),B (x 2,y 2)在双曲线上,且线段AB 的中点为(x 0,y 0),若直线l 的斜率不存在,显然不符合题意.设经过点P 的直线l 的方程为y -1=k (x -1),即y =kx +1-k .=kx+1-k,2-y22=1,得(2-k2)x2-2k(1-k)x-(1-k)2-2=0(2-k2≠0).①∴x=x1+x22=k1-k2-k2.由题意,得k1-k2-k2=1,解得k=2.当k=2时,方程①成为2x2-4x+3=0.Δ=16-24=-8<0,方程①没有实数解.∴不能作一条直线l与双曲线交于A,B两点,且点P(1,1)是线段AB的中点.法二设A(x1,y1),B(x2,y2),若直线l的斜率不存在,即x1=x2不符合题意,所以由题得x21-y212=1,x22-y222=1,两式相减得(x1+x2)(x1-x2)-y1+y2y1-y22=0,即2-y1-y2x1-x2=0,即直线l斜率k=2,得直线l方程y-1=2(x-1),即y=2x-1,=2x-1,2-y22=1得2x2-4x+3=0,Δ=16-24=-8<0,即直线y=2x-1与双曲线无交点,即所求直线不合题意,所以过点P(1,1)的直线l不存在.12.(2014质检)中心在原点,焦点在x 轴上的一椭圆与一双曲线有共同的焦点F 1,F 2,且|F 1F 2|=213,椭圆的长半轴长与双曲线实半轴长之差为4,离心率之比为3∶7.(1)求这两曲线方程;(2)若P 为这两曲线的一个交点,求cos∠F 1PF 2的值.解:(1)由已知c =13,设椭圆长、短半轴长分别为a 、b ,双曲线实半轴、虚半轴长分别为m 、n ,-m =4,·13a=3·13m,解得a =7,m =3.∴b =6,n =2.∴椭圆方程为x249+y236=1,双曲线方程为x29-y24=1.(2)不妨设F 1、F 2分别为左、右焦点,P 是第一象限的一个交点,则|PF 1|+|PF 2|=14,|PF 1|-|PF 2|=6,∴|PF 1|=10,|PF 2|=4.又|F 1F 2|=213,∴cos∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|=102+42-21322×10×4=45.第八篇第5节一、选择题1.(2014模拟)抛物线y =2x 2的焦点坐标为()B.(1,0)解析:抛物线y =2x 2,即其标准方程为x 2=12y C.答案:C2.抛物线的焦点为椭圆x24+y29=1的下焦点,顶点在椭圆中心,则抛物线方程为()A.x 2=-45y B.y 2=-45x C.x 2=-413yD.y 2=-413x解析:由椭圆方程知,a 2=9,b 2=4,焦点在y 轴上,下焦点坐标为(0,-c ),其中c =a 2-b 2=5,∴抛物线焦点坐标为(0,-5),∴抛物线方程为x 2=-45y .故选A.答案:A3.已知抛物线y 2=2px ,以过焦点的弦为直径的圆与抛物线准线的位置关系是()A.相离B.相交C.相切D.不确定解析:如图所示,设抛物线焦点弦为AB ,中点为M ,准线为l ,A 1、B 1分别为A 、B 在直线l 上的射影,则|AA 1|=|AF |,|BB 1|=|BF |,于是M 到l 的距离d =12(|AA 1|+|BB 1|)=12(|AF |+|BF |)=12|AB |,故圆与抛物线准线相切.故选C.答案:C4.(2014高三统一考试)已知F 是抛物线y 2=4x 的焦点,过点F 的直线与抛物线交于A ,B 两点,且|AF |=3|BF |,则线段AB 的中点到该抛物线准线的距离为()A.53B.83C.103D.10解析:设点A (x 1,y 1),B (x 2,y 2),其中x 1>0,x 2>0,过A ,B 两点的直线方程为x =my +1,将x =my +1与y 2=4x 联立得y 2-4my -4=0,y 1y 2=-4,1+1=3x 2+1,1x 2=y 214·y 224=y 1y 2216=1,解得x 1=3,x 2=13,故线段AB 的中点到该抛物线的准线x =-1的距离等于x 1+x 22+1=83.故选B.答案:B5.已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,|AF |+|BF |=3,则线段AB 的中点到y 轴的距离为()A.34B.1C.54D.74解析:∵|AF |+|BF |=x A +x B +12=3,∴x A +x B =52.∴线段AB 的中点到y 轴的距离为x A +x B 2=54.故选C.答案:C6.设M (x 0,y 0)为抛物线C :x 2=8y 上一点,F 为抛物线C 的焦点,以F 为圆心、|FM |为半径的圆和抛物线C 的准线相交,则y 0的取值围是()A.(0,2)B.[0,2]C.(2,+∞)D.[2,+∞)解析:∵x 2=8y ,∴焦点F 的坐标为(0,2),准线方程为y =-2.由抛物线的定义知|MF |=y 0+2.以F 为圆心、|FM |为半径的圆的标准方程为x 2+(y -2)2=(y 0+2)2.由于以F 为圆心、|FM |为半径的圆与准线相交,又圆心F 到准线的距离为4,故4<y 0+2,∴y 0>2.故选C.答案:C 二、填空题7.动直线l 的倾斜角为60°,且与抛物线x 2=2py (p >0)交于A ,B 两点,若A ,B 两点的横坐标之和为3,则抛物线的方程为________.解析:设直线l 的方程为y =3x +b ,=3x +b ,2=2py消去y ,得x 2=2p (3x +b ),即x 2-23px -2pb =0,∴x 1+x 2=23p =3,∴p =32,则抛物线的方程为x 2=3y .答案:x 2=3y8.以抛物线x 2=16y 的焦点为圆心,且与抛物线的准线相切的圆的方程为________.解析:抛物线的焦点为F (0,4),准线为y =-4,则圆心为(0,4),半径r =8.所以,圆的方程为x 2+(y -4)2=64.答案:x 2+(y -4)2=649.(2012年高考卷)在直角坐标系xOy 中,直线l 过抛物线y 2=4x 的焦点F ,且与该抛物线相交于A ,B 两点,其中点A 在x 轴上方,若直线l 的倾斜角为60°,则△OAF 的面积为________.解析:∵抛物线y 2=4x ,∴焦点F 的坐标为(1,0).又∵直线l 倾斜角为60°,∴直线斜率为3,∴直线方程为y =3(x -1).联立方程y =3x -1,y 2=4x ,解得x 1=13,y 1=-233,或x 2=3,y 2=23,由已知得A 的坐标为(3,23),∴S △OAF =12|OF |·|y A |=12×1×23= 3.答案:310.已知点P 是抛物线y 2=2x 上的动点,点P 在y 轴上的射影是M ,点A 72,4,则|PA |+|PM |的最小值是________.解析:设点M 在抛物线的准线上的射影为M ′.由已知可得抛物线的准线方程为x =-12,焦点F 坐标为12,0.求|PA |+|PM |的最小值,可先求|PA |+|PM ′|的最小值.由抛物线的定义可知,|PM ′|=|PF |,所以|PA |+|PF |=|PA |+|PM ′|,当点A 、P 、F 在一条直线上时,|PA |+|PF |有最小值|AF |=5,所以|PA |+|PM ′|≥5,又因为|PM ′|=|PM |+12,所以|PA |+|PM |≥5-12=92.答案:92三、解答题11.若抛物线y =2x 2上的两点A (x 1,y 1)、B (x 2,y 2)关于直线l :y =x +m 对称,且x 1x 2=-12,数m 的值.解:法一如图所示,连接AB ,∵A 、B 两点关于直线l 对称,∴AB ⊥l ,且AB 中点M (x 0,y 0)在直线l 上.可设l AB :y =-x +n ,=-x +n ,=2x 2,得2x 2+x -n =0,∴x 1+x 2=-12,x 1x 2=-n2由x 1x 2=-12,得n =1.又x 0=x 1+x 22=-14,y 0=-x 0+n =14+1=54,即点M -14,由点M 在直线l 上,得54=-14+m ,∴m =32.法二∵A 、B 两点在抛物线y =2x 2上.1=2x 21,2=2x 22,∴y 1-y 2=2(x 1+x 2)(x 1-x 2).设AB 中点M (x 0,y 0),则x 1+x 2=2x 0,k AB =y 1-y 2x 1-x 2=4x 0.又AB ⊥l ,∴k AB =-1,从而x 0=-14.又点M 在l 上,∴y 0=x 0+m =m -14,即-14,m∴AB 的方程是y 即y =-x +m -12,代入y =2x 2,得2x 2+x x 1x 2=-m -122=-12,∴m =3212.已知过抛物线y 2=2px (p >0)的焦点,斜率为22的直线交抛物线于A (x 1,y 1),B (x 2,y 2)(x 1<x 2)两点,且|AB |=9.(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OC →=OA →+λOB →,求λ的值.解:(1)直线AB 的方程是y y 2=2px 联立,从而有4x 2-5px +p 2=0,所以x 1+x 2=5p4.由抛物线定义得|AB |=x 1+x 2+p =9,所以p =4,从而抛物线方程是y 2=8x .(2)由p =4知4x 2-5px +p 2=0可化为x 2-5x +4=0,从而x 1=1,x 2=4,y 1=-22,y 2=42,从而A (1,-22),B (4,42).设OC →=(x 3,y 3)=(1,-22)+λ(4,42)=(4λ+1,42λ-22),即C (4λ+1,42λ-22),所以[22(2λ-1)]2=8(4λ+1),即(2λ-1)2=4λ+1,解得λ=0或λ=2.。

解析几何(二)含答案

解析几何(二)含答案
解析几何(二)
1.双曲线 的左右顶点分别为 ,曲线 上的一点 关于 轴的对称点为 ,若直线 的斜率为 ,直线 的斜率为 ,则当 取到最小值时,双曲线离心率为( )
A. B.2C.3D.6
2.已知直线 与椭圆 恒有公共点,则实数m的取值范围()
A. B.
C. D.
3.已知抛物线C: 的焦点为F,过点F且倾斜角 的直线l与C交于A,B两点,O为坐标原点,若 的面积 ,则线段AB的中点M到y轴的距离是()
【详解】设 ,由 ,得 ,
因为 ,则由余弦定理可得

解得 ,
则 ,即 ①,
又 经过点 ,
所以 ②
联立①②,解得 ,则
所以 的虚轴长为
故选:C
7.D
【分析】抛物线 的准线为 ,焦点为 ,当 , , 三点共线时, 到点 的距离 与点 到抛物线的焦点距离 之和最小,从而 的最小值为 .
【详解】解:如图所示,
17.已知 , 分别是双曲线C: 的左右焦点,双曲线C的右支上一点Q满足 ,O为坐标原点,直线 与该双曲线的左支交于P点,且 ,则双曲线C的渐近线方程为______.
18.已知椭圆 的离心率为 , 分别是椭圆 的左、右焦点,点 在椭圆 上且在以 为直径的圆上.线段 与 轴交于点 , ,则椭圆 的长轴长为_____.
(1)证明:直线 的斜率为定值;
(2)在 中,记 , ,求 最大值.
22.平面直角坐标系 中,已知椭圆 ,椭圆 .设点 为椭圆 上任意一点,过点 的直线 交椭圆 于 两点,射线 交椭圆 于点 .
(1)求 的值;
(2)求 面积的最大值.
23.平面直角坐标系 中,已知椭圆 ,椭圆 .设点 为椭圆 上任意一点,过点 的直线 交椭圆 于 两点,射线 交椭圆 于点 .

(完整版)解析几何专题含答案

(完整版)解析几何专题含答案

椭圆专题练习1.【2017浙江,2】椭圆22194x y +=的离心率是A B C .23D .592.【2017课标3,理10】已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A .B C D .133.【2016高考浙江理数】已知椭圆C 1:22x m +y 2=1(m >1)与双曲线C 2:22x n–y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则()A .m >n 且e 1e 2>1B .m >n 且e 1e 2<1C .m <n 且e 1e 2>1D .m <n 且e 1e 2<14.【2016高考新课标3理数】已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为()(A )13(B )12(C )23(D )345.【2015高考新课标1,理14】一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为.6.【2016高考江苏卷】如图,在平面直角坐标系xOy 中,F 是椭圆22221()x y a b a b+=>>0的右焦点,直线2by =与椭圆交于,B C 两点,且90BFC ∠=o ,则该椭圆的离心率是. 7.【2017课标1,理20】已知椭圆C :2222=1x y a b +(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,2),P 4(1,2)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.8.【2017课标II ,理】设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足NP =u u u r u u u r。

解析几何专题(含答案)

解析几何专题(含答案)

