八年级二次根式复习课ppt
合集下载
人教版八年级数学下册《二次根式的乘除》二次根式PPT精品课件
6
观察两者有什么关系?
4×9
36 6 ;
=_________
400 20 ;
16 × 25 =_________
900 30 .
25 × 36 = _________
知识讲解
观察三组式子的结果,我们得到下面三个等式:
(1)
4
(2)
16
(3)
25
9 = 4 9;
25= 16 25;
16a 4a 2 a 2 .
4
4
知识讲解
2. 若长为 24 ,宽为 8 ,求出它的面积.
解:它的面积为 24 × 8 = 24 × 8 =
82 × 3 = 8 3.
随堂训练
−6 = ⋅ −6
1.若
,则 ( A )
A.x≥6
B.x≥0
C.0≤x≤6
D.x为一切实数
( D )
6 2
(2) 6 × 12 = _______;
2 6
(3) 3 × 2 2 = _____.
4. 比较下列两组数的大小(在横线上填“>”“<”或“=”):
(1)
5 4
>
4 5;
(2) 4 2
<
2 7.
随堂训练
5.计算:(1)2 3 × 5 21;
18
(2)3 3 × (−
);
4
(3)3 2 × 2 10 × 5;
(3) 3 ×
1
=
3
1
3
3 × = .
1
.
3
知识讲解
归纳: 化简二次根式的步骤:
1.把被开方数分解因式(或因数) ;
2.把各因式(或因数)积的算术平方根化为每个因
观察两者有什么关系?
4×9
36 6 ;
=_________
400 20 ;
16 × 25 =_________
900 30 .
25 × 36 = _________
知识讲解
观察三组式子的结果,我们得到下面三个等式:
(1)
4
(2)
16
(3)
25
9 = 4 9;
25= 16 25;
16a 4a 2 a 2 .
4
4
知识讲解
2. 若长为 24 ,宽为 8 ,求出它的面积.
解:它的面积为 24 × 8 = 24 × 8 =
82 × 3 = 8 3.
随堂训练
−6 = ⋅ −6
1.若
,则 ( A )
A.x≥6
B.x≥0
C.0≤x≤6
D.x为一切实数
( D )
6 2
(2) 6 × 12 = _______;
2 6
(3) 3 × 2 2 = _____.
4. 比较下列两组数的大小(在横线上填“>”“<”或“=”):
(1)
5 4
>
4 5;
(2) 4 2
<
2 7.
随堂训练
5.计算:(1)2 3 × 5 21;
18
(2)3 3 × (−
);
4
(3)3 2 × 2 10 × 5;
(3) 3 ×
1
=
3
1
3
3 × = .
1
.
3
知识讲解
归纳: 化简二次根式的步骤:
1.把被开方数分解因式(或因数) ;
2.把各因式(或因数)积的算术平方根化为每个因
最新人教版初中八年级下册数学【二次根式复习】教学课件
初中数学 解决问题
7.计算:( 8 2) 1 . 2
8.已知:x 2 3 ,y 2 3 ,求代数式 x2 xy y2的值.
9.已知 a 5 1,求代数式 a2 2a 7 的值.
初中数学 解决问题
7.计算:( 8 2) 1 . 2
解:原式= (2 2 2) 1 2 1 1.
初中数学 解决问题
1.若 3 m 为二次根式,则 m的取值范围是 m≤3 .
2.在根式 ① ( y 1)2 ②
x③ 5
27mn ④
是
④
.(填序号)
a2 b 中,最简二次根
式
3.已知 y x 2 2 x 3 ,求 xy 的值.
8
解:∵ x 2 0,
2 x 0.
总结: 二次根式要求被开方数
初中数学 复习运算
乘法: a b = ab (a≥0,b≥0);
反之: ab= a b(a≥0,b≥0 ).
乘除运算
除法: a a (a≥0,b>0 ); bb
运算
aa 反之: (a≥0,b>0 ).
bb
加减运算
步骤:“一化简、二判断、三合并”; 依据:二次根式的性质、分配律和整式加减法则.
(2)∵ x 5 0, 1 x 0.
∴ -5≤x<1.
总结:转化为解不等式组.
初中数学 综合应用
例2 两个最简二次根式 a b 与 c b 相加得 6 5 ,求 a+b+c的值.
初中数学 综合应用
例2 两个最简二次根式 a b 与 c b 相加得 6 5 ,求 a+b+c的值. 解:∵ a b c b 6 5, ∴ b=5, ∴ a 5 c 5 (a c) 5 6 5. ∴ a+c=6, ∴ a+b+c=11.
数学八年级下《二次根式》复习课件
a
2
先平方,后开方
想一想:
2.从取值范围来看 2 a≥0 a
a
2
≥0 时, 当a ____
a
2
a
2
a取任何实数
例1、x 取何值时,下列各式在实数范围内 有意义?
x1 1 ; x2
解:(1)由
x 1 0
x 2 0,
得x≥-1且x≠2.
