万有引力定律例题

合集下载

万有引力定律的案例分析-例题解析

万有引力定律的案例分析-例题解析

▁▂▃▄▅▆▇█▉▊▋▌精诚凝聚 =^_^= 成就梦想 ▁▂▃▄▅▆▇█▉▊▋▌▃ ▄ ▅ ▆ ▇ █ █ ■ ▓点亮心灯 ~~~///(^v^)\\\~~~ 照亮人生 ▃ ▄ ▅ ▆ ▇ █ █ ■ ▓ 万有引力定律的案例分析-例题解析1.关于双星的例题【例1】 两个星球组成双星,它们在相互之间的万有引力作用下,绕连线上某点做周期相同的匀速圆周运动.现测得两行星中心距离为R ,其周期为T .求两行星的总质量.解析:由万有引力定律得:G 121221R m Rm m ω= 所以1222R RGm ω=,所以m 2=G R R 212ω 同理:G 222221R m R m m ω=所以m 1=G R R 222ω所以m 1+m 2=G R R R )(2122+ω 又因为:R 1+R 2=R ,所以m 1+m 2=G R 32ω,而ω=Tπ2 解得:m 1+m 2=232π4GT R .2.关于“和平号”空间站的例题【例2】 1986年2月20日发射升空的“和平号”空间站,在服役15年后于2001年3月23日坠落在太平洋.“和平号”风风雨雨15年铸就了辉煌业绩,已成为航天史上的永恒篇章.“和平号”空间站总质量137 t ,工作容积超过400 m 3.是迄今为止人类探索太空规模最大的航天器,有“人造天宫”之称.在太空运行的这一“庞然大物”按照地面指令准确降落在预定海域,这在人类历史上还是第一次.“和平号”空间站正常运行时,距离地面的平均高度大约是350 km.为保证空间站最终安全坠毁,俄罗斯航天局控制中心对空间站的运行作了精心的安排和控制.在坠毁前空间站已经顺利进入指定的低空轨道,此时“和平号”距离地面的高度大约为240 km.在“和平号”沿指定的低空轨道运行时,其轨道高度平均每昼夜降低2.7 km.设“和平号”空间站正常运行时沿高度为350 km 圆形轨道运行,在坠落前沿高度240 km 的指定圆形低空轨道运行.而且沿指定的低空轨道运行时,每运行一周空间站高度变化很小,因此计算时对空间站的每一周的运动都可以作为匀速圆周运动处理.(1)空间站沿正常轨道运行时的加速度与沿指定的低空轨道运行时加速度大小的比值是多大?(计算时保留两位有效数字)(2)空间站沿指定的低空轨道运行时,每运行一周过程中空间站高度平均变化多大?(计算中取地球半径R =6.4×103 km ,计算时保留一位有效数字)解析:(1)根据a =2RGM ,a 1∶a 2=0.97. (2)h =2.7 km.。

