高一数学函数总结大全
有关高一数学必修一函数知识点总结4篇

有关高一数学必修一函数知识点总结4篇有关高一数学必修一函数知识点总结4篇积累通识知识可以让我们对各种事物有更全面、更深刻的理解和把握。
积累专业知识可以让我们在自己的领域内成为专家,获得更高的社会地位和经济回报。
下面就让小编给大家带来高一数学必修一函数知识点总结,希望大家喜欢! 高一数学必修一函数知识点总结篇1知识点总结本节知识包括函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性和函数的图象等知识点。
函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性是学习函数的图象的基础,函数的图象是它们的综合。
所以理解了前面的几个知识点,函数的图象就迎刃而解了。
一、函数的单调性1、函数单调性的定义2、函数单调性的判断和证明:(1)定义法(2)复合函数分析法(3)导数证明法(4)图象法二、函数的奇偶性和周期性1、函数的奇偶性和周期性的定义2、函数的奇偶性的判定和证明方法3、函数的周期性的判定方法三、函数的图象1、函数图象的作法(1)描点法(2)图象变换法2、图象变换包括图象:平移变换、伸缩变换、对称变换、翻折变换。
四、常见考法本节是段考和高考必不可少的考查内容,是段考和高考考查的重点和难点。
选择题、填空题和解答题都有,并且题目难度较大。
在解答题中,它可以和高中数学的每一章联合考查,多属于拔高题。
多考查函数的单调性、最值和图象等。
五、误区提醒1、求函数的单调区间,必须先求函数的定义域,即遵循“函数问题定义域优先的原则”。
2、单调区间必须用区间来表示,不能用集合或不等式,单调区间一般写成开区间,不必考虑端点问题。
3、在多个单调区间之间不能用“或”和“ ”连接,只能用逗号隔开。
4、判断函数的奇偶性,首先必须考虑函数的定义域,如果函数的定义域不关于原点对称,则函数一定是非奇非偶函数。
5、作函数的图象,一般是首先化简解析式,然后确定用描点法或图象变换法作函数的图象。
高一数学必修一函数知识点总结篇2一、函数的定义域的常用求法:1、分式的分母不等于零;2、偶次方根的被开方数大于等于零;3、对数的真数大于零;4、指数函数和对数函数的底数大于零且不等于1;5、三角函数正切函数y=tanx中x≠kπ+π/2;6、如果函数是由实际意义确定的解析式,应依据自变量的实际意义确定其取值范围。
高一数学知识点全部总结

高一数学知识点全部总结一、代数1.1 一元二次方程一元二次方程是高一数学的重点内容之一,一元二次方程的定义是形式为ax^2+bx+c=0的方程,其中a≠0。
解一元二次方程的方法有因式分解、配方法、公式法等。
1.2 不等式高一数学的不等式内容主要包括一元一次不等式、一元二次不等式以及一元三次不等式的求解方法,包括图像法、取值范围法、代数法等。
1.3 二次函数二次函数是高一数学代数部分的重点内容,涉及了函数的定义、性质、图像、极值、单调性、解析式等多个方面的内容。
1.4 基本初等函数高一数学还包括了基本初等函数的概念和性质,包括幂函数、指数函数、对数函数、三角函数等的定义、性质及其在实际问题中的应用。
1.5 绝对值函数绝对值函数也是高一数学中的一个重要内容,主要包括了绝对值函数的性质、图像及其在实际问题中的应用。
1.6 平面直角坐标系中的直线和圆平面直角坐标系中的直线和圆也是高一数学的重要内容,主要包括了直线的方程、性质、圆的方程、性质及其在实际问题中的应用。
1.7 数列数列也是高一数学的一个重要内容,包括等差数列、等比数列、递推数列等的概念、性质、求和公式及其在实际问题中的应用。
1.8 集合与函数高一数学的内容还包括了集合的基本概念、基本运算、集合的关系和函数的概念、性质、运算、基本初等函数的图像等内容。
1.9 二项式定理二项式定理是高一数学中的一个重要概念,包括二项式的展开式、二项式系数、二项式定理的应用等方面的内容。
1.10 逻辑与命题关系逻辑与命题关系也是高一数学的一个知识点,主要包括了命题、充分必要条件、等价命题、逻辑联结词、命题公式等内容。
二、几何2.1 几何图形的性质高一数学的几何内容主要包括了基本的几何图形的性质,包括直线、角、三角形、四边形、圆等的基本性质、判定方法和应用题。
2.2 相似三角形相似三角形是高一数学中的重点内容,主要包括了相似三角形的性质、判定方法及其在实际问题中的应用。
高一知识点归纳数学公式总结大全

高一知识点归纳数学公式总结大全一、代数与函数1. 二次方程的解法:- 一元二次方程 ax²+bx+c=0 的解法为:x = (-b±√(b²-4ac))/(2a)。
- 当 b²-4ac = 0 时,方程有一个重根;当 b²-4ac > 0 时,方程有两个不等实根;当 b²-4ac < 0 时,方程有两个共轭复根。
2. 一次函数的斜率与截距:- 一次函数的标准方程为 y = kx + b,其中 k 为直线的斜率,b 为直线与 y 轴的截距。
- 两点 (x₁, y₁) 和 (x₂, y₂) 间的斜率 k = (y₂-y₁)/(x₂-x₁)。
3. 二次函数的顶点和轴对称:- 二次函数的标准方程为 y = ax²+bx+c,其中 (h, k) 表示顶点的坐标。
- 顶点的 x 坐标为 h = -b/(2a),y 坐标为 k = ah²+bh+c。
- 二次函数的图像关于直线 x = -b/(2a) 对称。
4. 绝对值函数的性质:- 绝对值函数 f(x) = |x| 分两段定义,当 x>=0 时,f(x) = x;当 x<0 时,f(x) = -x。
- 绝对值函数的图像为以原点为对称中心的 V 字形曲线。
- 绝对值函数是奇函数,即 f(x) = -f(-x)。
5. 指数函数的运算性质:- 指数函数aⁿ⁽⁻ᵐ⁾= aⁿ/aᵐ,aⁿ⋅aᵐ= aⁿ⁺ᵐ。
- 指数函数aⁿ/aⁿ⁽⁻ᵐ⁾ = aᵐ。
- 指数函数(aⁿ)ᵐ= aⁿ⁻ᵐ。
二、数列与数学归纳法1. 等差数列的通项公式:- 等差数列的通项公式为 an = a₁+(n-1)d,其中 a₁为首项,d 为公差,an 表示第 n 项。
2. 等差数列的前 n 项和公式:- 等差数列的前 n 项和公式为 Sn = (a₁+an)n/2,其中 Sₙ 表示前 n 项和。
3. 等比数列的通项公式:- 等比数列的通项公式为 an = a₁⋅r⁽ⁿ⁻¹⁾,其中 a₁为首项,r 为公比,an 表示第 n 项。
数学函数知识点归纳(高一)知识点总结