∴当x≥-1且x≠2时,式子 意义.
2 3 11 (2)
解:原式
2
11 2 3 .
2
2
11 12 1.
11 2 3 11 2 3
2
小结一下
求二次根式的值:
先根据题意,列出二次根式, 然后归结为求代数式的值的问题。
?
练习:
1.计算: 1 3 2 (1) 9 45 3 2 ;
1 3
知识巩固
最简二次根式
①被开方数的因数是整数,因式是整式。 ②被开方数中不含能开得尽方的因数或因式。 ③分母中不含有二次根式。
30
2.5x
50
2 x( x y ) 2
x2 y2
首页
上页
下页
知识巩固
同类二次根式
几个二次根式化成最简二次根式后, 如果被开方数相同,这几个二次根式就叫 做同类二次根式 ①化成最简二次根式后
1 -2 3 (2)( ) - 2 2 - 3 2 8
0
计算:
20 15 2011 (3) 3( 3 ) (1) 5
(4)
( 2 3)(2 2 1)
二次根式的化简求值
先化简,再求值。
(1)2(a 3 )(a 3 ) a(a 6) 6 其中:a 2 1
2
先平方,后开方
想一想:
2.从取值范围来看 2 a≥0 a
a
2
≥0 时, 当a ____
a
2
a
2
a取任何实数
例1、x 取何值时,下列各式在实数范围内 有意义?
x1 1 ; x2
解:(1)由
x 1 0
x 2 0,
得x≥-1且x≠2.
∴当x≥-1且x≠2时,式子 意义.
2 3 11 (2)
解:原式
2
11 2 3 .
2
2
11 12 1.
11 2 3 11 2 3
2
小结一下
求二次根式的值:
先根据题意,列出二次根式, 然后归结为求代数式的值的问题。
?
练习:
1.计算: 1 3 2 (1) 9 45 3 2 ;
1 3
知识巩固
最简二次根式
①被开方数的因数是整数,因式是整式。 ②被开方数中不含能开得尽方的因数或因式。 ③分母中不含有二次根式。
30
2.5x
50
2 x( x y ) 2
x2 y2
首页
上页
下页
知识巩固
同类二次根式
几个二次根式化成最简二次根式后, 如果被开方数相同,这几个二次根式就叫 做同类二次根式 ①化成最简二次根式后
1 -2 3 (2)( ) - 2 2 - 3 2 8
0
计算:
20 15 2011 (3) 3( 3 ) (1) 5
(4)
( 2 3)(2 2 1)
二次根式的化简求值
先化简,再求值。
(1)2(a 3 )(a 3 ) a(a 6) 6 其中:a 2 1
2019-2020人教版八年级数学下册第十六章二次根式章末复习课件(共59张)
相关题 4 当 t 取何值时,
35t-3-5 的值最小?最小值是多少?
3
3
解:∵ 5t-3≥0,∴当5t-3=0,即 t=5 时,
最小值是-5.
3 5t-3-5 的值最小,
第十六章 二次根式
专题三 二次根式的混合运算
【要点指导】 进行二次根式的混合运算时, (1)先将二次根式进行适当的化简;(2)二次
第十六章 二次根式
专题五 二次根式的化简
【要点指导】
灵活应用二次根式的性质和公式:( a)2=a(a≥0), a2 =|a|, a·b =
a· b (a≥0, b≥0),
ab=
a b
(a≥0, b>0), 可以将复杂的二次根式进
行化简, 从而帮助我们解决问题.
第十六章 二次根式
例 7 实数 a, b 在数轴上对应点的位置如图 16-Z-1 所示, 则
第十六章 二次根式
(2)比较 5+ 13与 7+ 11的大小
分析 先求出两个式子的平方, 再比较这两个式子的平方的大小.
解:( 5+ 13)2=18+2 65, ( 7+ 11)2=18+2 77. ∵65<77,∴ 65< 77,∴18+2 65<18+2 77, 即( 5+ 13)2<( 7+ 11)2. 又∵ 5+ 13>0, 7+ 11>0, ∴ 5+ 13< 7+ 11.
a ≥0( a≥0 )
a =a( a≥0 )
a2
=|a|=
a(a≥0), -a(a<0)
当a≥0时,( a)2= a2
数学人教版八年级下册二次根式复习ppt
x y x y
2 2 3
3 3
x y ( 2) y x
x 2 y 2 ( x y ) 2 2 xy ( 2 3 ) 2 2 2 4; (2)原式 xy xy 2
• 1、 注意运算顺序; • 2、注意运算法则和技巧: • 3、注意运算结果必须是最简二 次根式或整式。
一.诊断练习
在式子
a 2 1,
3,
0 . 5,
3
5,
( 3),
2
a 5,
2
a(a0 ),
64 ,
1 , 3
1 2x ,
18 ,
式 这些二次根式能不能变成最简二次根式或整式? 2
2
2 ( 3 ) 3
①被开方数不含分母 你变形的依据是什么? ①根指数为2 ②被开方数不含能开 ②被开方数是非负数 2 的尽方的因数或因式 3 你变形的依据是什么? 3 ______
1 解:原式 3 2 8 8 5 15 3 2
3 100 4
15 2
二次根式的乘除运算, 可以先乘除,再化简。
2 5 5 2 2 5 5 2 5 2 3、
2
2 2 解:原式 (2 5) (5 2) (5 2 5 2 2)
A.