(完整版)万有引力定律经典例题

(完整版)万有引力定律经典例题

盘中心尺体査页成ftl 垃鰭藕吋’万科可力班*1那『史Jf骨=呼「黄金代樓*,其%表乐天弹表面的匪力加連讎2.中心天体质量和密度的估算⑴已知天体表面的重力加速度g 和天体半径R(2)已知卫星绕天体做圆周运动的周期 T 和轨道半径rMm 4 n4 n r 3① G ~^2 =吓r? M =苛 M 3 n 3 ② 尸4 3=乔R 33n Ri •火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知 ( )A •太阳位于木星运行轨道的中心B •火星和木星绕太阳运行速度的大小始终相等C •火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方D .相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积解析:由开普勒第一定律(轨道定律)可知,太阳位于木星运行轨道的一个焦点上, A错误;火星和木星绕太阳运行的轨道不同,运行速度的大小不可能始终相等,B 错误;根据开普勒第三定律(周期定律)知所有行星轨道的半长轴的三次方与它的公转周期的平方的 比值是一个常数,C 正确;对于某一个行星来说,其与太阳连线在相同的时间内扫过的面 积相等,不同行星在相同的时间内扫过的面积不相等,D 错误.答案:C2. (2016郑州二检)据报道,目前我国正在研制“萤火二号”火星探测器•探测器升空1 .天体运动的分析方法G MR m= mg?天体质量:天体密度:“ gR 2M=旨3g 尸 4T GR③卫星在天体表面附近飞行时,r= R ,贝 y p=GT nN0.2题组训嫌提升能力天弹苕动的向心力来壽于天之间的万有引力 4^r-f后,先在近地轨道上以线速度 v 环绕地球飞行,再调整速度进入地火转移轨道,最后再一次调整速度以线速度 v '在火星表面附近环绕飞行•若认为地球和火星都是质量分布均匀 的球体,已知火星与地球的半径之比为 1 : 2,密度之比为5 : 7,设火星与地球表面重力加速度分别为g '和g ,下列结论正确的是()项正确,D 项错.答案:C3•嫦娥三号”探月卫星于 2013年12月2日1点30分在西昌卫星发射中心发射,将实 现“落月”的新阶段•若已知引力常量G ,月球绕地球做圆周运动的半径「1、周期T 1,“嫦娥三号”探月卫星绕月球做圆周运动的环月轨道(见图)半径 匕、周期T 2,不计其他天体的影响,则根据题目条件可以( )A •求出“嫦娥三号”探月卫星的质量B .求出地球与月球之间的万有引力C .求出地球的密度 门3 r 23D.^=T 22不知道地球半径 r ,无法求出地球密度, C 错误;对4式得 g = 3G npR ,所以g ' : g = 5 : 14, A 、B 项错;探测器在大体表面飞行时,万有引力解析:在天体表面附近,重力与万有引力近似相等,由 GMRRm = mg , M = P 3 n R 3,解两G M R m - = mR , M = P 4 泯3,解两式得 v = 2^y G 3np,所以 v ' : v=\f28, C充当向心力,由 解析:绕地球转动的月球受力为 誉=M ' r 1 T 2 = ,已知 嫦娥三号”的周期和半径,可求出月球质量M ',但是所有的卫星A • g: g=4: 1B • g ': g = 10 : 7在万有引力提供向心力的运动学公式中卫星质量都约掉了,无法求出卫星质量,因此探月 卫星质量无法求出, A 错误;已经求出地球和月球质量,而且知道月球绕地球做圆周运动 的半径r i ,根据F =可求出地球和月球之间的引力,B 正确;由开普勒第三定律即半长轴三次方与公转周期二次方成正比,前提是对同一中心天体而言,但是两个圆周运动 的中心天体一个是地球一个是月球,D 错误.答案:B Ir 反忠捉升j ---------------------------------------------------------------------------------------------------估算天体质量和密度时应注意的问题(1) 利用万有引力提供天体做圆周运动的向心力估算天体质量时,估算的只是中心天 体的质量,并非环绕天体的质量.(2) 区别天体半径 R 和卫星轨道半径r ,只有在天体表面附近的卫星才有r - R ;计算4天体密度时,V=:T R 3中的R 只能是中心天体的半径. L3______ 丿考点二人造卫星的运行 授课提示:对应学生用书第57页1. 人造卫星的a 、3、v 、T 与r 的关系1. 地球同步卫星的特点(1)轨道平面一定:轨道平面和赤道平面重合.N0.1梳理主干填准记牢GMm2.近地时GMm mg = -R2-ma > a = G r > a ’ 22 m w 2r m^2»GM = gR 2.⑵周期一定:与地球自转周期相同,即 T = 24 h = 86 400 s.(3) 角速度一定:与地球自转的角速度相同. (4) 高度一定:根据 = m 4T r 得r= 4,23x 104km ,卫星离地面高度 h =r - R ~ 6R(为恒量).(5) 绕行方向一定:与地球自转的方向一致. 2. 极地卫星和近地卫星(1) 极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖. (2) 近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的轨道半径可 近似认为等于地球的半径,其运行线速度约为7.9 km/s.(3) 两种卫星的轨道平面一定通过地球的球心.题组训嫌提升能力 运州I1.(2015高考福建卷)如图,若两颗人造卫星 a 和b 均绕地球做匀速圆周运动, a 、b 到地心O 的距离分别为「1、「2,线速度大小分别为 V 1、V 2,则()项正确,B 、C 、D 项错误.答案:A2. 2015年3月30号晚上9点52分,我国在西昌卫星发射中心用长征三号丙运载火箭, 将我国首颗新一代北斗导航卫星发射升空,于 31号凌晨3点34分顺利进入预定轨道.这 次发射的新一代北斗导航卫星,是我国发射的第17颗北斗导航卫星.北斗卫星导航系统空间段计划由35颗卫星组成,包括 5颗静止轨道卫星、27颗中地球轨道卫星、3颗倾斜同步 轨道卫星•中地球轨道卫星和静止轨道卫星都绕地球球心做圆周运动,中地球轨道卫星离 地面高度低,则中地球轨道卫星与静止轨道卫星相比,做圆周运动的( )B .线速度小 D .向心加速度大N0.2解析:根据万有引力定律可得A .周期大 C .角速度小V 1 A.— V 2G 呼 r 2V 1 V 2,所以A解析:卫星离地面的高度越低,则运动半径越小•根据万有引力提供圆周运动向心力 24 2 ; 4 2 3得 G M$ = m* = m w 2r = m-T ^^ = ma ,则周期 T ="'‘石Mr ,知半径 r 越小,周期越小,故 A知半径r 越小,角速度越大,故 C 错误;向心加速度 a =学寻,知半径r 越小,向心加速度 越大,故D 正确.答案:D3•“空间站”是科学家进行天文探测和科学试验的特殊而又重要的场所•假设“空间 站”正在地球赤道平面内的圆周轨道上运行,其离地球表面的高度为同步卫星离地球表面 高度的十分之一,且运行方向与地球自转方向一致.下列说法正确的有( )A •“空间站”运行时的加速度小于同步卫星运行的加速度B •“空间站”运行时的速度等于同步卫星运行速度的 ,10倍C .站在地球赤道上的人观察到“空间站”向东运动D •在“空间站”工作的宇航员因不受重力而可在舱中悬浮速度,故A 错误;根据 G^Mm = m*得v =. GM ,离地球表面的高度不是其运动半径,所以线速度之比不是.10 : 1,故B 错误;轨道半径越大,角速度越小,同步卫星和地球自转 的角速度相同,所以空间站的角速度大于地球自转的角速度,所以站在地球赤道上的人观 察到空间站向东运动,故 C 正确;在“空间站”工作的宇航员处于完全失重状态,重力充 当向心力和空间站一起做圆周运动,故D 错误.答案:C—r 辰忠提升j -------------------------------------------------人造卫星问题的解题技巧,知半径r 越小,线速度越大,故 B 错误;角速度 3=解析:根据G Mm Gm “yr = ma 得 a =~rr ,知 空间站”运行的加速度大于同步卫星运行的加 错误;线速度 v =GMGM戸,(1) 利用万有引力提供向心力的不同表达式 2 2GMm v24 n r—== mr 3= m=^ = ma n r r T(2) 解决力与运动关系的思想还是动力学思想,解决力与运动的关系的桥梁还是牛顿 第二定律.①卫星的a n 、V 、3、T 是相互联系的,其中一个量发生变化,其他各量也随之发生 变化.⑶要熟记经常用到的常数,如地球自转一周为一天,绕太阳公转一周为一年,月球 绕地球公转一周为一月(27.3天)等.考点三卫星的发射和变轨问题 授课提示:对应学生用书第57页梳理主干填准记牢叩己|1. 第一宇宙速度(环绕速度)v i = 79 km/s ,既是发射卫星的最小发射速度,也是卫星绕地球运行的最大环绕速度, 还是绕地面附近环绕地球做匀速圆周运动时具有的速度.2. 第二宇宙速度(脱离速度)V 2 = 11.2 km/s ,使卫星挣脱地球引力束缚的最小发射速度. 3. 第三宇宙速度(逃逸速度)V 3= 16! km/s ,使卫星挣脱太阳引力束缚的最小发射速度.-------------------------------------------1. 第一宇宙速度的两种计算方法 ^Mm. m vf 得 v 叫 /GM (1) 由 GR 2 = % 得 v = R.2(2) 由 mg = mR 得 v = . g R . 2. 卫星变轨的分析(1)变轨原因:当卫星由于某种原因速度突然改变时 (开启或关闭发动机或空气阻力作用),万有引力不再等于向心力,卫星将变轨运行.②a n 、 V 、 3、 T 均与卫星的质量无关,只由轨道半径r 和中心天体质量共同决定.2Mm v o 2 n o ⑵变轨分析:卫星在圆轨道上稳定时,G-^r = m? = m w 2r = m 〒2r.2①当卫星的速度突然增大时,vm*,即万有引力不足以提供向心力,卫星将做离心运动,脱离原来的圆轨道,轨道半径变大•当卫星进入新的轨道稳定运行时,由GM 可知其运行速度比原轨道时减小,但重力势能、机械能均增加;②当卫星的速度突然减小时,> 疋,即万有引力大于所需要的向心力,卫星将做近心运动,脱离原来的圆轨道,轨道半径变小•当卫星进入新的轨道稳定运行时,由GM可知其运行速度比原轨道时增大,但重力势能、机械能均减小.1.(多选)(2015高考广东卷)在星球表面发射探测器,当发射速度为v 时,探测器可绕星球表面做匀速圆周运动;当发射速度达到 2v 时,可摆脱星球引力束缚脱离该星球•已知地球、火星两星球的质量比约为10 : 1,半径比约为2:1•下列说法正确的有( )A •探测器的质量越大,脱离星球所需要的发射速度越大B •探测器在地球表面受到的引力比在火星表面的大C .探测器分别脱离两星球所需要的发射速度相等D •探测器脱离星球的过程中,势能逐渐增大 解析:由GMRm = mvR 得,v = ;GRM , 2v = ',,2GM ,可知探测器脱离星球所需要的发射速度与探测器的质量无关, A 项错误;由F = GMm 及地球、火星的质量、半径之比可 做负功,引力势能增大, D 项正确.答案:BD 2.(多选)2013年12月2日我国探月探测器“嫦娥三号”在西昌卫星发射中心成功发射升空,此飞行轨道示意图如图所示,地面发射后奔向月球,在P 点从圆形轨道I 进入椭圆轨道n, Q 为轨道H 上的近月点•下列关于“嫦娥三号”的运动,正确的说法是 ( )N0.2報组训竦提升能力远川知,探测器在地球表面受到的引力比在火星表面的大, 探测器脱离两星球所需的发射速度不同,C 项错误;探测器在脱离两星球的过程中,引力B 项正确;由2GM” 盲可知,A •发射速度一定大于 7.9 km/sB •在轨道n 上从 P 到Q 的过程中速率不断增大C •在轨道n 上经过 P 的速度小于在轨道I 上经过 P 的速度D •在轨道n 上经过 P 的加速度小于在轨道I 上经过 P 的加速度 解析:“嫦娥三号”探测器的发射速度一定大于 7.9 km/s , A 正确•在轨道n 上从P到Q 的过程中速率不断增大,选项B 正确.“嫦娥三号”从轨道I 上运动到轨道n 上要减速,故在轨道n 上经过 P 的速度小于在轨道I 上经过 P 的速度,选项 C 正确.在轨道n 上经过P 的加速度等于在轨道I 上经过P 的加速度,D 错.答案:ABC3.(2016成都石室中学二诊)如图所示,在同一轨道平面上的三个人造地球卫星 A 、B 、C ,在某一时刻恰好在同一条直线上•它们的轨道半径之比为 说法中正确的是()B .三颗卫星具有机械能的大小关系为 E A V E B V E CC • B 卫星加速后可与 A 卫星相遇D • A 卫星运动27周后,C 卫星也恰回到原地点 解析: 根据万有引力提供向心力G M ^p = ma ,得 a = G r ,故 a A : a B : a c=2 :」2 :」2r r r A r B r c1 1 1=* :歹:32= 36 : 9 : 4,故A 错误;卫星发射的越高,需要克服地球引力做功越多,故机 械能越大,故 E A V E B V E C ,故B 正确;B 卫星加速后做离心运动,轨道半径要变大,不可C 的周期应为A 的周期的27倍,故D 错误.