数学函数知识点归纳(高一)知识点总结数,其中为常数. 2、幂函数性质归纳. (1)所有的幂函数在(0,+≦)都有定义并且图象都过点(1,1); (2)0时,幂函数的图象通过原点,并且在区间) ,0[上是增函数.特别地,当1时,幂函数的图象下凸;当10时,幂函数的图象上凸; (3)0时,幂函数的图象在区间),0(上是减函数.在第一象限内,当_从右边趋向原点时,图象在y轴右方无限地逼近y轴正半轴,当_趋于时,图象在_轴上方无限地逼近_轴正半轴方程的根与函数的零点1、函数零点的概念:对于函数))((D__fy,把使0)(_f成立的实数_叫做函数))((D__fy的零点。
2、函数零点的意义:函数)(_fy的零点就是方程0)(_f实数根,亦即函数)(_fy的图象与_轴交点的横坐标。
即:方程0)(_f有实数根函数)(_fy的图象与_轴有交点函数)(_fy有零点.3、函数零点的求法:○ 1 (代数法)求方程0)(_f的实数根; ○ 2 (几何法)对于不能用求根公式的方程,可以将它与函数)(_fy的图象联系起来,并利用函数的性质找出零点.4、二次函数的零点:二次函数)0(2acb_a_y. (1)△0,方程02cb_a_有两不等实根,二次函数的图象与_轴有两个交点,二次函数有两个零点. (2)△=0,方程02cb_a_有两相等实根,二次函数的图象与_轴有一个交点,二次函数有一个二重零点或二阶零点. (3)△0,方程02cb_a_无实根,二次函数的图象与_轴无交点,二次函数无零点. 三、平面向量向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量.单位向量:长度等于1个单位的向量. 相等向量:长度相等且方向相同的向量向量的运算加法运算 AB+BC=AC,这种计算法则叫做向量加法的三角形法则。
已知两个从同一点O出发的两个向量OA、OB,以OA、OB为邻边作平行四边形OACB,则以O为起点的对角线OC就是向量OA、OB的和,这种计算法则叫做向量加法的平行四边形法则。
高一数学函数知识点总结(5篇)

高一数学函数知识点总结函数的解析式与定义域1、函数及其定义域是不可分割的整体,没有定义域的函数是不存在的,因此,要正确地写出函数的解析式,必须是在求出变量间的对应法则的同时,求出函数的定义域.求函数的定义域一般有三种类型:(1)有时一个函数来自于一个实际问题,这时自变量____有实际意义,求定义域要结合实际意义考虑;(2)已知一个函数的解析式求其定义域,只要使解析式有意义即可.如:①分式的分母不得为零;②偶次方根的被开方数不小于零;③对数函数的真数必须大于零;④指数函数和对数函数的底数必须大于零且不等于1;⑤三角函数中的正切函数y=tan____(____∈R,且k∈Z),余切函数y=cot____(____∈R,____≠kπ,k∈Z)等.应注意,一个函数的解析式由几部分组成时,定义域为各部分有意义的自变量取值的公共部分(即交集).(3)已知一个函数的定义域,求另一个函数的定义域,主要考虑定义域的深刻含义即可.已知f(____)的定义域是[a,b],求f[g(____)]的定义域是指满足a≤g(____)≤b的____的取值范围,而已知f[g(____)]的定义域[a,b]指的是____∈[a,b],此时f(____)的定义域,即g(____)的值域.2、求函数的解析式一般有四种情况(1)根据某实际问题需建立一种函数关系时,必须引入合适的变量,根据数学的有关知识寻求函数的解析式.(2)有时题设给出函数特征,求函数的解析式,可采用待定系数法.比如函数是一次函数,可设f(____)=a____+b(a≠0),其中a,b为待定系数,根据题设条件,列出方程组,求出a,b即可.(3)若题设给出复合函数f[g(____)]的表达式时,可用换元法求函数f(____)的表达式,这时必须求出g(____)的值域,这相当于求函数的定义域.(4)若已知f(____)满足某个等式,这个等式除f(____)是未知量外,还出现其他未知量(如f(-____),等),必须根据已知等式,再构造其他等式组成方程组,利用解方程组法求出f(____)的表达式.高一数学函数知识点总结(二)函数的值域与最值(1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域.(2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元.(3)反函数法:利用函数f(____)与其反函数f-1(____)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得.(4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法.(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧.(6)判别式法:把y=f(____)变形为关于____的一元二次方程,利用“△≥0”求值域.其题型特征是解析式中含有根式或分式.(7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域.(8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域.2、求函数的最值与值域的区别和联系求函数最值的常用方法和求函数值域的方法基本上是相同的,事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同,因而答题的方式就有所相异.如函数的值域是(0,____],最大值是16,无最小值.再如函数的值域是(-∞,-____]∪[2,+∞),但此函数无最大值和最小值,只有在改变函数定义域后,如____>0时,函数的最小值为2.可见定义域对函数的值域或最值的影响.3、函数的最值在实际问题中的应用函数的最值的应用主要体现在用函数知识求解实际问题上,从文字表述上常常表现为“工程造价最低”,“利润最大”或“面积(体积)最大(最小)”等诸多现实问题上,求解时要特别关注实际意义对自变量的制约,以便能正确求得最值.高一数学函数知识点总结(三)函数的奇偶性1、函数的奇偶性的定义:对于函数f(____),如果对于函数定义域内的任意一个____,都有f(-____)=-f(____)(或f(-____)=f(____)),那么函数f(____)就叫做奇函数(或偶函数).正确理解奇函数和偶函数的定义,要注意两点:(1)定义域在数轴上关于原点对称是函数f(____)为奇函数或偶函数的必要不充分条件;(2)f(____)=-f(____)或f(-____)=f(____)是定义域上的恒等式.(奇偶性是函数定义域上的整体性质).2、奇偶函数的定义是判断函数奇偶性的主要依据。
高一数学必修1函数知识点总结