解析几何与极坐标和参数方程专题1. 已知命题 p :方程x 22m+y 29−m=1 表示焦点在 y 轴上的椭圆,命题 q :双曲线 y 25−x 2m=1 的离心率e ∈(√62,√2),若命题 p ,q 中有且只有一个为真命题,求实数 m 的取值范围.2. 在直角坐标系 xOy 中,曲线 C 1 的参数方程为 {x =√3cosα,y =sinα,(α 为参数),以坐标原点为极点,以 x轴的正半轴为极轴,建立极坐标系,曲线 C 2 的极坐标方程为 ρsin (θ+π4)=2√2.(1)写出 C 1 的普通方程和 C 2 的直角坐标方程;(2)设点 P 在 C 1 上,点 Q 在 C 2 上,求 ∣PQ ∣ 的最小值及此时 P 的直角坐标.3. 在直角坐标系 xOy 中,直线 C 1:x =−2,圆 C 2:(x −1)2+(y −2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求 C 1,C 2 的极坐标方程;(2)若直线 C 3 的极坐标方程为 θ=π4(ρ∈R ),设 C 2 与 C 3 的交点为 M ,N ,求 △C 2MN 的面积.4. 已知抛物线的对称轴为坐标轴,顶点是坐标原点,准线方程为 x =−1,直线 l 与抛物线相交于不同的 A ,B 两点.(1)求抛物线的标准方程;(2)如果直线 l 过抛物线的焦点,求 OA⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗ 的值; (3)如果 OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗ =−4,直线 l 是否过一定点,若过一定点,求出该定点;若不过一定点,试说明理由.5. 已知抛物线C:y2=2px(p>0)与直线x−√2y+4=0相切.(1)求该抛物线的方程;(2)在x轴正半轴上,是否存在某个确定的点M,过该点的动直线l与抛物线C交于A,B两点,使得1∣AM∣2+1∣BM∣2为定值.如果存在,求出点M坐标;如果不存在,请说明理由.6. 在平面直角坐标系xOy中,动点A的坐标为(2−3sinα,3cosα−2),其中α∈R.在极坐标系(以原点O为极点,以x轴非负半轴为极轴)中,直线C的方程为ρcos(θ−π4)=a.(1)判断动点A的轨迹的形状;(2)若直线C与动点A的轨迹有且仅有一个公共点,求实数a的值.7. 在平面直角坐标系 xOy 中,已知椭圆 C :x 2a2+y 2b 2=1(a >b >0) 的离心率为 √63.且过点 (3,−1).(1)求椭圆 C 的方徎;(2)动点 P 在直线 l :x =−2√2 上,过 P 作直线交椭圆 C 于 M ,N 两点,使得 PM =PN ,再过 P 作直线 lʹ⊥MN ,直线 lʹ 是否恒过定点,若是,请求出该定点的坐标;若否,请说明理由.8. 在平面直角坐标系 xOy 中,C 1:{x =t,y =k (t −1)(t 为参数).以原点 O 为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线 C 2:ρ2+10ρcosθ−6ρsinθ+33=0.(1)求 C 1 的普通方程及 C 2 的直角坐标方程,并说明它们分别表示什么曲线; (2)若 P ,Q 分别为 C 1,C 2 上的动点,且 ∣PQ ∣ 的最小值为 2,求 k 的值.9. 设 F 1,F 2 分别是椭圆 C:x 2a2+y 2b 2=1(a >b >0) 的左,右焦点,M 是 C 上一点且 MF 2 与 x 轴垂直.直线 MF 1 与 C 的另一个交点为 N . (1)若直线 MN 的斜率为 34,求 C 的离心率;(2)若直线 MN 在 y 轴上的截距为 2,且 ∣MN∣=5∣∣F 1N∣∣,求 a ,b .10. 已知抛物线 E:x 2=2py (p >0),直线 y =kx +2 与 E 交于 A ,B 两点,且 OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗ =2,其中 O 为原点.(1)求抛物线 E 的方程;(2)点 C 坐标为 (0,−2),记直线 CA ,CB 的斜率分别为 k 1,k 2,证明:k 12+k 22−2k 2 为定值.11. 已知椭圆的一个顶点为A(0,−1),焦点在x轴上.若右焦点到直线x−y+2√2=0的距离为3.(1)求椭圆的方程;(2)设椭圆与直线y=kx+m(k≠0)相交于不同的两点M,N.当∣AM∣=∣AN∣时,求m的取值范围.12. 双曲线C与椭圆x28+y24=1有相同的焦点,直线y=√3x为C的一条渐近线.求双曲线C的方程.13. 已知不过第二象限的直线 l:ax −y −4=0 与圆 x 2+(y −1)2=5 相切. (1)求直线 l 的方程;(2)若直线 l 1 过点 (3,−1) 且与直线 l 平行,直线 l 2 与直线 l 1 关于直线 y =1 对称,求直线 l 2 的方程.14. 在直角坐标系 xOy 中,圆 C 的参数方程 {x =1+cosφ,y =sinφ(φ 为参数).以 O 为极点,x 轴的非负半轴为极轴建立极坐标系. (1)求圆 C 的极坐标方程;(2)直线 l 的极坐标方程是 ρ(sinθ+√3cosθ)=3√3,射线 OM :θ=π3 与圆 C 的交点为 O ,P ,与直线 l 的交点为 Q ,求线段 PQ 的长.15. 双曲线与椭圆有共同的焦点F1(0,−5),F2(0,5),点P(3,4)是双曲线的渐近线与椭圆的一个交点,求椭圆的方程和双曲线方程.16. 在抛物线y=4x2上有一点P,若点P到直线y=4x−5的距离最短,求该点P坐标和最短距离.17. 已知函数y=a2−x+1(a>0,且a≠1)的图象恒过定点A,点A在直线mx+ny=1(mn>0)上,求1m +1n的最小值.18. 已知直线l:y=x+m与抛物线y2=8x交于A,B两点,(1)若∣AB∣=10,求m的值;(2)若OA⊥OB,求m的值.19. 若椭圆的对称轴在坐标轴上,两焦点与两短轴端点正好是正方形的四个顶点,又焦点到同侧长轴端点的距离为√2−1,求椭圆的方程.20. 讨论直线l:y=kx+1与双曲线C:x2−y2=1的公共点的个数.21. 已知p:方程x2+2mx+(m+2)=0有两个不等的正根;q:方程x2m+3−y22m−1=1表示焦点在y轴上的双曲线.(1)若q为真命题,求实数m的取值范围;(2)若“p或q”为真,“p且q”为假,求实数m的取值范围.22. 已知双曲线的焦点在x轴上,∣F1F2∣=2√3,渐近线方程为√2x±y=0,问:过点B(1,1)能否作直线l,使l与双曲线交于M,N两点,并且点B为线段MN的中点?若存在,求出直线l的方程;若不存在,请说明理由.23. 已知点 P (2,0) 及圆 C :x 2+y 2−6x +4y +4=0.(1)设过 P 的直线 l 1 与圆 C 交于 M ,N 两点,当 ∣MN∣=4 时,求以 MN 为直径的圆 Q 的方程; (2)设直线 ax −y +1=0 与圆 C 交于 A ,B 两点,是否存在实数 a ,使得过点 P (2,0) 的直线 l 2 垂直平分弦 AB ?若存在,求出实数 a 的值;若不存在,请说明理由.24. 在直角坐标系 xOy 中,已知直线 l:{x =1+√22ty =2+√22t (t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线 C:ρ2(1+sin 2θ)=2.(1)写出直线 l 的普通方程和曲线 C 的直角坐标方程;(2)设点 M 的直角坐标为 (1,2),直线 l 与曲线 C 的交点为 A ,B ,求 ∣MA ∣⋅∣MB ∣ 的值.25. 已知椭圆C:x2a2+y2b2=1(a>b>0),离心率为√32,两焦点分别为F1,F2,过F1的直线交椭圆C于M,N两点,且△F2MN的周长为8.(1)求椭圆C的方程;(2)过点P(m,0)作圆x2+y2=1的切线l交椭圆C于A,B两点,求弦长∣AB∣的最大值.26. 已知数列{a n}的首项为1,S n为数列{a n}的前n项和,S n=qS n−1+1,其中q>0,n>1,n∈N∗.(1)若2a2,a3,a2+2成等差数列,求{a n}的通项公式;(2)设双曲线x2−y2a n2=1的离心率为e n,且e2=3,求e12+e22+⋯+e n2.27. 已知曲线 C 的极坐标方程为 ρ=2cosθ−4sinθ,以极点为原点,极轴为 x 轴的正半轴,建立平面直角坐标系,直线 l 的参数方程为 {x =1+tcosα,y =−1+tsinα(t 为参数).(1)判断直线 l 与曲线 C 的位置关系,并说明理由;(2)若直线 l 和曲线 C 相交于 A ,B 两点,且 ∣AB ∣=3√2,求直线 l 的斜率.28. 已知椭圆x 2a2+y 2b 2=1(a >b >0) 的离心率 e =√63,坐标原点到直线 l:y =bx +2 的距离为 √2.(1)求椭圆的方程;(2)若直线 y =kx +2(k ≠0) 与椭圆相交于 C ,D 两点,是否存在实数 k ,使得以 CD 为直径的圆过点 E (−1,0)?若存在,求出 k 的值,若不存在,请说明理由.29. 在平面直角坐标系xOy中,直线l经过点P(−3,0),其倾斜角为α,以原点O为极点,以x轴非负半轴为极轴,与直角坐标系xOy取相同的长度单位,建立极坐标系.设曲线C的极坐标方程为ρ2−2ρcosθ−3=0.(1)若直线l与曲线C有公共点,求倾斜角α的取值范围;(2)设M(x,y)为曲线C上任意一点,求x+y的取值范围.30. 椭圆与双曲线有许多优美的对称性质.对于椭圆x2a2+y2b2=1(a>b>0)有如下命题:AB是椭圆x2 a2+y2b2=1(a>b>0)的不平行于对称轴且不过原点的弦,M为AB的中点,则k OM⋅k AB=−b2a2为定值.那么对于双曲线x 2a2−y2b2=1(a>0,b>0)则有命题:AB是双曲线x2a2−y2b2=1(a>0,b>0)的不平行于对称轴且不过原点的弦,M为AB的中点,则k OM⋅k AB=定值.(在横线上填上正确的结论)并证明你的结论.31. (1)求中心在原点,焦点在x轴上,焦距等于4,且经过点P(3,−2√6)的椭圆方程;(2)求e=√6,并且过点(3,0)的椭圆的标准方程.332. 已知抛物线y2=4x,焦点为F,顶点为O,点P在抛物线上移动,Q是OP的中点,M是FQ的中点,求点M的轨迹方程.33. 已知点A(0,−2),椭圆E:x2a2+y2b2=1(a>b>0)的离心率为√32,F是椭圆的焦点,直线AF的斜率为2√33,O为坐标原点.(1)求E的方程;(2)设过点A的直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l的方程.34. P为椭圆x225+y29=1上一点,F1,F2为左右焦点,若∠F1PF2=60∘.(1)求△F1PF2的面积;(2)求P点的坐标.35. 已知双曲线 C:x 2a2−y 2b 2=1(a >0,b >0) 的渐近线方程为:y =±√3x ,右顶点为 (1,0).(1)求双曲线 C 的方程;(2)已知直线 y =x +m 与双曲线 C 交于不同的两点 A ,B ,且线段 AB 的中点为 M (x 0,y 0).当 x 0≠0 时,求 y0x 0的值.36. 已知双曲线 x 216−y 24=1 的两焦点为 F 1,F 2.(1)若点 M 在双曲线上,且 MF 1⃗⃗⃗⃗⃗⃗⃗⃗ ⋅MF 2⃗⃗⃗⃗⃗⃗⃗⃗ =0,求 M 点到 x 轴的距离;(2)若双曲线 C 与已知双曲线有相同焦点,且过点 (3√2,2),求双曲线 C 的方程.37. 椭圆x2a2+y2b2=1(a>b>0)的两个焦点为F1,F2,点P在椭圆C上,且∣PF1∣=43,∣PF2∣=143,PF1⊥PF2.(1)求椭圆C的方程;(2)若直线L过圆x2+y2+4x−2y=0的圆心M交椭圆于A,B两点,且A,B关于点M对称,求直线L的方程.38. 已知半径为5的圆的圆心在x轴上,圆心的横坐标是整数,且与直线4x+3y−29=0相切.(1)求圆的方程;(2)设直线ax−y+5=0(a>0)与圆相交于A,B两点,求实数a的取值范围;(3)在(Ⅱ)的条件下,是否存在实数a,使得弦AB的垂直平分线l过点P(−2,4),若存在,求出实数a的值;若不存在,请说明理由.39. 已知直线 C 1:{x =1+tcosα,y =tsinα(t 为参数),圆 C 2:{x =cosθ,y =sinθ(θ 为参数).(1)当 α=π3 时,求 C 1 与 C 2 的交点坐标;(2)过坐标原点 O 作 C 1 的垂线,垂足为 A ,P 为 OA 的中点,当 α 变化时,求点 P 轨迹的参数方程,并指出它是什么曲线.40. 已知圆 C 和 y 轴相切,圆心在直线 x −3y =0 上,且被直线 y =x 截得的弦长为 2√7,求圆 C 的方程.41. 如图,直线 l:y =x +b 与抛物线 C:x 2=4y 相切于点 A . (1)求实数 b 的值;(2)求以 A 点为圆心,且与抛物线 C 的准线相切的圆的方程.42. 在直角坐标系 xOy 中,圆 C 的方程为 (x +6)2+y 2=25.(1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求圆 C 的极坐标方程;(2)直线 l 的参数方程是 {x =tcosα,y =tsinα,(t 为参数),直线 l 与圆 C 交于 A ,B 两点,∣AB∣=√10,求 l 的斜率.43. 已知双曲线与椭圆x29+y225=1有公共焦点F1,F2,它们的离心率之和为245.(1)求双曲线的标准方程;(2)设P是双曲线与椭圆的一个交点,求cos∠F1PF2.44. 抛物线顶点在原点,它的准线过双曲线x2a2−y2b2=1(a>0,b>0)的一个焦点,并与双曲线实轴垂直,已知抛物线与双曲线的一个交点为(32,√6),求抛物线与双曲线方程.45. 已知曲线 C 上任一点 P 到点 F (1,0) 的距离比它到直线 l :x =−2 的距离少 1. (1)求曲线 C 的方程;(2)过点 Q (1,2) 作两条倾斜角互补的直线与曲线 C 分别交于点 A ,B ,试问:直线 AB 的斜率是否为定值,请说明理由.46. 在平面直角坐标系 xOy 中,圆 C 的参数方程为 {x =2cosφ,y =2sinφ(φ 为参数),直线 l 过点 (0,2) 且倾斜角为 π3.(1)求圆 C 的普通方程及直线 l 的参数方程;(2)设直线 l 与圆 C 交于 A ,B 两点,求弦 ∣AB ∣ 的长.47. 已知椭圆C:x2a2+y2b2=1(a>b>0)的一个长轴顶点为A(2,0),离心率为√22,直线y=k(x−1)与椭圆C交于不同的两点M,N.(1)求椭圆C的方程;(2)当△AMN的面积为√103时,求k的值.48. 已知椭圆x2a2+y2b2=1(a>b>0)的左、右焦点为F1,F2,A点在椭圆上,离心率是√22,AF2与x轴垂直,且∣AF2∣=√2.(1)求椭圆的方程;(2)若点A在第一象限,过点A作直线l,与椭圆交于另一点B,求△AOB面积的最大值.49. 已知点 (1,√22) 在椭圆 C:x 2a2+y 2b 2=1(a >b >0) 上,椭圆离心率为 √22.(1)求椭圆 C 的方程;(2)过椭圆 C 右焦点 F 的直线 l 与椭圆交于两点 A ,B ,在 x 轴上是否存在点 M ,使得 MA ⃗⃗⃗⃗⃗⃗ ⋅MB ⃗⃗⃗⃗⃗⃗ 为定值?若存在,求出点 M 的坐标;若不存在,请说明理由.答案1. 若命题 p :方程 x 22m +y 29−m =1 表示焦点在 y 轴上的椭圆为真命题; 则 9−m >2m >0, 解得 0<m <3,则命题 p 为假命题时,m ≤0 或 m ≥3,若命题 q :双曲线 y 25−x 2m =1 的离心率 e ∈(√62,√2) 为真命题; 则 √5+m 5∈(√62,√2),即5+m 5∈(32,2),即 52<m <5,则命题 q 为假命题时,m ≤52 或 m ≥5,因为命题 p ,q 中有且只有一个为真命题, 当 p 真 q 假时,0<m ≤52, 当 p 假 q 真时,3≤m <5,综上所述,实数 m 的取值范围是:0<m ≤52 或 3≤m <5.2. (1) C 1:{x =√3cosα,y =sinα(α 为参数)的直角坐标方程是:x 23+y 2=1,C 2 的直角坐标方程:ρsin (θ+π4)=2√2, 整理得,√22ρsinθ+√22ρcosθ=2√2,x +y =4.(2) 设 x +y =4 的平行线为 l 1:x +y +c =0, 当 l 1:x +y +c =0 且 c <0 和 C 1 相切时 ∣PQ ∣ 距离最小, 联立直线和椭圆方程得 x 23+(x +c )2−1=0,整理得4x 23+2cx +c 2−1=0,需要满足 Δ=−4c 23+163=0,求得 c =±2,当直线为 l 1:x +y −2=0 时,满足题意,来自QQ 群339444963 此时 ∣PQ ∣=√2,此时直线 l 1 和椭圆交点即是 P 点坐标 (32,12).3. (1) C 1:ρcosθ=−2,C 2:ρ2−2ρcosθ−4ρsinθ+4=0. (2) C 3:y =x ,圆 C 2 的圆心 C 2 到 y =x 的距离 d =√2=√22, ∴∣MN∣=2⋅√12−(√22)2=√2,∴S △C 2MN =12⋅∣MN∣⋅d =12⋅√2⋅√22=12.4. (1) 已知抛物线的对称轴为坐标轴,顶点是坐标原点,准线方程为 x =−1, 所以 p 2=1,p =2.所以抛物线的标准方程为 y 2=4x .(2) 设 l:my =x −1,与 y 2=4x 联立,得 y 2−4my −4=0, 设 A (x 1,y 1),B (x 2,y 2), 所以 y 1+y 2=4m ,y 1y 2=−4, 所以OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗ =x 1x 2+y 1y 2=(m 2+1)y 1y 2+m (y 1+y 2)+1=−3.(3) 假设直线 l 过定点,设 l:my =x +n ,{my =x +n,y 2=4x, 得 y 2−4my +4n =0,设 A (x 1,y 1),B (x 2,y 2), 所以 y 1+y 2=4m ,y 1y 2=4n . 由OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗ =−4=(m 2+1)y 1y 2−mn (y 1+y 2)+n 2=n 2+4n,解得 n =−2,所以 l:my =x −2 过定点 (2,0). 5. (1) 联立方程有,{x −√2y +4=0,y 2=2px,有 y 2−2√2py +8p =0,由于直线与抛物线相切,得 Δ=8p 2−32p =0,所以 p =4, 所以 y 2=8x .(2) 假设存在满足条件的点 M (m,0)(m >0),直线 l:x =ty +m ,有 {x =ty +m,y 2=8x, y 2−8ty −8m =0,设 A (x 1,y 1),B (x 2,y 2),有 Δ>0,y 1+y 2=8t ,y 1y 2=−8m ,∣AM ∣2=(x 1−m )2+y 12=(t 2+1)y 12,∣BM ∣2=(x 2−m )2+y 22=(t 2+1)y 22,1∣AM∣2+1∣BM∣2=1(t 2+1)y 12+1(t 2+1)y 22=1(t 2+1)(y 12+y 22y 12y 22)=1(t 2+1)(4t 2+m4m 2),当 m =4,满足 Δ>0 时,1∣AM∣2+1∣BM∣2 为定值, 所以 M (4,0).6. (1) 设动点 A 的直角坐标为 (x,y ),则 {x =2−3sinα,y =3cosα−2,所以动点 A 的轨迹方程为 (x −2)2+(y +2)2=9,其轨迹是半径为 3 的圆.(2) 直线 C 的极坐标方程 ρcos (θ−π4)=a 化为直角坐标方程是 √2x +√2y =2a ,由 ∣∣2√2−2√2−2a ∣∣2=3,得 a =3 或 a =−3.7. (1) 因为椭圆 C :x 2a 2+y 2b 2=1(a >b >0) 的离心率为 √63.且过点 (3,−1),所以 {9a 2+1b 2=1,c 2a 2=a 2−b 2a 2=(√63)2,解得 a 2=12,b 2=4, 所以椭圆 C 的方程为x 212+y 24=1.(2) 因为直线 l 的方程为 x =−2√2, 设 P(−2√2,y 0),y 0∈(−2√33,2√33), 当 y 0≠0 时,设 M (x 1,y 1),N (x 2,y 2),由题意知 x 1≠x 2,联立 {x 1212+y 124=1,x 2212+y 224=1,所以 x 12−x 2212+y 12−y 224=0, 所以y 1−y 2x 1−x 2=13⋅x 1+x 2y 1+y 2,又因为 PM =PN , 所以 P 为线段 MN 的中点, 所以直线 MN 的斜率为 −13⋅−2√2y 0=2√23y 0, 又 lʹ⊥MN ,所以 lʹ 的方程为 y −y 0=02√2+2√2),即 y =02√2+4√23), 所以 lʹ 恒过定点 (−4√23,0). 当 y 0=0 时,直线 MN 为 x =−2√2, 此时 lʹ 为 x 轴,也过点 (−4√23,0), 综上,lʹ 恒过定点 (−4√23,0).8. (1) 由 {x =t,y =k (t −1),可得其普通方程为 y =k (x −1), 它表示过定点 (1,0),斜率为 k 的直线.由 ρ2+10ρcosθ−6ρsinθ+33=0 可得其直角坐标方程为 x 2+y 2+10x −6y +33=0, 整理得 (x +5)2+(y −3)2=1,它表示圆心为 (−5,3),半径为 1 的圆. (2) 因为圆心 (−5,3) 到直线 y =k (x −1) 的距离 d =√1+k 2=√1+k 2,故 ∣PQ ∣ 的最小值为 √1+k 2−1,故√1+k 21=2,得 3k 2+4k =0, 解得 k =0 或 k =−43.9. (1) 根据 c =√a 2−b 2 及题设知 M (c,b 2a ),F 2(−c,0),由斜率公式并化简整理易得 2b 2=3ac . 将 b 2=a 2−c 2 代入 2b 2=3ac ,解得 ca =12 或 ca =−2(舍去). 故 C 的离心率为 12.(2) 由题意,得原点 O 为 F 1F 2 的中点,MF 2∥y 轴,所以直线 MF 1 与 y 轴的交点 D (0,2) 是线段 MF 1 的中点,故 b 2a =4,即b 2=4a. ⋯⋯① 由 ∣MN∣=5∣∣F 1N∣∣ 得 ∣DF 1∣=2∣∣F 1N∣∣. 设 N (x 1,y 1),由题意知 y 1<0, 则 {2(−c −x 1)=c,−2y 1=2, 即 {x 1=−32c,y 1=−1.代入 C 的方程,得 9c 24a 2+1b 2=1. ⋯⋯② 将 ① 及c =√a 2−b 2 代入 ② 得 9(a 2−4a )4a 2+14a =1.解得 a =7,b 2=4a =28,故 a =7,b =2√7.10. (1) 将 y =kx +2 代入 x 2=2py ,得 x 2−2pkx −4p =0. 其中 Δ>0,设 A (x 1,y 1),B (x 2,y 2),则 x 1+x 2=2pk ,x 1x 2=−4p .所以 OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗ =x 1x 2+y 1y 2=x 1x 2+x 122p ⋅x 222p =−4p +4.由已知,−4p +4=2,解得 p =12,所以抛物线 E 的方程为 x 2=y .(2) 由(1)知,x 1+x 2=k ,x 1x 2=−2. k 1=y 1+2x 1=x 12+2x 1=x 12−x 1x 2x 1=x 1−x 2,同理 k 2=x 2−x 1,k =y 1−y2x 1−x 2=x 12−x 22x 1−x 2=x 1+x 2,所以 k 12+k 22−2k 2=−8x 1x 2=16.11. (1) 依题意可设椭圆方程为 x 2a 2+y 2=1,则右焦点 F(√a 2−1,0),由题设∣∣√a 2−1+2√2∣∣√2=3,解得 a 2=3,故所求椭圆的方程为 x 23+y 2=1.(2) 设 P 为弦 MN 的中点,由 {y =kx +m,x 23+y 2=1,得 (3k 2+1)x 2+6mkx +3(m 2−1)=0, 由于直线与椭圆有两个交点,所以 Δ>0,即 m 2<3k 2+1, ⋯⋯① 所以 x P =x M +x N2=−3mk 3k 2+1, 从而 y P =kx P +m =m3k 2+1, 所以 k AP =y P +1x P=−m+3k 2+13mk,又 ∣AM∣=∣AN∣, 所以 AP ⊥MN , 则 −m+3k 2+13mk=−1k ,即 2m =3k 2+1, ⋯⋯②把 ② 代入 ① 得 2m >m 2 解得 0<m <2, 由 ② 得 k 2=2m−13>0,解得 m >12.故所求 m 的取值范围是 (12,2).12. 设双曲线方程为x 2a2−y 2b 2=1(a >0,b >0),由椭圆x 28+y 24=1,求得两焦点为 (−2,0),(2,0),所以对于双曲线 C :c =2.又 y =√3x 为双曲线 C 的一条渐近线, 所以 ba =√3,解得 a =1,b =√3. 所以双曲线 C 的方程为 x 2−y 23=1.13. (1) 因为直线 l 与圆 x 2+(y −1)2=5 √1+a 2=√5,因为直线 l 不过第二象限,所以 a =2, 所以直线 l 的方程为 2x −y −4=0.(2) 因为直线 l 1 过点 (3,−1) 且与直线 l 平行,所以设直线 l 1 的方程为 2x −y +b =0,因为直线 l 1 过点 (3,−1),所以 b =−7,则直线 l 1 的方程为 2x −y −7=0, 因为直线 l 2 与 l 1 关于 y =1 对称,所以直线 l 2 的斜率为 −2,且过点 (4,1), 所以直线 l 2 的方程为 y −1=−2(x −4),即化简得 2x +y −9=0. 14. (1) 圆 C 的参数方程 {x =1+cosφ,y =sinφ(φ 为参数).消去参数可得:(x −1)2+y 2=1.把 x =ρcosθ,y =ρsinθ 代入化简得:ρ=2cosθ,即为此圆的极坐标方程. (2) 如图所示,由直线 l 的极坐标方程是 ρ(sinθ+√3cosθ)=3√3,射线 OM :θ=π3.可得普通方程:直线 l :y +√3x =3√3,射线 OM :y =√3x . 联立 {y +√3x =3√3,y =√3x,解得 {x =32,y =3√32,即 Q (32,3√32). 联立 {y =√3x,(x −1)2+y 2=1,解得 {x =0,y =0 或 {x =12,y =√32. 所以 P (12,√32).来自QQ 群339444963所以 ∣PQ∣∣=√(12−32)2+(√32−3√32)2=2.15. 由共同的焦点 F 1(0,−5),F 2(0,5), 可设椭圆方程为y 2a2+x 2a 2−25=1,双曲线方程为 y 2b 2−x 225−b 2=1,点 P (3,4) 在椭圆上,16a 2+9a 2−25=1,解得 a 2=40,双曲线的过点 P (3,4) 的渐近线为 y =43x ,故b 225−b 2=169,解得 b 2=16.所以椭圆方程为:y 240+x 215=1; 双曲线方程为:y 216−x 29=1.16. 设点 P (t,4t 2),点 P 到直线 y =4x −5 的距离为 d ,则 d =2√17=4(t−12)2+4√17.当 t =12时,d 取得最小值,此时 P (12,1) 为所求的点,最短距离为 4√1717. 17. 当 x =2 时 y =2, 所以过定点 A (2,2), 因为 A 在直线上,所以 2m +2n =1,且 mn >0, 所以 1m +1n =(1m +1n )(2m +2n )=2+2+2m n+2n m≥4+2√4=8,即 1m +1n 的最小值为 8.18. (1) 设 A (x 1,y 1),B (x 2,y 2). {y =x +m,y 2=8x⇒x 2+(2m −8)x +m 2=0⇒{Δ=(2m −8)2−4m 2>0,x 1+x 2=8−2m,x 1x 2=m 2.∣AB ∣=√2∣x 1−x 2∣=√2√(x 1+x 2)2−4x 1x 2=10,m =716, 因为 m <2, 所以 m =716.(2) 因为 OA ⊥OB , 所以 x 1x 2+y 1y 2=0,x 1x 2+(x 1+m )(x 2+m )=0,2x 1x 2+m (x 1+x 2)+m 2=0. 2m 2+m (8−2m )+m 2=0,m 2+8m =0,m =0 或 m =−8, 经检验 m =−8.19. 因为椭圆的对称轴在坐标轴上,两焦点与两短轴的端点恰好是正方形的四个顶点, 所以 b =c ,a =√2b ,又焦点到同侧长轴端点距离为 √2−1,即 a −c =√2−1,即 a −b =√2−1,解得 a =√2,b =c =1, 所以当焦点在 x 轴时,椭圆的方程为:x 22+y 2=1; 当焦点在 y 轴时,椭圆的方程为y 22+x 2=1.20. 由方程组 {y =kx +1,x 2−y 2=1 消去 y ,得 (1−k 2)x 2−2kx −2=0,当 1−k 2=0,即 k =±1 时,有一个交点. 当 1−k 2≠0,即 k ≠±1 时,Δ=(−2k )2+4×2(1−k 2)=8−4k 2.由 Δ>0,即 8−4k 2>0,得 −√2<k <√2,此时有两个交点. 由 Δ=0,即 8−4k 2=0,得 k =±√2,此时有一个交点. 由 Δ<0,即 8−4k 2<0,得 k <−√2 或 k >√2,此时没有交点.综上知,当 k ∈(−√2,−1)∪(−1,1)∪(1,√2) 时,直线 l 与曲线 C 有两个交点; 当 k =±√2 时,直线 l 与曲线 C 切于一点; 当 k =±1 时,直线 l 与曲线 C 交于一点;当 k ∈(−∞,−√2)∪(√2,+∞) 时,直线 l 与曲线 C 没有交点.21. (1) 由已知方程 x 2m+3−y 22m−1=1 表示焦点在 y 轴上的双曲线,则 {m +3<0,1−2m >0,得 {m <−3,m <12,得 m <−3,即 q :m <−3. (2) 若方程 x 2+2mx +(m +2)=0 有两个不等的正根,则 {Δ=4m 2−4(m +2)>0,−2m >0,m +2>0,解得 −2<m <−1,即 p :−2<m <−1. 因 p 或 q 为真,所以 p ,q 至少有一个为真. 又 p 且 q 为假,所以 p ,q 至少有一个为假.因此,p ,q 两命题应一真一假,当 p 为真,q 为假时,{−2<m <−1,m ≥−3,解得 −2<m <−1;当 p 为假,q 为真时,{m ≤−2或m ≥−1,m <−3,解得 m <−3.综上,−2<m <−1 或 m <−3. 22. 根据题意,c =√3,ba =√2, 所以 a =1,b =√2.所以双曲线的方程是:x 2−y 22=1.过点 B (1,1) 的直线方程为 y =k (x −1)+1 或 x =1.①当 k 存在时,联立方程可得 (2−k 2)x 2+(2k 2−2k )x −k 2+2k −3=0.当直线与双曲线相交于两个不同点,可得 Δ=(2k 2−2k )2−4(2−k 2)(−k 2+2k −3)>0,k <32,又方程的两个不同的根是两交点 M ,N 的横坐标, 所以 x 1+x 2=2(k−k 2)2−k 2.又因为 B (1,1) 是线段 MN 的中点, 所以2(k−k 2)2−k 2=2,解得 k =2.所以 k =2,使 2−k 2≠0 但使 Δ<0.因此当 k =2 时,方程 (2−k 2)x 2+(2k 2−2k )x −k 2+2k −3=0 无实数解,故过点 B (1,1) 与双曲线交于两点 M ,N 且 B 为线段 MN 中点的直线不存在. ②当 x =1 时,直线经过点 B 但不满足条件. 综上所述,符合条件的直线 l 不存在.23. (1) 由于圆 C :x 2+y 2−6x +4y +4=0 的圆心 C (3,−2),半径为 3,∣CP∣=√5,而弦心距 d =√5,所以 d =∣CP∣=√5, 所以 P 为 MN 的中点,所以所求圆的圆心坐标为 (2,0),半径为 12∣MN∣=2,故以 MN 为直径的圆 Q 的方程为 (x −2)2+y 2=4;(2) 把直线 ax −y +1=0 即 y =ax +1 代入圆 C 的方程,消去 y ,整理得 (a 2+1)x 2+6(a −1)x +9=0.由于直线 ax −y +1=0 交圆 C 于 A ,B 两点,故 Δ=36(a −1)2−36(a 2+1)>0,即 −2a >0,解得 a <0.则实数 a 的取值范围是 (−∞,0).设符合条件的实数 a 存在,由于 l 2 垂直平分弦 AB ,故圆心 C (3,−2) 必在 l 2 上. 所以 l 2 的斜率 k PC =−2, 所以 k AB =a =12, 由于 12∉(−∞,0),故不存在实数 a ,使得过点 P (2,0) 的直线 l 2 垂直平分弦 AB .24. (1) 直线 l:{x =1+√22ty =2+√22t(t 为参数),消去参数 t 可得普通方程 l:x −y +1=0.曲线 C:ρ2(1+sin 2θ)=2,可得 ρ2+(ρsinθ)2=2, 可得直角坐标方程:x 2+y 2+y 2=2, 即 C:x 22+y 2=1.(2) 把 l:{x =1+√22t y =2+√22t 代入 x 22+y 2=1 中,整理得 3t 2+10√2t +14=0, 设 A ,B 对应的参数分别为 t 1,t 2, 所以 t 1⋅t 2=143,点 M 在直线上由 t 的几何意义可知,∣MA ∣∣MB ∣=∣t 1⋅t 2∣=143.25. (1) 由题得:ca =√32,4a =8,所以 a =2,c =√3. 又 b 2=a 2−c 2,所以 b =1,即椭圆 C 的方程为 x 24+y 2=1.(2) 由题意知,∣m∣≥1.当 m =1 时,切线 l 的方程 x =1,点 A ,B 的坐标分别为 (1,√32),(1,−√32),此时 ∣AB∣=√3;当 m =−1 时,同理可得 ∣AB∣=√3.当 ∣m∣>1 时,设切线 l 的方程为 y =k (x −m )(k ≠0), 由 l 与圆 x 2+y 2=1√k 2+1=1,即 m 2k 2=k 2+1.得 k 2=1m 2−1.由 {y =k (x −m ),x 24+y 2=1得 (1+4k 2)x 2−8k 2mx +4k 2m 2−4=0. 设 A ,B 两点的坐标分别为 (x 1,y 1),(x 2,y 2),则 Δ=64k 4m 2−4(1+4k 2)(4k 2m 2−4)=48k 2>0,x 1+x 2=8k 2m1+4k 2,x 1x 2=4k 2m 2−41+4k 2.所以∣AB∣=√(x 2−x 1)2+(y 2−y 1)2=√(1+k 2)[64k 4m 2(1+4k 2)2−4(4k 2m 2−4)1+4k 2]=4√3∣m∣m 2+3.因为 ∣m∣≥1, 所以 ∣AB∣=4√3∣m∣m 2+3=4√3∣m∣+3∣m∣≤2,且当 m =±√3 时,∣AB∣=2,由于当 m =±1 时,∣AB∣=√3,所以 ∣AB∣ 的最大值为 2.26. (1)当n≥2时,S n+1=qS n+1, ⋯⋯①S n=qS n−1+1, ⋯⋯②①−②得a n+1=q⋅a n,即从第二项开始,数列{a n}为等比数列,公比为q,当n=2时,S2=qS1+1,即a1+a2=qa1+1,可得a2=a1q,所以数列{a n}是以1为首项,q为公比的等比数列,所以a2=a1q=q,a3=a1q2=q2,因为2a2,a3,a2+2成等差数列,所以2a3=2a2+a2+2,即2q2=2q+q+2,解得q=2,所以数列{a n}是以1为首项,2为公比的等比数列,所以a n=2n−1;(2)由(1)可得数列{a n}是以1为首项,q为公比的等比数列,所以a n=q n−1>0,根据题意,e n2=1+a n2,因为e2=3,所以1+a22=9,解得a2=2√2,所以q=a2a1=2√2,所以a n=(2√2)n−1,所以e n2=1+a n2=1+8n−1,所以e12+e22+⋯+e n2=n+(1+8+82+⋯+8n−1)=n+8n−17.27. (1)因为曲线C的极坐标方程为ρ=2cosθ−4sinθ,所以ρ2=2ρcosθ−4ρsinθ,所以曲线C的直角坐标方程为x2+y2=2x−4y,即(x−1)2+(y+2)2=5,因为直线l过点(1,−1),且该点到圆心的距离为√(1−1)2+(−1+2)2<√5,所以直线l与曲线C相交.(2)当直线l的斜率不存在时,直线l过圆心,∣AB∣=2√5≠3√2,因此直线l必有斜率,设其方程为y+1=k(x−1),即kx−y−k−1=0,圆心到直线l的距离d=√k2+1=√(√5)2−(3√22)2,解得k=±1,所以直线l的斜率为±1.28. (1)直线l:y=bx+2,坐标原点到直线l的距离为√2,√b2+1=√2,所以 b =1, 因为椭圆的离心率 e =√63, 所以a 2−1a 2=(√63)2,所以 a 2=3, 所以所求椭圆的方程是x 23+y 2=1.(2) 直线 y =kx +2 代入椭圆方程,消去 y 可得:(1+3k 2)x 2+12kx +9=0, 所以 Δ=36k 2−36>0, 所以 k >1 或 k <−1,设 C (x 1,y 1),D (x 2,y 2),则有 x 1+x 2=−12k 1+3k2,x 1x 2=91+3k 2,因为 EC ⃗⃗⃗⃗⃗ =(x 1+1,y 1),ED ⃗⃗⃗⃗⃗ =(x 2+1,y 2),且以 CD 为直径的圆过点 E , 所以 EC ⊥ED ,所以 (x 1+1)(x 2+1)+y 1y 2=0,所以 (1+k 2)x 1x 2+(2k +1)(x 1+x 2)+5=0, 所以 (1+k 2)×91+3k 2+(2k +1)×(−12k1+3k 2)+5=0, 解得 k =76>1,所以当 k =76 时,以 CD 为直径的圆过定点 E .29. (1) 将曲线 C 的极坐标方程 ρ2−2ρcosθ−3=0 化为直角坐标方程为 x 2+y 2−2x −3=0, 直线 l 的参数方程为 {x =−3+tcosα,y =tsinα(t 为参数),将参数方程代入 x 2+y 2−2x −3=0,整理得 t 2−8tcosα+12=0, 因为直线 l 与曲线 C 有公共点,所以 Δ=64cos 2α−48≥0, 所以 cosα≥√32 或 cosα≤−√32, 因为 α∈[0,π),所以 α 的取值范围是 [0,π6]∪[5π6,π).(2) 曲线 C 的方程 x 2+y 2−2x −3=0 可化为 (x −1)2+y 2=4,其参数方程为 {x =1+2cosθ,y =2sinθ(θ 为参数), 因为 M (x,y ) 为曲线上任意一点,所以 x +y =1+2cosθ+2sinθ=1+2√2sin (θ+π4),所以 x +y 的取值范围是 [1−2√2,1+2√2]. 30. b 2a 2证明:设 A (x 1,y 1),B (x 2,y 2),M (x 0,y 0), 则有 {x 0=x 1+x 22,y 0=y 1+y 22.x 12a 2−y 12b 2=1,x 22a 2−y 22b 2=1, 两式相减得 x 12−x 22a 2=y 12−y 22b 2,即(x 1−x 2)(x 1+x 2)a 2=(y 1−y 2)(y 1+y 2)b 2,(y 1−y 2)(y 1+y 2)(x 1−x 2)(x 1+x 2)=b 2a 2 即 k OM ⋅k AB =b 2a 2.31. (1) 设椭圆的方程为 x 2a 2+y 2b 2=1(a >b >0). 因为椭圆的焦距等于 4,且经过点 P(3,−2√6), {2c =2√a 2−b 2=4,32a2+(−2√6)2b2=1,解得 {a 2=36,b 2=32.所以所求的椭圆方程为 x 236+y 232=1. (2) ①当椭圆的焦点在 x 轴上时, 因为 a =3,e =c a=√63, 所以 c =√6,可得 b 2=a 2−c 2=3.此时椭圆的标准方程为 x 29+y 23=1;②当椭圆的焦点在 y 轴上时, 因为 b =3,e =ca =√63, 所以√a 2−b 2a=√63,解得 a 2=27.此时椭圆的标准方程为y 227+x 29=1.综上所述,所求椭圆的标准方程为 x 29+y 23=1 或 y 227+x 29=1.32. 设 M (x,y ),P (x 1,y 1),Q (x 2,y 2),易求 y 2=4x 的焦点 F 的坐标为 (1,0),因为 M 是 FQ 的中点,所以 {x =1+x22,y =y 22⇒{x 2=2x −1,y 2=2y, 又 Q 是 OP 的中点,所以 {x 2=x12,y 2=y 12⇒{x 1=2x 2=4x −2,y 1=2y 2=4y,因为 P 在抛物线 y 2=4x 上,所以 (4y )2=4(4x −2), 所以 M 点的轨迹方程为 y 2=x −12.33. (1) 设 F (c,0),由条件知 2c=2√33,得 c =√3.又 ca=√32, 所以 a =2,b 2=a 2−c 2=1,故 E 的方程为 x 24+y 2=1.(2) 依题意当 l ⊥x 轴不合题意,故设直线 l :y =kx −2,设 P (x 1,y 1),Q (x 2,y 2),将 y =kx −2 代入x 24+y 2=1,得 (1+4k 2)x 2−16kx +12=0,当 Δ=16(4k 2−3)>0,即 k 2>34时,x 1,2=8k±2√4k 2−31+4k 2.从而 ∣PQ∣∣=√k 2+1∣∣x 1−x 2∣=4√k 2+1⋅√4k 2−31+4k 2,又点 O 到直线 PQ 的距离 d =√k 2+1,所以 △OPQ 的面积 S △OPQ =12d∣∣PQ∣∣=4√4k 2−31+4k 2,设 √4k 2−3=t ,则 t >0,S △OPQ =4t t 2+4=4t+4t≤1,当且仅当 t =2,k =±√72等号成立,且满足 Δ>0,所以当 △OPQ 的面积最大时,l 的方程为:y =√72x −2 或 y =−√72x −2.34. (1) 因为 a =5,b =3, 所以 c =4,设 ∣PF 1∣=t 1,∣PF 2∣=t 2, 则 t 1+t 2=10, ⋯⋯①t 12+t 22−2t 1t 2⋅cos60∘=82, ⋯⋯②由 ①2−② 得 t 1t 2=12,所以 S △F 1PF 2=12t 1t 2⋅sin60∘=12×12×√32=3√3.(2) 设 P (x,y ),由 S △F 1PF 2=12⋅2c ⋅∣y ∣=4⋅∣y ∣ 得 4∣y ∣=3√3, 所以 ∣y ∣=3√34⇒y =±3√34, 将 y =±3√34代入椭圆方程解得 x =±5√134, 所以 P (5√134,3√34) 或 P (5√134,−3√34) 或 P (−5√134,3√34) 或 P (−5√134,−3√34). 35. (1) 双曲线 C:x 2a 2−y 2b 2=1(a >0,b >0) 的渐近线方程为:y =±ba x , 则由题意得,ba =√3,a =1,解得b =√3, 则双曲线的方程为:x 2−y 23=1;(2) 联立直线方程和双曲线方程,得到, {y =x +m,x 2−y 23=1,消去 y ,得 2x 2−2mx −m 2−3=0, 设 A (x 1,y 1),B (x 2,y 2),则判别式 Δ=4m 2+8(m 2+3)>0,x 1+x 2=m , 中点 M 的 x 0=m 2,y 0=x 0+m =32m , 则有 y0x 0=3.来自QQ 群33944496336. (1)如图所示,不妨设 M 在双曲线的右支上,M 点到 x 轴的距离为 ℎ, MF 1⃗⃗⃗⃗⃗⃗⃗⃗ ⋅MF 2⃗⃗⃗⃗⃗⃗⃗⃗ =0,则 MF 1⊥MF 2, 设 ∣MF 1∣=m ,∣MF 2∣=n ,由双曲线定义知,m −n =2a =8, ⋯⋯① 又 m 2+n 2=(2c )2=80, ⋯⋯② 由 ①② 得 m ⋅n =8, ∴12mn =12∣F 1F 2∣⋅ℎ, ∴ℎ=2√55.来自QQ 群339444963(2) 设所求双曲线 C 的方程为 x 216−λ−y 24+λ=1(−4<λ<16),由于双曲线 C 过点 (3√2,2),所以 1816−λ−44+λ=1,解得 λ=4 或 λ=−14(舍去). ∴ 所求双曲线 C 的方程为 x 212−y 28=1.37. (1) ∵ 点 P 在椭圆 C 上, ∴2a =∣PF 1∣+∣PF 2∣=6,a =3.在 Rt △PF 1F 2 中,2c =∣F 1F 2∣=√∣PF 2∣2+∣PF 1∣2=√(143)2+(43)2=2√533;故椭圆的半焦距 c =√533,从而 b 2=a 2−c 2=289,∴ 椭圆 C 的方程为 x 29+y 2289=1.(2) 已知圆的方程为 (x +2)2+(y −1)2=5,∴ 圆心 M 的坐标为 (−2,1). 设 A ,B 的坐标分别为 (x 1,y 1),(x 2,y 2). 由题意 x 1≠x 2 且 x 129+y 12289=1, ⋯⋯①x 229+y 22289=1. ⋯⋯②由②−①得(x1−x2)(x1+x2)9+(y1−y2)(y1+y2)289=0. ⋯⋯③又A,B关于点M对称,∴x1+x2=−4,y1+y2=2,代入③得y1−y2x1−x2=5681,即直线L的斜率为5681,∴直线L的方程为y−1=5681(x+2),即56x−81y+193=0.故所求的直线方程为56x−81y+193=0.来自QQ群33944496338. (1)设圆心为M(m,0)(m∈Z).由于圆与直线4x+3y−29=0相切,且半径为5,所以∣4m−29∣5=5,即∣4m−29∣=25.因为m为整数,故m=1.故所求圆的方程为(x−1)2+y2=25.(2)把直线ax−y+5=0,即y=ax+5,代入圆的方程,消去y,整理,得(a2+1)x2+2(5a−1)x+1=0,由于直线ax−y+5=0交圆于A,B两点,故Δ=4(5a−1)2−4(a2+1)>0,即12a2−5a>0,由于a>0,解得a>512,所以实数a的取值范围是(512,+∞).(3)设符合条件的实数a存在,则直线l的斜率为−1a ,l的方程为y=−1a(x+2)+4,即x+ay+2−4a=0,由于l垂直平分弦AB,故圆心M(1,0)必在l上,所以1+0+2−4a=0,解得a=34.由于34∈(512,+∞),故存在实数a=34.使得过点P(−2,4)的直线l垂直平分弦AB.来自QQ群339444963 39. (1)当α=π3时,C1的普通方程为y=√3(x−1),C2的普通方程为x2+y2=1.联立方程组{x2+y2=1, y=√3(x−1),解得C1与C2的交点为(1,0) 和 (12,−√32).(2) C 1 的普通方程为xsinα−ycosα−sinα=0,A 点坐标为 (sin 2α,−cosαsinα),故当 α 变化时,P 点轨迹的参数方程为{x =12sin 2α,y =−12sinαcosα,(α为参数). P 点轨迹的普通方程为(x −14)2+y 2=116.故 P 点轨迹是圆心为 (14,0),半径为 14 的圆. 40. 设圆心为 (3t,t ),半径为 r =∣3t∣, 则圆心到直线 y =x 的距离 d =√2=∣∣√2t ∣∣,由勾股定理及垂径定理得:(2√72)2=r 2−d 2,即 9t 2−2t 2=7,解得:t =±1,所以圆心坐标为 (3,1),半径为 3;或圆心坐标为 (−3,−1),半径为 3, 则圆 C 的方程为 (x −3)2+(y −1)2=9 或 (x +3)2+(y +1)2=9. 41. (1) 由 {y =x +b,x 2=4y得 x 2−4x −4b =0, ⋯⋯①因为直线 l 与抛物线 C 相切,所以 Δ=(−4)2−4×(−4b )=0, 解得 b =−1.(2) 由(1)知 b =−1,故方程 ① 即为 x 2−4x +4=0,解得 x =2,代入 x 2=4y ,得 y =1. 故点 A (2,1),因为圆 A 与抛物线 C 的准线相切,所以圆 A 的半径 r 等于圆心 A 到抛物线的准线 y =−1 的距离,即 r =∣1−(−1)∣=2, 所以圆 A 的方程为 (x −2)2+(y −1)2=4.42. (1) 由 {x =ρcosθ,y =ρsinθ, 可得,(ρcosθ+6)2+ρ2sin 2θ=25,整理得 ρ2+12ρcosθ+11=0 即为所求.(2) 令直线 l 的斜率为 k ,可得直线的直角坐标方程为 kx −y =0. 圆的半径为 r =5,圆心到直线的距离 d =√k 2+1,又因为 ∣AB∣=√10,所以可得∣AB∣24+d 2=r 2,即 52+36k 2k 2+1=25,解得 k =±√153. 43. (1) 椭圆 x 29+y 225=1 的焦点为 (0,±4),离心率为 e =45. 因为双曲线与椭圆的离心率之和为 245, 所以双曲线的离心率为 2, 所以 ca =2.因为双曲线与椭圆 x 29+y 225=1 有公共焦点 F 1,F 2,所以 c =4,所以 a =2,b =√12,所以双曲线的方程是 y 24−x 212=1.(2) 由题意,∣PF 1∣+∣PF 2∣=10,∣PF 1∣−∣PF 2∣=4, 所以 ∣PF 1∣=7,∣PF 2∣=3, 因为 ∣F 1F 2∣=8, 所以 cos∠F 1PF 2=72+32−822⋅7⋅3=−17.44. 由题设知,抛物线以双曲线的右焦点为焦点,准线过双曲线的左焦点, 所以 p =2c .设抛物线方程为 y 2=4c ⋅x , 因为抛物线过点 (32,√6), 所以 6=4c ⋅32,所以 c =1,故抛物线方程为 y 2=4x . 又双曲线 x 2a2−y 2b 2=1 过点 (32,√6),所以94a2−6b 2=1.又 a 2+b 2=c 2=1, 所以94a2−61−a 2=1.所以 a 2=14 或 a 2=9(舍). 所以 b 2=34, 故双曲线方程为 4x 2−4y 23=1.45. (1) 因为 P 到点 F (1,0) 的距离比它到直线 l :x =−2 的距离少 1, 所以 P 到点 F (1,0) 的距离与它到直线 l :x =−1 的距离相等,所以由抛物线定义可知点 P 的轨迹是以 F 为焦点、以直线 l :x =−1 为准线的抛物线,设抛物线方程为 y 2=2px (p >0) , 所以 P =2,所以曲线 C 的方程为 y 2=4x .(2) 直线 AB 的斜率为定值 −1,理由如下:设 A (x 1,y 1),B (x 2,y 2),则 y 12=4x 1,y 22=4x 2,因为直线 AQ ,BQ 倾斜角互补, 所以 k AQ +k BQ =0,即 y 1−2x 1−1+y 2−2x 2−1=0,4y1+2+4y 2+2=0,所以 y 1+y 2=−4, 所以 k AB =y 1−y 2x 1−x 2=4y1+y 2=−1.46. (1) 圆 C 的参数方程为 {x =2cosφ,y =2sinφ(φ 为参数),消去参数可得:圆 C 的普通方程为 x 2+y 2=4.由题意可得:直线 l 的参数方程为 {x =12t,y =2+√32t (t 为参数). (2) 依题意,直线 l 的直角坐标方程为 √3x −y +2=0, 圆心 C 到直线 l 的距离 d =22=1, 所以 ∣AB ∣=2√r 2−d 2=2√3.47. (1) 因为椭圆一个顶点为 A (2,0),离心率为 √22,所以 {a =2,ca =√22,a 2=b 2+c 2,所以 b =√2,所以椭圆 C 的方程为 x 24+y 22=1.(2) 直线 y =k (x −1) 与椭圆 C 联立 {y =k (x −1),x 24+y 22=1, 消元可得 (1+2k 2)x 2−4k 2x +2k 2−4=0,设 M (x 1,y 1),N (x 2,y 2),则 x 1+x 2=4k 21+2k 2,x 1x 2=2k 2−41+2k 2, 所以 ∣MN∣=√1+k 2×√(x 1+x 2)2−4x 1x 2=2√(1+k 2)(4+6k 2)1+2k 2,因为 A (2,0) 到直线 y =k (x −1) 的距离为 d =√1+k 2,所以 △AMN 的面积 S =12∣MN∣d =∣k∣√4+6k 21+2k 2,因为 △AMN 的面积为 √103, 所以∣k∣√4+6k 21+2k 2=√103, 所以 k =±1. 48. (1) 由题意 ca =√22,b 2a=√2,a 2=b 2+c 2,解得 a =2√2,b =c =2, 则椭圆的方程为:x 28+y 24=1.(2) 要使 △AOB 面积最大,则 B 到 OA 所在直线距离最远. 设与 OA 平行的直线方程为 y =√22x +b .由 {y =√22x +b,x 28+y 24=1, 消去 y 并化简得 x 2+√2bx +b 2−4=0. 由 Δ=0 得 b =±2√2, 不妨取 b >0,所以与直线 OA 平行,且与椭圆相切的直线方程为:y =√22x +2√2,则 B 到直线 OA 的距离等于 O 到直线:y =√22x +2√2 的距离 d ,d =4√33,又 ∣OA ∣=√6,△AOB 面积的最大值 S =12×√6×4√33=2√2.49. (1) 因为点 (1,√22) 在椭圆 C:x 2a 2+y 2b 2=1(a >b >0) 上,椭圆离心率为 √22,所以 { 1a 2+12b 2=1,c a =√22,a 2=b 2+c 2, 解得 a =√2,b =1,所以椭圆 C 的方程为x 22+y 2=1.来自QQ 群339444963(2) 假设存在点 M (x 0,0),使得 MA ⃗⃗⃗⃗⃗⃗ ⋅MB ⃗⃗⃗⃗⃗⃗ 为定值, 设 A (x 1,y 1),B (x 2,y 2),设直线 l 的方程为 x =my +1,联立 {x 22+y 2=1,x =my +1得 (m 2+2)y 2+2my −1=0,y 1+y 2=−2m m 2+2,y 1y 2=−1m 2+2,MA ⃗⃗⃗⃗⃗⃗ =(x 1−x 0,y 1)=(my 1+1−x 0,y 1),MB ⃗⃗⃗⃗⃗⃗ =(x 2−x 0,y 2)=(my 2+1−x 0,y 2), 所以MA ⃗⃗⃗⃗⃗⃗ ⋅MB ⃗⃗⃗⃗⃗⃗ =(my 1+1−x 0)(my 2+1−x 0)+y 1y 2=(m 2+1)y 1y 2+m (1−x 0)(y 1+y 2)+(1−x 0)2=−(m 2+1)m 2+2+−2m 2(1−x 0)m 2+2+(1−x 0)2=m 2(x 02−2)+2(1−x 0)2−1m 2+2,。