答案:B1 :2 : 3,质量相等,则下列能与A 卫星相遇,故 C 错误;根据万有引力提供向心力 _Mm 4 n= m*27周后, C 卫星也恰回到原地点,则A •三颗卫星的加速度之比为r ,得 T = 2 所以T C即T C = ■.27T A 若 A 卫星运动反忠捉升」航天器变轨问题的三点注意事项(1)航天器变轨时半径的变化,根据万有引力和所需向心力的大小关系判断;稳定在新轨道上的运行速度变化由v=、代皿判断.(2) 航天器在不同轨道上运行时机械能不同,轨道半径越大,机械能越大.航天器经过不同轨道相交的同一点时加速度相等,外轨道的速度大于内轨道的速考点四天体运动中的双星或多星模型授课提示:对应学生用书第58页N0.1梳理主干牢固记忆1•模型构建片巾“ —GY绕公共圆心转动的两个星体组成的系统,我们称之为双星系统,如图所示.2. 模型条件(1) 两颗星彼此相距较近.(2) 两颗星靠相互之间的万有引力做匀速圆周运动.⑶两颗星绕同一圆心做圆周运动.3. 模型特点(1) “向心力等大反向”一一两颗星做匀速圆周运动的向心力由它们之间的万有引力提供,故F1 = F2,且方向相反,分别作用在两颗行星上,是一对作用力和反作用力.(2) “周期、角速度相同”一一两颗行星做匀速圆周运动的周期、角速度相等.(3) “半径反比” 一一圆心在两颗行星的连线上,且「1 + r2= L,两颗行星做匀速圆周运动的半径与行星的质量成反比.题组训练提升能力运用|1 •双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一 点做周期相同的匀速圆周运动•研究发现,双星系统演化过程中,两星的总质量、距离和 周期均可能发生变化•若某双星系统中两星做圆周运动的周期为 T ,经过一段时间演化后,两星总质量变为原来的 k 倍,两星之间的距离变为原来的 n 倍,则此时圆周运动的周期为( )解析:设两颗双星的质量分别为m i 、m 2,做圆周运动的半径分别为 r i 、「2,根据万有 m i m 24 nm i m 24 n引力提供向心力可得G ----------- = m i r i 2 , G ---------------- = m 2「2 2,联立两式解得 m i + m 2 =r i + r 22 1 r i + r 22 1变为原来的n 倍时,两星圆周运动的周期为T ' B 正确,A 、C 、D 错误.答案:B2.(多选)宇宙中存在一些质量相等且离其他恒星较远的四颗星组成的四星系统,通常 可忽略其他星体对它们的引力作用•设四星系统中每个星体的质量均为 四颗星稳定分布在边长为 a 的正方形的四个顶点上•已知引力常量为 G.关于四星系统,下列说法正确的是()A •四颗星围绕正方形对角线的交点做匀速圆周运动B •四颗星的轨道半径均为aC ・四颗星表面的重力加速度均为 罟解析:其中一颗星体在其他三颗星体的万有引力作用下,合力方向指向对角线的交点, 围绕正方形对角线的交点做匀速圆周运动,由几何知识可得轨道半径均为 B 错误;在星体表面,根据万有引力等于重力,可得 G m m _= m ' g ,解得g =罟,故C故D 正确.4 n r i + r 24 n r i + r 2 GT 2,即T 2=,因此,当两星总质量变为原来的 k 倍,两星之间的距离G m i + m 2m ,半径均为 R , 正确;由万有引力定律和向心力公式得D •答案:ACD3•如图所示,双星系统中的星球 A 、B 都可视为质点.A 、B 绕两者连线上的 0点做匀 速圆周运动,A 、B 之间距离不变,引力常量为 G ,观测到A 的速率为v 、运行周期为T ,A 、B 的质量分别为m i 、m 2.⑴求B 的周期和速率.⑵A 受B 的引力F A 可等效为位于0点处质量为 m '的星体对它的引力,试求m '.(用 m i 、m 2 表示)解析:(1)设A 、B 的轨道半径分别为r i 、r 2,它们做圆周运动的周期 T 、角速度3都相同,根据牛顿第二定律有F A = m i 32r i , F B = m 2w 2r 2,即三=需故B 的周期和速率分别为:十 十 十m i r i m i vT B =T A =T,VB=3r= 3韦2 =石2m i + m 2⑵A 、B 之间的距离r = r i +「2= 匚厂r i ,根据万有引力定律有Gm i m 2 Gm i m 'F A=,m 23 2.m i + m 23答案:⑴T mv ⑵右辰忠捉升」解答双星问题应注意 “两等”“两不等”(1)双星问题的“两等” ①它们的角速度相等.②双星做匀速圆周运动的向心力由它们之间的万有引力提供,即它们受到的向心力 大小总是相等的.⑵双星问题的“两不等” ①双星做匀速圆周运动的圆心是它们连线上的一点,所以双星做匀速圆周运动的半 径与双星间的距离是不相等的,它们的轨道半径之和才等于它们间的距离.所以m '[随堂反馈]授课提示:对应学生用书第59页1. (2015高考重庆卷)宇航员王亚平在“天宫 1号”飞船内进行了我国首次太空授课, 演示了一些完全失重状态下的物理现象.若飞船质量为m ,距地面高度为 h ,地球质量为M ,半径为R ,引力常量为 G ,则飞船所在处的重力加速度大小为( )GMm , /口GM解析:由 2= mg '得g ' =2, B 项正确.R +h 2 R +h 2答案:B2. (2015高考北京卷)假设地球和火星都绕太阳做匀速圆周运动,已知地球到太阳的距 离小于火星到太阳的距离,那么( )A .地球公转周期大于火星的公转周期B .地球公转的线速度小于火星公转的线速度C .地球公转的加速度小于火星公转的加速度D .地球公转的角速度大于火星公转的角速度解析:地球的公转半径比火星的公转半径小,由知能TftHINO YAN|Ll>ANB.GM R + hC.GMm R + hD. GM T 2 GMm 2 n _尹=m — 2r ,可知地球的周期比火星的周期小,故 A 项错误;由響=m可知地球公转的线速度大,故B 项错误;由G%m = ma ,可知地球公转的加速度大,项错误;由G^^m = m w 2r ,可知地球公转的角速度大,故D 项正确.答案:D3 .已知地球质量为 M ,半径为 为G.有关同步卫星,下列表述正确的是R , 自转周期为 T ,地球同步卫星质量为 m ,引力常量A .卫星距离地面的高度为GM②由m i 32r i = m 232r 2知,由于 m i 与m 2一般不相等,故 r i 与「2 —般也不相等.B •卫星的运行速度等于第一宇宙速度C .卫星运行时受到的向心力大小为G M R2rD .卫星运行的向心加速度小于地球表面的重力加速度等于第一宇宙速度,同步卫星的运行速度小于第一宇宙速度,B 错误;同步卫星运行时的向心力大小为F 向=GMm C 错误;由G M?m = mg 得地球表面的重力加速度 g = G^,而R +h 2RR同步卫星所在处的向心加速度g ' =-GM -, D 正确.R + h 2答案:D4. (2015成都七中二诊)2013年12月2日,嫦娥三号探测器由长征三号乙运载火箭从西 昌卫星发射中心发射,首次实现月球软着陆和月面巡视勘察.假设嫦娥三号在环月圆轨道 和椭圆轨道上运动时,只受到月球的万有引力.则( )A .若已知嫦娥三号环月圆轨道的半径、运动周期和引力常量,则可以计算出月球的 密度B .嫦娥三号由环月圆轨道变轨进入环月椭圆轨道时,应让发动机点火使其加速C .嫦娥三号在环月椭圆轨道上P 点的速度大于 Q 点的速度D .嫦娥三号在环月圆轨道上的运行速率比月球的第一宇宙速度小解析:根据万有引力提供向心力 G Mm = m^r ,可以解出月球的质量 M = ^7"2,由于 r I GI 不知道月球的半径,无法知道月球的体积,故无法计算月球的密度,故A 错误;嫦娥三号在环月段圆轨道上 P 点减速,使万有引力大于向心力做近心运动,才能进入环月段椭圆轨 道,故B 错误;嫦娥三号从环月椭圆轨道上P 点向Q 点运动过程中,距离月球越来越近,月球对其引力做正功,故速度增大,即嫦娥三号在环月段椭圆轨道上P 点的速度小于 Q 点的速度,故 C 错误;卫星越高越慢,第一宇宙速度是星球表面近地卫星的环绕速度,故嫦解析:GMm2 n 2 ,口 2= m(R + h) ~T 2得 R + h 2 13GMT 2h= j ZT - R ,A 项错误;近地卫星的运行速度娥三号在环月圆轨道上的运行速率比月球的第一宇宙速度小,故答案:D 5.—物体在距某一行星表面某一高度处由静止开始做自由落体运动,依次通过A 、B 、C 三点,已知 AB 段与BC 段的距离均为0.06 m ,通过AB 段与BC 段的时间分为0.2 s 与0.1 s ,求:(1)该星球表面重力加速度值;⑵若该星球的半径为 180 km ,则环绕该行星的卫星做圆周运动的最小周期为多少? 解析:(1)根据运动学公式,由题意可得 1x = V 1t 1 + 2gt代入数值可求得g = 2 m/s 2.Mm 2 n _⑵对质量为 m 的卫星有 = m — 2r可知当R = r 时卫星做圆周运动的最小周期为代入数据解得 T 最小=600 n . 答案:(1)2 m/s 2(2)600 n s[课时作业]授课提示:对应学生用书第243页一、单项选择题1. (2016成都市石室中学一诊)下列说法正确的是( )A •洗衣机脱水桶脱水时利用了离心运动B •牛顿、千克、秒为力学单位制中的基本单位C .牛顿提出了万有引力定律,并通过实验测出了万有引力常量D •理想实验是把实验的情况外推到一种理想状态,所以是不可靠的解析:洗衣机脱水时利用离心运动将附着在衣服上的水分甩掉,水做离心运动•故 A正确;米、千克、秒为力学单位制中的基本单位,而牛顿不是基本单位,故B 错误;牛顿D 正确.2x = V 1 t 1 + t 2 + 2g t 1+ t 2星球表面有Mm=m ' g提出了万有引力定律,卡文迪许通过实验测出了万有引力常量,故 C 错误;理想实验是把实验的情况外推到一种理想状态,是可靠的,故D 错误.答案:A2•欧洲天文学家在太阳系之外发现了一颗可能适合人类居住的行星,命名为“格利斯 581c ”.该行星的质量是地球的5倍,直径是地球的 1.5倍.设想在该行星表面附近绕行星圆轨道运行的人造卫星的动能为 E k1,在地球表面附近绕地球沿圆轨道运行的相冋质量的 人造卫星的动能为 E k2,则学为(E k2)A . 0.13B . 0.3C . 3.33D . 7.5解析:在行星表面运行的卫星其做圆周运动的向心力由万有引力提供 Mm v 2故有 G~r = m~,r r1所以卫星的动能为 E k = 2mv 2 = GMm =2rGM 地m故在地球表面运行的卫星的动能E k2 =2R 地答案:C 3.(2015高考天津卷)未来的星际航行中,宇航员长期处于零重力状态,为缓解这种状 态带来的不适,有人设想在未来的航天器上加装一段圆柱形“旋转舱”,如图所示•当旋 转舱绕其轴线匀速旋转时,宇航员站在旋转舱内圆柱形侧壁上,可以受到与他站在地球表 面时相同大小的支持力•为达到上述目的,下列说法正确的是( )A .旋转舱的半径越大,转动的角速度就应越大在“格利斯”行星表面运行的卫星的动能GM 行m E k1 =E k1所以有E 2GM 行m2R 行GM 地m 2R 地M 行R 地 5 1• = — XM 地 R 行 11.51033.33.B .旋转舱的半径越大,转动的角速度就应越小C .宇航员质量越大,旋转舱的角速度就应越大D •宇航员质量越大,旋转舱的角速度就应越小解析:宇航员站在旋转舱内圆柱形侧壁上,受到的侧壁对他的支持力等于他站在地球越大,需要的角速度越小, A 项错误,B 项正确.答案:B4. 一人造地球卫星绕地球做匀速圆周运动,假如该卫星变轨后仍做匀速圆周运动,速 1度大小减小为原来的2则变轨前后卫星的()A .轨道半径之比为 1 : 2B .向心加速度大小之比为 4 : 1C .角速度大小之比为 2 : 1D .周期之比为1 : 8解析:卫星绕地球做圆周运动过程中,万有引力充当向心力,严=2?豊=4,A 项错;6节平=ma? a =号単,所以鲁=16, B 项错;由开普勒第三T 4QT" = & D项正确;因为 T =」,角速度与周期成反比,故 号=8, C 项 12 8 GG 2错.答案:D5•美国宇航局2011年12月5日宣布,他们发现了太阳系外第一颗类似地球的、可适 合居住的行星“开普勒-226”,它每290天环绕着一颗类似于太阳的恒星运转一周,距离 地球约600光年,体积是地球的 2.4倍.已知万有引力常量和地球表面的重力加速度.根 据以上信息,下列推理中正确的是( )A •若能观测到该行星的轨道半径,可求出该行星所受的万有引力B .若该行星的密度与地球的密度相等,可求出该行星表面的重力加速度C .根据地球的公转周期与轨道半径,可求出该行星的轨道半径D •若已知该行星的密度和半径,可求出该行星的轨道半径 解析:根据万有引力公式 F =,由于不知道中心天体的质量,无法算出向心力,故A 错误;根据万有引力提供向心力公式 G^Mm = mg ,有g = G%,若该行星的密度与地球表面时的支持力,则mg = mr GJ ,C 、D 项错误;半径V 1 V 2G 132因此角速度与质量无=m^? v =。