1 5
2 5 x B . y C. 9 a
2 x 1 D.
三、基础训练
3、计算:
(1)
5 7 2 2 2 _______ 3 5 (2) 13 12 _______ 9
三、基础训练
4、若 x>1
x 1 x 1 ,则x的取值范围是 x 1 x 1
。
浙教版八年级下册 1.3 二次根式的运算 课件(共26张PPT)
(2)若用这些纸条为一幅正方形美术作品镶边(纸条不重叠), 正方形美
术作品的面积为多少平方厘米?
解:
(2)三张长方形连接在一起的总长度为:
10 2
20 2
A
B
?
C
30 2
10 2 20 2+30 2=60 2cm
AB=5 2cm
AC=60 2 4=15 2cm
正方形的边长BC AC AB
= (m)
.
C
∴BE=AE÷0.8=
AEΒιβλιοθήκη FD
(m)
∴AB = +
= (m)
,
∵CF= BE=
=
.
∴DF=1.6CF= (m)
∴CD = +
=
(m)
答:这个小男孩经过的总路程约为7.71米.
∵CD= m
( 3) 2 3
(1 2) 2 1 2
(1 2)
2 1
三. 性质复习
最简二次根式
1.根号内是一个不含平
方因数的整数
例1 计算
1
3
(2)
4
12 24 化成最简二次根式
2.分母中不含根号
8
2
1
2
2
2
解:原式=
6 -12 2
2 2
2
2
2
1
3
3 2
3
E
G
D
图2
F
B
例题分析
例7 如图,一张等腰直角三角形彩色纸,AC=BC=40cm,将斜边上
术作品的面积为多少平方厘米?
解:
(2)三张长方形连接在一起的总长度为:
10 2
20 2
A
B
?
C
30 2
10 2 20 2+30 2=60 2cm
AB=5 2cm
AC=60 2 4=15 2cm
正方形的边长BC AC AB
= (m)
.
C
∴BE=AE÷0.8=
AEΒιβλιοθήκη FD
(m)
∴AB = +
= (m)
,
∵CF= BE=
=
.
∴DF=1.6CF= (m)
∴CD = +
=
(m)
答:这个小男孩经过的总路程约为7.71米.
∵CD= m
( 3) 2 3
(1 2) 2 1 2
(1 2)
2 1
三. 性质复习
最简二次根式
1.根号内是一个不含平
方因数的整数
例1 计算
1
3
(2)
4
12 24 化成最简二次根式
2.分母中不含根号
8
2
1
2
2
2
解:原式=
6 -12 2
2 2
2
2
2
1
3
3 2
3
E
G
D
图2
F
B
例题分析
例7 如图,一张等腰直角三角形彩色纸,AC=BC=40cm,将斜边上
浙教版八年级下册 1.2 二次根式的性质 课件(共17张ppt)
记作 a . 2. 2是什么数的平方根?所以 2的平方等于什么?
2的一个平方根.
3(. 7)2,( 1)2呢? 2
( 2)2 =2. ( 7)2 =7,( 1)2 = 1 .
22
你能猜想 ( a )2 ?
二次根式的性质1: 二次根式的平方等于被开方数
2
a aa 0
4.能用几何图形作出直观解释吗?
1.2 二次根式的性质
(1)
复习回顾
1.怎样的式子叫二次根式?
一般地,我们把形如 a(a≥0)的式子叫做二次根式。
2.怎样判断一个式子是不是二次根式?
(1)形式上: a ; (2)被开方数a≥0.
3.如何确定二次根式中字母的取值范围?
①被开方数不小于零; ②分母中有字母时,要保证分母不为零.
复习回顾
72
7
(5) 22 52
解:(1)原式=
4 7
1 2
4 7
1
4 7
1 2
1
4 7
=
4 7
1 2
4 7
+1=
1 2
.
(2)原式= 1 2 2+1 2-1+ 2+1 =2 2 .
拓展提升
1.若 (1 x)2 1 x,则x的取值范围为 ( )
A. x≤1 B. x≥1 C. 0≤x≤1 D.一切有理数
a2
|
a
|
a a≥0; a a<0.