函数,,,A B A x B y f B A B x y x f y y x y →映射定义:设,是两个非空的集合,如果按某一个确定的对应关系,使对于集合中的任意一个元素, 在集合中都有唯一确定的元素与之对应,那么就称对应:为从集合到集合的一个映射传统定义:如果在某变化中有两个变量并且对于在某个范围内的每一个确定的值,定义 按照某个对应关系都有唯一确定的值和它对应。
那么就是的函数。
记作函数及其表示函数{[][][][][]().,,()()(),,1212()()(),,12f x a b a x x b f x f x f x a b a b f x f x f x a b a b a =≤<≤<>⎧⎪⎪⎧⎪⎨⎨⎩⎪⎧⎪⎨⎪⎩⎩近代定义:函数是从一个数集到另一个数集的映射。
定义域函数的三要素值域对应法则解析法函数的表示方法列表法图象法单调性函数的基本性质传统定义:在区间上,若如,则在上递增,是 递增区间;如,则在上递减,是的递减区间。
导数定义:在区间[][][][][]()1()2()()00,()0(),,()0(),,y f x I M x I f x M x I f x M M y f x b f x f x a b a b f x f x a b a b =∈≤∈==⎧⎪⎪⎨><⎪⎪⎩最大值:设函数的定义域为,如果存在实数满足:()对于任意的,都有; ()存在,使得。
则称是函数的最大值最值最上,若,则在上递增,是递增区间;如 则在上递减,是的递减区间。
()1()2()()00(1)()(),()(2)()(),()y f x I N x I f x N x I f x N N y f x f x f x x D f x f x f x x D f x =∈≥∈==-=-∈-=∈⎧⎪⎨⎪⎩小值:设函数的定义域为,如果存在实数满足:()对于任意的,都有; ()存在,使得。
高一数学函数知识点归纳总结

高一数学函数知识点归纳总结一、函数的基本概念函数的定义:对于两个非空数集A和B,如果存在某种对应关系f,使得A中的每一个元素x都能在B中找到唯一的元素y与之对应,则称f是从A到B的函数,记作y=f(x),其中x是自变量,y是因变量。
函数的定义域:函数y=f(x)中,自变量x的取值范围称为函数的定义域。
函数的值域:函数y=f(x)在定义域内所有函数值的集合称为函数的值域。
二、函数的性质单调性:如果对于定义域内的任意两个数x1和x2(x1<x2),都有f(x1)≤f(x2)或f(x1)≥f(x2),则称函数f(x)在定义域内单调递增或单调递减。
奇偶性:如果对于定义域内的任意x,都有f(-x)=f(x),则称函数f(x)为偶函数;如果对于定义域内的任意x(且x≠0),都有f(-x)=-f(x),则称函数f(x)为奇函数。
周期性:如果存在一个正数T,使得对于定义域内的任意x,都有f(x+T)=f(x),则称函数f(x)具有周期性,T为函数的周期。
三、基本初等函数幂函数:形如y=x^a(a为实数)的函数称为幂函数。
指数函数:形如y=a^x(a>0且a≠1)的函数称为指数函数。
对数函数:如果a^x=N(a>0且a≠1),那么数x叫做以a为底N的对数,记作x=log_aN。
函数y=log_ax(a>0,且a≠1)叫做对数函数。
三角函数:包括正弦函数、余弦函数、正切函数等,它们与角度和弧度有关。
四、函数的应用函数模型的应用:通过建立函数模型来解决实际问题,如最优化问题、增长率问题等。
函数图像的应用:通过观察和分析函数的图像来理解函数的性质和行为,从而解决相关问题。
以上是高一数学函数的主要知识点总结。
在学习过程中,应注重理解和掌握这些基本概念和性质,并通过练习和应用来加深对知识点的理解和记忆。
高一数学函数知识点归纳总结大全