高中数学解析几何解答题(有答案)

高中数学解析几何解答题(有答案)

高中数学解析几何解答题(有答案)解析几何解答题1、椭圆G:的两个焦点为F1、F2,短轴两端点B1、B2,已知F1、F2、B1、B2四点共圆,且点N(0,3)到椭圆上的点最远距离为(1)求此时椭圆G的方程;(2)设斜率为k(k0)的直线m与椭圆G相交于不同的两点E、F,Q为EF的中点,问E、F两点能否关于过点P(0,)、Q的直线对称?若能,求出k的取值范围;若不能,请说明理由.解:(1)根据椭圆的几何性质,线段F1F2与线段B1B2互相垂直平分,故椭圆中心即为该四点外接圆的圆心…………………1分故该椭圆中即椭圆方程可为………3分设H(x,y)为椭圆上一点,则…………… 4分若,则有最大值…………………5分由(舍去)(或b2+3b+927,故无解)…………… 6分若…………………7分由所求椭圆方程为………………… 8分(1)设,则由两式相减得……③又直线PQ直线m直线PQ方程为将点Q()代入上式得,……④…………………11分由③④得Q()…………………12分而Q点必在椭圆内部,由此得 ,故当时,E、F两点关于点P、Q的直线对称14分2、已知双曲线的左、右顶点分别为,动直线与圆相切,且与双曲线左、右两支的交点分别为 .(Ⅰ)求的取值范围,并求的最小值;(Ⅱ)记直线的斜率为,直线的斜率为,那么,是定值吗?证明你的结论.解:(Ⅰ)与圆相切, ……①由 ,得 ,,故的取值范围为 .由于,当时,取最小值 .6分(Ⅱ)由已知可得的坐标分别为,由①,得,为定值.12分3、已知抛物线的焦点为F,点为直线与抛物线准线的交点,直线与抛物线相交于、两点,点A关于轴的对称点为D.(1)求抛物线的方程。

(2)证明:点在直线上;(3)设,求的面积。

.解:(1)设,,,的方程为.(2)将代人并整理得,从而直线的方程为,即令所以点在直线上(3)由①知,因为,故,解得所以的方程为又由①知故4、已知椭圆的中心在坐标原点,焦点在轴上,离心率为,点(2,3)、在该椭圆上,线段的中点在直线上,且三点不共线.(I)求椭圆的方程及直线的斜率;(Ⅱ)求面积的最大值.解:(I)设椭圆的方程为,则,得, .所以椭圆的方程为.…………………3分设直线AB的方程为 (依题意可知直线的斜率存在),设,则由,得,由,得,,设,易知,由OT与OP斜率相等可得,即,所以椭圆的方程为,直线AB的斜率为 (6)分(II)设直线AB的方程为,即,由得,,.………………8分点P到直线AB的距离为 .于是的面积为……………………10分设,,其中 .在区间内,,是减函数;在区间内,,是增函数.所以的最大值为 .于是的最大值为18.…………………12分5、设椭圆的焦点分别为、,直线:交轴于点,且.(Ⅰ)试求椭圆的方程;(Ⅱ)过、分别作互相垂直的两直线与椭圆分别交于、、、四点(如图所示),若四边形的面积为,求的直线方程.解:(Ⅰ)由题意, -------1分为的中点------------2分即:椭圆方程为 ------------3分(Ⅱ)当直线与轴垂直时,,此时,四边形的面积不符合题意故舍掉;------------4分同理当与轴垂直时,也有四边形的面积不符合题意故舍掉;------------5分当直线,均与轴不垂直时,设 : ,代入消去得: ------------6分设 ------------7分所以,------------8分所以,------------9分同理 ------------11分所以四边形的面积由,------------12分所以直线或或或 ---------13分6、已知抛物线P:x2=2py(p0).(Ⅰ)若抛物线上点到焦点F的距离为.(ⅰ)求抛物线的方程;(ⅱ)设抛物线的准线与y轴的交点为E,过E作抛物线的切线,求此切线方程;(Ⅱ)设过焦点F的动直线l交抛物线于A,B两点,连接,并延长分别交抛物线的准线于C,D两点,求证:以CD为直径的圆过焦点F.解:(Ⅰ)(ⅰ)由抛物线定义可知,抛物线上点到焦点F的距离与到准线距离相等,即到的距离为3;,解得.抛物线的方程为.4分(ⅱ)抛物线焦点,抛物线准线与y轴交点为,显然过点的抛物线的切线斜率存在,设为,切线方程为.由,消y得,6分,解得.7分切线方程为.8分(Ⅱ)直线的斜率显然存在,设:,设,,由消y得.且.∵ ,直线:,与联立可得,同理得.10分∵焦点,,,12分以为直径的圆过焦点.14分7、在平面直角坐标系中,设点,以线段为直径的圆经过(Ⅰ)求动点的轨迹的方程;(Ⅱ)过点的直线与轨迹交于两点,点关于轴的对称点为,试判断直线是否恒过一定点,并证明你的结论. 解:(I)由题意可得,2分所以,即 4分即,即动点的轨迹的方程为 5分(II)设直线的方程为 , ,则 .由消整理得,6分则,即 .7分.9分直线12分即所以,直线恒过定点 .13分8、已知椭圆的离心率为,且椭圆上一点与椭圆的两个焦点构成的三角形周长为.(Ⅰ)求椭圆的方程;(Ⅱ)设直线与椭圆交于两点,且以为直径的圆过椭圆的右顶点,求面积的最大值.解:(Ⅰ)因为椭圆上一点和它的两个焦点构成的三角形周所以,1分又椭圆的离心率为,即,所以,2分所以, .4分所以,椭圆的方程为 .5分(Ⅱ)方法一:不妨设的方程,则的方程为 . 由得,6分设,,因为,所以,7分同理可得,8分所以,,10分,12分设,则,13分当且仅当时取等号,所以面积的最大值为 .14分方法二:不妨设直线的方程 .由消去得,6分设,,则有,.①7分因为以为直径的圆过点,所以 .由,得 .8分将代入上式,得 .将①代入上式,解得或(舍).10分所以(此时直线经过定点,与椭圆有两个交点),所以.12分设,则 .所以当时,取得最大值 .14分9、过抛物线C: 上一点作倾斜角互补的两条直线,分别与抛物线交于A、B两点。

高三数学解析几何专题(含解析)

高三数学解析几何专题(含解析)

高三数学解析几何专题(含解析)1.【理科】已知动点P到点A(-1,0)和B(1,0)的距离分别为d1和d2,且∠APB=2θ,且d1d2cos2θ=1.Ⅰ)求动点P的轨迹C的方程;Ⅱ)过点B作直线l交轨迹C于M,N两点,交直线x=4于点E,求|EM||EN|的最小值。

2.已知椭圆C:(x^2/a^2)+(y^2/b^2)=1 (a>b>0)的离心率为2,其左、右焦点为F1、F2,点P是坐标平面内一点,且|OP|=7/2,PF·PF3/12=4.其中O为坐标原点。

I)求椭圆C的方程;Ⅱ)如图,过点S(0,1/3),且斜率为k的动直线l交椭圆于A、B两点,在y轴上是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出点M的坐标;若不存在,请说明理由。

3.已知两定点F1(-2,0)、F2(2,0),满足条件PF2-PF1=2的点P的轨迹是曲线E,直线y=kx-1与曲线E交于A、B两点。

Ⅰ)求k的取值范围;Ⅱ)如果AB=63,且曲线E上存在点C,使OA+OB=mOC,求m的值和△ABC的面积S。

4.已知抛物线W:y=ax^2经过点A(2,1),过A作倾斜角互补的两条不同的直线L1、L2.1)求抛物线W的方程及其准线方程;2)当直线L1与抛物线W相切时,求直线L2与抛物线W所围成封闭区域的面积;3)设直线L1、L2分别交抛物线W于B、C两点(均不与A重合),若以BC为直径的圆与抛物线的准线相切,求直线BC的方程。

5.动点M(x,y)到定点F(-1,0)的距离与到y轴的距离之差为1.I)求动点M的轨迹C的方程;II)过点Q(-3,0)的直线l与曲线C交于A、B两点,问直线x=3上是否存在点P,使得△PAB是等边三角形?若存在,求出所有的点P;若不存在,请说明理由。

6.椭圆M的中心在坐标原点D,左、右焦点F1、F2在x轴上,抛物线N的顶点也在原点D,焦点为F2,椭圆M与抛物线N的一个交点为A(3,26)。

专题06 解析几何(解析版)

专题06 解析几何(解析版)

一、单选题1.过点(1,0)-,且与直线1153x y ++=-有相同方向向量的直线的方程为 A .3530x y +-= B .3530x y ++= C .3510x y +-= D .5350x y -+=【答案】B【解析】由1153x y ++=-可得,3x +5y +8=0,即直线的斜率35-, 由题意可知所求直线的斜率k 35=-,故所求的直线方程为y 35=-即3x +5y +3=0.故选:B .2.以抛物线24y x =的焦点为右焦点,且长轴为4的椭圆的标准方程为A .2211615x y +=B .221164x y +=C .22143x y +=D .2214x y +=【答案】C【解析】有已知抛物线24y x =的焦点为(1,0),设椭圆方程为22221x y a b+=,则221a b -=,又由已知2a =,所以23b =,故椭圆方程为22143x y +=,故选:C.3.明代数学家程大位所著《算法统宗》中有这样一个问题:“旷野之地有个桩,桩上系着一腔羊,团团踏破三亩二。

试问羊绳几丈长”意思是“一条绳索系着一只羊,羊踏坏一块面积为3.2亩的圆形庄稼,试求绳的长度” . A .6丈 B .8丈 C .12丈D .16丈【答案】B【解析】由题得面积为3.2亩,即3.2240768⨯=平方步,由圆的面积设半径r 步,则2768r π=, 取3π=则2256r =,16r =步,又1丈=10尺, 1步=5尺,故1丈=2步,故16r =步8=丈, 故选:B4.若圆221:1C x y +=和圆222:680C x y x y k +---=没有公共点,则实数k 的取值范围是 A .(9,11)-B .(25,9)--C .(,9)(11,)-∞-+∞UD .(25,9)(11,)--+∞U【答案】D【解析】化圆C 2:x 2+y 2﹣6x ﹣8y ﹣k =0为2+2=25+k , 则k >﹣25, 圆C 1:x 2+y 2=1的圆心坐标为,半径为1.要使圆C 1:x 2+y 2=1和圆C 2:x 2+y 2﹣6x ﹣8y ﹣k =0没有公共点, 则|C 1C 2|1或|C 1C 2|1, 即51或51,解得﹣25<k <﹣9或k >11.∴实数k 的取值范围是∪.故选:D .5.已知22(2)9x y -+=的圆心为C .过点(2,0)M -且与x 轴不重合的直线l 交圆C 于A 、B 两点,点A 在点M 与点B 之间.过点M 作直线AC 的平行线交直线BC 于点P ,则点P 的轨迹为. A .圆的一部分 B .椭圆的一部分 C .双曲线的一部分 D .抛物线的一部分【答案】C【解析】可得圆2+y 2=9的圆心为C ,半径为R =3. 如图,∵CB =CA =R =3,∴∠CBA =∠CAB , ∵AC ∥MP ,∴,∴∠CBA =∠CAB =∠PMA , ∴PM =PB =PC +BC⇒PM ﹣PC =BC =3,且3<MC . ∴点P 的轨迹是双曲线的一部分,故选C .6.设(),n n n x y P 是直线21n x y n -=+(n *∈N )与圆222x y +=在第一象限的交点,则极限1lim 1n n n y x →∞-=-A .1-B .12-C .1D .2【答案】A 【解析】由题意得:因为21x y -=与圆222x y +=在第一象限的交点为1,1(),所以lim =1lim =1n n n n x y →∞→∞,,1limlim 1n n n n n n y y x x →∞→∞'-='∴-,又由222n n x y +=得220n n n nn n n ny xx x y y x y +=⇒=-''''lim 1lim lim lim() 1.1lim n n n nn n n n n nn n n x y y x x x y y →∞→∞→∞→∞→∞-∴='=-=-=--'选A. 7.抛物线24y x =的焦点为F ,点(),P x y 为该抛物线上的动点,点A 是抛物线的准线与坐标轴的交点,则PF PA的最小值是A .12B.2C.2D.3【答案】B 【解析】由题意可知,抛物线的准线方程为x=﹣1,A , 过P 作PN 垂直直线x=﹣1于N ,由抛物线的定义可知PF=PN ,连结PA ,当PA 是抛物线的切线时,PF PA有最小值,则∠APN 最大,即∠PAF 最大,就是直线PA 的斜率最大,设在PA 的方程为:y=k ,所以214y k x y x ()=+⎧⎨=⎩,解得:k 2x 2+x+k 2=0,所以△=2﹣4k 4=0,解得k=±1,所以∠NPA=45°,PF PA=cos ∠NPA=2.故选B . 8.已知1x 、2x 是关于x 的方程()()22210x x m m Z -+-=∈的两个不同实数根,则经过两点()211,A x x 、()222,B x x 的直线与双曲线2214x y -=的交点个数为A .0B .1C .2D .根据m 的值来确定【答案】B【解析】关于x 的方程()()22210x x m m Z -+-=∈的两个不同实数根,所以44(21)8(2)0,2m m m ∆=--=->∴<,1212221212112,2AB x x x x k x x x x -+=∴===-+ 双曲线2214x y -=渐近线方程曲线12y x =±,∴直线AB 与双曲线的渐近线平行或重合,若()211,A x x 或()222,B x x 在直线12y x =得1x ,2x 的值为0或2,此时1210,2m m -==, m Z ∈Q ,不合题意,直线AB 不与双曲线重合,∴直线AB 与双曲线一定平行,所以有一个交点.故选:B9.如图,平面直角坐标系中,曲线的方程可以是.A .()()22110x y x y--⋅-+=B()2210x y -+=C .()10x y --= D0=【答案】C【解析】因为曲线表示折线段的一部分和双曲线,A 选项等价于10x y --=或2210x y -+=,表示折线y 1x =-的全部和双曲线, 故错误;B 选项,等价于221010x y x y ⎧--≥⎨-+=⎩或10x y --=,又10x y --=表示折线y 1x =-的全部,故错误;C 选项,等价于221010x y x y ⎧--=⎨-+≥⎩或2210x y -+=,∴221010x y x y ⎧--=⎨-+≥⎩表示折线y 1x =-在双曲线外部的部分,2210x y -+=表示双曲线2x -21y =,符合题中的图象,故C 正确.D 选项,等价于221010x y x y ⎧--=⎨-+≥⎩或221010x y x y ⎧--≥⎨-+=⎩, 221010x y x y ⎧--=⎨-+≥⎩表示折线y 1x =-在双曲线外部的部分, 和221010x y x y ⎧--≥⎨-+=⎩表示双曲线在x 轴下方的部分,故错误. 故选C.10.已知双曲线22221(00)x y b a a b-=>>,的两条渐近线与抛物线y 2=2px 的准线分别交于O ,A ,B 三点,O 为坐标原点.若双曲线的离心率为2,△AOB p = A .1 B .32C .2D .3【答案】C 【解析】∵双曲线的方程为22221(00)x y b a a b-=>>,∴双曲线的渐近线的方程为b y x a =±∵抛物线22(0)y px p =>的准线方程是2px =-∴双曲线的渐近线与抛物线准线相交的A ,B 两点的纵坐标分别是2pby a=±∵双曲线的离心率为2∴2c a =∴b a ===∴A ,B 两点的纵坐标分别是2y p =±又∵AOB ∆x 轴是AOB ∠的平分线∴122p⨯=2p =故选C.11.已知椭圆C 的中心为原点O ,(F -为C 的左焦点,P 为C 上一点,满足||||OP OF =且4PF =,则椭圆C 的方程为A .221255x y +=B .2213616x y +=C .2213010x y +=D .2214525x y +=【答案】B【解析】由题意可得c=F′,由|OP|=|OF|=|OF′|知, ∠PFF′=∠FPO ,∠OF′P=∠OPF′, 所以∠PFF′+∠OF′P=∠FPO+∠OPF′, 由∠PFF′+∠OF′P+∠FPO+∠OPF′=180°知, ∠FPO+∠OPF′=90°,即PF ⊥PF′.在Rt △PFF′中,由勾股定理,得8==,由椭圆定义,得|PF|+|PF′|=2a=4+8=12,从而a=6,得a 2=36, 于是 b 2=a 2﹣c 2=36﹣=16,所以椭圆的方程为2213616x y +=.故选B .12.若点A 的坐标为()3,2,F 是抛物线22y x =的焦点,点M 在抛物线上移动时,使||||MA MF +取得最小值的M 的坐标为A .()0,0B .1,12⎛⎫ ⎪⎝⎭C .(D .()2,2【答案】D【解析】如图所示,过M 作准线的垂线,垂足为B .MF MA MB MA +=+,当M 、B 、A 三点共线时,MB MA +最小,即M 运动到'M 时,即()2,2M ,故选D13.已知数列{}n a 的通项公式为()()*11n a n N n n =∈+,其前n 项和910n S =,则双曲线2211x y n n-=+的渐近线方程为A .3y x =±B .4y x =±C .10y x =±D .3y x =±【答案】C 【解析】 由()11111n a n n n n ==-++得1111111 (11223111)n n S n n n n =-+-++-=-=+++.又910n S =即9110n n =+,故9n =,故双曲线221109x y -=渐近线为10y x ==±故选:C 14.已知点P 为椭圆221916x y +=上的任意一点,点12,F F 分别为该椭圆的上下焦点,设1221,PF F PF F αβ=∠=∠,则sin sin αβ+的最大值为A B C .98D .32【答案】D【解析】设|1PF |=m ,|2 PF |=n ,|12F F |=2c ,A ,B 为短轴两个端点, 由正弦定理可得()2m n csin sin sin βααβ==+,即有()2m n csin sin sin αβαβ+=++,由椭圆定义可得e ()22sin c a sin sin αβαβ+===+,∴()sin sin αβαβ+=+. 在三角形21F PF 中,由m+n=2a,cos222222221242444122224m n c m n mn c b b F PF m n mn mn mn+-+--∠===-≥+⨯()()-1=22412b a-,当且仅当m=n 时,即P 为短轴端点时,cos 21F PF ∠最小,21F PF ∠最大, ∴()21sin sin F AF αβ+≤∠=8,∴3sin sin 82αβ+≤=,故选:D . 15.设点M 、N 均在双曲线22:143x y C -=上运动,1F 、2F 是双曲线C 的左、右焦点,则122MF MF MN +-uuu r uuu u r uuu r 的最小值为 A.B .4C.D .以上都不对【答案】B【解析】由题意,设O 为12,F F 的中点,根据向量的运算,可得122222MF MF MN MO MN NO +-=-=uuu r uuu u r uuu r uuu r uuu r uuu r, 又由N 为双曲线22:143x y C -=上的动点,可得NO a ≥uuu r , 所以122224MF MF MN NO a +-=≥=uuu r uuu u r uuu r uuu r, 即122MF MF MN +-uuu r uuu u r uuu r的最小值为4.故选:B.16.在圆锥PO 中,已知高2PO =,底面圆的半径为4,M 为母线PB 的中点;根据圆锥曲线的定义,下列四个图中的截面边界曲线分别为圆、椭圆、双曲线及抛物线,下面四个命题,正确的个数为①圆的面积为4π;;③双曲线两渐近线的夹角正切值为34-④抛物线中焦点到准线的距离为5. A .1个 B .2个C .3个D .4个【答案】B 【解析】①Q 点M 是母线的中点, ∴截面的半径2r =,因此面积224ππ=⨯=,故①正确;②由勾股定理可得椭圆的长轴为==,故②正确;③在与底面、平面PAB 的垂直且过点M 的平面内建立直角坐标系,不妨设双曲线的标准方程为()22221,0x y a b a b-=>,则()1,0M ,即1a =,把点(2,代入可得21241b -=,解得2,2b b a =∴=,设双曲线两渐近线的夹角为2θ,2224tan 2123θ⨯∴==--,4sin 25θ∴=,因比双曲线两渐近线的夹角为4arcsin 5,③不正确;④建立直角坐标系,不彷设抛物线的标准方程为22y px =,把点)4代入可得242p =,解得p =∴抛物线中焦点到准线的距离p ,④不正确,故选B .17.已知双曲线C :2213x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若V OMN 为直角三角形,则|MN |=A .32B .3C .D .4【答案】B【解析】根据题意,可知其渐近线的斜率为3±,且右焦点为(2,0)F , 从而得到30FON ︒∠=,所以直线MN 的倾斜角为60︒或120︒, 根据双曲线的对称性,设其倾斜角为60︒,可以得出直线MN 的方程为2)y x =-,分别与两条渐近线3y x =和y =联立,求得3(,2M N ,所以3MN ==,故选B. 18.数学中有许多形状优美、寓意美好的曲线,曲线C :221||x y x y +=+就是其中之一.给出下列三个结论:①曲线C 恰好经过6个整点;②曲线C ; ③曲线C 所围成的“心形”区域的面积小于3. 其中,所有正确结论的序号是 A .① B .②C .①②D .①②③【答案】C【解析】由221x y x y +=+得,221y x y x -=-,2222||3341,10,2443x x x y x ⎛⎫-=-- ⎪⎝⎭厔,所以x 可为的整数有0,-1,1,从而曲线22:1C x y x y +=+恰好经过,,,, ,六个整点,结论①正确.由221x y x y +=+得,222212x y x y +++…,解得222x y +≤,所以曲线C 上任意一点到原点的距离都不超. 结论②正确.如图所示,易知()()()()0,1,1,0,1,1,,0,1A B C D -, 四边形ABCD 的面积13111122ABCD S =⨯⨯+⨯=,很明显“心形”区域的面积大于2ABCD S ,即“心形”区域的面积大于3,说法③错误.故选C.19.在平面直角坐标系xOy 中,已知两圆221:12C x y +=和222:14C x y +=,又点A 坐标为()3,1,M -、N 是1C 上的动点,Q 为2C 上的动点,则四边形AMQN 能构成矩形的个数为A .0个B .2个C .4个D .无数个【答案】D【解析】如图所示,任取圆2C 上一点Q ,以AQ 为直径画圆,交圆1C 与,M N 两点,设(),Q m n ,则AQ 中点坐标31,22m n +-⎛⎫⎪⎝⎭, 有2214m n +=,以AQ 为直径的圆的方程为()(3)()(1)0x m x y n y --+-+=, 即22(3)(1)3x m x y n y n m -++--=-,用1C 的方程减去以AQ 为直径的圆的方程,可得公共弦MN 所在的直线方程, 即(3)(1)123m x n y n m ++-=-+,将AQ 中点坐标31,22m n +-⎛⎫⎪⎝⎭代入上式得: 左边=22316921(3)(1)222m n m m n n m n +-+++-+⎛⎫++-⋅= ⎪⎝⎭62243122m n m n -+==-+=右边,所以公共弦MN 也是以AQ 为直径的圆的直径, 则MN AQ =,根据对角线互相平分且相等的四边形是矩形即可得出四边形AMQN 是矩形, 由Q 的任意性知,四边形AMQN 能构成无数个矩形, 故选:D 。