1 102
2
15 ;
2
2
7
25 9 ;
(4)( 11)2 (-13)2 .
2
(5)
2 5
-
0.12-
1. 4
人教版八年级下册数学课件:第十六章 二次根式 复习课(共75张PPT)
1 (6) x2
(8) 3 x | x | 4
x0
X≤3且X≠-4
3、若数轴上表示数x的点在原点的左边,则化简 |3x+x2| 的结果是( -2X )
4、求下列二次根式中字母的取值范围:
(1) a 1 (2) 1
1 2a
(3) (a 3)2
4 2 5x 5 2x 12
6 x 5 3 2x
x-y=4-(-8)= 4+ 8 =12
2.已知x,y为实数,且
x 1 +3(y-2)2 =0,则x-y的值为( D )
A.3
B.-3
C.1
D.-1
初中阶段的三个非负数:
a (a≥0)
|a|
≥0
a2
a + b = 0 ? a 0,b = 0 a+ | b |= 0 ? a 0,b = 0 a2+ | b |= 0 ? a 0,b = 0 ......
∴ x2 - 2x + 1 = 1- x = 1+ 3
∴当x=- 3时, x2 - 2x+ 1 = 1+ 3
( a )2 a (a 0)
a2
a
a(a 0) a(a 0)
a2与( a)2一样吗?
你的理由是什么?
( a )2 a(a 0)
a(a 0)
a2 a a(a 0)
注意区别 a 2 与( a)2
形如 a (a 0)的式子叫做二次根式.
1.表示a的算术平方根 2. a可以是数,也可以是式. 3. 形式上含有二次根号
4. a≥0, a ≥0 ( 双重非负性)
5.既可表示开方运算,也可表示运算的结果.
式子 S25 ,
浙教版数学八年级下册第一章二次根式复习课件
2.化简
的结果是… … … … … …( B )
(A) (B)
(C)
(D)
3.
的结果是… … … … … …( B )
(A) 3 (B) (C)
(D)
4.已知x<2,则化简
的结果 …( D )
(A) x-2 (B) x+2 (C) –x-2 (D) 2-x
5.要使式子
有意义,字母x的取值必须满
足…… ……………………………… …… ( B )
等腰三角形?求这时点P的坐标.
15.在平面直角坐标系中,
y
四边形OABC是等腰梯形, BC//OA,OA=10,AB=4,∠COA=45°,
C
B
点P为x轴正半轴上由O向A运动的一个动点,点P不 与点O、A重合。
(1)求点B的坐标和直线AB的解析式;
解:过点B作BF⊥OA于F. ∵AB=4, ∠COA=∠BAO=45 °,
B
即OA= ,OB= ,
D
OA
x
∴坐标原点O到直线AB的距离
y
C
15.在平面直角坐标系中,
四边形OABC是等腰梯形, BC//OA,OA=10,AB=4,∠COA=45°,
O
B Ax
点P为x轴正半轴上由O向A运动的一个动 点,点P不与点O、A重合。
(1)求点B的坐标和直线AB的解析式;
(2)点P运动到什么位置时,△OCP为
O
y
C
B
P1 P2 P3 A x
16.如图,正方形ABFG与正方形BCDE的面积
和为7,AD2-CG2=3,求AC与EF的乘积.
E
D
<分析>
本例先设两个正方形的面 G F
人教版八年级数学下册《二次根式》PPT课件
求此三角形的周长.
3 a≥0,
解:由题意得
2a 6≥0,
∴a=3,
∴b=4.
当a为腰长时,三角形的周长为3+3+4=10;
当b为腰长时,三角形的周长为4+4+3=11.
课堂检测
拓 广 探 索 题
先阅读,后回答问题:
当x为何值时, x x 1 有意义?
解:由题意得x(x-1)≥0
解得 m≥2且m≠-1,m≠2, ∴m>2.
(2)无论x取任何实数,代数式
x2 6x m 都有意义,求
m的取值范围.
解:由题意得x2+6x+m≥0,即(x+3)2+m-9≥0.
∵(x+3)2≥0, ∴m-9≥0,即m≥9.
课堂检测
能 力 提 升 题
已知a,b为等腰三角形两条边长,且a,b满足b 3 a 2a 6 4,
双重非负性
二次根式的被开方数非负
二次根式的值非负
a ≥0.
探究新知
考 点 1 利用二次根式的双重非负性求字母的值
若 a 3 b 2 (c 1)2 0 ,求2a -b+3c的值.
提示:多个非负数的和为零,则可得每个非负数均为零.
初中阶段学过的非负数主要有绝对值、偶次幂及二次根式.