高考物理一轮专题复习学案: 万有引力定律

高考物理一轮专题复习学案: 万有引力定律

一、行星的运动 二、万有引力定律 三、引力常量的测定【例题】应用万有引力定律和向心力的公式证明:对于所有在圆周轨道上运动的地球卫星,其周期的二次方与轨道半径的三次方之比为一常量,即T 2/R 3=常量.【证明】设地球的质量为M ,卫星的质量为m ,轨道半径为R ,周期为T .因为卫星绕地球作圆周运动的向心力为万有引力,故F =G 2R Mm =m R ω2=m R 22T 4π. ∴ 32R T =GM 42π=常量. 可见,这一常量只与中心天体(地球)的质量有关.也适用于绕某一中心天体运动的天体系统.●课堂针对训练●(1)关于丹麦天文学家第谷,对行星的位置进行观测所记录的数据,下列说法正确的是:A .这些数据在测量记录时误差相当大;B .这些数据说明太阳绕地球运动;C .这些数据与以行星绕太阳做匀速圆周运动为模型得到的结果相吻合;D .这些数据与以行星绕太阳做椭圆运动为模型得到的结果相吻合.(2)关于行星绕太阳运动的正确说法是:A .所有行星都在同一椭圆轨道上绕太阳运动;B .行星绕太阳运动时太阳位于行星轨道的中心处;C .离太阳越近的行星运动周期越大;D .所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等.(3)如图6-1所示,r 远大于两球的半径,但两球半径不能忽略,而球的质量均匀分布、大小分别为m 1与m 2,则两球间的万有引力大小为:A .Gm 1m 2/r 2;B .Gm 1m 2/r 12;C .Gm 1m 2/(r 1+r 2)2;D .Gm 1m 2/(r +r 1+r 2)2.(4)地球对月球具有相当大的万有引力,为什么它们不靠在一起,其原因是:A .不仅地球对月球有万有引力,而且月球对地球也有万有引力,这两个力大小相等,方向相反,互相平衡了;B .地球对月球的引力还不算大;C .不仅地球对月球有万有引力,而且太阳系里其他星球对月球也有万有引力,这些力的合力等于零;D .万有引力不断改变月球的运动方向,使得月球绕地球运行.(5)关于引力常量G ,以下说法正确的是:A .在国际单位制中,G 的单位是N ·kg 2/m 2;B .在国际单位制中,G 的数值等于两个质量各为1kg 的物体,相距1m 时的相互吸引力;C .在不同星球上,G 的数值不一样;D .在不同的单位制中,G 的数值不一样.(6)以下说法正确的是:A .质量为m 的物体在地球上任何地方其重力均相等;B .把质量为m 的物体从地面移到高空上,其重力变小了;C .同一物体在赤道处的重力比在两极处重力大;D .同一物体在任何地方其质量是相同的.(7)有一个半径比地球大两倍、质量是地球质量36倍的行星.同一物体在它表面的重力是在地球表面的重力的多少倍?(8)人造地球卫星运动时,其轨道半径为月球轨道半径的31,则此卫星运动的周期大约是多少天?(9)物体在地面上重力为G 0,它在高出地面0.5R(R 为地球半径)处的重力是多少?(10)已知地面的重力加速度是g ,距地面高等于地球半径处的重力加速度是多少?(11)假设火星和地球都是球体,火星的质量为M 火,地球的质量为M 地,且M 火/M 地=p ,火星的半径和地球的半径之比是R 火/R 地=q ,那么在它们表面的重力加速度之比g 火/g 地等于多少?★滚动训练★(12)小球从高为h 处落到一个倾角为45°的斜面上,如图6-2所示,设小球与斜面碰撞后速率不变,沿水平方向向左运动,求小球第二次与斜面碰撞时离第一次碰撞处的距离是多少?(斜面足够长,不计空气阻力)(13)一辆汽车匀速率通过一座圆形拱桥后,接着又以相同的速率通过圆弧形凹地,设两圆形半径相等,汽车通过桥顶A 时,桥面受到的压力F NA 为车重的一半,汽车在圆弧形凹地最低点B 时,对地面的压力为F NB ,求f NA 与F NB 之比. 四、万有引力定律在天文学上的应用【例题】月亮绕地球转动的周期为T ,轨道半径为r ,则由此可得地球质量表达式为________(引力常量为G).若地球半径为R ,则其密度表达式是________.【分析与解答】月亮绕地球转可看成作匀速圆周运动,且F 向=F 引,∴ G 2r m M 月地=m 月ω2r =m 月(T 2π)2r 故M 地=232GT r 4π. 而 ρ=体V M =232GT r 4π/(34πR 3)=323RGT r 3π. ●课堂针对训练●(1)若已知行星绕太阳公转的半径为r ,公转的周期为T ,万有引力恒量为G ,则由此可求出:A .某行星的质量;B .太阳的质量;C .某行星的密度;D .太阳的密度.(2)若地球绕太阳公转周期及公转轨道半径分别为T 和R ,月球绕地球公转周期和公转轨道半径分别为t 和r ,则太阳质量与地球质量之比M 日/M 地为:A .R 3t 2/r 3T 2;B .R 3T 2/r 3t 2;C .R 3t 2/r 2T 3;D .R 3T 3/r 3t 3.(3)设行星绕恒星的运动轨道是圆,则其运行周期T 的平方与其运行轨道半径R 的三次方之比为常数,即T 2/R 3=k ,那么k 的大小决定于:A .只与行星质量有关;B .只与恒星质量有关;C .与行星及恒星的质量都有关;D .与恒星的质量及行星的速率有关.(4)银河系中有两颗行星环绕某恒星运转,从天文望远镜中观察到它们的运转周期的比为27∶1,则它们的轨道半径的比为:A .3∶1;B .9∶1;C .27∶1;D .1∶9.(5)下列说法正确的是:A .海王星和冥王星是人们依据万有引力定律计算的轨道而发现的;B .天王星是人们依据万有引力定律计算的轨道而发现的;C .天王星的运行轨道偏离根据万有引力计算出来的轨道,其原因是由于天王星受到轨道外面其它行星的引力作用;D .以上均不正确.(6)行星的平均密度是ρ,靠近行星表面的卫星运转周期是T ,试证明:ρT 2是一个常量,即对任何行星都相同.(7)已知某行星绕太阳运动的轨道半径为r ,周期为T ,太阳的半径是R ,则太阳的平均密度是多少?(万有引力恒量为G)(8)已知月球的半径是r ,月球表面的重力加速度为g 月,万有引力恒量为G ,若忽略月球的自转,试求出月球的平均密度表达式.(9)一艘宇宙飞船飞近某一个不知名的行星,并进入靠近该行星表面的圆形轨道,宇航员着手进行预定的考察工作.宇航员能不能仅用一只表通过测定时间来测定该行星的密度?说明理由及推导过程,并说明推导过程中各量的物理意义.(10)太阳光经500s 到达地球,已知地球的半径是6.4×106m ,试估算太阳的质量与地球的质量的比值(光速c =3×108m/s ,结果取1位有效数字).★滚动训练★(11)从离地面高为H 的A 点平抛一物体,其水平射程为2s .在A 点正上方且离地面高为2H 的B 点,以相同方向平抛另一物体,其水平射程为s ,两物体在空中的运动轨道在同一竖直平面内,且都从同一个屏M 的顶端擦过,求屏M 的高度.(12)如图6-3所示,半径为R 的光滑圆环上套有一质量为m 的小环,当圆环以角速度ω绕着环心的竖直轴旋转时,求小环偏离圆环最低点的高度.五、人造卫星 宇宙速度【例1】一人造地球卫星距地球表面的高度是地球半径的15倍.试估算此卫星的线速度(已知地球半径R =6400km).【分析与解答】人造地球卫星绕地球做圆周运动时,满足的关系式为 G 2)R 16(M m =m R 16v 2① 式中:m 为卫星质量;M 为地球质量;16R 为卫星的轨道半径.由于地球质量M 未知,所以应设法用其他已知常数代换,在地球表面mg =G 2RMm ② 由①、②两式消去GM ,解得v =1610468916R 6⨯⨯=..g =2.0×103(m/s). 注意:有些基本常知,尽管题目没有明显给出,必要时可以直接应用,如在地球表面物体受到地球的引力近似等于重力,地球自转周期T =24小时,公转周期T =365天,月球绕地球运动的周期约为30天等.【例2】人造卫星环绕地球运转的速度v =r /R 20g ,其中g 为地面处的重力加速度,R 0为地球的半径,r 为卫星离地球中心的距离,下面哪些说法正确?A .题目中卫星速度表达式是错误的;B .由速度表达式知,卫星离地面越高,其速度也越大;C .由速度表达式知,卫星环绕速度与轨道半径平方根成反比;D .从速度表达式可知,把卫星发射到越远的地方越容易.【分析和解答】卫星绕地球转动时,F 引=F 心所以,G 2r M m =m r v 2(其中m 是卫星质量,M 是地球的质量),故v =r GM , 而在地球表面:mg =G 20R M m (其中m 为地面上物体的质量)故有GM =g R 02,所以v =r /R 20g , 由此可知A 是错的,C 为正确的.又因为v 是环绕速度,故离地球越远处卫星环绕速度越小,但发射卫星到越远,克服地球引力作功越多,所需初速越大,故D 错(注意区分:发射初速度与环绕速度).●课堂针对训练●(1)已知下面的哪组数据,可以算出地球的质量M 地(引力常量G 为已知):A .月球绕地球运动的周期T 1及月球到地球中心的距离R 1;B .