高一数学函数知识点归纳总结大全函数是数学中非常重要的概念之一,在高一阶段的数学学习中,我们会接触到许多有关函数的知识点。
本文将对高一数学函数知识点进行归纳总结,旨在帮助同学们系统地理解和掌握这些内容。
一、函数的定义和表示方法函数是一个将一个集合中的元素(称为自变量)映射到另一个集合中的元素(称为因变量)的规则。
函数可以用各种方式来表示,常见的有解析式、图像和表格。
1. 解析式表示法:函数可以用解析式来表示,通常采用f(x)或y的形式表示。
例如:f(x) = 2x + 1,y = sin(x)。
2. 图像表示法:函数的图像是用直角坐标系上的点表示的,其中自变量通常对应横坐标,因变量对应纵坐标。
3. 表格表示法:函数可以用表格形式来表示,其中列出自变量的取值和对应的因变量的取值。
二、函数的性质了解函数的性质有助于我们更好地理解函数的特点和行为。
1. 定义域和值域:函数的定义域是指所有使得函数有意义的自变量的取值范围,而值域则是函数的所有可能的因变量的取值范围。
2. 奇偶性:如果对于函数的定义域中的任意x值,都有f(-x) =f(x)成立,则函数是偶函数;如果对于函数的定义域中的任意x值,都有f(-x) = -f(x)成立,则函数是奇函数;否则函数既不是偶函数也不是奇函数。
3. 单调性:如果函数的自变量增加时,其对应的因变量是单调递增或单调递减的,我们称这个函数是单调函数。
4. 周期性:如果函数的某个正数T满足对于函数的所有x值都有f(x+T) = f(x)成立,则称函数具有周期性,T是函数的一个周期。
三、常见函数的类型在高一阶段,我们会学习到以下几类常见的函数。
1. 一次函数:一次函数的解析式为f(x) = ax + b,其中a和b是常数,且a≠0。
一次函数的图像是一条斜率为a的直线。
2. 二次函数:二次函数的解析式为f(x) = ax^2 + bx + c,其中a、b和c是常数,且a≠0。
二次函数的图像通常是一个开口向上或向下的抛物线。
高一数学函数总结大全

(1)对数函数的定义域为大于0的实数集合。
(2)对数函数的值域为全部实数集合。
(3)函数总是通过(1,0)这点。
(4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。
指数函数指数函数的一般形式为(0,1)a且y x a a=>≠(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。
(2)指数函数的值域为大于0的实数集合。
(3)函数图形都是下凹的。
(4) a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。
(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。
其中水平直线y=1是从递减到递增的一个过渡位置。
(6)函数总是在某一个方向上无限趋向于X轴,永不相交。
(7)函数总是通过(0,1)这点。
奇偶性1.定义:一般地,对于函数f(x)(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。
(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。
(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。
(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。
说明:①奇、偶性是函数的整体性质,对整个定义域而言,②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。
(分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)③判断或证明函数是否具有奇偶性的根据是定义2.奇偶函数图像的特征:定理:奇函数的图像关于原点成中心对称图表,偶函数的图象关于y 轴或轴对称图形。
高一数学函数重点知识点归纳总结三篇

高一数学函数重点知识点归纳总结三篇高一新生对数学的函数知识是相当头疼的,函数知识面广,思维灵活,题型更是千奇百怪,要想学好函数,就需要一份准确的函数知识点归纳。
高一函数知识点归纳总结1函数的性质:函数的单调性、奇偶性、周期性单调性:定义:注意定义是相对与某个具体的区间而言。
判定方法有:定义法(作差比较和作商比较)导数法(适用于多项式函数)复合函数法和图像法。
应用:比较大小,证明不等式,解不等式。
奇偶性:定义:注意区间是否关于原点对称,比较f(x) 与f(-x)的关系。
f(x) -f(-x)=0 f(x) =f(-x) f(x)为偶函数;f(x)+f(-x)=0 f(x) =-f(-x) f(x)为奇函数。
判别方法:定义法,图像法,复合函数法应用:把函数值进行转化求解。
周期性:定义:若函数f(x)对定义域内的任意x满足:f(x+T)=f(x),则T为函数f(x)的周期。
其他:若函数f(x)对定义域内的任意x满足:f(x+a)=f(x-a),则2a为函数f(x)的周期.应用:求函数值和某个区间上的函数解析式。
高一函数归纳总结2一:函数及其表示知识点详解文档包含函数的概念、映射、函数关系的判断原则、函数区间、函数的三要素、函数的定义域、求具体或抽象数值的函数值、求函数值域、函数的表示方法等1. 函数与映射的区别:\2. 求函数定义域常见的用解析式表示的函数f(x)的定义域可以归纳如下:①当f(x)为整式时,函数的定义域为R.②当f(x)为分式时,函数的定义域为使分式分母不为零的实数集合。
③当f(x)为偶次根式时,函数的定义域是使被开方数不小于0的实数集合。
④当f(x)为对数式时,函数的定义域是使真数为正、底数为正且不为1的实数集合。
⑤如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合,即求各部分有意义的实数集合的交集。
⑥复合函数的定义域是复合的各基本的函数定义域的交集。
高一数学一函数知识点总结归纳.docx