人教版 数学 八年级 下册
16.1 二次根式
第1课时
导入新知
电视塔越高,从塔顶发射的电磁波传播得越远,从而能收
看到电视节目的区域越广,电视塔高h(单位:km)与电视节
目信号的传播半径 r(单位:km)之间存在近似关系r= Rh ,
其中地球半径R≈6 400 km.如果两个电视塔的高分别是h1 km、
3 a≥0,
解:由题意得
2a 6≥0,
∴a=3,
∴b=4.
当a为腰长时,三角形的周长为3+3+4=10;
当b为腰长时,三角形的周长为4+4+3=11.
课堂检测
拓 广 探 索 题
先阅读,后回答问题:
当x为何值时, x x 1 有意义?
解:由题意得x(x-1)≥0
解得 m≥2且m≠-1,m≠2, ∴m>2.
(2)无论x取任何实数,代数式
x2 6x m 都有意义,求
m的取值范围.
解:由题意得x2+6x+m≥0,即(x+3)2+m-9≥0.
∵(x+3)2≥0, ∴m-9≥0,即m≥9.
课堂检测
能 力 提 升 题
已知a,b为等腰三角形两条边长,且a,b满足b 3 a 2a 6 4,
双重非负性
二次根式的被开方数非负
二次根式的值非负
a ≥0.
探究新知
考 点 1 利用二次根式的双重非负性求字母的值
若 a 3 b 2 (c 1)2 0 ,求2a -b+3c的值.
提示:多个非负数的和为零,则可得每个非负数均为零.
初中阶段学过的非负数主要有绝对值、偶次幂及二次根式.
人教版 数学 八年级 下册
16.1 二次根式
第1课时
导入新知
电视塔越高,从塔顶发射的电磁波传播得越远,从而能收
看到电视节目的区域越广,电视塔高h(单位:km)与电视节
目信号的传播半径 r(单位:km)之间存在近似关系r= Rh ,
其中地球半径R≈6 400 km.如果两个电视塔的高分别是h1 km、
《最简二次根式》二次根式PPT课件
2.被开方数是分数的二次根式化简
例 2 化简 1125. 分析:因为,125=5×5×5=52×5,所以,只需 分子、分母同乘以 5 就可以了.
解法一: 1125= 513××55=255.
3.被开方数是小数的二次根式化简
例 3 化简 1.5.
分析:被开方数是小数时,常把小数化成相 应的分数,然后进行求解.
1 8x3
x
0
0.8 4 45 2 5 5 55 5
4 1 9 92 3 2 2 2 22 2
20a2b 4a2 5b c 2 a 5bc 2a 5bc
c
cc
c
c
x2
1 8x3
x2
1 2x x2 8x3 2x 4x2
2x
2x 4
1.最简二次根式的概念.
满足下列条件的二次根式,叫做最简二次根式。
(2) 1 6x 9x2 (x 1) 3
(2)3x 1
(3) x 32 1 x2 1 x 3 (3)2
2、如果 a3 a2 a a 1, 那么a的取值范围是 ( D )
A. a 0 C. a 1
B. a 1
D. 1 a 0
3.化简 1 x3 x
错解:原式 1 x x2 x
18
32
被开方数不 含开得尽方 的因数
a 3
b2
(b 0)
9a
3a 3
ba
(b 0)
3a
被开方数 不含分母
(1)被开方数各因式的指数都为1. (2)被开方数不含分母.
被开方数满足上述两个条件的二次根式,叫 做最简二次根式.
如:1 x2 y √
4
6m(a2 b2 ) √
1 4
x2 y x 4
初中数学沪科版八年级下册第16章二次根式复习课课件
解:(1)原式= 1 1 2 2 1
2 2 1 3 2
(2)原式= 10 7 3 7
70 21
四、典型例题
例4.计算:
2018
2019
(3) 1 2 1 2 ;
2018
(3)原式=
1
2
1
2
1 2
1 2018 1 2
1 2
2
(4) 5 3
【当堂检测】
3.在 2 3, 3 2 , 5 ,3 ,四个数中,最小的数是( D )
A. 2 3
B. 3 2
C.3
D. 5
提示:以3为分界点,逐个与3比较大小,比3小的数据在 进行比较得出最终结果
四、典型例题
例4.计算:
(1) 1 101 30
2
2
1 2 2;
(2) 10 3 7
乘法: a b ab a 0,b 0
除法: a a a 0,b 0 bb
三、知识梳理
3.二次根式的运算
(3)二次根式的混合运算: 与实数、整式和分式的混合运算一样,二次根式的运算满足分配律;满足
多项式乘法法则和乘法公式. 二次根式的混合运算顺序与实数中的运算顺序一样,先算乘方,再算乘除,
最简二次根式
同类二次根式
2
a a a 0
a2
a
a a 0
a
a
0
ab a b a 0,b 0
a a a 0,b 0
bb
加、减、乘、除
三、知识梳理
1.二次根式 (1)一般地,我们把形如 a的式子叫做二次根式,其中a≥0.“ ”称为二次根号.