地球绕太阳运行的周期T 2及地球到太阳中心的距离R 2;C .人造卫星在地面附近的运行速率v 3和运行周期T 3;D .地球绕太阳运行的速度v 4及地球到太阳中心的距离R 4.(2)关于第一宇宙速度,下面说法中错误的是:A .它是人造地球卫星绕地球飞行的最小速度;B .它是人造地球卫星在近地圆形轨道上的运行速度;C .它是能使卫星进入近地圆形轨道的最小发射速度;D .它是卫星在椭圆轨道上运行时近地点的速度.(3)下列说法正确的是:A .地球同步卫星和地球自转同步,因此同步卫星的高度和速度是一定的;B .地球同步卫星的角速度虽被确定,但高度和速度可以选择,高度增加,速度增大,高度降低,速度减小;C .地球同步卫星只能定点在赤道上空,相对地面静止不动;D .以上均不正确.(4)人造地球卫星中的物体处于失重状态是指物体:A .不受地球引力作用;B .受到的合力为零;C .对支持它的物体没有压力作用;D .不受地球引力,也不受卫星对它的引力.(5)实际中人造地球卫星绕地球做匀速圆周运动时的速度一定________第一宇宙速度.(填“大于”或“小于”或“等于”)(6)两个行星的质量分别为m 和M ,绕太阳运行的轨道半径分别是r 和R ,则:①它们与太阳之间的万有引力之比是多少?②它们公转的周期之比是多少?(7)两颗人造地球卫星,其轨道半径之比为R 1∶R 2=4∶1,求这两颗卫星的:①线速度之比v 1∶v 2=? ②角速度之比ω1∶ω2=?③周期之比T 1∶T 2? ④向心加速度之比a 1∶a 2=?(8)为转播电视节目,发射地球的同步卫星,它在赤道上空某高度处随地球同步运转,地球半径为6400km ,地球表面重力加速度g 取10m/s 2,求它的高度和线速度大小.(9)如图6-4所示,两颗靠得很近的恒星称为双星,这两颗星必须各以一定速率绕某一中心转动才不致于因万有引力作用而吸引在一起.已知双星的质量分别为m 1和m 2,相距为L ,万有引力常数为G .求:①双星转动中心位置O 与m 1的距离; ②转动周期.(10)一颗在赤道上空飞行的人造地球卫星,其轨道半径为r =3R(R 为地球半径),已知地球表面重力加速度为g ,则该卫星的运行周期是多大?若卫星的运动方向与地球自转方向相同,已知地球自转角速度为w 0,某一时刻该卫星通过赤道上某建筑物的正上方,再经过多少时间它又一次出现在该建筑物正上方?★滚动训练★(11)如图6-5所示,长为L 的轻杆,两端各连接一个质量都是m 的小球,使它们以轻杆中点为轴在竖直平面内做匀速圆周运动,周期为T =2πgL .求两小球通过竖直位置时杆分别对上下两球的作用力,并说明是拉力还是支持力.●补充训练●(1)如图6-6中的圆a 、b 、c ,其圆心均在地球的自转轴线上,对卫星环绕地球做匀速圆周运动而言:A .卫星的轨道只可能为a ;B .卫星的轨道可能为b ;C .卫星的轨道不可能为c ;D .同步卫星的轨道一定为b .(2)人造卫星以地心为圆心,做匀速圆周运动,下列说法正确的是:A .半径越大,环绕速度越小,周期越小;B .半径越大,环绕速度越小,周期越大;C .所有卫星的环绕速度均是相同的,与半径无关;D .所有卫星角速度都相同,与半径无关.(3)人造卫星绕地球做匀速圆周运动,其轨道半径为R ,线速度为v ,周期为T ,若要使卫星的周期变为2T ,可能的办法是: A .R 不变,使线速度变为v /2; B .v 不变,使轨道半径变为2R ;C .轨道半径变为43R ;D .无法实现.(4)“黑洞”是近代引力理论所预言的宇宙中一种特殊天体,在“黑洞”引力作用范围内,任何物体都不能脱离它的束缚,甚至连光也不能射出.研究认为,在宇宙中存在的黑洞可能是由于超中子星发生塌缩而形成的.2001年10月22日,欧洲航天局由卫星观测发现银河系中心存在一个超大型黑洞,被命名为:MCG6-30-15.假设银河系中心仅此一个黑洞,已知太阳系绕银河系中心做匀速圆周运动,则根据下列哪一组数据可以估算出该黑洞的质量:A .太阳系质量和运动速度;B .太阳系绕黑洞公转的周期和到“MCG6-30-15”的距离;C .太阳系质量和到“MCG6-30-15”的距离;D .太阳系运行速度和“MCG6-30-15”的半径.(5)物体在月球表面上的重力加速度为地球表面上的1/6,这说明:A .地球的直径是月球直径的6倍;B .月球的质量是地球质量的1/6;C .月球吸引地球的引力是地球吸引月球引力的1/6;D .物体在月球表面的重力是在地球表面的1/6.(6)三颗人造地球卫星A 、B 、C 绕地球作匀速圆周运动,如图6-7所示,已知m A =m B <m C 知,则三个卫星:A .线速度关系:v A >vB =vC ; B .周期关系:T A <T B =T C ;C .向心力大小:F A =F B <F C ;D .半径与周期关系:2C 3C 2B 3B 2A 3A T R T R T R ==. (7)宇航员在一行星上以速度为v 0竖直上抛一个物体经t 秒钟后落回手中,已知该行星半径为R ,要使物体不再落回星球表面,沿星球表面抛出的速度至少应是多少?(8)地球绕太阳公转的周期为T 1,轨道半径为R 1,月球绕地球公转的周期为T 2,轨道半径为R 2,则太阳的质量是地球的质量的多少倍?(9)有m 1和m 2两颗人造卫星,已知m 1=m 2,如果m 1和m 2在同一轨道上运行,则它们的线速度之比v 1∶v 2=?;如果m 1的运行轨道半径是m 2的运行轨道半径的2倍,则它们的速度之比v 1∶v 2=?(10)若取地球的第一宇宙速度为8km/s ,某行星的质量是地球的6倍,半径是地球的1.5倍,这行星的第一宇宙速度约为多少?(11)某一高处的物体的重力是在地球表面上的重力的一半,则其距地心距离是地球半径R 的多少倍?(12)北京时间2002年12月30日零时40分,“神舟”四号无人飞船在酒泉卫星发射中心由长征二号运载火箭发射升空,飞船按计划进入预定轨道,用时t 秒绕地球运行了n 圈后,安全返回地面,这标志着我国航天技术达到新的水平.已知地球半径为R ,地面重力加速度为g ,试求飞船绕地球飞行时离地面的高度.(13)已知地球半径约6.4×106m ,又知月球绕地球的运动可近似看作做圆周运动,则可估算出月球到地心的距离约为多少?(结果保留一位有效数字)(14)在火箭发射卫星的开始阶段,火箭与卫星一起竖直上升的运动可看作匀加速直线运动,加速度大小为a =5m/s 2,卫星封闭舱内用弹簧秤挂着一个质量m =9kg 的物体,当卫星竖直上升到某高度时,弹簧秤的示数为85N ,求此时卫星距地面的高度是多少?(地球半径R =6.4×103km ,g =10m/s 2)(15)宇航员站在一星球表面上的某高处,沿水平方向抛出一个小球.经过时间t ,小球落到星球表面,测得抛出点与落地点之间的距离为L .若抛出时的初速增大到2倍,则抛出点与落地点之间的距离为3L .已知两落地点在同一水平面上,该星球的半径为R ,万有引力常数为G .求该星球的质量M .(16)用打点计时器测量重力加速度,如图6-8所示,A 、B 、C 为纸带上的3个点,测AB 间距离为0.980cm ,BC 间距离为1.372cm ,已知地球半径为6.37×106m ,试计算地球的第一宇宙速度为多少?(电源频率为50Hz)(17)2000年1月26日我国发射了一颗同步卫星,其定点位置与东经98°的经线在同一平面内.若把甘肃嘉峪关处的经度和纬度近似取为东经98°和北纬α=40°,已知地球半径R 、地球自转周期T 、地球表面重力加速度g (视为常量)和微波信号传播速度为c .试求该同步卫星发出的微波信号传到嘉峪关处的接收站所需的时间(要求用题给的已知量的符号表示).参考答案一、行星的运动 二、万有引力定律 三、引力常量的测定:(1)D(2)D(3)D(4)D(5)BD(6)BD(7)4(8)5.8天(9)94G(10)41g (11)p /q 2(12)42h(13)1∶3. 四、万有引力定律在天文学上的应用(1)B(2)A(3)B(4)B(5)AC(6)略(7)323RGT r 3π(8)rG 43π月g (9)3π/GT 2(10)3×105(11)6H/7(12)R -g /ω2.五、人造卫星、宇亩速度:(1)AC(2)AD(3)AC(4)C(5)小于(6)①22Mr R m ;②33R r (7)1∶2,1∶8,8∶1,1∶16(8)3.56×104km ,3.1×103m/s(9)①)(L 212m m m +;②)(G L 2213m m +π(10)6π;03R 3/6ωπ-g (11)21mg ,支持力;23mg ,拉力. 本章补充训练: (1)B(2)B(3)C(4)B(5)D(6)ABD(7)t /R 20v (8)21322231T R T R (9)1∶1,1∶2(10)16km/s(11)2(12)222n 4t R π2g -R(13)4×108m(14)3.2×103km(15)22Gt 3L R 32(16)7.9km/s .(17)C cos )4T R (R 2R )4T R (312223222αππg g 22-+.。