高一数学必修一函数知识点总结归纳1.函数的奇偶性(1)若 f(x) 是偶函数,那么 f(x)=f(-x);(2)若 f(x) 是奇函数, 0 在其定义域内,则 f(0)=0( 可用于求参数);(3)判断函数奇偶性可用定义的等价形式: f(x) ±f( -x)=0 或(f(x)≠0);(4) 若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性 ; 偶函数在对称的单调区间内有相反的单调性 ;2.复合函数的有关问题(1)复合函数定义域求法:若已知的定义域为 [a ,b], 其复合函数f[g(x)] 的定义域由不等式 a≤g(x) ≤b解出即可 ; 若已知 f[g(x)] 的定义域为 [a,b], 求 f(x) 的定义域,相当于 x∈[a,b] 时,求 g(x) 的值域 ( 即f(x) 的定义域 ); 研究函数的问题一定要注意定义域优先的原则。
(2)复合函数的单调性由“同增异减”判定 ; 3.函数图像 ( 或方程曲线的对称性 )(1)证明函数图像的对称性,即证明图像上任意点关于对称中心( 对称轴 ) 的对称点仍在图像上 ;(2)证明图像 C1 与 C2的对称性,即证明 C1 上任意点关于对称中心(对称轴 ) 的对称点仍在 C2上,反之亦然 ;(3) 曲线 C1:f(x,y)=0, 关于 y=x+a(y=-x+a) 的对称曲线 C2的方程为 f(y-a,x+a)=0( 或 f(-y+a,-x+a)=0);(4)曲线 C1:f(x,y)=0 关于点 (a,b) 的对称曲线 C2方程为: f(2a-x,2b-y)=0;(5) 若函数 y=f(x) 对 x∈R时, f(a+x)=f(a-x) 恒成立,则 y=f(x) 图像关于直线 x=a 对称 ;(6)函数 y=f(x-a) 与 y=f(b-x) 的图像关于直线 x=对称 ; 4.函数的周期性(1)y=f(x)对x∈R时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立 , 则 y=f(x) 是周期为 2a 的周期函数;(2)若 y=f(x) 是偶函数,其图像又关于直线 x=a 对称,则 f(x) 是周期为 2︱a︱的周期函数 ;x=a 对称,则f(x)是周(3) 若 y=f(x) 奇函数,其图像又关于直线期为 4︱a︱的周期函数 ;(4)若 y=f(x) 关于点 (a,0),(b,0) 对称,则 f(x) 是周期为 2 的周期函数 ;(5)y=f(x)的图象关于直线x=a,x=b(a ≠b) 对称,则函数y=f(x)是周期为 2 的周期函数;(6)y=f(x)对x∈R时,f(x+a)=-或f(x+a)=,则y=f(x)是f(x)(周期为 2 的周期函数 ;5. 方程k=f(x)有解k∈D(D 为f(x)的值域 );6.a ≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;7.(1)(a>0,a≠1,b>0,n∈R+);(2)logaN=(a>0,a≠1,b>0,b≠1);(3)logab的符号由口诀“同正异负”记忆;(4)alogaN=N(a>0,a≠1,N>0);8.判断对应是否为映射时,抓住两点:(1)A 中元素必须都有象且唯一 ;(2)B 中元素不一定都有原象,并且 A 中不同元素在 B中可以有相同的象 ;9.能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。
高一数学必修一函数知识点总结归纳

高一数学必修一函数知识点总结归纳1.函数的奇偶性(1)若f(x)是偶函数,那么f(x)=f(-x);(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;2.复合函数的有关问题(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。
(2)复合函数的单调性由“同增异减”判定;3.函数图像(或方程曲线的对称性)(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;4.函数的周期性(1)y=f(x)对x∈R时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数;(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数;(6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;5.方程k=f(x)有解k∈D(D为f(x)的值域);6.a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;7.(1)(a>0,a≠1,b>0,n∈R+);(2)logaN=(a>0,a≠1,b>0,b≠1); (3)logab的符号由口诀“同正异负”记忆;(4)alogaN=N(a>0,a≠1,N>0);8.判断对应是否为映射时,抓住两点:(1)A中元素必须都有象且唯一;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;9.能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。
高一上数学函数知识点总结

高一上数学函数知识点总结一、函数的定义与性质函数是一种特殊的关系,它将一个集合中的每一个元素都对应到另一个集合中的唯一元素。
函数可以用来描述事物之间的依赖关系。
函数的性质包括定义域、值域、单调性、奇偶性、周期性等。
1.1 定义域和值域- 定义域是函数中自变量的取值范围- 值域是函数中因变量的所有可能取值构成的集合1.2 单调性- 递增:在定义域上,函数值随自变量增大而增大- 递减:在定义域上,函数值随自变量增大而减小1.3 奇偶性- 奇函数:满足f(-x) = -f(x),函数图像关于原点对称- 偶函数:满足f(-x) = f(x),函数图像关于y轴对称1.4 周期性函数的周期性指的是函数在一个固定的区间内,以相同的规律进行重复二、常见的函数类型2.1一次函数一次函数的定义形式为f(x) = ax + b,其中a和b为常数,a不等于0。
一次函数的图像为一条直线,斜率为a,截距为b。
2.2二次函数二次函数的定义形式为f(x) = ax^2 + bx + c,其中a、b和c为常数,且a不等于0。
二次函数的图像为一条抛物线。
2.3指数函数指数函数的定义形式为f(x) = a^x,其中a为常数,且a大于0且不等于1。
指数函数的图像呈现逐渐增大或逐渐减小的特点。
2.4对数函数对数函数的定义形式为f(x) = loga(x),其中a为常数,且a大于0且不等于1,x大于0。
对数函数的图像为一条平滑的曲线。
2.5幂函数幂函数的定义形式为f(x) = x^a,其中a为常数。
幂函数的图像形状与指数函数相似,但变化较缓和。
三、函数的运算函数之间可以进行加减乘除的运算,得到的结果仍然是一个函数。
3.1和函数两个函数f(x)和g(x)的和函数是指h(x) = f(x) + g(x)3.2差函数两个函数f(x)和g(x)的差函数是指h(x) = f(x) - g(x)3.3积函数两个函数f(x)和g(x)的积函数是指h(x) = f(x) * g(x)3.4商函数两个函数f(x)和g(x)的商函数是指h(x) = f(x) / g(x),其中g(x)不等于0四、函数的图像与性质函数的图像可以通过绘制函数的关系表、绘制坐标点、利用平移、对称、伸缩等变换得到。
高一数学函数的知识点总结