解析几何专题练习(带答案)

解析几何专题练习(带答案)

解析几何专题练习一、选择题 1.已知直线l 1:(k -3)x +(4-k)y +1=0与l 2:2(k -3)x -2y +3=0平行,则k 的值是A .1或3B .1或5C .3或5D .1或2 2.过点(2,4)作直线与抛物线y 2=8x 只有一个公共点,这样的直线有 A .1条 B .2条 C .3条 D .4条3.双曲线x 26-y 23=1的渐近线与圆(x -3)2+y 2=r 2(r >0)相切,则r =A. 3 B .2 C .3 D .6 4.“b a =”是“直线2+=x y 与圆()()222=-+-b x a x 相切”的 A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件5.椭圆31222yx+=1的一个焦点为F 1,点P 在椭圆上.如果线段PF 1的中点M在y 轴上,那么点M 的纵坐标是A .±43B .±23C .±22D .±43二、填空题 6.经过圆0222=++yx x 的圆心C ,且与直线x+y=0垂直的直线方程是___ .7.由直线2+=x y 上的点向圆()()22421x y -++= 引切线,则切线长的最小值为___. 8.若双曲线221x ky +=的离心率是2,则实数k 的值是______.9.已知圆C的参数方程为cos ,(1sin .x y ααα=⎧⎨=+⎩为参数),以原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin 1ρθ=,则直线l 与圆C的交点的直角坐标为 .10.在平面直角坐标系中,如果x 与y 都是整数,就称点(,)x y 为整点,下列命题中正确的是__________(写出所有正确命题的编号).①存在这样的直线,既不与坐标轴平行又不经过任何整点=+不经过任何整点②如果k与b都是无理数,则直线y kx b③直线l经过无穷多个整点,当且仅当l经过两个不同的整点=+经过无穷多个整点的充分必要条件是:k与b都是有理数④直线y kx b⑤存在恰经过一个整点的直线三、解答题11.在△ABC中,已知点A(5,-2)、B(7,3),且边AC的中点M在y轴上,边BC的中点N在x轴上.(1)求点C的坐标;(2)求直线MN的方程.12.求过两点A(1,4)、B(3,2),且圆心在直线y=0上的圆的标准方程.并判断点M1(2,3),M2(2,4)与圆的位置关系.13.已知圆x2+y2-4ax+2ay+20(a-1)=0.(1)求证对任意实数a,该圆恒过一定点;(2)若该圆与圆x2+y2=4相切,求a的值.14.已知抛物线y2=2px(p>0)的焦点为F,A是抛物线上横坐标为4且位于x轴上方的点,A到抛物线准线的距离等于5,过A作AB垂直于y轴,垂足为B,OB的中点为M.(1)求抛物线方程;(2)过M作MN⊥FA,垂足为N,求点N的坐标.15.已知双曲线的中心在原点,焦点F1、F2在坐标轴上,离心率为2,且过点(4,-10). (1)求双曲线方程;(2)若点M(3,m)在双曲线上,求证:MF 1⊥MF 2; (3)求△F 1MF 2的面积.16.已知直线l 过点P (1,1), 并与直线l 1:x -y+3=0和l 2:2x+y -6=0分别交于点A 、B ,若线段AB 被点P 平分,求: (1)直线l 的方程;(2)以O 为圆心且被l 截得的弦长为558的圆的方程.17.已知点A 的坐标为)4,4(-,直线l 的方程为3x +y -2=0,求: (1)点A 关于直线l 的对称点A ′的坐标;… (2)直线l 关于点A 的对称直线l '的方程.18.已知圆221:(4)1Cx y -+=,圆222:(2)1C x y +-=,动点P到圆1C ,2C 上点的距离的最小值相等.】 (1)求点P 的轨迹方程;(2)点P 的轨迹上是否存在点Q ,使得点Q 到点(22,0)A -的距离减去点Q 到点(22,0)B 的距离的差为4,如果存在求出Q 点坐标,如果不存在说明理由.19.已知椭圆1C 、抛物线2C 的焦点均在x 轴上,1C 的中心和2C 的顶点均为原点O ,从每条曲线上取两个点,将其坐标记录于下表中:x3-2 42y32--422(1)求12C C 、的标准方程;(2)请问是否存在直线l 满足条件:①过2C 的焦点F ;②与1C 交不同两点,M N 、且满足OM ON ⊥?若存在,求出直线l 的方程;若不存在,说明理由.20.已知椭圆()22220y xC a b a b:+=1>>的离心率为63,过右顶点A 的直线l 与椭圆C 相交于A 、B 两点,且(13)B --,.(1)求椭圆C 和直线l 的方程;(2)记曲线C 在直线l 下方的部分与线段AB 所围成的平面区域(含边界)为D .若曲线2222440xmx y y m -+++-=与D 有公共点,试求实数m 的最小值.参考答案一、选择题 1—5 CBAAA 二、填空题 6.x-y+1=0 7. 318.13-9. (1,1),(1,1)- 10. ①,③,⑤三、解答题11.解:(1)设点C(x ,y),由题意得5+x 2=0,3+y2=0,得x =-5,y =-3.故所求点C 的坐标是(-5,-3).(2)点M 的坐标是⎝⎛⎭⎪⎫0,-52,点N 的坐标是(1,0),直线MN 的方程是y -0-52-0=x -10-1, 即5x -2y -5=0.12. 解:根据圆的标准方程,只要求得圆心坐标和圆的半径即可.因为圆过A 、B 两点,所以圆心在线段AB 的垂直平分线上.由k AB =4-21-3=-1,AB 的中点为(2,3),故AB 的垂直平分线的方程为y -3=x -2, 即x -y +1=0.又圆心在直线y =0上, 因此圆心坐标是方程组 ⎩⎪⎨⎪⎧x -y +1=0y =0的解,即圆心坐标为(-1,0). 半径r =-1-12+0-42=20, 所以得所求圆的标准方程为(x +1)2+y 2=20.因为M 1到圆心C(-1,0)的距离为2+12+3-02=18,|M 1C|<r ,所以M 1在圆C 内;而点M 2到圆心C 的距离|M 2C|=2+12+4-02=25>20,所以M 2在圆C 外.13. 解:(1)将圆的方程整理为(x 2+y 2-20)+a(-4x +2y +20)=0,令⎩⎪⎨⎪⎧x 2+y 2-20=0,-4x +2y +20=0可得⎩⎪⎨⎪⎧x =4,y =-2,所以该圆恒过定点(4,-2).(2)圆的方程可化为(x -2a)2+(y +a)2=5a 2-20a +20=5(a -2)2,所以圆心为(2a ,a),半径为5|a -2|.若两圆外切,则2a -02+a -02=2+5|a -2|,即5|a|=2+5|a -2|,由此解得a =1+55.若两圆内切,则2a 2+a 2=|2-5|a -2||,即5|a|=|2-5|a -2||,由此解得a =1-55或a =1+55(舍去).综上所述,两圆相切时,a =1-55或a =1+55.14. 解:(1)抛物线y 2=2px 的准线x =-p 2,于是,4+p2=5,∴p =2.∴抛物线方程为y 2=4x.(2)∵点A 的坐标是(4,4),由题意得B(0,4),M(0,2).又∵F(1,0),∴k FA =43.又MN ⊥FA ,∴k MN =-34,则FA 的方程为y =43(x -1),MN 的方程为y -2=-34x ,解方程组),1(34),432(-=-=-x y x y 得.54),58(==y x ∴N )54,58(. 15. 解:(1)由e =2⇒ca=2⇒c 2=2a 2⇒a 2=b 2.设双曲线方程为x 2-y 2=λ, 将点(4,-10)代入得:λ=6, 故所求双曲线方程为x 2-y 2=6.(2)∵c 2=12,∴焦点坐标为(±23,0) 将M(3,m)代入x 2-y 2=6得:m 2=3.当m =3时,MF 1→=(-23-3,-3), MF2→=(23-3,-3)∴MF1→·MF 2→=(-3)2-(23)2+(-3)2=0, ∴MF 1⊥MF 2,当m =-3时,同理可证MF 1⊥MF 2.(3)S △F 1MF 2=12·|2c|·|m|=12·43·3=6.16. 解:(1)依题意可设A )n ,m (、)n 2,m 2(B --,则 ⎩⎨⎧=--+-=+-06)n 2()m 2(203n m , ⎩⎨⎧=+-=-023n m n m ,解得1m -=,2n =. 即)2,1(A -,又l 过点P )1,1(,易得AB 方程为03y 2x =-+.(2)设圆的半径为R ,则222)554(d R +=,其中d 为弦心距,53d=,可得5R 2=,故所求圆的方程为5yx22=+.17.解:(1)设点A ′的坐标为(x ′,y ′)。

解析几何专题及答案

解析几何专题及答案

yx O3(,0)7E 73(,1)7F 619(0,)74F ⨯519(,0)73F ⨯42(1,)74F ⨯323(0,)74F ⨯25(,1)73F ⨯13(1,)7F αααα2正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,37AEBF ==,动点P 从E 出发沿直线向F 运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当点P 第一次碰到E 时,P 与正方形的边碰撞的次数为 ( )A .16B .14C .12D .10答案B【命题意图】本试题主要考查了反射原理与三角形相似知识的运用.通过相似三角形,来确定反射后的点的落的位置,结合图像分析反射的次数即可.【解析】如图,易知3(,0)7E .记点F 为1F ,则13(1,)7F 由反射角等于入射角知,44173-⨯,得25(,1)73F ⨯又由531734-⨯⨯得323(0,)74F ⨯,依此类推,42(1,)74F ⨯、519(,0)73F ⨯、619(0,)74F ⨯、73(,1)7F .由对称性知,P点与正方形的边碰撞14次, 可第一次回到E 点.法二:结合已知中的点E,F 的位置,进行作图,推理可知,在反射的过程中,直线是平行的,那么利用平行关系,作图,可以得到回到EA 点时,需要碰撞14次即可.3设a ∈R,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的 ( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 【答案】A 【解析】当a =1时,直线l 1:x +2y -1=0与直线l 2:x +2y +4=0显然平行;若直线l 1与直线l 2平行,则有:211a a =+,解之得:a =1 or a =﹣2.所以为充分不必要条件.2.设m ,n R ∈,若直线(1)+(1)2=0m x n y ++-与圆22(1)+(y 1)=1x --相切,则+m n 的取值范围是( )A .[13,1+3]-B .(,13][1+3,+)-∞-∞UC .[222,2+22]-D .(,222][2+22,+)-∞-∞U 【答案】D【命题意图】本试题主要考查了直线与圆的位置关系,点到直线的距离公式,重要不等式,一元二次不等式的解法,并借助于直线与圆相切的几何性质求解的能力.【解析】∵直线(1)+(1)2=0m x n y ++-与圆22(1)+(y 1)=1x --相切,∴圆心(1,1)到直线的距离为22|(1)+(1)2|==1(1)+(1)m n d m n ++-++,所以21()2m n mn m n +=++≤,设=t m n +,则21+14t t ≥,解得(,222][2+22,+)t ∈-∞-∞U . 3.对任意的实数k,直线y=kx+1与圆222=+y x 的位置关系一定是( )A .相离B .相切C .相交但直线不过圆心D .相交且直线过圆心【答案】C【解析】圆心(0,0)C 到直线10kx y -+=的距离为211211d r k =<<=+,且圆心(0,0)C 不在该直线上.法二:直线10kx y -+=恒过定点(0,1),而该点在圆C 内,且圆心不在该直线上,故选C. 【考点定位】此题考查了直线与圆的位置关系,涉及的知识有:两点间接距离公式,点与圆的位置关系,以及恒过定点的直线方程.直线与圆的位置关系利用d 与r 的大小为判断.当0d r ≤<时,直线与圆相交,当d r =时,直线与圆相切,当d r >时,直线与圆相离.4.已知圆22:40C x y x +-=,l 过点(3,0)P 的直线,则( )A .l 与C 相交B .l 与C 相切C .l 与C 相离D .以上三个选项均有可能解析: 22304330+-⨯=-<,所以点(3,0)P 在圆C 内部,故选A.6.在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是____. 【答案】43. 【考点】圆与圆的位置关系,点到直线的距离【解析】∵圆C 的方程可化为:()2241x y -+=,∴圆C 的圆心为(4,0),半径为1. ∵由题意,直线2y kx =-上至少存在一点00(,2)A x kx -,以该点为圆心,1为半径的圆与圆C 有公共点;∴存在0x R ∈,使得11AC ≤+成立,即min 2AC ≤. ∵min AC 即为点C 到直线2y kx =-的距离2421k k -+,∴24221k k -≤+,解得403k ≤≤. ∴k 的最大值是43.1(本小题满分14分)已知椭圆2222:1(0)x y C a b a b+=>>的离心率为63,短轴一个端点到右焦点的距离为3.(Ⅰ)求椭圆C 的方程;(Ⅱ)设直线l 与椭圆C 交于A B ,两点,坐标原点O 到直线l 的距离为32,求AOB △面积的最大值.解:(Ⅰ)设椭圆的半焦距为c ,依题意633c a a ⎧=⎪⎨⎪=⎩,,1b ∴=,∴所求椭圆方程为2213x y +=.(Ⅱ)设11()A x y ,,22()B x y ,.(1)当AB x ⊥轴时,3AB =.(2)当AB 与x 轴不垂直时,设直线AB 的方程为y kx m =+.由已知2321m k =+,得223(1)4m k =+.把y kx m =+代入椭圆方程,整理得222(31)6330k x kmx m +++-=,122631kmx x k -∴+=+,21223(1)31m x x k -=+. 22221(1)()AB k x x ∴=+-22222223612(1)(1)(31)31k m m k k k ⎡⎤-=+-⎢⎥++⎣⎦ 22222222212(1)(31)3(1)(91)(31)(31)k k m k k k k ++-++==++2422212121233(0)34196123696k k k k k k=+=+≠+=++⨯+++≤.当且仅当2219k k=,即33k =±时等号成立.当0k =时,3AB =, 综上所述max 2AB =.∴当AB 最大时,AOB △面积取最大值max 133222S AB =⨯⨯=.2(本小题满分12分)已知抛物线C :22y x =,直线2y kx =+交C 于A B ,两点,M 是线段AB 的中点,过M作x 轴的垂线交C 于点N .(Ⅰ)证明:抛物线C 在点N 处的切线与AB 平行;(Ⅱ)是否存在实数k 使0NA NB =u u u r u u u rg ,若存在,求k 的值;若不存在,说明理由. 解法一:(Ⅰ)如图,设211(2)A x x ,,222(2)B x x ,,把2y kx =+代入22y x =得2220x kx --=,由韦达定理得122kx x +=,121x x =-, ∴1224N M x x kx x +===,∴N 点的坐标为248k k ⎛⎫ ⎪⎝⎭,.设抛物线在点N 处的切线l 的方程为284k k y m x ⎛⎫-=- ⎪⎝⎭, 将22y x =代入上式得222048mk k x mx -+-=, Q 直线l 与抛物线C 相切,2222282()048mk k m m mk k m k ⎛⎫∴∆=--=-+=-= ⎪⎝⎭,m k ∴=.即l AB ∥.(Ⅱ)假设存在实数k ,使0NA NB =u u u r u u u rg ,则NA NB ⊥,又M Q 是AB 的中点,1||||2MN AB ∴=. 由(Ⅰ)知121212111()(22)[()4]222M y y y kx kx k x x =+=+++=++22142224k k ⎛⎫=+=+ ⎪⎝⎭. MN ⊥Q x 轴,22216||||2488M N k k k MN y y +∴=-=+-=. 又222121212||1||1()4AB k x x k x x x x =+-=++-gg 2222114(1)11622k k k k ⎛⎫=+-⨯-=++ ⎪⎝⎭g g . 22216111684k k k +∴=++g ,解得2k =±.x Ay 11 2 M N B O即存在2k =±,使0NA NB =u u u r u u u rg .解法二:(Ⅰ)如图,设221122(2)(2)A x x B x x ,,,,把2y kx =+代入22y x =得 2220x kx --=.由韦达定理得121212kx x x x +==-,.∴1224N M x x kx x +===,∴N 点的坐标为248k k ⎛⎫ ⎪⎝⎭,.22y x =Q ,4y x '∴=,∴抛物线在点N 处的切线l 的斜率为44kk ⨯=,l AB ∴∥. (Ⅱ)假设存在实数k ,使0NA NB =u u u r u u u rg .由(Ⅰ)知22221122224848k k k k NA x x NB x x ⎛⎫⎛⎫=--=-- ⎪ ⎪⎝⎭⎝⎭u u u r u u u r ,,,,则22221212224488k k k k NA NB x x x x ⎛⎫⎛⎫⎛⎫⎛⎫=--+-- ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭u u u r u u u r g222212124441616k k k k x x x x ⎛⎫⎛⎫⎛⎫⎛⎫=--+-- ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭1212144444k k k k x x x x ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=--+++ ⎪⎪ ⎪⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦g()221212121214()4164k k k x x x x x x k x x ⎡⎤⎡⎤=-++++++⎢⎥⎢⎥⎣⎦⎣⎦g22114(1)421624k k k k k k ⎛⎫⎡⎤=--⨯++⨯-+⨯+ ⎪⎢⎥⎝⎭⎣⎦g22313164k k ⎛⎫⎛⎫=---+ ⎪ ⎪⎝⎭⎝⎭0=,21016k --<Q ,23304k ∴-+=,解得2k =±.即存在2k =±,使0NA NB =u u u r u u u rg .3(本小题满分12分)已知双曲线C 的方程为22221(0,0)y x a b a b-=>>,离心率52e =,顶点到渐近线的距离为255。

(完整版)解析几何题库

(完整版)解析几何题库

解析几何题库一、选择题1.已知圆C 与直线x -y =0 及x -y -4=0都相切,圆心在直线x +y =0上,则圆C 的方程为 A.22(1)(1)2x y ++-= B. 22(1)(1)2x y -++= C.22(1)(1)2x y -+-= D. 22(1)(1)2x y +++=【解析】圆心在x +y =0上,排除C 、D,再结合图象,或者验证A 、B 中圆心到两直线的距离等于半径2即可. 【答案】B 2.直线1y x =+与圆221x y +=的位置关系为( )A .相切B .相交但直线不过圆心C .直线过圆心D .相离【解析】圆心(0,0)为到直线1y x =+,即10x y -+=的距离2d ==,而012<<,选B 。

【答案】B 3.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为( )A .22(2)1xy +-=B .22(2)1xy ++=C .22(1)(3)1x y -+-=D .22(3)1xy +-=解法1(直接法):设圆心坐标为(0,)b1=,解得2b =,故圆的方程为22(2)1x y +-=。

解法2(数形结合法):由作图根据点(1,2)到圆心的距离为1易知圆心为(0,2),故圆的方程为22(2)1x y +-=解法3(验证法):将点(1,2)代入四个选择支,排除B ,D ,又由于圆心在y 轴上,排除C 。

【答案】A4.点P (4,-2)与圆224x y +=上任一点连续的中点轨迹方程是( )A.22(2)(1)1x y -++= B.22(2)(1)4x y -++=C.22(4)(2)4x y ++-=D.22(2)(1)1x y ++-=【解析】设圆上任一点为Q (s ,t ),PQ 的中点为A (x ,y ),解得:⎩⎨⎧+=-=2242y t x s ,代入圆方程,得(2x -4)2+(2y+2)2=4,整理,得:22(2)(1)1x y -++=【答案】A 5.已知直线12:(3)(4)10,:2(3)230,l kx k y l k x y -+-+=--+=与平行,则k 得值是( )A. 1或3B.1或5C.3或5D.1或2【解析】当k =3时,两直线平行,当k ≠3k -3,解得:k =5,故选C 。