万有引力习题及答案

万有引力习题及答案

【典型例题】例1、海王星的公转周期约为5.19×109s,地球的公转周期为3.16×107s,则海王星与太阳的平均距离约为地球与太阳的平均距离的多少倍?例2、有一颗太阳的小行星,质量是1.0×1021kg,它的轨道半径是地球绕太阳运动半径的2.77倍,求这颗小行星绕太阳一周所需要的时间。

例3、16世纪,哥白尼根据天文观测的大量资料,经过40多年的天文观测和潜心研究,提出了“日心说”的如下四个观点,这四个论点目前看存在缺陷的是()A、宇宙的中心是太阳,所有行星都在绕太阳做匀速圆周运动。

B、地球是绕太阳做匀速圆周运动的行星,月球是绕地球做匀速圆周运动的卫星,它绕地球运转的同时还跟地球一起绕太阳运动。

C、天穹不转动,因为地球每天自西向东自转一周,造成天体每天东升西落的现象。

D、与日地距离相比,恒星离地球都十分遥远,比日地间的距离大得多。

例4.假设已知月球绕地球做匀速圆周运动,万有引力提供向心力,假如地球对月球的万有引力突然消失,则月球的运动情况如何?若地球对月球的万有引力突然增加或减少,月球又如何运动呢?【针对训练】1、某一人造卫星绕地球做匀速圆周运动,其轨道半径为月球绕地球轨道半径的1/3则此卫星运行的周期大约是:()A.1-4天之间 B.4-8天之间 C.8-16天之间 D.16-20天之间2、两行星运行周期之比为1:2,其运行轨道的半长轴之比为:()A.1/2B.C.D.3、地球到太阳的距离是水星到太阳距离的2.6倍,那么地球和水星绕太阳运转的线速度之比是多少?(设地球和水星绕太阳运转的轨道是圆轨道)4.关于日心说被人们所接受的原因是()A.以地球为中心来研究天体的运动有很多无法解决的问题B.以太阳为中心,许多问题都可以解决,行星的运动的描述也变得简单了C.地球是围绕太阳转的 D.太阳总是从东面升起从西面落下5、考察太阳M的卫星甲和地球m(m<M)的卫星乙,甲到太阳中心的距离为r1,乙到地球中心的距离为r2,若甲和乙的周期相同,则:()A、r1>r2B、r1<r2C、r1=r2D、无法比较6、设月球绕地球运动的周期为27天,则地球的同步卫星到地球中心的距离r与月球中心到地球中心的距离R之比r/R为()A. 1/3B. 1/9C. 1/27D. 1/18【能力训练】1、关于公式R3 / T2=k,下列说法中正确的是()A.公式只适用于围绕太阳运行的行星B.不同星球的行星或卫星,k 值均相等C.围绕同一星球运行的行星或卫星,k值不相等D.以上说法均错2、地球质量大约是月球质量的81倍,在登月飞船通过月、地之间的某一位置时,月球和地球对它的引力大小相等,该位置到月球中心和地球中心的距离之比为()A. 1:27B. 1:9C. 1:3D. 9:13、两颗小行星都绕太阳做圆周运动,它们的周期分别是T和3T,则()A、它们绕太阳运转的轨道半径之比是1:3B、它们绕太阳运转的轨道半径之比是1:C、它们绕太阳运转的速度之比是:1:4D、它们受太阳的引力之比是9:74、开普勒关于行星运动规律的表达式为,以下理解正确的是()A.k是一个与行星无关的常量B.R代表行星运动的轨道半径C.T代表行星运动的自传周期D.T代表行星绕太阳运动的公转周期5、关于天体的运动,以下说法正确的是()A.天体的运动与地面上物体的运动遵循不同的规律B.天体的运动是最完美、和谐的匀速圆周运动C.太阳从东边升起,从西边落下,所以太阳绕地球运动D.太阳系中所有行星都绕太阳运动6、关于太阳系中各行星的轨道,以下说法正确的是:()A.所有行星绕太阳运动的轨道都是椭圆B.所有行星绕太阳运动的轨道都是圆C.不同行星绕太阳运动的椭圆轨道的半长轴是不同的D.不同的行星绕太阳运动的轨道各不相同7、如果某恒星有一颗卫星,此卫星沿非常靠近此恒星的表面做匀速圆周运动的周期为T,则可估算此恒星的平均密度ρ=_________(万有引力常量为G)8、两颗行星的质量分别是m1,m2,它们绕太阳运转轨道的半长轴分别为R1、R2,如果m1=2m2,R1=4R2,那么,它们的运行周期之比T1:T2= 9、已知两行星绕太阳运动的半长轴之比为b,则它们的公转周期之比为多少?10、有一行星,距离太阳的平均距离是地球到太阳平均距离的8倍,则该行星绕太阳公转周期是多少年?11、地球公转运行的轨道半径R=1.49×1011m,若把地球的公转周期称为1年,土星运行的轨道半径是r=1.43×1012m,那么土星的公转周期多长?参考答案:例1. 646倍例2. 4.61年例3. ABC 例4. 略。

第23讲 应用万有引力定律估算天体质量和密度(解析版)

第23讲 应用万有引力定律估算天体质量和密度(解析版)

第23讲 应用万有引力定律估算天体质量和密度1.(2021·全国)卡文迪许用扭秤实验测定了引力常量,以实验验证了万有引力定律的正确性。

应用引力常量还可以计算出地球的质量,卡文迪许也因此被称为“能称出地球质量的人”。

已知引力常量G =6.67×10﹣11N •m 2/kg 2,地面上的重力加速度g =9.8m/s 2,地球半径R =6.4×106m ,则地球质量约为( ) A .6×1018kg B .6×1020 kgC .6×1022 kgD .6×1024 kg【解答】解:根据公式GMm R 2=mg 可得M =gR 2G =9.8×(6.4×106)26.67×10−11kg =6×1024kg ,故ABC 错误,D 正确。

故选:D 。

2.(2021·乙卷)科学家对银河系中心附近的恒星S2进行了多年的持续观测,给出1994年到2002年间S2的位置如图所示。

科学家认为S2的运动轨迹是半长轴约为1000AU (太阳到地球的距离为1AU )的椭圆,银河系中心可能存在超大质量黑洞。

这项研究工作获得了2020年诺贝尔物理学奖。

若认为S2所受的作用力主要为该大质量黑洞的引力,设太阳的质量为M ,可以推测出该黑洞质量约为( )A .4×104MB .4×106MC .4×108MD .4×1010M【解答】解:设地球的质量为m ,地球到太阳的距离为r =1AU ,地球的公转周期为T =1年;由万有引力提供向心力可得:GMm r 2=mr4π2T 2,解得:M =4π2r 3GT 2; 对于S2受到黑洞的作用,椭圆轨迹半长轴R =1000AU , 根据图中数据结合图象可以得到S2运动的半周期T′2=(2002﹣1994)年=8年,则周期为T ′=16年,根据开普勒第三定律结合万有引力公式可以得出:M 黑=4π2R 3GT′2,其中R 为S 2的轨迹半长轴, 因此有:M 黑=R 3T 2r 3T′2M ,代入数据解得:M黑≈4×106M ,故B 正确,ACD 错误。

高一物理典型例、易错题:行星运动典型例题精析

高一物理典型例、易错题:行星运动典型例题精析

行星运动、万有引力定律·典型例题精析[例题1]如图6-1所示,在与一质量为M,半径为R,密度均匀的球体距离为R处有一质量为m的质点,此时M对m的万有引力为F1.当从球M 中挖去一个半径为R/2的小球体时,剩下部分对m的万有引力为F2,则F1与F2的比是多少?[思路点拨] F1为一个匀质实心球对质点的万有引力,可用万有引力定律的公式直接求得,其中r为匀质球球心到质点的距离.F2是一个不规则物体对质点的万有引力,但由于挖去部分为一匀质实心球,所以可先计算挖去部分对质点的万有引力,然后根据力的叠加原理用F1减去挖去部分的万有引力即可得F2.实球M的引力F1可看成两个力的叠加:剩下的部分对m的引力F2与半径为R/2的小球对m的引力F′2的和,即F1=F2+F′2.因为半径R/2的小球体的质量[小结]万有引力定律的表达式适用于计算两质点之间的引力,若两物体不能看成质点时,应把物体进行分割,使每一小块的线度都小于两者间的距离,然后用叠加的方法求出引力的合力.需要说明的是对于两个均匀的球体来说,不管它们相距远近,万有引力定律的表达式都适用,表达式中的r 是指两个球心间的距离.的.这是因为对形状不规则物体当物体间距离较近时不可视为质点.[例题2] 月球质量是地球质量的1/81,月球半径是地球半径的1/3.8.如果分别在地球上和月球上都用同一初速度竖直向上抛出一个物体(阻力不计),求:(1)两者上升高度的比;(2)两者从抛出到落地时间的比.[思路点拨] 由于地球和月球的质量和半径的不同,而造成地球和月球表面的重力加速度的不同.因此应首先算出月球表面上的重力加速度,然后再根据运动学的公式计算.[解题过程]设质量为m的物体在月球上的重力加速度为g′,则有物体在地球上的重力加速度为g,则有(1)÷(2)得设在地球上上抛的高度为h,在月球上上抛的高度为h′.根据运动学公式可得设在地球上抛出到落地需要的时间为t,在月球上所需的时间为t′.根据运动学公式可得[小结]由于万有引力的作用,星球表面上的物体都要受到星球对物体的引力,当物体随星球转动所需要的向心力比万有引力小得多的时候,球半径的平方成反比。

《万有引力定律》(精选12篇)

《万有引力定律》(精选12篇)