(2)符合 ①被开方数不含分母; ②被开方数中不含能开得尽方的因数或因式的二次根式叫最简二次根式. 一般地,二次根式运算结果中的根式应化成最简二次根式.
初中数学人教八年级下册第十六章二次根式二次根式 PPT
答案:(1) a为任何实数; (2) a =1.
总结:被开方数不小于零.
比较辨别 探索性质
问题 请比较 a 和0 的大小. 分类讨论思想
当a>0 时, a 表示a 的算术平方根,因此 a >0; 当a =0 时, a 表示0 的算术平方根,因此 a =0; 这就是说, a (a≥0)是一个非负数.
初步应用 巩固知识
例3 a 取何值时,下列根式有意义?
(1)
a + 1 ;(2)
1 1- 2a
;(3) (a-1)2 .
解:(1)由a+1≥0,得 a≥-1;
(2)由1-2a>0,得
a<
1 2
;
(3)由( a -1)≥2 0,得 a为任何实数.
初步应用 巩固知识
变式 a 取何值时,下列根式有意义? (1) a2-2a+1 ;(2) -(a-1)2 .
双重非负性
综合应用 深化提高
练习1 判断下列各式哪些是二次根式:
(1) - 1 6 ;
×
(2) a+10( a > 0) ; √
(3) a 2 + 1 ;
√
(4) -x(x ≤ 0).
√
综合应用 深化提高
练习2 当x 是什么实数时,下列各式有意义.
(1)
3- 4 x
;(2)
x
x -1
;
(3) - x 2 ; (4) x-2- 2-x .
二次根式
被开方数a≥0; 根指数为2.
初步应用 巩固知识 5 ; √
(2) - 3 ; (3)3 2 1 ;
(4) x 2 + 1 ; √ (5) a-2(a ≥ 2); √
(6) a-b(a< b).
总结:被开方数不小于零.
比较辨别 探索性质
问题 请比较 a 和0 的大小. 分类讨论思想
当a>0 时, a 表示a 的算术平方根,因此 a >0; 当a =0 时, a 表示0 的算术平方根,因此 a =0; 这就是说, a (a≥0)是一个非负数.
初步应用 巩固知识
例3 a 取何值时,下列根式有意义?
(1)
a + 1 ;(2)
1 1- 2a
;(3) (a-1)2 .
解:(1)由a+1≥0,得 a≥-1;
(2)由1-2a>0,得
a<
1 2
;
(3)由( a -1)≥2 0,得 a为任何实数.
初步应用 巩固知识
变式 a 取何值时,下列根式有意义? (1) a2-2a+1 ;(2) -(a-1)2 .
双重非负性
综合应用 深化提高
练习1 判断下列各式哪些是二次根式:
(1) - 1 6 ;
×
(2) a+10( a > 0) ; √
(3) a 2 + 1 ;
√
(4) -x(x ≤ 0).
√
综合应用 深化提高
练习2 当x 是什么实数时,下列各式有意义.
(1)
3- 4 x
;(2)
x
x -1
;
(3) - x 2 ; (4) x-2- 2-x .
二次根式
被开方数a≥0; 根指数为2.
初步应用 巩固知识 5 ; √
(2) - 3 ; (3)3 2 1 ;
(4) x 2 + 1 ; √ (5) a-2(a ≥ 2); √
(6) a-b(a< b).
人教版八年级下册数学《二次根式的混合运算》二次根式说课教学复习课件
)
随堂练习
3.已知= − , 则代数式(+ ) + + + 的值是(C
.
A.
4.已知=
-
, =
.+
+
. −
,则 + +=_______.
)
随堂练习
5.计算:
(1) (1+ )(2- );
解: (1+ )(2- )
问卷调查,统计如下表所示:
颜色
学生人数
黄色 绿色 白色 紫色 红色
100
180
220
80
750
学校决定采用红色,可用来解释这一现象的统计知识是( C )
A. 平均数
C. 众数
B. 中位数
D. 方差
课堂检测
基 础 巩 固 题
2.学习了《数据的分析》后,某同学对学习小组内甲、乙、丙、
丁四名同学的数学月考成绩进行了统计,发现他们的平均成绩
这些平均数受这个人的影响,而中位数是210件,众数
是210件,因此我们认为以210件为规定量比较科学.
巩固练习
1.甲、乙两位同学在几次数学测验中,各自的平均分都
是88分,甲的方差为0.61,乙的方差为0.72,则( A
A、甲的成绩比乙的成绩稳定
B、乙的成绩比甲的成绩稳定
C、甲、乙两人的成绩一样好
D、甲、乙两人的成绩无法比较
=( )²+2× ×1+1²
=5-2
=3+2 +1
=3.
=4+2 .