高考数学解析几何专题汇编及详细答案

高考数学解析几何专题汇编及详细答案

解析几何专题汇编1.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则C 的渐近线方程为( )A .y =±14xB .y =±13xC .y =±12x D .y =±x解析:选C.由e =52,得c a =52,∴c =52a ,b =c 2-a 2=12a .而x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±b a x ,∴所求渐近线方程为y =±12x . 2. O 为坐标原点,F 为抛物线C :y 2=42x 的焦点,P 为C 上一点,若|PF |=42,则△POF 的面积为( )A .2 B .22C .2 3 D .4解析:选C.设P (x 0,y 0),则|PF |=x 0+2=42,∴x 0=32,∴y 20=42x 0=42×32=24,∴|y 0|=2 6.∵F (2,0),∴S △POF =12|OF |·|y 0|=12×2×26=2 3.3.已知椭圆E :x 2a 2+y2b2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( )A.x 245+y 236=1B.x 236+y 227=1C.x 227+y 218=1D.x 218+y 29=1 解析:选D.设A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧x 21a 2+y 21b2=1, ①x 22a 2+y22b 2=1.②①-②得(x 1+x 2)(x 1-x 2)a 2=-(y 1-y 2)(y 1+y 2)b 2,∴y 1-y 2x 1-x 2=-b 2(x 1+x 2)a 2(y 1+y 2).∵x 1+x 2=2,y 1+y 2=-2,∴k AB =b 2a 2.而k AB =0-(-1)3-1=12,∴b 2a 2=12,∴a 2=2b 2,∴c 2=a 2-b 2=b 2=9,∴b =c =3,a =32,∴E 的方程为x 218+y 29=1.4.设椭圆C :x 2a 2+y2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 是C 上的点, PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为( )A.36 B.13C.12 D.33解析:选D.如图,由题意知s in 30°=|PF 2||PF 1|=12, m ∴|PF 1|=2|PF 2|.又∵|PF 1|+|PF 2|=2a ,∴|PF 2|=2a3. ∴tan 30°=|PF 2||F 1F 2|=2a32c =33.∴c a =33.故选D.5.设抛物线C :y 2=4x 的焦点为F ,直线l 过F 且与C 交于A ,B 两点.若|AF |=3|BF |,则l 的方程为( )A .y =x -1或y =-x +1B .y =33(x -1)或y =-33(x -1)C .y =3(x -1)或y =-3(x -1)D .y =22(x -1)或y =-22(x -1)解析:选C.设直线AB 的倾斜角为θ,由题意知p =2,F (1,0),|AF ||BF |=3.又1|F A |+1|FB |=2p ,∴13|BF |+1|BF |=1,∴|BF |=43,|AF |=4,∴|AB |=163. 又由抛物线焦点弦公式:|AB |=2p sin 2θ,∴163=4sin 2θ,∴s in 2θ=34,∴s in θ=32,∴k =tan θ=±3.故选C.6.椭圆C :x 24+y 23=1的左、右顶点分别为A 1、A 2,点P 在C 上且直线P A 2斜率的取值范围是[-2,-1],那么直线P A 1斜率的取值范围是 ( )A .[12,34]B .[38,34]C .[12,1]D .[34,1]解析:选B.由题意可得A 1(-2,0),A 2(2,0),当P A 2的斜率为-2时,直线P A 2的方程为y =-2(x -2),代入椭圆方程,消去y 化简得19x 2-64x +52=0,解得x =2或x =2619.由点P 在椭圆上得点P (2619,2419),此时直线P A 1的斜率k =38.同理,当直线P A 2的斜率为-1时,直线P A 2方程为y =-(x -2),代入椭圆方程,消去y 化简得7x 2-16x +4=0,解得x =2或x =27.由点P 在椭圆上得点P (27,127),此时直线P A 1的斜率k =34.数形结合可知,直线P A 1斜率的取值范围是[38,34].7.已知F 1(-1,0),F 2(1,0)是椭圆C 的两个焦点,过F 2且垂直于x 轴的直线交C 于A ,B 两点,且|AB |=3,则C 的方程为( )A.x 22+y 2=1 B.x 23+y 22=1C.x 24+y 23=1 D.x 25+y 24=1解析:选C.由题意知椭圆焦点在x 轴上,且c =1,可设C 的方程为x 2a 2+y2a 2-1=1(a >1),由过F 2且垂直于x 轴的直线被C 截得的弦长|AB |=3,知点(1,32)必在椭圆上,代入椭圆方程化简得4a 4-17a 2+4=0,所以a 2=4或a 2=14(舍去).故椭圆C 的方程为x 24+y 23=1.8.已知抛物线C :y 2=8x 与点M (-2,2),过C 的焦点且斜率为k 的直线与C 交于A 、B 两点.若MA →·MB →=0,则k =( )A.12 B.22C. 2 D .2解析:选D.抛物线C 的焦点为F (2,0),则直线方程为y =k (x -2),与抛物线方程联立,消去y 化简得k 2x 2-(4k 2+8)x +4k 2=0.设点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4+8k 2,x 1x 2=4.所以y 1+y 2=k (x 1+x 2)-4k =8k,y 1y 2=k 2[x 1x 2-2(x 1+x 2)+4]=-16.因为MA →·MB →=(x 1+2,y 1-2)·(x 2+2,y 2-2)=(x 1+2)(x 2+2)+(y 1-2)(y 2-2)=x 1x 2+2(x 1+x 2)+y 1y 2-2(y 1+y 2)+8=0,将上面各个量代入,化简得k 2-4k +4=0,所以k =2.9.过点(3,1)作圆(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为 ( ) A .2x +y -3=0 B .2x -y -3=0C .4x -y -3=0 D .4x +y -3=04解析:选A.设P (3,1),圆心C (1,0),切点为A 、B ,则P 、A 、C 、B 四点共圆,且PC 为圆的直径,∴四边形P ACB 的外接圆方程为(x -2)2+(y -12)2=54①,圆C :(x -1)2+y 2=1②,①-②得2x +y -3=0,此即为直线AB 的方程.10.抛物线C 1:y =12p x 2(p >0)的焦点与双曲线C 2:x 23-y 2=1的右焦点的连线交C 1于第一象限的点M .若C 1在点M 处的切线平行于C 2的一条渐近线,则p =( A.316 B.38C.233 D.433解析:选D.∵双曲线C 2:x 23-y 2=1,∴右焦点为F (2,0),渐近线方程为y =±33x .抛物线C 1:y =12p x 2(p >0),焦点为F ′(0,p 2).设M (x 0,y 0),则y 0=12p x 20.∵k MF ′=k FF ′,∴12p x 20-p 2x 0=p 2-2.①又∵y ′=1p x ,∴y ′|x =x 0=1p x 0=33.②由①②得p =433.11如图,F 1,F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是( )A. 2 B.3C.32 D.62解析:选D.由椭圆可知|AF 1|+|AF 2|=4,|F 1F 2|=2 3.因为四边形AF 1BF 2为矩形, 所以|AF 1|2+|AF 2|2=|F 1F 2|2=12,所以2|AF 1||AF 2|=(|AF 1|+|AF 2|)2-(|AF 1|2+|AF 2|2)=16-12=4,所以(|AF 2|-|AF 1|)2=|AF 1|2+|AF 2|2-2|AF 1||AF 2|=12-4=8,所以|AF 2|-|AF 1|=22,因此对于双曲线有a =2,c =3,所以C 2的离心率e =c a =62.12.)直线l 过抛物线C :x 2=4y 的焦点且与y 轴垂直,则l 与C 所围成的图形的面积等于( )A.43 B .2C.83 D.1623解析:选C.∵抛物线方程为x 2=4y ,∴其焦点坐标为F (0,1),故直线l 的方程为y =1.如图所示,可知l 与C 围成的图形的面积等于矩形OABF 的面积与函数y =14x 2的图象和x 轴正半轴及直线x =2围成的图形的面积的差的2倍(图中阴影部分的2倍),即S =4-2⎠⎛02x 24d x =4-2·x 312⎪⎪⎪20=4-43=83. 13.已知双曲线x 2a 2-y 2b2=1(a>0,b>0)的两条渐近线与抛物线y 2=2p x (p>0)的准线分别交于A ,B 两点,O 为坐标原点.若双曲线的离心率为2,△AOB 的面积为3,则p =( )A .1 B.32C .2 D .3解析:选C.由已知得c a =2,所以a 2+b 2a 2=4,解得ba =3,即渐近线方程为y =±3x .而抛物线准线方程为x =-p 2,于是A ⎝⎛⎭⎫-p 2,-3p 2,B ⎝⎛⎭⎫-p 2,3p 2,从而△AOB 的面积为12·3p·p 2=3,可得p =2.14.双曲线x 2-y 2m =1的离心率大于2的充分必要条件是()A .m>12B .m ≥1C .m>1D .m>2解析:选C.∵双曲线x 2-y 2m=1的离心率e =1+m ,又∵e>2,∴1+m>2,∴m>1. 15.双曲线x 24-y 2=1的顶点到其渐近线的距离等于( )A .25 B.45C .255 D.455解析:选C.双曲线的渐近线为直线y =±12x ,即x ±2y =0,顶点为(±2,0),∴所求距离为d =|±2±0|5=255.16.已知过点P(2,2)的直线与圆(x -1)2+y 2=5相切,且与直线a x -y +1=0垂直,则a =( )A .-12B .1C .2 D.12解析:选C.由题意知圆心为(1,0),由圆的切线与直线a x -y +1=0垂直,可设圆的切线方程为x +ay +c =0,由切线x +ay +c =0过点P(2,2),∴c =-2-2a , ∴|1-2-2a|1+a2=5,解得a =2. 17.(2)双曲线x 2-y 2=1的顶点到其渐近线的距离等于( )A .12 B.22C .1 D. 2解析:选B.双曲线x 2-y 2=1的顶点坐标为(±1,0),渐近线为y =±x ,∴x ±y =0,∴顶点到渐近线的距离为d =|±1±0|2=22.18在等腰直角三角形ABC 中,AB =AC =4,点P 是边AB 上异于A ,B 的一点.光线从点P 出发,经BC ,CA 发射后又回到点P(如图).若光线QR 经过△ABC 的重心,则AP 等于( )A .2B .1C .83 D.43解析:选D.分别以AB ,AC 所在直线为x 轴,y 轴,A 为原点建立如图所示的平面直角坐标系.因为AB =AC =4,故B(4,0),C(0,4).设P(t,0)为线段AB 上的点,点P 关于AC 的对称点P ′(-t,0).点P 关于直线BC 的对称点为M(4,4-t).由光的反射定理知,点P ′,M 一定在直线RQ 上.又△ABC 的重心坐标为G(43,43),由题意知点G 在线段RQ 上,即P ′,G ,M 三点共线.∵P ′G →=(43+t ,43),MP ′→=(-4-t ,t -4),P ′G →∥MP ′→,∴(43+t)(-4+t)-43(-4-t)=0,解得t =43,即|AP →|=43. 19.已知点O(0,0),A(0,b),B(a ,a 3).若△OAB 为直角三角形,则必有( )A .b =a 3B .b =a 3+1aC .(b -a 3)(b -a 3-1a )=0D .|b -a 3|+|b -a 3-1a |=0解析:选C.若以O 为直角顶点,则B 在x 轴上,则a 必为0,此时O ,B 重合,不符合题意; 若∠A =π2,则b =a 3≠0.若∠B =π2,根据斜率关系可知a 2·a 3-b a=-1,所以a(a 3-b)=-1,即b -a 3-1a=0.以上两种情况皆有可能,故只有C 满足条件.20.已知点M(a ,b)在圆O :x 2+y 2=1外, 则直线a x +by =1与圆O 的位置关系是( )A .相切B .相交C .相离D .不确定解析:选B.由题意知点在圆外,则a 2+b 2>1,圆心到直线的距离d =1a 2+b2<1,故直线与圆相交.21.过点(2,0)引直线l 与曲线y =1-x 2相交于A ,B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于( )A .33 B .-33C .±33 D .- 3解析:选B.由于y =1-x 2,即x 2+y 2=1(y ≥0),直线l 与x 2+y 2=1(y ≥0)交于A ,B 两点,如图所示,S △AOB =12·s in ∠AOB ≤12,且当∠AOB =90°时,S △AOB 取得最大值,此时AB =2,点O 到直线l 的距离为22,则∠OCB =30°,所以直线l 的倾斜角为150°,则斜率为-33.22.已知0<θ<π4,则双曲线C 1:x 2cos 2θ-y 2sin 2θ=1与C 2:y 2sin 2θ-x2sin 2θtan 2θ=1的( )A .实轴长相等B .虚轴长相等C .焦距相等D .离心率相等解析:选D.双曲线C 1的焦点在x 轴上,a =co s θ,b =s in θ,c =1,因此离心率e 1=1cos θ;双曲线C 2的焦点在y 轴上,由于0<θ<π4,所以a =s in θ,b =s in θtan θ,c =sin 2θ+sin 2θtan 2θ,因此离心率e 2=sin 2θ+sin 2θtan 2θsin θ=sin θ1+tan 2θsin θ=1cos θ.故两条双曲线的实轴长、虚轴长、焦距都不相等,离心率相等.23.已知点A(2,0),抛物线C :x 2=4y 的焦点为F ,射线FA 与抛物线C 相交于点M ,与其准线相交于点N ,则|FM|∶|MN|=( )A .2∶ 5 B .1∶2C . 1∶ 5 D .1∶3 解析:选C.如图所示,由抛物线定义知|MF|=|MH|,所以|MF|∶|MN|=|MH|∶|MN|.由于△MHN ∽△FOA ,则|MH||HN|=|OF||OA|=12,则|MH|∶|MN|=1∶5,即|MF|∶|MN|=1∶ 5. 24.已知0<θ<π4,则双曲线C 1:x 2sin 2θ-y 2cos 2θ=1与C 2:y 2cos 2θ-x 2sin 2θ=1的( )A .实轴长相B .虚轴长相等C .离心率相等D .焦距相等解析:选D.双曲线C 1和C 2的实半轴长分别是s in θ和co s θ,虚半轴长分别是co s θ和s in θ,则半焦距c 都等于1,故选D.25.抛物线y 2=8x 的焦点到直线x -3y =0的距离是( )A .2 3 B .2C . 3 D .1 解析:选D.抛物线y 2=8x 的焦点为F(2,0),则d =|2-3×0|12+(-3)2=1.故选D.26.从椭圆x 2a 2+y 2b2=1(a>b>0)上一点P 向x 轴作垂线,垂足恰为左焦点F 1,A 是椭圆与x 轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且AB ∥OP(O 是坐标原点),则该椭圆的离心率是( )A .24 B.12C .22 D.32解析:选C.设P(-c ,y 0),代入椭圆方程求得y 0,从而求得k OP ,由k OP =k AB 及e =ca可得离心率e.由题意设P(-c ,y 0),将P(-c ,y 0)代入x 2a 2+y 2b 2=1,得c 2a 2+y 20b2=1,则y 20=b 2⎝⎛⎭⎫1-c 2a 2=b 2·a 2-c 2a 2=b 4a 2.∴y 0=b 2a 或y 0=-b 2a (舍去),∴P ⎝⎛⎭⎫-c ,b 2a ,∴k OP =-b 2ac. ∵A(a,0),B(0,b),∴k AB =b -00-a =-b a .又∵AB ∥OP ,∴k AB =k OP ,∴-b a =-b 2ac ,∴b =c.∴e =ca=c b 2+c 2=c 2c 2=22.故选C. 27.抛物线y 2=4x 的焦点到双曲线x 2-y 23=1的渐近线的距离是( )A .12 B.32C .1 D. 3 解析:选B.由题意可得抛物线的焦点坐标为(1,0), 双曲线的渐近线方程为3x -y =0或3x +y =0,则焦点到渐近线的距离d 1=|3×1-0|(3)2+(-1)2=32 或d 2=|3×1+0|(3)2+12=32. 28.已知圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x -3)2+(y -4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM|+|PN|的最小值为( ) A .52-4 B.17-1C .6-2 2 D.17解析:选A.设P(x ,0),设C 1(2,3)关于x 轴的对称点为C 1′(2,-3),那么|PC 1|+|PC 2|=|PC 1′|+|PC 2|≥|C ′1C 2|=(2-3)2+(-3-4)2=5 2.而|PM|=|PC 1|-1,|PN|=|PC 2|-3,∴|PM|+|PN|=|PC 1|+|PC 2|-4≥52-4.29.设P 是圆(x -3)2+(y +1)2=4上的动点,Q 是直线x =-3上的动点,则|PQ|的最小值为( )A .6 B .4C .3 D .2 解析:选B.如图,圆心M(3,-1)与定直线x =-3的最短距离为|MQ|=3-(-3)=6,又圆的半径为2,故所求最短距离为6-2=4.30.垂直于直线y =x +1且与圆x 2+y 2=1相切于第一象限的直线方程是( )A .x +y -2=0 B .x +y +1=0C .x +y -1=0 D .x +y +2=0解析:选A.与直线y =x +1垂直的直线方程可设为x +y +b =0,由x +y +b =0与圆x 2+y 2=1相切,可得|b|12+12=1,故b =±2.因为直线与圆相切于第一象限,故结合图形分析知b=-2,故直线方程为x +y -2=0,故选A.31.已知中心在原点的双曲线C 的右焦点为F(3,0),离心率等于32,则C 的方程是( )A .x 24-y 25=1 B.x 24-y 25=1C .x 22-y 25=1 D.x 22-y25=1 解析:选B.右焦点为F(3,0)说明两层含义:双曲线的焦点在x 轴上;c =3.又离心率为c a =32,故a =2,b 2=c 2-a 2=32-22=5,故C 的方程为x 24-y25=1,故选B.32.已知中心在原点的椭圆C 的右焦点为F(1,0),离心率等于12,则C 的方程是( )A .x 23+y 24=1 B.x 24+y 23=1C .x 24+y 22=1 D.x 24+y23=1 解析:选D.右焦点为F(1,0)说明两层含义:椭圆的焦点在x 轴上;c =1.又离心率为c a =12,故a =2,b 2=a 2-c 2=4-1=3,故椭圆的方程为x 24+y23=1,故选D.33.直线x +2y -5+5=0被圆x 2+y 2-2x -4y =0截得的弦长为( )A .1B .2C .4D .4 6 解析:选C.圆的方程可化为C :(x -1)2+(y -2)2=5,其圆心为C(1,2),半径R = 5.如图所示,取弦AB 的中点P ,连接CP ,则CP ⊥AB ,圆心C 到直线AB 的距离d =|CP|=|1+4-5+5|12+22=1.在Rt △ACP 中,|AP|=R 2-d 2=2,故直线被圆截得的弦长|AB|=4.34.过点(3,1)作圆(x -2)2+(y -2)2=4的弦,其中最短弦的长为________.解析:设A(3,1),易知圆心C(2,2),半径r =2,当弦过点A(3,1)且与CA 垂直时为最短弦. |CA|=(2-3)2+(2-1)2= 2.∴半弦长=r 2-|CA|2=4-2= 2.∴最短弦长为2 2.答案:2 235.已知直线y =a 交抛物线y =x 2于A ,B 两点,若该抛物线上存在点C ,使得∠ACB 为直角,则a 的取值范围为________.解析:设C(x ,x 2),由题意可取A(-a ,a),B(a ,a), 则CA →=(-a -x ,a -x 2),CB →=(a -x ,a -x 2),由于∠ACB =π2,所以CA →·CB →=(-a -x )(a -x )+(a -x 2)2=0,整理得x 4+(1-2a)x 2+a 2-a =0,即y 2+(1-2a)y +a 2-a =0,所以⎩⎪⎨⎪⎧-(1-2a )≥0,a 2-a ≥0,(1-2a )2-4(a 2-a )>0,解得a ≥1.答案:[1,+∞)36.双曲线x 216-y 29=1的两条渐近线的方程为________.解析:由双曲线方程可知a =4,b =3,所以两条渐近线方程为y =±34x .答案:y =±34x37.在平面直角坐标系x Oy 中,椭圆C 的标准方程为x 2a 2+y2b2=1(a>b>0),右焦点为F,右准线为l ,短轴的一个端点为B.设原点到直线BF 的距离为d 1,F 到l 的距离为d 2,若d 2=6d 1,则椭圆C 的离心率为________.解析:依题意,d 2=a 2c -c =b 2c .又BF =c 2+b 2=a ,所以d 1=bca.由已知可得b 2c =6·bca,所以6c 2=ab ,即6c 4=a 2(a 2-c 2),整理可得a 2=3c 2,所以离心率e=c a =33.答案:3338 直线y =2x +3被圆x 2+y 2-6x -8y =0所截得的弦长等于________. 解析:圆的方程可化为(x -3)2+(y -4)2=25,故圆心为(3,4),半径r =5.又直线方程为2x -y +3=0,所以圆心到直线的距离为d =|2×3-4+3|4+1=5,所以弦长为2r 2-d 2=2×25-5=220=4 5.答案:4 539若抛物线y 2=2p x 的焦点坐标为(1,0),则p =________;准线方程为________.解析:∵ 抛物线y 2=2p x 的焦点坐标为(p 2,0),∴准线方程为x =-p2.又抛物线焦点坐标为(1,0),故p =2,准线方程为x =-1.答案:2;x =-140.设F 为抛物线C :y 2=4x 的焦点,过点P(-1,0)的直线l 交抛物线C 于A ,B 两点,点Q 为线段AB 的中点.若|FQ|=2,则直线l 的斜率等于________.答案:±141.已知抛物线y 2=8x 的准线过双曲线x 2a 2-y2b2=1(a>0,b>0)的一个焦点,且双曲线的离心率为2,则该双曲线的方程为________.解析:由题意可知抛物线的准线方程为x =-2,∴双曲线的半焦距c =2.又双曲线的离心率为2,∴a =1,b =3,∴双曲线的方程为x 2-y 23=1.答案:x 2-y 23=1 42.椭圆Γ:x 2a 2+y2b2=1(a>b>0)的左、右焦点分别为F 1,F 2,焦距为2c.若直线y =3(x +c)与椭圆Γ的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于________. 解析:已知F 1(-c,0),F 2(c,0),直线y =3(x +c)过点F 1,且斜率为3,∴倾斜角∠MF 1F 2=60°.∵∠MF 2F 1=12∠MF 1F 2=30°,∴∠F 1MF 2=90°,∴|MF 1|=c ,|MF 2|=3c.由椭圆定义知|MF 1|+|MF 2|=c +3c =2a ,∴离心率e =c a =21+3=3-1.答案:3-143.已知椭圆C :x 2a 2+y 2b2=1(a>b>0)的左焦点为F ,椭圆C 与过原点的直线相交于A ,B 两点,连接AF ,BF.若|AB|=10,|AF|=6,co s ∠ABF =45,则椭圆C 的离心率e =________.解析:设椭圆的右焦点为F 1,因为直线过原点,所以|AF|=|BF 1|=6,|BO|=|AO|.在△ABF 中,设|BF|=x ,由余弦定理得36=100+x 2-2×10x ×45,解得x =8,即|BF|=8.所以∠BFA =90°,所以△ABF 是直角三角形,所以2a =6+8=14,即a =7.又因为在Rt △ABF 中,|BO|=|AO|,所以|OF|=12|AB|=5,即c =5.所以e =57.答案:5744.双曲线x 216-y 2m =1的离心率为54,则m 等于________.解析:x 216-y 2m =1中,a =4,b =m ,∴c =16+m.而e =54,∴16+m 4=54,∴m =9.答案:945.椭圆Γ:x 2a 2+y2b2=1(a>b>0)的左、右焦点分别为F 1,F 2,焦距为2c.若直线y =3(x +c)与椭圆Γ的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于________. 解析:已知F 1(-c,0),F 2(c,0),直线y =3(x +c)过点F 1,且斜率为3,∴倾斜角∠MF 1F 2=60°.∵∠MF 2F 1=12∠MF 1F 2=30°,∴∠F 1MF 2=90°,∴|MF 1|=c ,|MF 2|=3c.由椭圆定义知|MF 1|+|MF 2|=c +3c =2a ,∴离心率e =c a =21+3=3-1.答案:3-146.已知F 为双曲线C :x 29-y 216=1的左焦点,P ,Q 为C 上的点.若PQ 的长等于虚轴长的2倍,点A(5,0)在线段PQ 上,则△PQF 的周长为________.解析:由双曲线方程知,b =4,a =3,c =5,则虚轴长为8,则|PQ|=16.由左焦点F(-5,0),且A(5,0)恰为右焦点,知线段PQ 过双曲线的右焦点,则P ,Q 都在双曲线的右支上.由双曲线的定义可知|PF|-|PA|=2a ,|QF|-|QA|=2a ,两式相加得,|PF|+|QF|-(|PA|+|QA|)=4a ,则|PF|+|QF|=4a +|PQ|=4×3+16=28,故△PQF 的周长为28+16=44.答案:4447.双曲线x 216-y 29=1的离心率为________.解析:由题意a 2=16⇒a =4.又b 2=9,则c 2=a 2+b 2=16+9=25⇒c =5,故e =c a =54.答案:5449.设F 1,F 2是双曲线C :x 2a 2-y2b2=1(a>0,b>0)的两个焦点,P 是C 上一点.若|PF 1|+|PF 2|=6a ,且△PF 1F 2的最小内角为30°,则C 的离心率为________.解析:设点P 在双曲线右支上,F 1为左焦点,F 2为右焦点,则|PF 1|-|PF 2|=2a.又|PF 1|+|PF 2|=6a ,∴|PF 1|=4a ,|PF 2|=2a.∵在双曲线中c>a ,∴在△PF 1F 2中|PF 2|所对的角最小且为30°.在△PF 1F 2中,由余弦定理得|PF 2|2=|PF 1|2+|F 1F 2|2-2|PF 1||F 1F 2|co s 30°,即4a 2=16a 2+4c 2-83ac ,即3a 2+c 2-23ac =0.∴(3a -c)2=0,∴c =3a ,即ca = 3.∴e = 3.答案: 350.抛物线x 2=2py(p>0)的焦点为F ,其准线与双曲线x 23-y 23=1相交于A ,B 两点,若△ABF为等边三角形,则p =________.解析:由于x 2=2py(p>0)的准线为y =-p 2,由⎩⎪⎨⎪⎧y =-p 2,x 2-y 2=3,解得准线与双曲线x 2-y 2=3的交点为A ⎝⎛⎭⎫-3+14p 2,-p 2,B ⎝⎛⎭⎫3+14p 2,-p 2,所以AB =23+14p 2.由△ABF 为等边三角形,得32AB =p ,解得p =6.答案:6 51.椭圆C :x 2a 2+y 2b 2=1(a>b>0)的离心率e =32,a +b =3.(1)求椭圆C 的方程;(2)如图所示,A ,B ,D 是椭圆C 的顶点,P 是椭圆C 上除顶点外的任意一点,直线DP 交x 轴于点N ,直线AD 交BP 于点M ,设BP 的斜率为k ,MN 的斜率为m ,证明:2m -k 为定值.解:(1)因为e =32=c a ,所以a =23c ,b =13c.代入a +b =3,得c =3,a =2,b =1.故椭圆C 的方程为x24+y 2=1.(2)证明:法一:因为B(2,0),点P 不为椭圆顶点,则直线BP 的方程为y =k(x -2)⎝⎛⎭⎫k ≠0,k ≠±12,①①代入x 24+y 2=1,解得P ⎝⎛⎭⎪⎫8k 2-24k 2+1,-4k 4k 2+1.直线AD 的方程为y =12x +1.②①与②联立解得M ⎝ ⎛⎭⎪⎫4k +22k -1,4k 2k -1. 由D(0,1),P ⎝ ⎛⎭⎪⎫8k 2-24k 2+1,-4k4k 2+1,N(x ,0)三点共线知-4k4k 2+1-18k 2-24k 2+1-0=0-1x -0,解得N ⎝⎛⎭⎪⎫4k -22k +1,0. 所以MN 的斜率为m =4k2k -1-04k +22k -1-4k -22k +1=4k (2k +1)2(2k +1)2-2(2k -1)2=2k +14,则2m -k =2k +12-k =12(定值).法二:设P(x 0,y 0)(x 0≠0,x 0≠±2),则k =y 0x 0-2,直线AD 的方程为y =12(x +2),直线BP 的方程为y =y 0x 0-2(x -2),直线DP 的方程为y -1=y 0-1x 0x ,令y =0,由于y 0≠1可得N ⎝ ⎛⎭⎪⎫-x 0y 0-1,0, 联立,得⎩⎪⎨⎪⎧y =12(x +2),y =y0x 0-2(x -2),解得M ⎝ ⎛⎭⎪⎫4y 0+2x 0-42y 0-x 0+2,4y 02y 0-x 0+2,因此MN 的斜率为m =4y 02y 0-x 0+24y 0+2x 0-42y 0-x 0+2+x 0y 0-1=4y 0(y 0-1)4y 20-8y 0+4x 0y 0-x 20+4 =4y 0(y 0-1)4y 20-8y 0+4x 0y 0-(4-4y 20)+4=y 0-12y 0+x 0-2, 所以2m -k =2(y 0-1)2y 0+x 0-2-y 0x 0-2=2(y 0-1)(x 0-2)-y 0(2y 0+x 0-2)(2y 0+x 0-2)(x 0-2)=2(y 0-1)(x 0-2)-2y 20-y 0(x 0-2)(2y 0+x 0-2)(x 0-2)=2(y 0-1)(x 0-2)-12(4-x 20)-y 0(x 0-2)(2y 0+x 0-2)(x 0-2)=12(定值).52.在平面直角坐标系内,到点A(1,2),B(1,5),C(3,6),D(7,-1)的距离之和最小的点的坐标是________.解析:设平面上任一点M ,因为|MA|+|MC|≥|AC|,当且仅当A ,M ,C 共线时取等号,同理|MB|+|MD|≥|BD|,当且仅当B ,M ,D 共线时取等号,连接AC ,BD 交于一点M ,若|MA|+|MC|+|MB|+|MD|最小,则点M 为所求.又k AC =6-23-1=2,∴直线AC 的方程为y -2=2(x -1),即2x -y =0.①又k BD =5-(-1)1-7=-1,∴直线BD 的方程为y -5=-(x -1),即x +y -6=0.② 由①②得⎩⎪⎨⎪⎧ 2x -y =0,x +y -6=0,∴⎩⎪⎨⎪⎧x =2,y =4,∴M(2,4).答案:(2,4)53.已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C.(1)求C 的方程;(2)l 是与圆P 、圆M 都相切的一条直线,l 与曲线C 交于A 、B 两点,当圆P 的半径最长时,求|AB|.解: 由已知得圆M 的圆心为M(-1,0),半径r 1=1;圆N 的圆心为N(1,0),半径r 2=4.设圆P 的圆心为P(x ,y),半径为R.(1)因为圆P 与圆M 外切并且与圆N 内切,所以|PM|+|PN|=(R +r 1)+(r 2-R)=r 1+r 2=4.由椭圆的定义可知,曲线C 是以M ,N 为左,右焦点,长半轴长为2,短半轴长为3的椭圆(左顶点除外),其方程为x 24+y 23=1(x ≠-2).(2)对于曲线C 上任意一点P(x ,y),由于|PM|-|PN|=2R -2≤2,所以R ≤2,当且仅当圆P 的圆心为(2,0)时,R =2,所以当圆P 的半径最长时,其方程为(x -2)2+y 2=4. 若l 的倾斜角为90°,则l 与y 轴重合,可得|AB|=2 3.若l 的倾斜角不为90°,由r 1≠R 知l 不平行于x 轴,设l 与x 轴的交点为Q ,则|QP||QM|=R r 1,可求得Q(-4,0),所以可设l :y =k(x +4).由l 与圆M 相切得|3k|1+k 2=1,解得k =±24.当k =24时,将y =24x +2代入x 24+y 23=1,并整理得7x 2+8x -8=0,解得x 1,2=-4±627,所以|AB|=1+k 2|x 2-x 1|=187.当k =-24时,由图形的对称性可知|AB|=187.综上,|AB|=23或|AB|=187.54.在平面直角坐标系x Oy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为2 3.(1)求圆心P 的轨迹方程;(2)若P 点到直线y =x 的距离为22,求圆P 的方程.解:(1)设P(x ,y),圆P 的半径为r.由题设y 2+2=r 2,x 2+3=r 2,从而y 2+2=x 2+3. 故P 点的轨迹方程为y 2-x 2=1. (2)设P(x 0,y 0).由已知得|x 0-y 0|2=22.又P 点在双曲线y 2-x 2=1上,从而得⎩⎪⎨⎪⎧ |x 0-y 0|=1,y 20-x 20=1.由⎩⎪⎨⎪⎧ x 0-y 0=1,y 20-x 20=1,得⎩⎪⎨⎪⎧x 0=0,y 0=-1.此时,圆P 的半径r = 3.由⎩⎪⎨⎪⎧ x 0-y 0=-1,y 20-x 20=1,得⎩⎪⎨⎪⎧x 0=0,y 0=1,此时,圆P 的半径r = 3.故圆P 的方程为x 2+(y +1)2=3或x 2+(y -1)2=3.55.已知双曲线C :x 2a 2-y 2b2=1(a>0,b>0)的左、右焦点分别为F 1、F 2,离心率为3,直线y=2与C 的两个交点间的距离为 6.(1)求a 、b ; (2)设过F 2的直线l 与C 的左、右两支分别交于A 、B 两点,且|AF 1|=|BF 1|,证明:|AF 2|、|AB|、|BF 2|成等比数列.解:(1)由题设知ca =3,即a 2+b 2a2=9,故b 2=8a 2.所以C 的方程为8x 2-y 2=8a 2.将y =2代入上式,求得x =± a 2+12.由题设知,2a 2+12=6,解得a 2=1.所以a =1,b =2 2.(2)证明:由(1)知,F 1(-3,0),F 2(3,0),C 的方程为8x 2-y 2=8.①由题意可设l 的方程为y =k(x -3),|k|<22,将其代入①并化简,得(k 2-8)x 2-6k 2x +9k 2+8=0.设A(x 1,y 1),B(x 2,y 2),则x 1≤-1,x 2≥1,x 1+x 2=6k 2k 2-8,x 1x 2=9k 2+8k 2-8.于是|AF 1|=(x 1+3)2+y 21=(x 1+3)2+8x 21-8=-(3x 1+1),|BF 1|=(x 2+3)2+y 22=(x 2+3)2+8x 22-8=3x 2+1.由|AF 1|=|BF 1|,得-(3x 1+1)=3x 2+1,即x 1+x 2=-23,故6k 2k 2-8=-23,解得k 2=45,从而x 1x 2=-199.由于|AF 2|=(x 1-3)2+y 21=(x 1-3)2+8x 21-8=1-3x 1,|BF 2|=(x 2-3)2+y 22=(x 2-3)2+8x 22-8=3x 2-1,故|AB|=|AF 2|-|BF 2|=2-3(x 1+x 2)=4,|AF 2|·|BF 2|=3(x 1+x 2)-9x 1x 2-1=16,因而|AF 2|·|BF 2|=|AB|2,所以|AF 2|、|AB|、|BF 2|成等比数列.56.椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别是F 1、F 2,离心率为32,过F 1且垂直于x 轴的直线被椭圆C 截得的线段长为1.(1)求椭圆C 的方程;(2)点P 是椭圆C 上除长轴端点外的任一点,连接PF 1,PF 2,设∠F 1PF 2的角平分线PM 交C 的长轴于点M(m ,0),求m 的取值范围;(3)在(2)的条件下,过点P 作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共点.设直线PF 1,PF 2的斜率分别为k 1,k 2.若k ≠0,试证明1kk 1+1kk 2为定值,并求出这个定值.解:(1)由于c 2=a 2-b 2,将x =-c 代入椭圆方程x 2a 2+y 2b 2=1,得y =±b 2a.由题意知2b 2a =1,即a =2b 2.又e =c a =32,所以a =2,b =1.所以椭圆C 的方程为x 24+y 2=1.(2)法一:设P(x 0,y 0)(y 0≠0),又F 1(-3,0),F 2(3,0),所以直线PF 1,PF 2的方程分别为 lPF 1:y 0x -(x 0+3)y +3y 0=0,lPF 2:y 0x -(x 0-3)y -3y 0=0. 由题意知|my 0+3y 0|y 20+(x 0+3)2=|my 0-3y 0|y 20+(x 0-3)2.由于点P 在椭圆上,所以x 204+y 20=1. 所以|m +3|(32x 0+2)2=|m -3|(32x 0-2)2.因为-3<m<3,-2<x 0<2,可得m +332x 0+2=3-m2-32x 0,所以m =34x 0.因此-32<m<32.法二:设P(x 0,y 0),当0≤x 0<2时,①当x 0=3时,直线PF 2的斜率不存在,易知P(3,12)或P(3,-12).若P(3,12),则直线PF 1的方程为x -43y +3=0.由题意得|m +3|7=3-m ,因为-3<m<3,所以m =334.若P(3,-12),同理可得m =334.②当x 0≠3时,设直线PF 1,PF 2的方程分别为y =k 1(x +3),y =k 2(x -3).由题意知|mk 1+3k 1|1+k 21=|mk 2-3k 2|1+k 22,所以(m +3)2(m -3)2=1+1k 211+1k 22.因为x 204+y 20=1,且k 1=y 0x 0+3,k 2=y 0x 0-3,所以(m +3)2(m -3)2=4(x 0+3)2+4-x 204(x 0-3)2+4-x 20=3x 20+83x 0+163x 20-83x 0+16=(3x 0+4)2(3x 0-4)2,即|m +3||m -3|=|3x 0+4||3x 0-4|.因为-3<m<3,0≤x 0<2且x 0≠3,所以3+m 3-m =4+3x 04-3x 0,整理得m =3x 04,故0≤m<32且m ≠334.综合①②可得0≤m<32.当-2<x 0<0时,同理可得-32<m<0. 综上所述,m 的取值范围是(-32,32).(3)设P(x 0,y 0)(y 0≠0),则直线l 的方程为y -y 0=k(x -x 0).联立得⎩⎪⎨⎪⎧x 24+y 2=1,y -y 0=k (x -x 0),整理得(1+4k 2)x 2+8(ky 0-k 2x 0)x +4(y 20-2k x 0y 0+k 2x 20-1)=0.由题意Δ=0,即(4-x 20)k 2+2x 0y 0k +1-y 20=0.又x 204+y 20=1,所以16y 20k 2+8x 0y 0k +x 20=0,故k =-x 04y 0.由(2)知1k 1+1k 2=x 0+3y 0+x 0-3y 0=2x 0y 0,所以1kk 1+1kk 2=1k (1k 1+1k 2)=(-4y 0x 0)·2x 0y 0=-8,因此1kk 1+1kk 2为定值,这个定值为-8.57.在平面直角坐标系x Oy 中,已知椭圆C 的中心在原点O ,焦点在x 轴上,短轴长为2,离心率为22.(1)求椭圆C 的方程;(2)A ,B 为椭圆C 上满足△AOB 的面积为64的任意两点,E 为线段AB 的中点,射线OE 交椭圆C 于点P.设OP →=tOE →,求实数t 的值.解:(1)设椭圆C 的方程为x 2a 2+y 2b2=1(a>b>0),由题意知⎩⎪⎨⎪⎧a 2=b 2+c 2,c a =22,2b =2,解得⎩⎪⎨⎪⎧a =2,b =1,因此椭圆C 的方程为x 22+y 2=1.(2)(ⅰ)当A ,B 两点关于x 轴对称时,设直线AB 的方程为x =m. 由题意得-2<m<0或0<m< 2.将x =m 代入椭圆方程x 22+y 2=1,得|y|=2-m 22. 所以 S △AOB =|m|·2-m 22=64.解得m 2=32或m 2=12.①因为OP →=tOE →=12t(OA →+OB →)=12t(2m,0)=(mt,0),又P 为椭圆C 上一点,所以(mt )22=1.②由①②,得t 2=4或t 2=43,又t>0,所以t =2或t =233.(ⅱ)当A ,B 两点关于x 轴不对称时,设直线AB 的方程为y =k x +h. 将其代入椭圆的方程x 22+y 2=1,得(1+2k 2)x 2+4kh x +2h 2-2=0.设A(x 1,y 1),B(x 2,y 2).由判别式Δ>0可得1+2k 2>h 2,此时x 1+x 2=-4kh 1+2k 2,x 1x 2=2h 2-21+2k 2,y 1+y 2=k(x 1+x 2)+2h =2h1+2k 2, 所以|AB|=1+k 2×(x 1+x 2)2-4x 1x 2=22×1+k 2×1+2k 2-h 21+2k 2.因为点O 到直线AB 的距离d =|h|1+k 2,所以S △AOB =12|AB|d =12×22×1+k 2×1+2k 2-h 21+2k 2×|h|1+k2=2×1+2k 2-h 21+2k 2×|h|.又S △AOB=64, 所以2×1+2k 2-h 21+2k 2×|h|=64.③令n =1+2k 2,代入③整理得3n 2-16h 2n +16h 4=0. 解得n =4h 2或n =43h 2,即1+2k 2=4h 2或1+2k 2=43h 2.④因为OP →=tOE →=12t(OA →+OB →)=12t(x 1+x 2,y 1+y 2)=(-2kht 1+2k 2,ht 1+2k 2),又P 为椭圆C 上一点,所以t 2[12(-2kh 1+2k 2)2+(h 1+2k 2)2]=1,即h 2t 21+2k 2=1.⑤ 将④代入⑤,得t 2=4或t 2=43.又t>0,故t =2或t =233.经检验,适合题意.综合(ⅰ)(ⅱ),得t =2或t =233.58.如图,在平面直角坐标系x Oy 中,点A(0,3),直线l :y =2x -4.设圆C 的半径为1,圆心在l 上.(1)若圆心C 也在直线y =x -1上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使MA =2MO ,求圆心C 的横坐标a 的取值范围.解:(1)由题设,圆心C 是直线y =2x -4和y =x -1的交点,解得点C(3,2),于是切线的斜率必存在.设过A(0,3)的圆C 的切线方程为y =k x +3. 由题意,得|3k +1|k 2+1=1,解得k =0或k =-34,故所求切线方程为y =3或3x +4y -12=0.(2)因为圆心在直线y =2x -4上,所以圆C 的方程为(x -a)2+[y -2(a -2)]2=1. 设点M(x ,y),因为MA =2MO , 所以x 2+(y -3)2=2x 2+y 2,化简得x 2+y 2+2y -3=0,即x 2+(y +1)2=4,所以点M 在以D(0,-1)为圆心,2为半径的圆上.由题意,点M(x ,y)在圆C 上,所以圆C 与圆D 有公共点, 则|2-1|≤CD ≤2+1,即1≤a 2+(2a -3)2≤3.整理,得-8≤5a 2-12a ≤0.由5a 2-12a +8≥0,得a ∈R ;由5a 2-12a ≤0,得0≤a ≤125.所以点C 的横坐标a 的取值范围为[0,125].59.已知抛物线C 的顶点为O (0,0),焦点为F (0,1). (1)求抛物线C 的方程;(2)过点F 作直线交抛物线C 于A 、B 两点,若直线AO ,BO 分别交直线l :y =x -2于M ,N 两点, 求|MN |的最小值.解:(1)由题意可设抛物线C 的方程为x 2=2py (p >0),则p2=1,所以抛物线C 的方程为x 2=4y .(2)设A (x 1,y 1),B (x 2,y 2),直线AB 的方程为y =kx +1.由⎩⎪⎨⎪⎧y =kx +1,x 2=4y ,消去y ,整理得x 2-4kx -4=0,所以x 1+x 2=4k ,x 1x 2=-4. 从而|x 1-x 2|=4k 2+1.由⎩⎪⎨⎪⎧y =y 1x 1x ,y =x -2,解得点M 的横坐标x M =2x 1x 1-y 1=2x 1x 1-x 214=84-x 1. 同理,点N 的横坐标x N =84-x 2.所以|MN |=2|x M -x N |=2|84-x 1-84-x 2|=82|x 1-x 2x 1x 2-4(x 1+x 2)+16|=82k 2+1|4k -3|.令4k -3=t ,t ≠0,则k =t +34.当t >0时,|MN |=2 225t 2+6t +1>2 2. 当t <0时,|MN |=2 2 (5t +35)2+1625≥852.综上所述,当t =-253,即k =-43时,|MN |的最小值是85 2.60.设椭圆E :x 2a 2+y21-a 2=1的焦点在x 轴上.(1)若椭圆E 的焦距为1,求椭圆E 的方程;(2)设F 1、F 2分别是椭圆E 的左、右焦点,P 为椭圆E 上第一象限内的点,直线F 2P 交y 轴于点Q ,并且F 1P ⊥F 1Q .证明:当a 变化时,点P 在某定直线上.解:(1)因为椭圆的焦点在x 轴上且焦距为1,所以2a 2-1=14,解得a 2=58.故椭圆E 的方程为8x 25+8y23=1.(2)证明:设出点P 的坐标,并求出其横、纵坐标的关系式. 注意点在直线上时,点的坐标满足直线方程. 设P (x 0,y 0),F 1(-c,0),F 2(c,0),其中c =2a 2-1.由题设知x 0≠c ,则直线F 1P 的斜率kF 1P =y 0x 0+c,直线F 2P 的斜率kF 2P =y 0x 0-c .故直线F 2P 的方程为y =y 0x 0-c (x -c ).当x =0时,y =cy 0c -y 0,即点Q 坐标为(0,cy 0c -x 0).因此,直线F 1Q 的斜率为kF 1Q =y 0c -x 0.由于F 1P ⊥F 1Q ,所以kF 1P ·kF 1Q =y 0x 0+c ·y 0c -x 0=-1.化简得y 20=x 20-(2a 2-1).①将①代入椭圆E 的方程,由于点P (x 0,y 0)在第一象限,解得x 0=a 2,y 0=1-a 2, 即点P 在定直线x +y =1上.61.直线y =kx +m (m ≠0)与椭圆W :x 24+y 2=1相交于A ,C 两点,O 是坐标原点.(1)当点B 的坐标为(0,1),且四边形OABC 为菱形时,求AC 的长;(2)当点B 在W 上且不是W 的顶点时,证明:四边形OABC 不可能为菱形. 解:(1)因为四边形OABC 为菱形,所以AC 与OB 互相垂直平分.所以可设A (t ,12),代入椭圆方程得t 24+14=1,即t =±3.所以|AC |=2 3.(2)证明:假设四边形OABC 为菱形.因为点B 不是W 的顶点,且AC ⊥OB ,所以k ≠0.由⎩⎪⎨⎪⎧x 2+4y 2=4,y =kx +m ,消去y 并整理得(1+4k 2)x 2+8kmx +4m 2-4=0. 设A (x 1,y 1),C (x 2,y 2),则x 1+x 22=-4km 1+4k 2,y 1+y 22=k ·x 1+x 22+m =m1+4k 2, 所以AC 的中点为M (-4km 1+4k 2,m1+4k 2).因为M 为AC 和OB 的交点,且m ≠0,k ≠0,所以直线OB 的斜率为-14k.因为k ·(-14k )≠-1,所以AC 与OB 不垂直.所以四边形OABC 不是菱形,与假设矛盾.所以当点B 在W 上且不是W 的顶点时,四边形OABC 不可能是菱形.62.设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,离心率为33,过点F 且与x 轴垂直的直线被椭圆截得的线段长为433.(1)求椭圆的方程;(2)设A ,B 分别为椭圆的左、右顶点,过点F 且斜率为k 的直线与椭圆交于C ,D 两点.若AC →·DB →+AD →·CB →=8,求k 的值.解:(1)设F (-c,0),由c a =33,知a =3c .过点F 且与x 轴垂直的直线为x =-c ,代入椭圆方程有(-c )2a 2+y 2b 2=1,解得y =±6b3,于是26b 3=433,解得b = 2.又a 2-c 2=b 2,从而a =3,c =1,所以椭圆的方程为x 23+y 22=1.(2)设点C (x 1,y 1),D(x 2,y 2),由F (-1,0)得直线C D 的方程为y =k (x +1),由方程组⎩⎪⎨⎪⎧y =k (x +1),x 23+y 22=1,消去y ,整理得(2+3k 2)x 2+6k 2x +3k 2-6=0. 由根与系数的关系可得x 1+x 2=-6k 22+3k 2,x 1x 2=3k 2-62+3k 2.因为A (-3,0),B (3,0),所以AC →·DB →+AD →·CB →=(x 1+3,y 1)·(3-x 2,-y 2)+(x 2+3,y 2)·(3-x 1,-y 1) =6-2x 1x 2-2y 1y 2=6-2x 1x 2-2k 2(x 1+1)(x 2+1) =6-(2+2k 2)x 1x 2-2k 2(x 1+x 2)-2k 2=6+2k 2+122+3k 2.由已知得6+2k 2+122+3k 2=8,解得k =±2.63.如图,点P (0,-1)是椭圆C 1:x 2a 2+y 2b2=1(a >b >0)的一个顶点,C 1的长轴是圆C 2:x 2+y 2=4的直径.l 1,l 2是过点P 且互相垂直的两条直线,其中l 1交圆C 2于A ,B 两点,l 2交椭圆C 1于另一点D.(1)求椭圆C 1的方程;(2)求△AB D 面积取最大值时直线l 1的方程.解:(1)由题意得⎩⎪⎨⎪⎧b =1,a =2.所以椭圆C 的方程为x 24+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),D(x 0,y 0).由题意知直线l 1的斜率存在,不妨设其为k ,则直线l 1的方程为y =kx -1.又圆C 2:x 2+y 2=4,故点O 到直线l 1的距离d =1k 2+1,所以|AB |=24-d 2=24k 2+3k 2+1.又l 2⊥l 1,故直线l 2的方程为x +ky +k =0.由⎩⎪⎨⎪⎧x +ky +k =0,x 2+4y 2=4,消去y ,整理得(4+k 2)x 2+8kx =0,故x 0=-8k 4+k 2,所以|P D|=8k 2+14+k2. 设△AB D 的面积为S ,则S =12|AB |·|P D|=84k 2+34+k 2,所以S =324k 2+3+134k 2+3≤3224k 2+3·134k 2+3=161313,当且仅当k =±102时取等号. 所以所求直线l 1的方程为y =±102x -1.64.如图,抛物线E :y 2=4x 的焦点为F ,准线l 与x 轴的交点为A .点C 在抛物线E 上,以C 为圆心,|CO |为半径作圆,设圆C 与准线l 交于不同的两点M ,N . (1)若点C 的纵坐标为2,求|MN |;(2)若|AF |2=|AM |·|AN |,求圆C 的半径.解:(1)抛物线y 2=4x 的准线l 的方程为x =-1. 由点C 的纵坐标为2,得点C 的坐标为(1,2),所以点C 到准线l 的距离d =2.又|CO |=5,所以|MN |=2|CO |2-d 2=25-4=2.(2)设C ⎝⎛⎭⎫y 204,y 0,则圆C 的方程为⎝⎛⎭⎫x -y 2042+(y -y 0)2=y 4016+y 20,即x 2-y 202x +y 2-2y 0y =0.由x =-1,得y 2-2y 0y +1+y 202=0.设M (-1,y 1),N (-1,y 2),则⎩⎨⎧Δ=4y 20-4⎝⎛⎭⎫1+y 202=2y 20-4>0,y 1y 2=y22+1.由|AF |2=|AM |·|AN |,得|y 1y 2|=4,所以y 202+1=4,解得y 0=±6,此时Δ>0.所以圆心C 的坐标为⎝⎛⎭⎫32,6或⎝⎛⎭⎫32,-6,从而|CO |2=334,|CO |=332,即圆C 的半径为332. 65.已知A ,B ,C 是椭圆W :x 24+y 2=1上的三个点,O 是坐标原点.(1)当点B 是W 的右顶点,且四边形OABC 为菱形时,求此菱形的面积;(2)当点B 不是W 的顶点时,判断四边形OABC 是否可能为菱形,并说明理由.解:(1)椭圆W :x 24+y 2=1的右顶点B 的坐标为(2,0).因为四边形OABC 为菱形,所以AC 与OB 相互垂直平分.所以可设A (1,m ),代入椭圆方程得14+m 2=1,即m =±32.所以菱形OABC 的面积是12|OB |·|AC |=12×2×2|m |= 3.(2)四边形OABC 不可能为菱形.理由如下:假设四边形OABC 为菱形.因为点B 不是W 的顶点,且直线AC 不过原点,所以可设AC 的方程为y =kx +m (k ≠0,m ≠0).由⎩⎪⎨⎪⎧x 2+4y 2=4,y =kx +m ,消去y 并整理得(1+4k 2)x 2+8kmx +4m 2-4=0.。