《万有引力定律》(精选12篇)《万有引力定律》篇1教学目标知识目标1、在开普勒第三定律的基础上,推导得到,使学生对此定律有初步理解;2、使学生了解并掌握;3、使学生能认识到的普遍性(它存在宇宙中任何有质量的物体之间,不管它们之间是否还有其它作用力).能力目标1、使学生能应用解决实际问题;2、使学生能应用和圆周运动知识解决行星绕恒星和卫星绕行星运动的天体问题.情感目标1、使学生在学习的过程中感受到的发现是经历了几代科学家的不断努力,甚至付出了生命,最后牛顿总结了前人经验的基础上才发现的.让学生在应用的过程中应多观察、多思考.教学建议的内容固然重要,让学生了解发现的过程更重要.建议教师在授课时,应提倡学生自学和查阅资料.教师应准备的资料应更广更全面.通过让学生阅读“的发现过程”,让学生根据牛顿提出的几个结果自己去猜测万有引力与那些量有关.教师在授课时可以让学生自学,也可由教师提出问题让学生讨论,也可由教师展示出开普勒三定律和牛顿的一些故事引导学生讨论.的教学设计方案教学目的:1、了解得出的思路和过程;2、理解的含义并会推导;3、掌握,能解决简单的万有引力问题;教学难点:的应用教学重点:教具:展示第谷、哥白尼,伽利略、开普勒和牛顿等人图片.教学过程(一)新课教学(20分钟)1、引言展示第谷、哥白尼,伽利略、开普勒和牛顿等人照片并讲述物理学史:十七世纪中叶以前的漫长时间中,许多天文学家和物理学家(如第谷、哥白尼,伽利略和开普勒等人),通过了长期的观察、研究,已为人类揭示了行星的运动规律.但是,长期以来人们对于支配行星按照一定规律运动的原因是什么.却缺乏了解,更没有人敢于把天体运动与地面上物体的运动联系起来加以研究.伟大的物理学家牛顿在哥白尼、伽利略和开普勒等人研究成果的基础上,进一步将地面上的动力学规律推广到天体运动中,研究、确立了.从而使人们认识了支配行星按一定规律运动的原因,为天体动力学的发展奠定了基础.那么:(1)牛顿是怎样研究、确立的呢?(2)是如何反映物体间相互作用规律的?以上两个问题就是这节课要研究的重点.2、通过举例分析,引导学生粗略领会牛顿研究、确立的科学推理的思维方法.苹果在地面上加速下落:(由于受重力的原因):月亮绕地球作圆周运动:(由于受地球引力的原因);行星绕太阳作圆周运动:(由于受太阳引力的原因),(牛顿认为)牛顿将上述各运动联系起来研究后提出:这些力是属于同种性质的力,应遵循同一规律;并进一步指出这种力应存在于宇宙中任何具有质量的物体之间.3、引入课题.板书:第二节、(1)万有引力:宇宙间任何有质量的物体之间的相互作用.(板书)(2):宇宙间的一切物体都是相互吸引的.两个物体间的引力大小,跟他们之间质量的乘积成正比,跟它们的距离的平方成反比.(板书) 式中:为万有引力恒量;为两物体的中心距离.引力是相互的(遵循牛顿第三定律).(二)应用(例题及课堂练习)学生中存在这样的问题:既然宇宙间的一切物体都是相互吸引的,哪为什么物体没有被吸引到一起?(请学生带着这个疑问解题)例题1、两物体质量都是1kg,两物体相距1m,则两物体间的万有引力是多少?解:由得:代入数据得:通过计算这个力太小,在许多问题的计算中可忽略例题2.已知地球质量大约是,地球半径为km,地球表面的重力加速度 .求:(1)地球表面一质量为10kg物体受到的万有引力?(2)地球表面一质量为10kg物体受到的重力?(3)比较万有引力和重力?解:(1)由得:代入数据得:(2)(3)比较结果万有引力比重力大.原因是在地球表面上的物体所受万有引力可分解为重力和自转所需的向心力.(三)课堂练习:教师请学生作课本中的练习,教师引导学生审题,并提示使用公式解题时,应注意因单位制不同,值也不同,强调用国际单位制解题.请学生同时到前面,在黑板上分别作1、2、3题.其它学生在座位上逐题解答.此时教师巡回指导学生练习随时注意黑板上演算的情况.(四)小结:1、万有引力存在于宇宙中任何物体之间(天体间、地面物体间、微观粒子间).天体间万有引力很大,为什么?留学生去想(它是支配天体运动的原因).地面物体间,微观粒子间:万有引力很小,为什么?它不足以影响物体的运动,故常常可忽略不计.2、应用公式解题,值选,式中所涉其它各量必须取国际单位制.(五)布置作业 (3分钟):教师可根据学生的情况布置作业 .探究活动组织学生编写相关小论文,通过对资料的收集,了解的发现过程,了解科学家们对知识的探究精神,下面就是相关的题目.1、发现的历史过程.2、第谷在发现上的贡献.《万有引力定律》篇2教学目标知识目标1、在开普勒第三定律的基础上,推导得到,使学生对此定律有初步理解;2、使学生了解并掌握;3、使学生能认识到的普遍性(它存在宇宙中任何有质量的物体之间,不管它们之间是否还有其它作用力).能力目标1、使学生能应用解决实际问题;2、使学生能应用和圆周运动知识解决行星绕恒星和卫星绕行星运动的天体问题.情感目标1、使学生在学习的过程中感受到的发现是经历了几代科学家的不断努力,甚至付出了生命,最后牛顿总结了前人经验的基础上才发现的.让学生在应用的过程中应多观察、多思考.教学建议的内容固然重要,让学生了解发现的过程更重要.建议教师在授课时,应提倡学生自学和查阅资料.教师应准备的资料应更广更全面.通过让学生阅读“的发现过程”,让学生根据牛顿提出的几个结果自己去猜测万有引力与那些量有关.教师在授课时可以让学生自学,也可由教师提出问题让学生讨论,也可由教师展示出开普勒三定律和牛顿的一些故事引导学生讨论.的方案教学目的:1、了解得出的思路和过程;2、理解的含义并会推导;3、掌握,能解决简单的万有引力问题;教学难点:的应用教学重点:教具:展示第谷、哥白尼,伽利略、开普勒和牛顿等人图片.教学过程(一)新课教学(20分钟)1、引言展示第谷、哥白尼,伽利略、开普勒和牛顿等人照片并讲述物理学史:十七世纪中叶以前的漫长时间中,许多天文学家和物理学家(如第谷、哥白尼,伽利略和开普勒等人),通过了长期的观察、研究,已为人类揭示了行星的运动规律.但是,长期以来人们对于支配行星按照一定规律运动的原因是什么.却缺乏了解,更没有人敢于把天体运动与地面上物体的运动联系起来加以研究.伟大的物理学家牛顿在哥白尼、伽利略和开普勒等人研究成果的基础上,进一步将地面上的动力学规律推广到天体运动中,研究、确立了.从而使人们认识了支配行星按一定规律运动的原因,为天体动力学的发展奠定了基础.那么:(1)牛顿是怎样研究、确立的呢?(2)是如何反映物体间相互作用规律的?以上两个问题就是这节课要研究的重点.2、通过举例分析,引导学生粗略领会牛顿研究、确立的科学推理的思维方法.苹果在地面上加速下落:(由于受重力的原因):月亮绕地球作圆周运动:(由于受地球引力的原因);行星绕太阳作圆周运动:(由于受太阳引力的原因),(牛顿认为)牛顿将上述各运动联系起来研究后提出:这些力是属于同种性质的力,应遵循同一规律;并进一步指出这种力应存在于宇宙中任何具有质量的物体之间.3、引入课题.板书:第二节、(1)万有引力:宇宙间任何有质量的物体之间的相互作用.(板书)(2):宇宙间的一切物体都是相互吸引的.两个物体间的引力大小,跟他们之间质量的乘积成正比,跟它们的距离的平方成反比.(板书) 式中:为万有引力恒量;为两物体的中心距离.引力是相互的(遵循牛顿第三定律).(二)应用(例题及课堂练习)学生中存在这样的问题:既然宇宙间的一切物体都是相互吸引的,哪为什么物体没有被吸引到一起?(请学生带着这个疑问解题)例题1、两物体质量都是1kg,两物体相距1m,则两物体间的万有引力是多少?解:由得:代入数据得:通过计算这个力太小,在许多问题的计算中可忽略例题2.已知地球质量大约是,地球半径为km,地球表面的重力加速度 .求:(1)地球表面一质量为10kg物体受到的万有引力?(2)地球表面一质量为10kg物体受到的重力?(3)比较万有引力和重力?解:(1)由得:代入数据得:(2)(3)比较结果万有引力比重力大.原因是在地球表面上的物体所受万有引力可分解为重力和自转所需的向心力.(三)课堂练习:教师请学生作课本中的练习,教师引导学生审题,并提示使用公式解题时,应注意因单位制不同,值也不同,强调用国际单位制解题.请学生同时到前面,在黑板上分别作1、2、3题.其它学生在座位上逐题解答.此时教师巡回指导学生练习随时注意黑板上演算的情况.(四)小结:1、万有引力存在于宇宙中任何物体之间(天体间、地面物体间、微观粒子间).天体间万有引力很大,为什么?留学生去想(它是支配天体运动的原因).地面物体间,微观粒子间:万有引力很小,为什么?它不足以影响物体的运动,故常常可忽略不计.2、应用公式解题,值选,式中所涉其它各量必须取国际单位制.(五)布置作业 (3分钟):教师可根据学生的情况布置作业 .探究活动组织学生编写相关小论文,通过对资料的收集,了解的发现过程,了解科学家们对知识的探究精神,下面就是相关的题目.1、发现的历史过程.2、第谷在发现上的贡献.《万有引力定律》篇3教学目标知识目标1、在开普勒第三定律的基础上,推导得到,使学生对此定律有初步理解;2、使学生了解并掌握;3、使学生能认识到的普遍性(它存在宇宙中任何有质量的物体之间,不管它们之间是否还有其它作用力).能力目标1、使学生能应用解决实际问题;2、使学生能应用和圆周运动知识解决行星绕恒星和卫星绕行星运动的天体问题.情感目标1、使学生在学习的过程中感受到的发现是经历了几代科学家的不断努力,甚至付出了生命,最后牛顿总结了前人经验的基础上才发现的.让学生在应用的过程中应多观察、多思考.教学建议的内容固然重要,让学生了解发现的过程更重要.建议教师在授课时,应提倡学生自学和查阅资料.教师应准备的资料应更广更全面.通过让学生阅读“的发现过程”,让学生根据牛顿提出的几个结果自己去猜测万有引力与那些量有关.教师在授课时可以让学生自学,也可由教师提出问题让学生讨论,也可由教师展示出开普勒三定律和牛顿的一些故事引导学生讨论.的教学设计方案教学目的:1、了解得出的思路和过程;2、理解的含义并会推导;3、掌握,能解决简单的万有引力问题;教学难点:的应用教学重点:教具:展示第谷、哥白尼,伽利略、开普勒和牛顿等人图片.教学过程(一)新课教学(20分钟)1、引言展示第谷、哥白尼,伽利略、开普勒和牛顿等人照片并讲述物理学史:十七世纪中叶以前的漫长时间中,许多天文学家和物理学家(如第谷、哥白尼,伽利略和开普勒等人),通过了长期的观察、研究,已为人类揭示了行星的运动规律.但是,长期以来人们对于支配行星按照一定规律运动的原因是什么.却缺乏了解,更没有人敢于把天体运动与地面上物体的运动联系起来加以研究.伟大的物理学家牛顿在哥白尼、伽利略和开普勒等人研究成果的基础上,进一步将地面上的动力学规律推广到天体运动中,研究、确立了.从而使人们认识了支配行星按一定规律运动的原因,为天体动力学的发展奠定了基础.那么:(1)牛顿是怎样研究、确立的呢?(2)是如何反映物体间相互作用规律的?以上两个问题就是这节课要研究的重点.2、通过举例分析,引导学生粗略领会牛顿研究、确立的科学推理的思维方法.苹果在地面上加速下落:(由于受重力的原因):月亮绕地球作圆周运动:(由于受地球引力的原因);行星绕太阳作圆周运动:(由于受太阳引力的原因),(牛顿认为)牛顿将上述各运动联系起来研究后提出:这些力是属于同种性质的力,应遵循同一规律;并进一步指出这种力应存在于宇宙中任何具有质量的物体之间.3、引入课题.板书:第二节、(1)万有引力:宇宙间任何有质量的物体之间的相互作用.(板书)(2):宇宙间的一切物体都是相互吸引的.两个物体间的引力大小,跟他们之间质量的乘积成正比,跟它们的距离的平方成反比.(板书) 式中:为万有引力恒量;为两物体的中心距离.引力是相互的(遵循牛顿第三定律).(二)应用(例题及课堂练习)学生中存在这样的问题:既然宇宙间的一切物体都是相互吸引的,哪为什么物体没有被吸引到一起?(请学生带着这个疑问解题)例题1、两物体质量都是1kg,两物体相距1m,则两物体间的万有引力是多少?解:由得:代入数据得:通过计算这个力太小,在许多问题的计算中可忽略例题2.已知地球质量大约是,地球半径为km,地球表面的重力加速度 .求:(1)地球表面一质量为10kg物体受到的万有引力?(2)地球表面一质量为10kg物体受到的重力?(3)比较万有引力和重力?解:(1)由得:代入数据得:(2)(3)比较结果万有引力比重力大.原因是在地球表面上的物体所受万有引力可分解为重力和自转所需的向心力.(三)课堂练习:教师请学生作课本中的练习,教师引导学生审题,并提示使用公式解题时,应注意因单位制不同,值也不同,强调用国际单位制解题.请学生同时到前面,在黑板上分别作1、2、3题.其它学生在座位上逐题解答.此时教师巡回指导学生练习随时注意黑板上演算的情况.(四)小结:1、万有引力存在于宇宙中任何物体之间(天体间、地面物体间、微观粒子间).天体间万有引力很大,为什么?留学生去想(它是支配天体运动的原因).地面物体间,微观粒子间:万有引力很小,为什么?它不足以影响物体的运动,故常常可忽略不计.2、应用公式解题,值选,式中所涉其它各量必须取国际单位制.(五)布置作业 (3分钟):教师可根据学生的情况布置作业 .探究活动组织学生编写相关小论文,通过对资料的收集,了解的发现过程,了解科学家们对知识的探究精神,下面就是相关的题目.1、发现的历史过程.2、第谷在发现上的贡献.《万有引力定律》篇4【教材分析】万有引力定律的发现过程犹如一部壮丽的科学史诗,它歌颂了前辈科学家的科学精神,也展现了科学发展过程中科学家们富有创造性而又严谨的科学思维,是发展学生思维能力难得的好材料,本节课内容充分利用这些材料发展学生的科学思维能力。