高一数学函数的知识点总结高一数学函数的知识点总结 11. 函数的奇偶性(1)若f(x)是偶函数,那么f(x)=f(-x) ;(2)若f(x)是奇函数,0在其定义域内,则 f(0)=0(可用于求参数);(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;2. 复合函数的有关问题(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即 f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。
(2)复合函数的单调性由“同增异减”判定;3.函数图像(或方程曲线的对称性)(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x= 对称;4.函数的周期性(1)y=f(x)对x∈R时,f(x +a)=f(x-a) 或f(x-2a )=f(x) (a>0)恒成立,则y=f(x)是周期为2a的周期函数;(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a ︱的周期函数;(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2 的周期函数;(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2 的周期函数;(6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)= ,则y=f(x)是周期为2 的周期函数;5.方程k=f(x)有解k∈D(D为f(x)的值域);6.a≥f(x) 恒成立a≥[f(x)]max,; a≤f(x) 恒成立a≤[f(x)]min;7.(1) (a>0,a≠1,b>0,n∈R+); (2) l og a N= ( a>0,a≠1,b>0,b≠1);(3) l og a b的符号由口诀“同正异负”记忆; (4) a log a N= N ( a>0,a≠1,N>0 );8. 判断对应是否为映射时,抓住两点:(1)A中元素必须都有象且唯一;(2)B 中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;9. 能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。
高一数学必修1函数知识点总结

高一数学必修1函数知识点总结一、函数的基本概念函数的定义:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数。
记作:y=f(x),x∈A。
其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A }叫做函数的值域。
二、函数的性质函数的奇偶性:若f(x)是偶函数,那么f(x)=f(-x);若f(x)是奇函数,且0在其定义域内,则f(0)=0;判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或f(x)≠f(-x);奇函数在对称的单调区间内有相同的单调性,偶函数在对称的单调区间内有相反的单调性。
函数的单调性:通过对函数求导,可以判断函数的单调性。
若导数大于0,则函数在此区间内单调递增;若导数小于0,则函数在此区间内单调递减。
三、复合函数复合函数的定义域:若已知g(x)的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;复合函数的单调性:由同增异减判定,即内外函数单调性相同时,复合函数单调性相同;内外函数单调性相反时,复合函数单调性相反。
四、对数函数对数函数的定义域为大于0的实数集合;对数函数的值域为全部实数集合;对数函数总是通过(1,0)这一点;当底数a大于1时,对数函数为单调递增函数,并且上凸;当0<a<1时,对数函数为单调递减函数,并且下凹。
五、函数图像与对称性函数图像的对称性可以通过观察图像或利用函数的性质进行判断;对于某些特定的函数,如反比例函数,其图像具有特定的对称性。
六、指数函数与幂函数指数函数的形式通常为y=a^x,其中a为底数,x为指数;幂函数的形式为y=x^n,其中n为实数。
这些知识点构成了高一数学必修1中关于函数的基本框架。
在学习过程中,需要深入理解每个知识点的概念、性质和应用,同时结合具体的例题和习题进行练习,以加深对知识点的理解和掌握。
完整版)高一数学必修一函数知识点总结

完整版)高一数学必修一函数知识点总结二、函数的概念和相关概念函数是从一个非空数集A到另一个非空数集B的一个确定的对应关系f,使得集合A中的每个数x都有唯一的数f(x)与之对应。
我们把f:A→B称为从集合A到集合B的一个函数,记作y=f(x),其中x是自变量,A是函数的定义域,而与x对应的y值是函数值,其集合{f(x)| x∈A }是函数的值域。
需要注意的是,在求函数的定义域时,我们需要注意分式的分母不等于零,偶次方根的被开方数不小于零,对数式的真数必须大于零,指数、对数式的底必须大于零且不等于1,以及函数是由一些基本函数通过四则运算结合而成的。
同时,指数为零底不可以等于零,实际问题中的函数的定义域还要保证实际问题有意义。
相同函数的判断方法有两种:表达式相同(与表示自变量和函数值的字母无关)和定义域一致。
在考虑函数的值域时,我们可以使用观察法、配方法或代换法。
函数图象是指在平面直角坐标系中,以函数y=f(x)。
(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C。
C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上。
我们可以使用描点法或图象变换法来画函数图象,其中常用的变换方法有平移变换、伸缩变换和对称变换。
区间是指数轴上的一段连续的区域,可以分为开区间、闭区间和半开半闭区间。
同时,还有无穷区间。
我们可以使用数轴来表示区间。
映射是指两个非空集合A和B之间的确定对应关系f,使得集合A中的每个元素x都有唯一的元素y与之对应。
我们把对应f:A→B称为从集合A到集合B的一个映射,记作“f (对应关系):A(原象)→B(象)”。
对于映射f:A→B来说,应该满足集合A中的每一个元素,在集合B中都有象,并且象是唯一的;集合A中不同的元素,在集合B中对应的象可以是同一个。
3.分段函数分段函数是指在定义域的不同部分上有不同的解析表达式的函数。
高一数学知识点总结及公式大全

高一数学知识点总结及公式大全高一数学知识点总结及公式大全高一是数学学科的重要阶段,学生们将接触到许多基础的数学知识点和公式。
以下是高一数学的知识点总结及公式大全。
一、代数与函数1. 一次函数一次函数的标准方程为:y = kx + b,其中k为斜率,b为截距。
2. 二次函数二次函数的标准方程为:y = ax^2 + bx + c,其中a不为0。
它的顶点坐标为:(-b/2a, -(Δ/4a))。
3. 幂函数幂函数的标准方程为:y = ax^b,其中a为正实数,b为实数。
4. 指数函数指数函数的标准方程为:y = a^x,其中a为正实数,且a不等于1。
5. 对数函数对数函数的标准方程为:y = loga x,其中a为正实数,a不等于1。
6. 复合函数复合函数指的是由两个或多个函数组合而成的函数。
7. 绝对值函数绝对值函数的标准方程为:y = |x|,其图像是一条折线段。
8. 分式函数分式函数的标准方程为:y = f(x)/g(x),其中f(x)和g(x)都是多项式函数。
9. 反函数两个函数互为反函数,当且仅当它们的定义域和值域互相对应。
10. 等差数列等差数列的通项公式为:an = a1 + (n-1)d,其中an是第n项,a1是首项,d是公差。
11. 等比数列等比数列的通项公式为:an = a1 * r^(n-1),其中an是第n项,a1是首项,r是公比。
12. 数列求和等差数列的和公式为:Sn = (a1 + an)n/2,其中Sn是前n项和,a1是首项,an是第n项。
13. 二项式定理二项式定理表示为:(a + b)^n = C(n,0)a^n b^0 + C(n,1)a^(n-1)b^1 + ... + C(n,n)a^0 b^n,其中C(n,r)表示从n个元素中取r个元素的组合数。
14. 概率与统计概率表示某事件发生的可能性,有几何概型和统计概型两种计算方法。
二、几何与三角函数1. 正弦定理正弦定理表示为:a/sinA = b/sinB = c/sinC,其中a、b、c为三角形的边长,A、B、C为对应的角度。
高一数学公式大全总结