高三数学解析几何试题答案及解析

高三数学解析几何试题答案及解析

高三数学解析几何试题答案及解析1.(本小题满分10分)选修4-1:几何证明选讲如图,是圆的直径,是半径的中点,是延长线上一点,且,直线与圆相交于点、(不与、重合),与圆相切于点,连结,,.(Ⅰ)求证:;(Ⅱ)若,求.【答案】(Ⅰ)详见解析(Ⅱ)【解析】(Ⅰ)证明目标可看做线段成比例,即证明思路确定为证明三角形相似:利用切割线定理得:,又由与相似,得;所以(Ⅱ)由(1)知,,与相似,则,所以试题解析:(1)连接,,,为等边三角形,则,可证与相似,得;又,则(2)由(1)知,,与相似,则因为,所以【考点】三角形相似,切割线定理2.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系中,直线的参数方程为为参数),以该直角坐标系的原点为极点,轴的正半轴为极轴的极坐标系下,圆的方程为.(Ⅰ)求直线的普通方程和圆的圆心的极坐标;(Ⅱ)设直线和圆的交点为、,求弦的长.【答案】(Ⅰ)的普通方程为,圆心;(Ⅱ).【解析】(Ⅰ)消去参数即可将的参数方程化为普通方程,在直角坐标系下求出圆心的坐标,化为极坐标即可;(Ⅱ)求出圆心到直线的距离,由勾股定理求弦长即可.试题解析:(Ⅰ)由的参数方程消去参数得普通方程为 2分圆的直角坐标方程, 4分所以圆心的直角坐标为,因此圆心的一个极坐标为. 6分(答案不唯一,只要符合要求就给分)(Ⅱ)由(Ⅰ)知圆心到直线的距离, 8分所以. 10分【考点】1.参数方程与普通方程的互化;2.极坐标与直角坐标的互化.:的焦点,且抛物线3.(本题满分12分)如图,O为坐标原点,点F为抛物线C1C1上点P处的切线与圆C2:相切于点Q.(Ⅰ)当直线PQ的方程为时,求抛物线C1的方程;(Ⅱ)当正数变化时,记S1,S2分别为△FPQ,△FOQ的面积,求的最小值.【答案】(Ⅰ);(Ⅱ).【解析】第一问要求抛物线的方程,任务就是求的值,根据导数的几何意义,设出切点坐标,从而求得,再根据切点在切线上,得,从而求得,进而得到抛物线的方程,第二问根据三角形的面积公式,利用题中的条件,将两个三角形的面积转化为关于和切点横坐标的关系式,从而有,利用基本不等式求得最值.试题解析:(Ⅰ)设点,由得,,求导,……2分因为直线PQ的斜率为1,所以且,解得,所以抛物线C1的方程为.(Ⅱ)因为点P处的切线方程为:,即,根据切线又与圆相切,得,即,化简得,由,得,由方程组,解得,所以,点到切线PQ的距离是,所以,,所以,当且仅当时取“=”号,即,此时,,所以的最小值为.【考点】导数的几何意义,三角形的面积,基本不等式.4.(本小题满分12分)已知椭圆的左、右焦点分别为F1(-3,0),F2(3,0),直线y=kx与椭圆交于A、B两点.(Ⅰ)若三角形AF1F2的周长为,求椭圆的标准方程;(Ⅱ)若,且以AB为直径的圆过椭圆的右焦点,求椭圆离心率e的取值范围.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)直接由题意和椭圆的概念可列出方程组,进而可求出椭圆的标准方程即可;(Ⅱ)首先设出点,然后联立直线与椭圆的方程并整理可得一元二次方程,进而由韦达定理可得,再结合可列出等式并化简即可得到等式,最后结合已知,即可求出参数的取值范围,进而得出椭圆离心率e的取值范围即可.试题解析:(Ⅰ)由题意得,得.结合,解得,.所以,椭圆的方程为.(Ⅱ)由得.设.所以,易知,,因为,,所以.即,将其整理为.因为,所以,即,所以离心率.【考点】1、椭圆的标准方程;2、直线与椭圆的相交综合问题;5.(本小题满分12分)椭圆()的上顶点为,是上的一点,以为直径的圆经过椭圆的右焦点.(1)求椭圆的方程;(2)动直线与椭圆有且只有一个公共点,问:在轴上是否存在两个定点,它们到直线的距离之积等于?如果存在,求出这两个定点的坐标;如果不存在,说明理由.【答案】(1);(2)存在两个定点,.【解析】(1)由题设可得①,又点P在椭圆C上,可得②,又③,由①③联立解得c,b2,即可得解.(2)设动直线l的方程为y=kx+m,代入椭圆方程消去y,整理得(﹡),由△=0,得,假设存在,满足题设,则由对任意的实数k恒成立.由即可求出这两个定点的坐标.试题解析:(1),,由题设可知,得①又点在椭圆上,,②③①③联立解得,,故所求椭圆的方程为(2)当直线的斜率存在时,设其方程为,代入椭圆方程,消去,整理得()方程()有且只有一个实根,又,所以,得假设存在,满足题设,则由对任意的实数恒成立,所以,解得,或当直线的斜率不存在时,经检验符合题意.总上,存在两个定点,,使它们到直线的距离之积等于.……12分【考点】1、直线与圆锥曲线的关系;2、椭圆的标准方程.【方法点晴】本题主要考查了椭圆的标准方程的解法,考查了直线与圆锥曲线的关系,综合性较强,属于中档题.处理直线与圆锥曲线的关系问题时,注意韦达定理的应用,同时还得特别注意直线斜率不存在时的情况的验证.6.直线被圆截得的弦长为()A.1B.2C.4D.【答案】C【解析】圆心,圆心到直线的距离,半径,所以最后弦长为.故选C.【考点】点到直线的距离.7.(本小题12分)己知、、是椭圆:()上的三点,其中点的坐标为,过椭圆的中心,且,。

解析几何——直线专题(答案)

解析几何——直线专题(答案)

解析几何——直线专题参考答案1.D 【解析】试题分析:直线斜率2142-=-=-=B A k .考点:直线的斜率.2.A 【解析】试题分析:∵直线经过两点(2,4)A ,(1,)B m ,∴直线AB 的斜率4421k m π-==--, 又∵直线的倾斜角为045,∴1k =,∴3m =.故选:A .考点:直线的斜率;直线的倾斜角. 3.033=-+y x 【解析】试题分析:AB 直线斜率12312k --==-,所以高线斜率为13-,高线方程为()1023303y x x y -=--∴+-= 考点:直线垂直的位置关系及直线方程 4.A 【解析】试题分析:两直线平行,系数满足()()3122,02a a a a ⨯-=⨯-∴=,0a =时两直线重合32a ∴=考点:直线平行的判定 5.A 【解析】试题分析:因为所求直线与直线220x y --=平行,所以设所求直线为20x y m -+=,又过点()1,0,代入求出1m =-,所以所求直线为210x y --=,故选A 。