典例精析
例3
计算下列各式:
(1)
;
−
解:
−
+
=
( −)( +)
+
部编版八年级下册二次根式复习课课件
在式子① ,② , ③
,④
,⑤ ,⑥ ,⑦
,⑧
, ⑨ 中,
⑥ 12 ,⑦ 2xx0,⑧ a 5, ⑨ 3 图16-1
是最简二次根式的是
.
2
变式:实数a,b在数轴上的位置如图16-1所示,且
,
(4)
=
.
是二次根式的是 当x
时,代数式
有意义;
变式:实数a,b在数轴上的位置如图16-1所示,且
,
,
(3)
7 3,求下列各式的值.
, ⑨ 中,
【拓展活动】
(3) a 2 b = a b 4c2 2c
5. 计算:
(1) 27 50 6; (2) 18 32 1; 2
(3) 5 462;(4) 2 23 32;
(5)200173225.
【提升探究】类型一:二次根式性质的应用
例1. 已知 y 2x112x1,求代数式 xy的值.
变式:若 y x11x6,则 xy( ). A.6 B.6 C.0 D.1
.
第十六章 二次根式·复习
是二次根式的是
,
(3) =
类型三:整体思想在二次根式中的运用
变式:已知 x 73,y
(3) =
(1)x 2xyy ; a
当x
2 0 b
时,代数式
有意义;
2
类型一:二次根式性质的应用
【提升探究】类型一:二次根式性质的应用
是二次根式的是
,
a
0b
(1) = ;
是最简二次根式的是
(4)
=
.
数a,b满足 a 5 b30. 当x
时,代数式
是最简二次根式的是
(2)
八年级数学《二次根式》复习课件 PPT
第十六章复习
数学·新课标(RJ)
第16章复习 ┃ 知识归类
┃知识归纳┃
1.二次根式的概念 一般地,形如
a
(a≥0)的式子叫做二次根式;
(1)对于二次根式的理解:①带有根号;②被开方数是非负数. (2) a是非负数,即 a≥0. [易错点] (1)二次根式中, 被开方数一定是非负数, 否则就没有 意义; (2) 9是二次根式,虽然 9=3,但 3 不是二次根式.因此二次 根式指的是某种式子的“外在形态”.
混合运算 类比整式的运算法则进行计算
本章思想方法例析
一、转化思想
在数学研究中,常常将复杂问题转化为简单问题, 将生疏问题转化为熟悉问题. 如:在解决二次根式有意义的条件的问题时,需 要根据二次根式的被开方数取非负数,将问题转化 成相关的不等式(组),使问题得以解决.
二、数形结合思想 数形结合,主要指的是数与形之间的一一对应关 系.通过“以形助数”或“以数解形”,即通过抽象思 维与形象思维的结合,可以使复杂问题简单化,抽象 问题具体化,从而起到优化解题途径的目的. 如:在解决二次根式化简的问题时,有时需要借 助数轴确定被开方数中所含字母的取值范围,再开 方化简,使问题得以解决.
数学·新课标(RJ)
第16章复习 ┃ 知识归类
2.二次根式的性质 ( a)2=
a
(a≥0)
2 ; a =a=
a
a>0, 0 a=0, -a a<0.
3.最简二次根式 满足下列两个条件的二次根式,叫做最简二次根式. (1)被开方数不含
分母
;
(2)被开方数中不含能
乘法:
a b ab
a a b
乘法与除法
法则
除法:
数学·新课标(RJ)
第16章复习 ┃ 知识归类
┃知识归纳┃
1.二次根式的概念 一般地,形如
a
(a≥0)的式子叫做二次根式;
(1)对于二次根式的理解:①带有根号;②被开方数是非负数. (2) a是非负数,即 a≥0. [易错点] (1)二次根式中, 被开方数一定是非负数, 否则就没有 意义; (2) 9是二次根式,虽然 9=3,但 3 不是二次根式.因此二次 根式指的是某种式子的“外在形态”.
混合运算 类比整式的运算法则进行计算
本章思想方法例析
一、转化思想
在数学研究中,常常将复杂问题转化为简单问题, 将生疏问题转化为熟悉问题. 如:在解决二次根式有意义的条件的问题时,需 要根据二次根式的被开方数取非负数,将问题转化 成相关的不等式(组),使问题得以解决.
二、数形结合思想 数形结合,主要指的是数与形之间的一一对应关 系.通过“以形助数”或“以数解形”,即通过抽象思 维与形象思维的结合,可以使复杂问题简单化,抽象 问题具体化,从而起到优化解题途径的目的. 如:在解决二次根式化简的问题时,有时需要借 助数轴确定被开方数中所含字母的取值范围,再开 方化简,使问题得以解决.
数学·新课标(RJ)
第16章复习 ┃ 知识归类
2.二次根式的性质 ( a)2=
a
(a≥0)
2 ; a =a=
a
a>0, 0 a=0, -a a<0.