高一数学公式大全总结在高一数学学习中,数学公式是非常重要的一部分,掌握好数学公式可以帮助我们更好地理解和应用数学知识。
下面就为大家总结一些高一数学常用的公式,希望对大家的学习有所帮助。
一、代数部分。
1. 一次函数的标准方程,y=ax+b。
其中,a为斜率,b为截距。
2. 二次函数的一般式,y=ax^2+bx+c。
其中,a≠0,称为二次项系数;b为一次项系数;c为常数项。
3. 平面直角坐标系中两点间距离公式,AB=√((x2-x1)^2+(y2-y1)^2)。
4. 二次函数顶点坐标公式,顶点坐标为(-b/2a, -Δ/4a)。
其中,Δ=b^2-4ac为判别式。
二、几何部分。
1. 直角三角形中,勾股定理,a^2+b^2=c^2。
其中,a、b为直角边,c为斜边。
2. 圆的面积公式,S=πr^2。
其中,r为半径。
3. 圆的周长公式,C=2πr。
其中,r为半径。
4. 正多边形内角和公式,S=(n-2)×180°。
其中,n为边数。
三、概率统计部分。
1. 事件A的概率公式,P(A)=n(A)/n(S)。
其中,n(A)为事件A的样本点数,n(S)为样本空间的样本点数。
2. 事件A与事件B同时发生的概率公式,P(A∩B)=P(A)×P(B|A)。
其中,P(B|A)为在事件A发生的条件下,事件B发生的概率。
3. 二项分布的概率公式,P(X=k)=C(n,k)×p^k×(1-p)^(n-k)。
其中,C(n,k)为组合数,p为事件发生的概率,n为试验次数,k为成功次数。
四、导数与微分部分。
1. 函数y=f(x)的导数公式,y'=lim(Δx→0)(f(x+Δx)-f(x))/Δx。
其中,y'为导数。
2. 常见函数的导数公式:指数函数的导数,(a^x)'=a^xlna。
对数函数的导数,(loga(x))'=1/(xlna)。
三角函数的导数,(sinx)'=cosx,(cosx)'=-sinx,(tanx)'=sec^2x。
高一数学知识点归纳总结

高一数学知识点归纳总结高一数学知识点归纳总结(一)一、函数1.函数的定义:对于每一个自变量,函数都给出唯一的因变量值。
2.函数的表示:y=f(x),x为自变量,y为因变量,f(x)为函数。
3.函数的性质:定义域、值域、单调性、奇偶性、周期性、对称性。
4.常见数学函数:指数函数、对数函数、三角函数、反三角函数、幂函数、根式函数。
5.函数的图像:函数的图像是函数在平面直角坐标系上的表示,反映了函数自变量和因变量之间的函数关系。
6.函数的运算:加减、乘除、复合运算。
7.函数的极限:当自变量接近某一特定值时,函数趋于一个确定的极限。
8.导数与微分:导数是函数变化率的极限值,微分是函数的一个微小变化量。
9.应用:求函数的最值、拐点、渐近线、曲率等,还可以用于物理、经济、工程学等领域中的问题求解。
二、集合与命题1.集合的概念:由若干个元素构成的整体。
2.基本集合运算:并集、交集、差集、补集。
3.集合的性质:子集、相等、空集、全集、互斥、互补。
4.命题:是可以用真假判断的陈述句,并且只有真假两种可能。
5.命题的逻辑运算:否定、合取、析取、蕴含。
6.命题的等价关系与充分必要条件。
7.谓词与量词:谓词是具有“真假”性质的函数,量词包括全称量词和存在量词,它们用于指定谓词中的变量范围。
三、平面与立体几何1.欧氏几何:以欧氏公理为基础的几何学,研究点、线、面的性质以及它们之间的关系。
2.平面几何:研究平面上点、线、面及其相互关系的几何学。
3.直线和圆的性质:如平行线公理、垂线定理、相交线夹角定理、圆的周长、面积等。
4.三角形和四边形的性质:如勾股定理、海伦公式、三角形周长公式、正方形、矩形、平行四边形、菱形的周长、面积等。
5.立体几何:研究空间中点、线、面、体及其相互关系的几何学。
6.球的性质:如球的体积、表面积等。
7.多面体的性质:如正四面体、正六面体、正八面体等体积、表面积等。
四、数列与数学归纳法1.数列的概念:按一定顺序排列的一列数。
高一数学知识点及公式大全