考点:两直线的平行 6.C 【解析】试题分析:由两直线垂直需满足:“1212..0A A B B +=”可得()6210m m ⨯-+=,解得613m =考点:平面直线的位置关系 7.C 【解析】试题分析:由点到直线的距离公式求得,点()2,1A 及直线30x y ++=的距离是213322d ++==,则AP 的最小值是32.考点:点到直线的距离 8.A 【解析】试题分析:设圆心为C ,直线:0l x y -=,则|||||06|2222C l PQ PC r d r -≥-≥--=-=,所以选A.考点:直线与圆位置关系 9.B 【解析】试题分析:由平行直线可得364=m ,得m=8,在利用平行线间距离公式算的286|182|22=++=d ,注意计算距离时两平行线方程中x,y 前系数要一致. 考点:两直线平行的充要条件,平行线间距离. 10.B 【解析】试题分析:根据题意可知,由于直线02=-y x 与直线042=+-a y x 是平行线,那么可知,运用平行线之间的距离公式1222|C -C |d A B =+,那么将方程统一形式,得到为x-2y=0,x-2y+2a=0故可知距离为2|-0|2=5a 102+1a ∴=±,故选B. 考点:本试题考查了两平行直线的距离。

【知识梳理】解析几何的20个微专题(附高考数学真题讲析)

【知识梳理】解析几何的20个微专题(附高考数学真题讲析)

【知识梳理】解析几何的20个微专题[1]专题1:直线与方程知识梳理: (1)直线的倾斜角定义:当直线l 与x 轴相交时,我们取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角.当直线与x 轴平行或重合时,规定它的倾斜角为︒0.倾斜角的范围为[)︒︒180,0. (2)直线的斜率:定义:一条直线的倾斜角α的正切值叫做这条直线的斜率,斜率常用小写字母k 表示,即=k αtan .倾斜角是︒90的直线,斜率不存在. (3) 过两点的直线的斜率公式:经过两点),(),,(222111y x P y x P 的直线的斜率公式:当21x x ≠时,1212x x y y k --=;当21x x =时,斜率不存在.注:①任何直线都有倾斜角,但不是任何直线都有斜率,倾斜角是︒90的直线的斜率不存在.②斜率随倾斜角的变化规律:③可以用斜率来证明三点共线,即若AC AB k k =,则C B A ,,三点共线. 直线方程的五种形式注意:①求直线方程的方法主要有两种:一是直接法,根据已知条件,选择适当的直线方程的形式,直接写出直线方程;二是待定系数法,先设出直线方程,再根据条件求出待定系数,最后代入求出直线方程.但使用直线方程时,一定要注意限制条件,以免解题过程中丢解.②截距与距离的区别:截距可为一切实数,纵截距是直线与y 轴交点的纵坐标,横截距是直线与x 轴交点的横坐标,而距离是一个非负数.直线与直线位置关系1.两条直线的交点若直线1l :0111=++C y B x A 和2l :0222=++C y B x A 相交,则交点坐标是方程组⎩⎨⎧=++=++0222111C y B x A C y B x A 的解. 2.两条直线位置关系的判定 (1)利用斜率判定若直线1l 和2l 分别有斜截式方程1l :11b x k y +=和2l :22b x k y +=,则 ①直线1l ∥2l 的等价条件为2121,b b k k ≠=. ②直线1l 与2l 重合的等价条件为2121,b b k k ==.③直线1l 与2l 相交的等价条件为21k k ≠;特别地,1l ⊥2l 的等价条件为121-=⋅k k .若1l 与2l 斜率都不存在,则1l 与2l 平行或重合.若1l 与2l 中的一条斜率不存在而另一条斜率为0,则1l 与2l 垂直.(2)用直线一般式方程的系数判定设直线1l :0111=++C y B x A ,2l :0222=++C y B x A ,则 ①直线1l ∥2l 的等价条件为0012211221≠-=-C B C B B A B A 且. ②直线1l 与2l 重合的等价条件为0012211221=-=-C B C B B A B A 且.③直线1l 与2l 相交的等价条件为01221≠-B A B A ;特别地, 1l ⊥2l 的等价条件为02121=+B B A A .注:与0=++CBy Ax 平行的直线方程一般可设为0=++m By Ax 的形式,与0=++C By Ax 垂直的直线方程一般可设为0=+-n Ay Bx 的形式.(3)用两直线联立的方程组的解的个数判定设直线1l :0111=++C y B x A ,2l :0222=++C y B x A ,将这两条直线的方程联立,得方程组⎩⎨⎧=++=++00222111C y B x A C y B x A ,若方程组有惟一解,则1l 与2l 相交,此解就是1l ,2l 交点的坐标;若方程组无解,此时1l 与2l 无公共点,则1l ∥2l ;若方程组有无数个解,则1l 与2l 重合.3. 直线系问题(1)设直线1l :0111=++C y B x A 和2l :0222=++C y B x A若1l 与2l 相交,则0)(222111=+++++C y B x A C y B x A λ表示过1l 与2l 的交点的直线系(不包括2l );若1l ∥2l ,则上述形式的方程表示与与2l 平行的直线系.(2)过定点),(00y x 的旋转直线系方程为))((00R k x x k y y ∈-=-(不包括0x x =);斜率为0k 的平行直线系方程为)(0R b b x k y ∈+=.注:直线系是具有某一共同性质的直线的全体,巧妙地使用直线系,可以减少运算量,简化运算过程. 距离公式与对称问题 1.距离公式(1)两点间的距离公式平面上的两点),(),,(222111y x P y x P 间的距离=21P P 212212)()(y y x x -+-.特别地,原点)0,0(O 与任一点),(y x P 的距离=OP 22y x +.若x P P //21轴时,=21P P 21x x -;若y P P //21轴时,=21P P 21y y -. (2)点到直线的距离公式已知点),(000y x P ,直线l :0=++C By Ax ,则点0P 到直线l 的距离=d 2200BA CBy Ax +++.已知点),(000y x P ,直线l :a x =,则点0P 到直线l 的距离=d a x -0. 已知点),(000y x P ,直线l :b y =,则点0P 到直线l 的距离=d b y -0. 注:用此公式求解点到直线距离问题时,直线方程要化成一般式. (3)两条平行直线间的距离公式已知两平行直线1l :0111=++C y B x A 和2l :0222=++C y B x A ,若点),(000y x P 在1l 上,则两平行直线1l 和2l 的距离可转化为),(000y x P 到直线2l 的距离.已知两平行直线1l :01=++C By Ax 和2l :02=++C By Ax ,则两直线1l 和2l 的距离=d 2221BA C C +-.注:用此公式求解两平行直线间的距离时,直线方程要化成一般式,并且y x ,项的系数必须对应相等. 2.对称问题 (1)中心对称 ①点关于点的对称点),(00y x P 关于),(b a A 的对称点为)2,2(001y b x a P --. ②直线关于点的对称在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点的坐标,再由两点式求出直线的方程,或者求出一个对称点,再利用1l ∥2l ,由点斜式求出直线的方程,或者在所求直线上任取一点),(y x ,求出它关于已知点的对称点的坐标,代入已知直线,即可得到所求直线的方程. (2)轴对称①点关于直线的对称点),(00y x P 关于b kx y +=的对称点为),(111y x P ,则有⎪⎪⎩⎪⎪⎨⎧++⋅=+-=⋅--b x x k y y k x x y y 22101010101,由此可求出11,y x .特别地, 点),(00y x P 关于a x =的对称点为),2(001y x a P -,点),(00y x P 关于b y =的对称点为)2,(001y b x P -. ②直线关于直线的对称此类问题一般转化为点关于直线的对称问题来解决,有两种情况:一是已知直线与对称直线相交,一是已知直线与对称直线平行. 本章知识结构专题2:圆的标准方程与一般方程知识梳理:⑴.圆的一般方程的概念:当 时,二元二次方程220x y Dx Ey F ++++=叫做圆的一般方程。

解析几何大题精选四套(答案)

解析几何大题精选四套(答案)

解析几何大题精选四套(答案)解析几何大题训练(一)1. (2011年高考江西卷) (本小题满分12分)已知过抛物线()022>=p px y 的焦点,斜率为22的直线交抛物线于()12,,A x y ()22,B x y (12x x <)两点,且9=AB .(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OB OA OC λ+=,求λ的值.2. (2011年高考福建卷)(本小题满分12分)如图,直线l :y=x+b 与抛物线C :x 2=4y 相切于点A 。

(1) 求实数b 的值;(11) 求以点A 为圆心,且与抛物线C 的准线相切的圆的方程.3. (2011年高考天津卷)(本小题满分13分) 设椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12,F F ,点(,)P a b 满足212||||PF F F =. (Ⅰ)求椭圆的离心率e ;(Ⅱ)设直线2PF 与椭圆相交于A,B 两点.若直线2PF 与圆22(1)(16x y ++-=相交于M,N 两点,且|MN|=58|AB|,求椭圆的方程.4.(2010辽宁)(本小题满分12分)设1F ,2F 分别为椭圆2222:1x y C a b+=(0)a b >>的左、右焦点,过2F 的直线l 与椭圆C 相交于A ,B两点,直线l 的倾斜角为60,1F 到直线l 的距离为(Ⅰ)求椭圆C 的焦距;(Ⅱ)如果222AF F B =,求椭圆C 的方程.解析几何大题训练(二)1.(2010辽宁)(本小题满分12分)设椭圆C :22221(0)x y a b a b+=>>的左焦点为F ,过点F 的直线与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60o ,2AF FB =.(I)求椭圆C 的离心率; (II)如果|AB|=154,求椭圆C 的方程.2.(2010北京)(本小题共14分)已知椭圆C 的左、右焦点坐标分别是(,y=t 椭圆C 交与不同的两点M ,N ,以线段为直径作圆P,圆心为P 。

数学 解析几何 经典例题 附带答案

数学 解析几何 经典例题 附带答案

数学解析几何经典例题~一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.双曲线x 22-y 21=1的焦点坐标是( ) A .(1,0),(-1,0) B .(0,1),(0,-1)C .(3,0),(-3,0)D .(0,3),(0,-3)解析: c 2=a 2+b 2=2+1,∴c = 3.∴焦点为(3,0),(-3,0),选C.答案: C2.“a =1”是“直线x +y =0和直线 x -ay =0互相垂直”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析: 当a =1时,直线x +y =0与直线x -y =0垂直成立;当直线x +y =0与直线x -ay =0垂直时,a =1.所以“a =1”是“直线x +y =0与直线x -ay =0互相垂直”的充要条件.答案: C3.(2010·福建卷)以抛物线y 2=4x 的焦点为圆心,且过坐标原点的圆的方程为( )A .x 2+y 2+2x =0B .x 2+y 2+x =0C .x 2+y 2-x =0D .x 2+y 2-2x =0解析: 抛物线y 2=4x 的焦点坐标为(1,0),故以(1,0)为圆心,且过坐标原点的圆的半径为r =12+02=1,所以圆的方程为(x -1)2+y 2=1,即x 2+y 2-2x =0,故选D.答案: D4.方程mx 2+y 2=1所表示的所有可能的曲线是( )A .椭圆、双曲线、圆B .椭圆、双曲线、抛物线C .两条直线、椭圆、圆、双曲线D .两条直线、椭圆、圆、双曲线、抛物线解析: 当m =1时,方程为x 2+y 2=1,表示圆;当m <0时,方程为y 2-(-m )x 2=1,表示双曲线;当m >0且m ≠1时,方程表示椭圆;当m =0时,方程表示两条直线.答案: C5.直线2x -y -2=0绕它与y 轴的交点逆时针旋转π2所得的直线方程是( ) A .-x +2y -4=0 B .x +2y -4=0C .-x +2y +4=0D .x +2y +4=0解析: 由题意知所求直线与直线2x -y -2=0垂直.又2x -y -2=0与y 轴交点为(0,-2).故所求直线方程为y +2=-12(x -0), 即x +2y +4=0.答案: D6.直线x -2y -3=0与圆C :(x -2)2+(y +3)2=9交于E 、F 两点,则△ECF 的面积为( )A.32B.34C .2 5 D.355解析: 圆心(2,-3)到EF 的距离d =|2+6-3|5= 5. 又|EF |=29-5=4,∴S △ECF =12×4×5=2 5. 答案: C 7.若点P (2,0)到双曲线x 2a 2-y 2b2=1的一条渐近线的距离为2,则该双曲线的离心率为( )A. 2B. 3C .2 2D .2 3解析: 由于双曲线渐近线方程为bx ±ay =0,故点P 到直线的距离d =2b a 2+b2=2⇒a =b ,即双曲线为等轴双曲线,故其离心率e =1+⎝⎛⎭⎫b a 2= 2.答案: A8.过点M (1,2)的直线l 将圆(x -2)2+y 2=9分成两段弧,当其中的劣弧最短时,直线l 的方程是( )A .x =1B .y =1C .x -y +1=0D .x -2y +3=0解析: 由条件知M 点在圆内,故当劣弧最短时,l 应与圆心与M 点的连线垂直,设圆心为O ,则O (2,0),∴k OM =2-01-2=-2. ∴直线l 的斜率k =12, ∴l 的方程为y -2=12(x -1), 即x -2y +3=0.答案: D9.已知a >b >0,e 1,e 2分别为圆锥曲线x 2a 2+y 2b 2=1和x 2a 2-y 2b2=1的离心率,则lg e 1+lg e 2的值( )A .大于0且小于1B .大于1C .小于0D .等于0解析: 由题意,得e 1=a 2-b 2a ,e 2=a 2+b 2a (a >b >0), ∴e 1e 2=a 4-b 4a 2=1-b 4a4<1, ∴lg e 1+lg e 2=lg(e 1e 2)=lga 4-b 4a 2<0. 答案: C10.已知A (-3,8)和B (2,2),在x 轴上有一点M ,使得|AM |+|BM |为最短,那么点M 的坐标为( )A .(-1,0)B .(1,0)C.⎝⎛⎭⎫225,0D.⎝⎛⎭⎫0,225 解析: 点B (2,2)关于x 轴的对称点为B ′(2,-2),连接AB ′,易求得直线AB ′的方程为2x +y -2=0,它与x 轴交点M (1,0)即为所求.答案: B11.已知椭圆x 216+y 29=1的左、右焦点分别为F 1、F 2,点P 在椭圆上.若P 、F 1、F 2是一个直角三角形的三个顶点,则点P 到x 轴的距离为( )A.95B .3 C.977 D.94解析: 设椭圆短轴的一个端点为M .由于a =4,b =3,∴c =7<b .∴∠F 1MF 2<90°,∴只能∠PF 1F 2=90°或∠PF 2F 1=90°.令x =±7得y 2=9⎝⎛⎭⎫1-716=9216, ∴|y |=94. 即P 到x 轴的距离为94. 答案: D12.过抛物线y 2=2px (p >0)的焦点F 的直线l 与抛物线在第一象限的交点为A ,与抛物线的准线的交点为B ,点A 在抛物线的准线上的射影为C ,若AF →=FB →,BA →·BC →=48,则抛物线的方程为( )A .y 2=8xB .y 2=4xC .y 2=16xD .y 2=42x解析: 由AF →=FB →及|AF →|=|AC →|知在Rt △ACB 中,∠CBF =30°,|DF |=p 2+p 2=p , ∴AC =2p ,BC =23p ,BA →·BC →=4p ·23p ·cos 30°=48,∴p =2. 抛物线方程为y 2=4x .答案: B二、填空题(本大题共4小题,每小题4分,共16分.请把正确答案填在题中横线上) 13.若抛物线y 2=2px 的焦点与双曲线x 2-y 23=1的右焦点重合,则p 的值为________. 解析: 双曲线x 2-y 23=1的右焦点为(2,0), 由题意,p 2=2,∴p =4.答案: 414.两圆(x +1)2+(y -1)2=r 2和(x -2)2+(y +2)2=R 2相交于P 、Q 两点,若点P 坐标为(1,2),则点Q 的坐标为______.解析: ∵两圆的圆心分别为(-1,1),(2,-2),∴两圆连心线的方程为y =-x .∵两圆的连心线垂直平分公共弦,∴P (1,2),Q 关于直线y =-x 对称,∴Q (-2,-1).答案: (-2,-1)15.设M 是椭圆x 24+y 23=1上的动点,A 1和A 2分别是椭圆的左、右顶点,则MA 1→·MA 2→的最小值等于________.解析: 设M (x 0,y 0),则MA 1→=(-2-x 0,-y 0),MA 2→=(2-x 0,-y 0)⇒MA 1→·MA 2→=x 20+y 20-4=x 20+⎝⎛⎭⎫3-34x 20-4=14x 20-1, 显然当x 0=0时,MA 1→·MA 2→取最小值为-1.答案: -116.已知双曲线x 216-y 29=1的左、右焦点为F 1、F 2,P 是双曲线右支上一点,且PF 1的中点在y 轴上,则△PF 1F 2的面积为________.解析: 如图,设PF 1的中点为M ,则MO ∥PF 2,故∠PF 2F 1=90°.∵a =4,b =3,c =5,∴|F 1F 2|=10,|PF 1|=8+|PF 2|.由|PF 1|2=|PF 2|2+|F 1F 2|2得(8+|PF 2|)2=|PF 2|2+100,∴|PF 2|=94,S △PF 1F 2=12·|F 1F 2|·|PF 2|=454. 答案: 454三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(12分)双曲线的两条渐近线方程为x +y =0和x -y =0,直线2x -y -3=0与双曲线交于A ,B 两点,若|AB |=5,求此双曲线的方程.解析: ∵双曲线渐近线为x ±y =0,∴双曲线为等轴双曲线.设双曲线方程为x 2-y 2=m (m ≠0),直线与双曲线的交点坐标为A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧2x -y -3=0,x 2-y 2=m , 得3x 2-12x +m +9=0,则x 1+x 2=4,x 1x 2=m +93. 又|AB |2=(x 1-x 2)2+(y 1-y 2)2=(x 1-x 2)2+[(2x 1-3)-(2x 2-3)]2=(x 1-x 2)2+4(x 1-x 2)2=5(x 1-x 2)2=5[(x 1+x 2)2-4x 1x 2], ∴(5)2=5⎣⎢⎡⎦⎥⎤42-4·⎝ ⎛⎭⎪⎫m +93, 解得m =94. 故双曲线的方程为x 2-y 2=94. 18.(12分)已知圆C 的方程为(x -m )2+(y +m -4)2=2.(1)求圆心C 的轨迹方程;(2)当|OC |最小时,求圆C 的一般方程(O 为坐标原点).解析: (1)设C (x ,y ),则⎩⎪⎨⎪⎧x =m ,y =4-m .消去m ,得y =4-x ,∴圆心C 的轨迹方程为x +y -4=0.(2)当|OC |最小时,OC 与直线x +y -4=0垂直,∴直线OC 的方程为x -y =0. 由⎩⎪⎨⎪⎧x +y -4=0,x -y =0,得x =y =2. 即|OC |最小时,圆心的坐标为(2,2),∴m =2.圆C 的方程为(x -2)2+(y -2)2=2.其一般方程为x 2+y 2-4x -4y +6=0.19.(12分)(盐城市三星级高中20XX 届第一次联考)已知圆C 1的方程为(x -2)2+(y -1)2=203,椭圆C 2的方程为x 2a 2+y 2b 2=1(a >b >0),且C 2的离心率为22,如果C 1、C 2相交于A 、B 两点,且线段AB 恰好为C 1的直径,求直线AB 的方程和椭圆C 2的方程.解析: 设A (x 1,y 1)、B (x 2,y 2).A 、B 在椭圆上,∴b 2x 21+a 2y 21=a 2b 2,b 2x 22+a 2y 22=a 2b 2. ∴b 2(x 2+x 1)(x 2-x 1)+a 2(y 2+y 1)(y 2-y 1)=0.又线段AB 的中点是圆的圆心(2,1),∴x 2+x 1=4,y 2+y 1=2,∴k AB =-b 2(x 2+x 1)a 2(y 2+y 1)=-2b 2a 2, 椭圆的离心率为22,∴b 2a 2=1-e 2=12, k AB =-2b 2a2=-1, 直线AB 的方程为y -1=-1(x -2),即x +y -3=0.由(x -2)2+(y -1)2=203和x +y -3=0得 A ⎝⎛⎭⎫2+103,1-103. 代入椭圆方程得:a 2=16,b 2=8,∴椭圆方程为:x 216+y 28=1. 20.(12分)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1、F 2,离心率为e . (1)若半焦距c =22,且23、e 、43成等比数列,求椭圆C 的方程; (2)在(1)的条件下,直线l :y =ex +a 与x 轴、y 轴分别交于M 、N 两点,P 是直线l 与椭圆C 的一个交点,且M P →=λMN →,求λ的值;(3)若不考虑(1),在(2)中,求证:λ=1-e 2.【解析方法代码108001121】解析: (1)∵e 2=23×43,∴e =223, ∴a =3,b =1,∴椭圆C 的方程为x 29+y 2=1. (2)设P (x ,y ),则⎩⎨⎧ y =223x +3x 29+y 2=1,解得P ⎝⎛⎭⎫-22,13. ∵M ⎝⎛⎭⎫-924,0,N (0,3),M P →=λMN →, ∴λ=19. (3)证明:∵M 、N 的坐标分别为M ⎝⎛⎭⎫-a e ,0,N (0,a ), 由⎩⎪⎨⎪⎧ y =ex +ax 2a 2+y 2b 2=1, 解得⎩⎪⎨⎪⎧x =-cy =b 2a (其中c =a 2-b 2),∴P ⎝⎛⎭⎫-c ,b 2a . 由M P →=λMN →得⎝⎛⎭⎫-c +a e ,b 2a =λ⎝⎛⎭⎫a e ,a , ∴⎩⎨⎧ a e -c =λ·a eb 2a =λa ,∴ λ=1-e 2. 21.(12分)设椭圆C :x 2a 2+y 22=1(a >0)的左、右焦点分别为F 1、F 2,A 是椭圆C 上的一点,且AF 2→·F 1F 2→=0,坐标原点O 到直线AF 1的距离为13|OF 1|. (1)求椭圆C 的方程;(2)设Q 是椭圆C 上的一点,过Q 的直线l 交x 轴于点P (-1,0),交y 轴于点M ,若M Q →=2QP →,求直线l 的方程.解析: (1)由题设知F 1(-a 2-2,0),F 2(a 2-2,0),由于AF 2→·F 1F 2→=0,则有AF 2→⊥F 1F 2→,所以点A 的坐标为⎝⎛⎭⎫a 2-2,±2a , 故AF 1所在直线方程为y =±⎝ ⎛⎭⎪⎫x a a 2-2+1a , 所以坐标原点O 到直线AF 1的距离为a 2-2a 2-1(a >2), 又|OF 1|=a 2-2,所以a 2-2a 2-1=13a 2-2,解得a =2(a >2),所求椭圆的方程为x 24+y 22=1. (2)由题意知直线l 的斜率存在,设直线l 的方程为y =k (x +1),则有M (0,k ),设Q (x 1,y 1),由于M Q →=2QP →,∴(x 1,y 1-k )=2(-1-x 1,-y 1),解得x 1=-23,y 1=k 3. 又Q 在椭圆C 上,得⎝⎛⎭⎫-2324+⎝⎛⎭⎫k 322=1, 解得k =±4,故直线l 的方程为y =4(x +1)或y =-4(x +1),即4x -y +4=0或4x +y +4=0.22.(14分)已知椭圆y 2a 2+x 2b 2=1的一个焦点为F (0,22),与两坐标轴正半轴分别交于A ,B 两点(如图),向量A B →与向量m =(-1,2)共线.(1)求椭圆的方程;(2)若斜率为k 的直线过点C (0,2),且与椭圆交于P ,Q 两点,求△POC 与△QOC 面积之比的取值范围.【解析方法代码108001122】解析: (1)y 216+x 28=1. (2)设P (x 1,y 1),Q (x 2,y 2),且x 1<0,x 2>0.PQ 方程为y =kx +2,代入椭圆方程并消去y ,得(2+k 2)x 2+4kx -12=0,x 1+x 2=-4k 2+k 2,① x 1x 2=-122+k 2.② 设S △QOC S △POC =|x 2||x 1|=-x 2x 1=λ,结合①②得 (1-λ)x 1=-4k 2+k 2,λx 21=122+k 2. 消去x 1得λ(1-λ)2=34⎝⎛⎭⎫1+2k 2>34,解不等式λ(1-λ)2>34,得13<λ<3. ∴△POC 与△QOC 面积之比的取值范围为⎝⎛⎭⎫13,3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

椭圆专题练习1.【2017,2】椭圆22194x y +=的离心率是A .13B .5 C .23D .592.【2017课标3,理10】已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A .6B .3 C .2 D .133.【2016高考理数】已知椭圆C 1:22x m +y 2=1(m >1)与双曲线C 2:22x n–y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则()A .m >n 且e 1e 2>1B .m >n 且e 1e 2<1C .m <n 且e 1e 2>1D .m <n 且e 1e 2<14.【2016高考新课标3理数】已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为()(A )13(B )12(C )23(D )345.【2015高考新课标1,理14】一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为.6.【2016高考卷】如图,在平面直角坐标系xOy 中,F 是椭圆22221()x y a b a b+=>>0的右焦点,直线2by =与椭圆交于,B C 两点,且90BFC ∠=,则该椭圆的离心率是.7.【2017课标1,理20】已知椭圆C :2222=1x y a b+(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,32),P 4(1,32)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.8.【2017课标II ,理】设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =。