3.最简二次根式 满足下列两个条件的二次根式,叫做最简二次根式. (1)被开方数不含
分母
;
(2)被开方数中不含能
乘法:
a b ab
a a b
乘法与除法
法则
除法:
八年级数学二次根式 PPT
S
圆形得下球体在平面图上得面积为S,
S
则半径为____________、
如图所示得值表示正方形得面
积,则 正方形得边长是 b 3
b-3
你认为所得的式子有哪些共同特点?
a2 2500
s
b3
共同特点:1、含有开平方运算
2、被开方数都是非负数
像这种式子,叫二次根式。
?
大家学习辛苦了,还是要坚持
例2、计算
(1)( )25(mm≥0)
(2)(2 )2 3 (3)(-3 )2 1
2
(4)( )x2(xy≥y)
拓展延伸
1、把下列非负数写成一个数的平方的形式:
(1)5
(2)3.4
(3)16
(4)x(x≥0)
2.已知a.b为实数,且满足 a = 2b 1 1 2b 1 你能求出a及a+b 的值吗?
学习目标: 1、掌握二次根式得定义,并会应用此定义判断一个根式是 否为二次根式; 2、会运用二次根式得双重非负性,求被开方数中字母得取 值范围。
3、理解并应用( a)2=a (a≥0)进行相关得计算。
回顾与思考
1、什么叫做一个数得平方根?如何表示? 一般地,若一个数得平方等于a,则这个数就叫做____a得__平_方。根a得平方
继续保持安静
形如 a (a 0)的式子叫做二次根式.
1、表示a得算术平方根 2、 a可以是数,也可以是式子、 3、 形式上含有二次根号
4. b a (a≥0)也是二次根式
5、 a ≥0, a≥0具有双重非负性
说一说:
下列各式是二次根式吗?
(1) 32 , (2) 6, (3) 12 , (4) - m (m≤0), (5) xy (x,y 异号), (6) a2 1 , (7) 3 5 (8)2 3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-
8
知识4 二次根式的乘法
一般地,二次根式的乘法法则是 推广:
例 8 计算:
-
9
知识5 二次根式的除法
一般地,二次根式的除法法则是 推广:
-
10
例 9 计算:
解析
-
11
例 10 计算:
解析
例 11
解析
-
12
知识6 同类二次根式
经过化简后,被开方数相同的二次根式,称为同类二次根式。 判断二次根式的步骤: 1. 化简二次根式; 2. 若被开方数相同则是同类二次根式。
例 12
-
13
知识7 二次根式的加减
一般地,二次根式相加减,先化简每个二次根式,然后合并同类 二次根式。
方法是:将同类二次根式的系数相加减,被开方数和根指数不变。
例 13 计算:
-
14
知识8 二次根式的混合运算
二次根式的混合运算顺序与整式混合运算顺序一样,先乘方,再算 乘除,最后算加减,有括号的先算括号里面的。
第十二章 二次根式复习课
2020年4月24日星期五
-
1
知识1 二次根式的基本概念
-
2
例1
解析 由题意得,知
例2
解得b=2,所以a=0+0+3=3.
解析
例3
A
-
3
知识2 最简二次根式
最简二次根式满足两个条件: ① 被开方数的因数是整数,字母因数是整式; ② 被开方数不能含能开得尽的因数或者因式。
在二次根式的混合运算时,整式运算的运算律和乘法公式仍然适用。
例 14 计算:
解析 原式
-
15
例 15 计算:
解析 原式
例 16 计算:
解析 原式
-
16
例 17 计算:
解析 原式
例 18 计算:
解析 原式
-
17
知识9 整体思想
整体思想的核心就是把所研究对象的一部分或全部视为一个整体运 用在解题过程中,以简化一定的运算。
表示一个实数a 的平方的算
术平方根
a 是任意数
相同点
-
6
例 5 计算下列二次根式:
解析
-
7
例 6 已知实数a、b在数轴上的位置如下图所示.
试化简:
解析
b -1 0 a 1
例 7 在△ABC中,a,b,c是三角形的边长,化简:
解析
∵a,b,c是△ABC的边长,∴a+c>b,a+b>c, ∴a-b+c>0,c-a-b=c-(a+b)<0, ∴
化成最简二次根式的一般方法: 1. 将被开方数中能开得尽方的因数或因式进行开方;
2. 化去根号下的分母; 如:
3. 被开方数是多项式时要先进行 因式分解。
如:
-
4ቤተ መጻሕፍቲ ባይዱ
例 4 化简下列二次根式:
解析
-
5
知识3 二次根式的性质
式子
意义 取值 不同点 结果
表示一个非负数a 的算术平方根的平方 a 为非负数
例 19 已知
解析
例 20
解析
-
18
知识10 分类讨论思想
例 21
解析
-
19
感谢关注!
Thank you for your attention!
-
20