高一数学知识点及公式大全导语:数学作为一门具有普遍性和长久性的学科,一直被认为是科学的基石。
无论从理论还是实际应用方面,数学都发挥着重要的作用。
本文将介绍高一阶段的数学知识点及公式大全,帮助同学们全面理解数学的基础知识。
下面让我们开始探索吧!一、代数与函数1. 一次函数:函数表达式:y = kx + b斜率:k截距:b2. 二次函数:函数表达式:y = ax^2 + bx + c判别式:Δ = b^2 - 4ac零点:x = (-b ± √Δ) / 2a对称轴:x = -b / 2a顶点坐标:(h, k),其中 h = -b / 2a, k = f(h)3. 幂函数:函数表达式:y = x^a当 a > 1 时,图像开口向上;a < 1时,图像开口向下。
4. 对数函数:函数表达式:y = loga(x)特点:反函数是指数函数 y = a^x二、几何与三角学1. 相似三角形:两个三角形对应角相等,对应边成比例。
2. 正弦定理:a / sinA =b / sinB =c / sinC3. 余弦定理:c^2 = a^2 + b^2 - 2abcosC4. 正切定理:tanA = (a / b)三、概率与统计学1. 排列组合:排列:An^m = n!/(n-m)!组合:Cn^m = n!/(m!(n-m)!)2. 事件概率:P(A) = n(A) / n(S)3. 期望值:E(X) = Σ(xi * Pi)四、导数与微积分1. 基本导数公式:(1) (x^n)' = nx^(n-1)(2) (sinx)' = cosx, (cosx)' = -sinx(3) (ex)' = ex(4) (lnx)' = 1/x2. 高阶导数:f^(n)(x) 表示函数 f(x) 的 n 阶导数。
3. 泰勒展开式:f(x) = f(a) + f'(a)(x - a) + f''(a)/2!(x - a)^2 + ...五、数列与数学归纳法1. 等差数列:通项公式:an = a1 + (n - 1)d前n项和公式:Sn = (n / 2)(a1 + an)2. 等比数列:通项公式:an = a1 * q^(n - 1)前n项和公式:Sn = (a1 * (1 - q^n)) / (1 - q)3. 递归数列:an 根据前面的项(如 a(n-1)) 来定义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx (k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b (k为任意不为零的实数b取任何实数)2.当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。
所以可以列出2个方程:y1=kx1+b …… ①和y2=kx2+b …… ②(3)解这个二元一次方程,得到k,b的值。
(4)最后得到一次函数的表达式。
五、一次函数在生活中的应用:1.当时间t一定,距离s是速度v的一次函数。
s=vt。
2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。
设水池中原有水量S。
g=S-ft。
六、常用公式:(不全,希望有人补充)1.求函数图像的k值:(y1-y2)/(x1-x2)2.求与x轴平行线段的中点:|x1-x2|/23.求与y轴平行线段的中点:|y1-y2|/24.求任意线段的长:√(x1-x2)^2+(y1-y2)^2 (注:根号下(x1-x2)与(y1-y2)的平方和)二次函数I.定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
II.二次函数的三种表达式一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)顶点式:y=a(x-h)^2+k [抛物线的顶点P(h,k)]交点式:y=a(x-x₁)(x-x ₂) [仅限于与x轴有交点A(x₁,0)和B(x₂,0)的抛物线]注:在3种形式的互相转化中,有如下关系:h=-b/2a k=(4ac-b^2)/4a x₁,x₂=(-b±√b^2-4ac)/2aIII.二次函数的图像在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。
IV.抛物线的性质1.抛物线是轴对称图形。
对称轴为直线x = -b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为P ( -b/2a ,(4ac-b^2)/4a )当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)6.抛物线与x轴交点个数Δ= b^2-4ac>0时,抛物线与x轴有2个交点。
Δ= b^2-4ac=0时,抛物线与x轴有1个交点。
当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,当h<0时,则向左平行移动|h|个单位得到.当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2 +k的图象;当h>0,k<0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象;当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;因此,研究抛物线y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2+k 的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.2.抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).3.抛物线y=ax^2+bx+c(a≠0),若a>0,当x ≤ -b/2a时,y随x的增大而减小;当x ≥ -b/2a时,y随x的增大而增大.若a<0,当x ≤ -b/2a时,y随x的增大而增大;当x ≥ -b/2a 时,y随x的增大而减小.4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:(1)图象与y轴一定相交,交点坐标为(0,c);(2)当△=b^2-4ac>0,图象与x轴交于两点A(x₁,0)和B(x₂,0),其中的x1,x2是一元二次方程ax^2+bx+c=0(a≠0)的两根.这两点间的距离AB=|x₂-x₁|当△=0.图象与x轴只有一个交点;当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.5.抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x= -b/2a时,y最小(大)值=(4ac-b^2)/4a.顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.6.用待定系数法求二次函数的解析式(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:y=ax^2+bx+c(a≠0).(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0).(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x₁)(x-x ₂)(a≠0).7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。
因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.反比例函数形如y=k/x(k为常数且k≠0) 的函数,叫做反比例函数。
自变量x的取值范围是不等于0的一切实数。
反比例函数图像性质:反比例函数的图像为双曲线。
由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。
另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。
如图,上面给出了k分别为正和负(2和-2)时的函数图像。
当K>0时,反比例函数图像经过一,三象限,是减函数当K<0时,反比例函数图像经过二,四象限,是增函数反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。
知识点:1.过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为| k |。
2.对于双曲线y=k/x ,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右平移一个单位。
(加一个数时向左平移,减一个数时向右平移)对数函数对数函数的一般形式为,它实际上就是指数函数的反函数。
因此指数函数里对于a的规定,同样适用于对数函数。
右图给出对于不同大小a所表示的函数图形:可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。
(1)对数函数的定义域为大于0的实数集合。
(2)对数函数的值域为全部实数集合。
(3)函数总是通过(1,0)这点。
(4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。
(5)显然对数函数无界。
指数函数指数函数的一般形式为,从上面我们对于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得如图所示为a的不同大小影响函数图形的情况。
可以看到:(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。
(2)指数函数的值域为大于0的实数集合。
(3)函数图形都是下凹的。
(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。
(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。
其中水平直线y=1是从递减到递增的一个过渡位置。
(6)函数总是在某一个方向上无限趋向于X轴,永不相交。
(7)函数总是通过(0,1)这点。
(8)显然指数函数无界。
奇偶性注图:(1)为奇函数(2)为偶函数1.定义一般地,对于函数f(x)(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。
(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。
(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。
(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。