(1) 求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=。

证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F 。

9.【2017,理21】在平面直角坐标系xOy 中,椭圆E :22221x y a b+=()0a b >>的离心率为2,焦距为.(Ⅰ)求椭圆E 的方程; (Ⅱ)如图,动直线:13y k x =-交椭圆E 于,A B 两点,C 是椭圆E 上一点,直线OC 的斜率为2k ,且1224k k =,M 是线段OC 延长线上一点,且:2:3MC AB =,M 的半径为MC ,,OS OT 是M 的两条切线,切点分别为,S T .求SOT ∠的最大值,并求取得最大值时直线的斜率.10.【2017,理19】设椭圆22221(0)x y a b a b +=>>的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线22(0)y px p =>的焦点,F 到抛物线的准线的距离为12. (I )求椭圆的方程和抛物线的方程;(II )设上两点P ,Q 关于轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与轴相交于点D .若APD △的面积为2AP 的方程.11.【2017,17】如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x y E a b a b+=>>的左、右焦点分别为1F , 2F ,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点1F 作直线1PF 的垂线,过点2F 作直线2PF 的垂线. (1)求椭圆E 的标准方程;(2)若直线E 的交点Q 在椭圆E 上,求点P 的坐标.12.【2016高考新课标1卷】(本小题满分12分)设圆222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E . (I )证明EA EB +为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值围. 13.【2016高考理数】(本小题满分14分)平面直角坐标系xOy 中,椭圆C :()222210x y a b a b+=>>的离心率是2,抛物线E :22x y =的焦点F 是C 的一个顶点. (I )求椭圆C 的方程;(II )设P 是E 上的动点,且位于第一象限,E 在点P 处的切线与C 交与不同的两点A ,B ,线段AB 的中点为D ,直线OD 与过P 且垂直于x 轴的直线交于点M . (i )求证:点M 在定直线上;(第17题)(ii)直线与y轴交于点G,记PFG△的面积为1S,PDM△的面积为2S,求12SS的最大值及取得最大值时点P的坐标.【答案】(Ⅰ)1422=+yx;(Ⅱ)(i)见解析;(ii)12SS的最大值为49,此时点P的坐标为)41,22(【解析】试题分析:(Ⅰ)根据椭圆的离心率和焦点求方程;(Ⅱ)(i)由点P的坐标和斜率设出直线l的方程和抛物线联立,进而判断点M在定直线上;(ii)分别列出1S,2S面积的表达式,根据二次函数求最值和此时点P的坐标.试题解析:(Ⅱ)(i)设)0)(2,(2>mmmP,由yx22=可得xy=/,所以直线的斜率为m,因此直线的方程为)(22mxmmy-=-,即22mmxy-=.设),(),,(),,(002211y x D y x B y x A ,联立方程222241m y mx x y ⎧=-⎪⎨⎪+=⎩得014)14(4322=-+-+m x m x m ,由0>∆,得520+<<m 且1442321+=+m m x x , 因此142223210+=+=m m x x x , 将其代入22m mx y -=得)14(2220+-=m m y ,因为m x y 4100-=,所以直线OD 方程为x my 41-=. 联立方程⎪⎩⎪⎨⎧=-=m x x m y 41,得点M 的纵坐标为M 14y =-,即点M 在定直线41-=y 上. (ii )由(i )知直线方程为22m mx y -=,令0=x 得22m y -=,所以)2,0(2m G -, 又21(,),(0,),22m P m F D ))14(2,142(2223+-+m m m m , 所以)1(41||2121+==m m m GF S , )14(8)12(||||2122202++=-⋅=m m m x m PM S , 所以222221)12()1)(14(2+++=m m m S S , 令122+=m t ,则211)1)(12(2221++-=+-=tt t t t S S ,当211=t,即2=t时,21SS取得最大值49,此时22=m,满足0>∆,所以点P的坐标为)41,22(,因此12SS的最大值为49,此时点P的坐标为)41,22(.考点:1.椭圆、抛物线的标准方程及其几何性质;2.直线与圆锥曲线的位置关系;3. 二次函数的图象和性质.14.【2015高考,18】(本小题满分16分)如图,在平面直角坐标系xOy中,已知椭圆()222210x ya ba b+=>>的离心率为22,且右焦点F到左准线l的距离为3.(1)求椭圆的标准方程;(2)过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程.【答案】(1)2212xy+=(2)1y x=-或1y x=-+.【解析】试题分析(1)求椭圆标准方程,只需列两个独立条件即可:一是离心率为22,二是右焦点F 到左准线l的距离为3,解方程组即得(2)因为直线AB过F,所以求直线AB的方程就是确定其斜率,本题关键就是根据PC=2AB列出关于斜率的等量关系,这有一定运算量.首先利用直线方程与椭圆方程联立方程组,解出AB两点坐标,利用两点间距离公式求出AB长,再根据中点坐标公式求出C点坐标,利用两直线交点求出P点坐标,再根据两点间距离公式求出PC长,利用PC=2AB解出直线AB斜率,写出直线AB方程.(2)当xAB⊥轴时,2AB=,又C3P=,不合题意.当AB与轴不垂直时,设直线AB的方程为()1y k x=-,()11,x yA,()22,x yB,将AB的方程代入椭圆方程,得()()2222124210k x k x k+-+-=,则()221,2221k kx±+=,C的坐标为2222,1212k kk k⎛⎫-⎪++⎝⎭,且()()()()()222222121212221112kx x y y k x xk+AB=-+-=+-=+.若0k=,则线段AB的垂直平分线为y轴,与左准线平行,不合题意.从而0k≠,故直线CP的方程为222121212k ky xk k k⎛⎫+=--⎪++⎝⎭,则点的坐标为()22522,12kk k⎛⎫+⎪-⎪+⎝⎭,从而()()2222311C12k kk k++P=+.因为C2P=AB,所以()()()2222223114211212k k kkk k+++=++,解得1k=±.此时直线AB方程为1y x=-或1y x=-+.【考点定位】椭圆方程,直线与椭圆位置关系15.【2016高考理数】(本小题满分14分)设椭圆13222=+yax(3>a)的右焦点为F,右顶点为A,已知||3||1||1FAeOAOF=+,其中O 为原点,为椭圆的离心率. (Ⅰ)求椭圆的方程;(Ⅱ)设过点A 的直线与椭圆交于点B (B 不在x 轴上),垂直于的直线与交于点M ,与y 轴交于点H ,若HF BF ⊥,且MOA MAO ∠≤∠,求直线的斜率的取值围.【答案】(Ⅰ)22143x y +=(Ⅱ)),46[]46,(+∞--∞ 【解析】试题分析:(Ⅰ)求椭圆标准方程,只需确定量,由113||||||c OF OA FA +=,得113()cc a a a c +=-,再利用2223a c b -==,可解得21c =,24a =(Ⅱ)先化简条件:MOA MAO ∠=∠⇔||||MA MO =,即M 再OA 中垂线上,1M x =,再利用直线与椭圆位置关系,联立方程组求B ;利用两直线方程组求H ,最后根据HF BF ⊥,列等量关系解出直线斜率.取值围试题解析:(1)解:设(,0)F c ,由113||||||c OF OA FA +=,即113()c c a a a c +=-,可得2223a c c -=,又2223a c b -==,所以21c =,因此24a =,所以椭圆的方程为22143x y +=. (2)(Ⅱ)解:设直线的斜率为k (0≠k ),则直线的方程为)2(-=x k y .设),(B B y x B ,由方程组⎪⎩⎪⎨⎧-==+)2(13422x k y y x ,消去y ,整理得0121616)34(2222=-+-+k x k x k . 解得2=x ,或346822+-=k k x ,由题意得346822+-=k k x B,从而34122+-=k k y B . 由(Ⅰ)知,)0,1(F ,设),0(H y H ,有),1(H y FH -=,)3412,3449(222++-=k kk k BF .由HF BF ⊥,得0=⋅HF BF ,所以034123449222=+++-k ky k k H,解得k k y H 12492-=.因此直线MH 的方程为kk x k y 124912-+-=.所以,直线的斜率的取值围为),46[]46,(+∞--∞ . 考点:椭圆的标准方程和几何性质,直线方程16.【2015高考,理20】平面直角坐标系xoy 中,已知椭圆()2222:10x y C a b a b+=>>3左、右焦点分别是12,F F ,以1F 为圆心以3为半径的圆与以2F 为圆心以1为半径的圆相交,且交点在椭圆C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆2222:144x y E a b+=,P 为椭圆C 上任意一点,过点P 的直线y kx m =+交椭圆E于,A B 两点,射线PO 交椭圆E 于点Q .( i )求OQOP的值; (ii )求ABQ ∆面积的最大值.【答案】(I )2214x y +=;(II )( i )2;(ii )3【解析】试题分析:(I )根据椭圆的定义与几何性质列方程组确定,a b 的值,从而得到椭圆的方程;(II )(i )设()00,P x y ,OQOPλ=,由题意知()00,Q x y λλ--,然后利用这两点分别在两上椭圆上确定λ的值; (ii )设()()1122,,,A x y B x y ,利用方程组221164y kx m x y =+⎧⎪⎨+=⎪⎩结合韦达定理求出弦长AB,选将OAB∆的面积表示成关于,k m 的表达式2222221641214k m m S m x x k +-=⋅-=+2222241414m m k k⎛⎫=-⋅ ⎪++⎝⎭,然后,令2214m t k =+,利用一元二次方程根的判别式确定的围,从而求出OAB ∆的面积的最大值,并结合(i )的结果求出△面积的最大值.试题解析:(I )由题意知24a =,则2a = ,又2223,2c a c b a =-=可得1b = , 所以椭圆C 的标准方程为2214x y +=. (II )由(I )知椭圆E 的方程为221164x y +=, (i )设()00,P x y ,OQ OPλ=,由题意知()00,Q x y λλ--因为220014x y +=, 又()()22001164x y λλ--+=,即222144x y λ⎛⎫+= ⎪⎝⎭,所以2λ=,即2OQ OP = .所以2212216414k m x x k +--=+因为直线y kx m =+与轴交点的坐标为()0,m所以OAB ∆的面积2222221641214k m m S m x x k +-=⋅-=+ 222222222(164)24141414k m m m m k k k⎛⎫+-⋅==-⋅ ⎪+++⎝⎭ 令2214m t k=+ ,将y kx m =+代入椭圆C 的方程可得()222148440k x kmx m +++-= 由0∆≥,可得2214m k ≤+ …………………………………………② 由①②可知01t <≤ 因此()22424S t t t t =-=-+ ,故23S ≤当且仅当1t =,即2214m k =+时取得最大值23由(i )知,ABQ ∆面积为3S ,所以ABQ ∆面积的最大值为63 .17.【2015高考,理20】(本小题满分12分)已知椭圆:E 22221x y a b+=(0a b >>)的半焦距为,原点O 到经过两点(),0c ,()0,b 的直线的距离为12c . (I )求椭圆E 的离心率;(II )如图,AB 是圆:M ()()225212x y ++-=的一条直径,若椭圆E 经过A ,B 两点,求椭圆E 的 方程.【答案】(I 3;(II )221123x y +=. 【解析】试题分析:(I )先写过点(),0c ,()0,b 的直线方程,再计算原点O 到该直线的距离,进而可得椭圆E 的离心率;(II )先由(I )知椭圆E 的方程,设AB 的方程,联立()2222144y k x x y b⎧=++⎪⎨+=⎪⎩,消去y ,可得12x x +和12x x 的值,进而可得,再利用AB =2b 的值,进而可得椭圆E 的方程.试题解析:(I )过点(),0c ,()0,b 的直线方程为0bx cy bc ,则原点O到直线的距离bcd a==, 由12dc ,得2222a b a c ,解得离心率3c a . (II)解法一:由(I )知,椭圆E 的方程为22244xy b . (1) 依题意,圆心()2,1M -是线段AB 的中点,且|AB |10.易知,AB 不与轴垂直,设其直线方程为(2)1yk x ,代入(1)得2222(14)8(21)4(21)40k x k k x k b设1122(,y ),B(,y ),A x x 则221212228(21)4(21)4,.1414k k k b x x x x k k由124x x ,得28(21)4,14k kk 解得12k. 从而21282x x b.于是12|AB ||x x =-==由|AB |10,得2)10,解得23b .故椭圆E 的方程为221123x y .解法二:由(I )知,椭圆E 的方程为22244xy b .因此AB 直线方程为1(2)12y x ,代入(2)得224820.x x b所以124x x ,21282x x b .于是()22212121215|AB |1||410(2)22x x x x x x b ⎛⎫=+-=+-=- ⎪⎝⎭. 由|AB |10,得210(2)10b ,解得23b .故椭圆E 的方程为221123x y .考点:1、直线方程;2、点到直线的距离公式;3、椭圆的简单几何性质;4、椭圆的方程;5、圆的方程;6、直线与圆的位置关系;7、直线与圆锥曲线的位置.18.【2016高考理数】(本题满分15分)如图,设椭圆2221x y a+=(a >1).(I )求直线y =kx +1被椭圆截得的线段长(用a 、k 表示);(II )若任意以点A (0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值 围.【答案】(I )2222211a k k a k ++(II )20e <≤.【解析】试题分析:(I )先联立1y kx =+和2221x y a+=,可得1x ,2x ,再利用弦长公式可得直线1y kx =+被椭圆截得的线段长;(II )先假设圆与椭圆的公共点有4个,再利用对称性及已知条件可得任意以点()0,1A 为圆心的圆与椭圆至多有个公共点时,a 的取值围,进而可得椭圆离心率的取值围.试题解析:(I )设直线1y kx =+被椭圆截得的线段为AP ,由22211y kx x y a=+⎧⎪⎨+=⎪⎩得 ()2222120a k xa kx ++=,故10x =,222221a kx a k =-+.因此22212222111a k k x k a kAP =+-=++. (II )假设圆与椭圆的公共点有4个,由对称性可设y 轴左侧的椭圆上有两个不同的点P ,Q ,满足Q AP =A .记直线AP ,Q A 的斜率分别为1k ,2k ,且1k ,20k >,12k k ≠. 由(I )知,2211121a k k +AP =,2222221Q a k k +A =,故因此()222212111112a ak k⎛⎫⎛⎫++=+-⎪⎪⎝⎭⎝⎭,①因为①式关于1k,2k的方程有解的充要条件是()22121a a+->,所以2a>.因此,任意以点()0,1A为圆心的圆与椭圆至多有个公共点的充要条件为12a<≤,由21c aea-==得,所求离心率的取值围为22e<≤.考点:1、弦长;2、圆与椭圆的位置关系;3、椭圆的离心率.19.【2015高考新课标2,理20】(本题满分12分)已知椭圆222:9(0)C x y m m+=>,直线不过原点O且不平行于坐标轴,与C有两个交点A,B,线段AB的中点为M.(Ⅰ)证明:直线OM的斜率与的斜率的乘积为定值;(Ⅱ)若过点(,)3mm,延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时的斜率,若不能,说明理由.【答案】(Ⅰ)详见解析;(Ⅱ)能,4747+【解析】(Ⅰ)设直线:l y kx b =+(0,0)k b ≠≠,11(,)A x y ,22(,)B x y ,(,)M M M x y . 将y kx b =+代入2229x y m +=得2222(9)20k x kbx b m +++-=,故12229M x x kbx k +==-+, 299M M by kx b k =+=+.于是直线OM 的斜率9M OM My k x k ==-,即9OM k k ⋅=-.所以直线OM 的斜率与的斜率的乘积为定值.(Ⅱ)四边形OAPB 能为平行四边形. 因为直线过点(,)3mm ,所以不过原点且与C 有两个交点的充要条件是0k >,3k ≠. 由(Ⅰ)得OM 的方程为9y x k=-.设点P 的横坐标为P x .由2229,9,y x k x y m ⎧=-⎪⎨⎪+=⎩得2222981Pk m x k =+,即P x =.将点(,)3m m 的坐标代入直线的方程得(3)3m k b -=,因此2(3)3(9)M mk k x k -=+.四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即2P M x x ==2(3)23(9)mk k k -⨯+.解得14k =24k =.因为0,3i i k k >≠,1i =,,所以当的斜率为4-4+OAPB 为平行四边形.【考点定位】1、弦的中点问题;2、直线和椭圆的位置关系.【名师点睛】(Ⅰ)题中涉及弦的中点坐标问题,故可以采取“点差法”或“韦达定理”两种方法求解:设端点,A B 的坐标,代入椭圆方程并作差,出现弦AB 的中点和直线的斜率;设直线的方程同时和椭圆方程联立,利用韦达定理求弦AB 的中点,并寻找两条直线斜率关系;(Ⅱ)根据(Ⅰ)中结论,设直线OM 方程并与椭圆方程联立,求得M 坐标,利用2P M x x =以及直线过点(,)3mm 列方程求的值. 20.【2016高考新课标2理数】已知椭圆:E 2213x y t +=的焦点在轴上,A 是E 的左顶点,斜率为(0)k k>的直线交E于,A M两点,点N在E上,MA NA⊥.(Ⅰ)当4,||||t AM AN==时,求AMN∆的面积;(Ⅱ)当2AM AN=时,求k的取值围.【答案】(Ⅰ)14449;(Ⅱ)()32,2.【解析】试题解析:(I)设()11,M x y,则由题意知1y>,当4t=时,E的方程为22143x y+=,()2,0A-.由已知及椭圆的对称性知,直线AM的倾斜角为4π.因此直线AM的方程为2y x=+.将2x y=-代入22143x y+=得27120y y-=.解得0y=或127y=,所以1127y=.因此AMN∆的面积11212144227749=⨯⨯⨯=.(II)由题意3t>,0k>,(),0A t-.将直线AM的方程()y k x t=+代入2213x yt+=得()222223230tk x ttk x t k t+++-=.由(22123t kx ttk⋅=+得)21233t tkxtk-=+,故()221621t kAM x t k+=+=由题设,直线AN的方程为(1y x tk=-+,故同理可得()261k t kAN+==,由2AM AN=得22233ktk k t=++,即()()32321k t k k-=-.当32k=因此()33212k ktk-=-.3t>等价于()()23233213222k kk k kk k-+-+-=<--,即322kk-<-.由此得32020kk->⎧⎨-<⎩,或32020kk-<⎧⎨->⎩,解得322k<<.因此k的取值围是()32,2.考点:椭圆的性质,直线与椭圆的位置关系.21.【2015高考,理20】如图,椭圆E:2222+1(0)x ya ba b=>>的离心率是22,过点P(0,1)的动直线与椭圆相交于A,B两点,当直线平行与x轴时,直线被椭圆E截得的线段长为22.(1)求椭圆E的方程;(2)在平面直角坐标系xOy中,是否存在与点P不同的定点Q,使得QA PAQB PB=恒成立?若存在,求出点Q的坐标;若不存在,请说明理由.【答案】(1)22142x y+=;(2)存在,Q点的坐标为(0,2)Q.【解析】(1)由已知,点2,1)在椭圆E上.因此,22222211,,22a ba b cca⎧+=⎪⎪⎪-=⎨⎪⎪=⎪⎩解得2,2a b==所以椭圆的方程为22142x y+=.所以,若存在不同于点P 的定点Q 满足条件,则Q 点的坐标只可能为(0,2)Q . 下面证明:对任意的直线,均有||||||||QA PA QB PB =. 当直线的斜率不存在时,由上可知,结论成立.当直线的斜率存在时,可设直线的方程为1y kx =+,A 、B 的坐标分别为1122(,),(,)x y x y .联立221,421x y y kx ⎧+=⎪⎨⎪=+⎩得22(21)420k x kx ++-=. 其判别式22168(21)0k k ∆=++>, 所以,12122242,2121k x x x x k k +=-=-++. 因此121212112x x k x x x x ++==. 易知,点B 关于y 轴对称的点的坐标为22(,)B x y '-.xy PA B'F 2F 1OB 1BQ又122122111,y y k k k k k x x --==-==-+=-, 所以QA QB k k '=,即,,Q A B '三点共线.所以12||||||||||||||||xQA QA PAQB QB x PB==='.故存在与P不同的定点(0,2)Q,使得||||||||QA PAQB PB=恒成立.22.【2016年高考理数】(本小题14分)已知椭圆C:22221+=x ya b(0a b>>)的离心率为3,(,0)A a,(0,)B b,(0,0)O,OAB∆的面积为1.(1)求椭圆C的方程;(2)设P的椭圆C上一点,直线PA与y轴交于点M,直线PB与x轴交于点N.求证:BMAN⋅为定值.【答案】(1)2214xy+=;(2)详见解析.【解析】试题分析:(1)根据离心率为3,即3ca=,OAB∆的面积为1,即112ab=,椭圆中222a b c=+列方程求解;(2)根据已知条件分别求出AN,||BM的值,求其乘积为定值.所以椭圆C的方程为1422=+yx.(2)由(Ⅰ)知,)1,0(),0,2(BA,设),(00y x P ,则442020=+y x . 当00≠x 时,直线PA 的方程为)2(200--=x x y y . 令0=x ,得2200--=x y y M .从而221100-+=-=x y y BM M . 直线PB 的方程为110+-=x x y y . 令0=y ,得100--=y x x N .从而12200-+=-=y x x AN N . 所以221120000-+⋅-+=⋅x y y x BM AN 228844224844400000000000000002020+--+--=+--+--++=y x y x y x y x y x y x y x y x y x 4=. 当00=x 时,10-=y ,,2,2==AN BM 所以4=⋅BM AN . 综上,BM AN ⋅为定值.考点:1.椭圆方程及其性质;2.直线与椭圆的位置关系.23.【2016年高考理数】(本小题满分13分)已知椭圆E :22221(0)x y a b a b+=>>的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线:3l y x =-+与椭圆E 有且只有一个公共点T . (Ⅰ)求椭圆E 的方程及点T 的坐标;(Ⅱ)设O 是坐标原点,直线l’平行于OT ,与椭圆E 交于不同的两点A 、B ,且与直线l 交于点P .证明:存在常数λ,使得2PTPA PB λ=⋅,并求λ的值.【答案】(Ⅰ)22163x y +=,点T 坐标为(2,1);(Ⅱ)45λ=.【解析】试题分析:(Ⅰ)由椭圆两个焦点与短轴的一个端点是直角三角形的三个顶点可得2a c =,从而可得2a b =,椭圆的标准方程中可减少一个参数,再利用直线和椭圆只有一个公共点,联立方程,方程有两个相等实根,解出b 的值,从而得到椭圆的标准方程;(Ⅱ)首先设出直线'l 方程为12y x m =+,由两直线方程求出点P 坐标,得2PT ,同时设交点1122(,),(,)A x y B x y ,把'l 方程与椭圆方程联立后消去y 得x 的二次方程,利用根与系数关系,得1212,x x x x +,再计算PA PB ⋅,比较可得λ值.试题解析:(I )由已知,222(2)a a c +=,即2a c =,所以2a b =,则椭圆E 的方程为222212x y b b+=. 由方程组22221,23,x y b b y x ⎧+=⎪⎨⎪=-+⎩得22312(182)0x x b -+-=.①方程①的判别式为2=24(3)b ∆-,由=0∆,得2=3b , 此方程①的解为=2x ,所以椭圆E 的方程为22163x y +=. 点T 坐标为(2,1).由方程组221 6312x yy xm⎧+=⎪⎪⎨⎪=+⎪⎩,,可得2234(412)0x mx m++-=.②方程②的判别式为2=16(92)m∆-,由>0∆,解得323222m-<<.由②得212124412=,33m mx x x x-+-=.所以221112252(2)(1)23323m m mPA x y x=--++-=--,同理252223mPB x=--,所以12522(2)(2)433m mPA PB x x⋅=----21212522(2)(2)()433m mx x x x=---++225224412(2)(2)()43333m m m m-=----+2109m=.故存在常数45λ=,使得2PT PA PBλ=⋅.考点:椭圆的标准方程及其几何性质.24.【2015高考,理21】如题(21)图,椭圆()222210x ya ba b+=>>的左、右焦点分别为12,,F F过2F的直线交椭圆于,P Q两点,且1PQ PF⊥(1)若1222PF PF ==(2)若1,PF PQ =求椭圆的离心率.e 【答案】(1)22+y =14x ;(2【解析】试题解析:(1)本题中已知椭圆上的一点到两焦点的距离,因此由椭圆定义可得长轴长,即参数的值,而由1PQ PF ⊥,应用勾股定理可得焦距,即的值,因此方程易得;(2)要求椭圆的离心率,就是要找到关于,,a b c 的一个等式,题中涉及到焦点距离,因此我们仍然应用椭圆定义,设1PF m =,则22PF a m =-,22(2)22QF PQ PF m a m m a =-=--=-,于是有12242QF a QF a m =-=-,这样在1Rt PQF ∆中求得2(2m a =,在12Rt PF F ∆中可建立关于,a c 的等式,从而求得离心率. (1)由椭圆的定义,122|PF ||PF |22224a a ,故=2.设椭圆的半焦距为c ,由已知12PF PF ⊥,因此222212122|FF ||PF ||PF |222223c ,即 从而22b1a c故所求椭圆的标准方程为22+y =14x .()()22222222222221|PF |=2+c 2222.c b a b a b a a b a a b a c ⎛⎫⎛⎫-+=-+-=+- ⎪ ⎪⎝⎭⎝⎭由椭圆的定义,1212|PF ||PF |2,|QF ||QF |2a a ,从而由122|PF |=|PQ |=|PF |+|QF |,有11|QF |42|PF |a又由12PF PF ⊥,1|PF |=|PQ |知11|QF |2|PF |,因此12+2|PF|=4a 于是222224.aa b a解得2141163222e ⎡⎤⎛⎫=+-=-⎢⎥⎪+⎝⎭⎢⎥⎣⎦. 解法二:如图(21)图由椭圆的定义,1212|PF ||PF |2,|QF ||QF |2a a ,从而由122|PF |=|PQ |=|PF |+|QF |,有11|QF |42|PF |a又由12PF PF ⊥,1|PF |=|PQ |知11|QF |2|PF |,因此1142|PF |2|PF |a ,1|PF |=2(2-2)a ,从而21|PF |=2-|PF |2(2-2)2(21)a a aa 由12PF PF ⊥,知22222122|PF ||P F ||PF |(2)4c c ,因此221222|PF ||P F |(22)(21)96263c ea【考点定位】考查椭圆的标准方程,椭圆的几何性质.,直线和椭圆相交问题,考查运算求解能力.25.【2015高考,理20】设椭圆E 的方程为()222210x y a b a b+=>>,点O 为坐标原点,点A 的坐标为()0a ,,点B 的坐标为()0b ,,点M 在线段AB 上,满足2BM MA =,直线OM 的斜率为510. (I )求E 的离心率e ;(II )设点C 的坐标为()0b -,,N 为线段AC 的中点,点N 关于直线AB 的对称点的纵坐标为72,求 E 的方程.【答案】(I )255;(II )221459x y +=. 【解析】(I )由题设条件知,点M 的坐标为21(,)33a b ,又5OM k =,从而52b a =,进而得225,2a b c a b b ==-=,故255c e a ==. (II )由题设条件和(I )的计算结果可得,直线AB 的方程为15ybb +=,点N 的坐标为51(,)2b b -,设点N 关于直线AB 的对称点S 的坐标为17(,)2x ,则线段NS 的中点T 的坐标为1517(,)244x b b +-+.又点T 在直线AB 上,且1NS AB k k ⋅=-,从而有11517424415712255x b b b b b b x ⎧+-+⎪+=⎪⎪⎪⎨+⎪=⎪⎪-⎪⎩解得3b =,所以35a =,故椭圆E 的方程为221459x y +=. 【考点定位】1.椭圆的离心率; 2.椭圆的标准方程;3.点点关于直线对称的应用.26.【2015高考,理18】已知椭圆E :22221(a 0)x y b ab 过点(0,2),且离心率为22. xy BAOG(Ⅰ)求椭圆E 的方程; (Ⅱ)设直线1xmy m R ,()交椭圆E 于A ,B 两点,判断点G 9(4-,0)与以线段AB 为直径的圆的位置关系,并说明理由.【答案】(Ⅰ)22142x y ;(Ⅱ) G 9(4-,0)在以AB 为直径的圆外.【解析】解法一:(Ⅰ)由已知得2222,2,2,b c a a b c 解得222a b c , 所以椭圆E 的方程为22142x y .22222121212()(y)(m+1)(y)|AB|444x x y y22221212012(m+1)[(y)4y](m+1)(y y)4y yy,故2222 22012222 |AB|52553(m+1)25172 |GH|my(m+1)y0 42162(m2)m21616(m2)m my所以|AB||GH|>2,故G9(4-,0)在以AB为直径的圆外.解法二:(Ⅰ)同解法一.(Ⅱ)设点1122(y),B(,y),A x x,则112299GA(,),GB(,).44x y x y由22221(m2)y230,142x mymyx y得所以12122223y+y=,y y=m2m2m,从而121212129955GA GB()()(my)(my)4444x x y y y y22212122252553(m+1)25(m+1)y(y)4162(m2)m216my m y2217216(m2)m所以cos GA,GB0,GA GB又,不共线,所以AGB为锐角.故点G9(4-,0)在以AB为直径的圆外.【考点定位】1、椭圆的标准方程;2、直线和椭圆的位置关系;3、点和圆的位置关系.27.【2015理20】已知抛物线21:4C x y=的焦点F也是椭圆22222:1(0)y xC a ba b+=>>的一个焦点,1C与2C的公共弦的长为26.(1)求2C的方程;(2)过点F的直线与1C相交于A,B两点,与2C相交于C,D两点,且AC与BD同向(ⅰ)若||||AC BD=,求直线的斜率(ⅱ)设1C 在点A 处的切线与轴的交点为M ,证明:直线绕点F 旋转时,MFD ∆总是钝角三角形【答案】(1)22198y x +=;(2)(i )4±,(ii )详见解析. 【解析】试题分析:(1)根据已知条件可求得2C 的焦点坐标为)1,0(,再利用公共弦长为62即可求解;(2)(i )设直线的斜率为,则的方程为1+=kx y ,由214y kx x y=+⎧⎨=⎩得216640x kx +-=,根据条件可知AC =BD ,从而可以建立关于的方程,即可求解;(ii )根据条件可说明FA 2211111024x x FM y =-+=+>,因此AFM ∠是锐角,从而180MFD AFM ∠=-∠是钝角,即可得证试题解析:(1)由1C :24x y =知其焦点F 的坐标为(0,1),∵F 也是椭圆2C 的一焦点,∴221a b -=①,又1C 与2C 的公共弦的长为,1C 与2C 都关于y 轴对称,且1C 的方程为24x y =,由此易知1C 与2C 的公共点的坐标为3()2,∴229614a b +=②,联立①,②,得29a =,28b =,故2C 的方程为22198x y +=;(2)如图f ,11(,)A x y ,22(,)B x y ,33(,)C x y ,44(,)D x y ,(i )∵AC 与BD 同向,且||||BD AC =,∴AC BD =,从而31x x -=42x x -,即12x x -=34x x -,于是()2124x x +-12x x =()2344x x +-34x x ③,设直线的斜率为,则的方程为1+=kx y ,由214y kx x y=+⎧⎨=⎩(ii )由24x y =得'y =2x ,∴1C 在点A 处的切线方程为)(2111x x xy y -=-,即 4211x x x y -=,令0=y ,得12x x =,即)0,2(1xM ,∴1(,1)2x FM =-,而11(,1)FA x y =-,于是FA 2211111024x x FM y =-+=+>,因此AFM ∠是锐角,从而180MFD AFM ∠=-∠是钝角.,故直线绕点F 旋转时,MFD ∆总是钝角三角形.【考点定位】1.椭圆的标准方程及其性质;2.直线与椭圆位置关系.。

相关文档
最新文档