万有引力定律·典型例题解析

万有引力定律·典型例题解析

万有引力定律·典型例题解析【例1】设地球的质量为M ,地球半径为R ,月球绕地球运转的轨道半径为r ,试证在地球引力的作用下:(1)g (2)(3)r 60R 地面上物体的重力加速度=;月球绕地球运转的加速度=;已知=,利用前两问的结果求的值;GMR GMrg 22αα(4)已知r =3.8×108m ,月球绕地球运转的周期T =27.3d ,计算月球绕地球运转时的向心加速度a ;(5)已知地球表面重力加速度g =9.80m/s 2,利用第(4)问的计算结果,求的值.αg解析:(1)略;(2)略; (3)2.77×10-4; (4)2.70×10-3m/s 2 (5)2.75×10-4点拨:①利用万有引力等于重力的关系,即=.②利用万有引力等于向心力的关系,即=.③利用重力等于向心力GMmr mg G Mmrm 22α的关系,即mg =ma .以上三个关系式中的a 是向心加速度,根据题目的条件可以用、ω或来表示.v r r T2224r 2π【例】月球质量是地球质量的,月球半径是地球半径的,在2181138.距月球表面14m 高处,有一质量m =60kg 的物体自由下落.(1)它落到月球表面需用多少时间?(2)它在月球上的“重力”和质量跟在地球上是否相同(已知地球表面重力加速度g 地=9.8m/s 2)?解析:(1)4s (2)588N点拨:(1)物体在月球上的“重力”等于月球对物体的万有引力,设mg GM m R mg GM m R 22月月月地地地=.同理,物体在地球上的“重力”等于地球对物体的万有引力,设=.以上两式相除得=,根据=可得物体落到月球表面需用时间为==×=.月月g 1.75m /s S gt t 4s 22122214175S g .(2)在月球上和地球上,物体的质量都是60kg .物体在月球上的“重力”和在地球上的重力分别为G 月=mg 月=60×1.75N =105N ,G 地=mg 地=60×9.8N =588N .跟踪反馈1.如图43-1所示,两球的半径分别为r 1和r 2,均小于r ,两球质量分布均匀,大小分别为m 1、m 2,则两球间的万有引力大小为:[ ]A .Gm 1m 2/r 2B .Gm 1m 2/r 12C .Gm 1m 2/(r 1+r 2)2D .Gm 1m 2/(r 1+r 2+r)22.下列说法正确的是[ ] A.地球是宇宙的中心,太阳、月亮及其他行星都绕地球运动B.太阳是静止不动的,地球和其他行星都绕太阳运动C.地球是绕太阳运动的一颗行星D.日心说和地心说都是错误的3.已知太阳质量是1.97×1030kg,地球质量是5.98×1024kg,太阳和地球间的平均距离1.49×1011m,太阳和地球间的万有引力是_______N.已知拉断截面积为1cm2的钢棒力4.86×104N,那么,地球和太阳间的万有引力可以拉断截面积是_______m2的钢棒.4.下列说法正确的是[ ] A.行星绕太阳的椭圆轨道可以近似地看作圆形轨道,其向心力来源于太阳对行星的引力B.太阳对行星的引力大于行星对太阳的引力,所以行星绕太阳运转而不是太阳绕行星运转C.万有引力定律适用于天体,不适用于地面上的物体D.行星与卫星之间的引力,地面上的物体所受的重力和太阳对行星的引力,性质相同,规律也相同参考答案1.D 2.CD 3.3.54×1022;7.28×134.A。

万有引力定律应用例题

万有引力定律应用例题

万有引力定律应用例题
1. 在太阳系中,行星绕太阳运动的轨道是通过万有引力定律来解释的。

根据万有引力定律,行星受到太阳的引力作用,行星沿着椭圆轨道绕太阳运动。

2. 在地球表面上,物体受到地球的引力作用,加速度约为9.8米/秒²。

这是因为根据万有引力定律,地球的质量和物体的质量以及两者之间的距离决定了引力的大小和方向。

3. 人造卫星的运行也是通过万有引力定律来解释的。

卫星受到地球的引力作用,沿着地球表面上的轨道飞行,同时还要克服大气阻力和其他外力的影响。

4. 万有引力定律也可以用来解释天体的引力束缚。

例如,引力束缚是在双星系统中观察到的现象,其中两个星体以互相围绕的方式相互吸引。

5. 万有引力定律还可以用来解释地球潮汐现象。

地球和月球之间的引力相互作用导致地球潮汐的形成,使得海洋表面上的水产生周期性的涨落。

这些是万有引力定律在物理学和天文学中的一些应用例题。

它提供了解释和预测天体运动和相互作用的基本原理。

第六章 万有引力定律

第六章 万有引力定律

关于开普勒的三大定律例1 月球环绕地球运动的轨道半径约为地球半径的60倍,运行周期约为27天。

应用开普勒定律计算:在赤道平面内离地面多少高度,人造地球卫星可以随地球一起转动,就像停留在无空中不动一样.分析:月球和人造地球卫星都在环绕地球运动,根据开普勒第三定律,它们运行轨道的半径的三次方跟圆周运动周期的二次方的比值都是相等的.解:设人造地球卫星运行半径为R,周期为T,根据开普勒第三定律有:同理设月球轨道半径为,周期为,也有:由以上两式可得:在赤道平面内离地面高度:km点评:随地球一起转动,就好像停留在天空中的卫星,通常称之为定点卫星.它们离地面的高度是一个确定的值,不能随意变动。

利用月相求解月球公转周期例2 若近似认为月球绕地球公转与地球绕日公转的轨道在同一平面内,且都为正圆.又知这两种转动同向,如图所示,月相变化的周期为29.5天(图是相继两次满月,月、地、日相对位置示意图).解:月球公转(2π+)用了29.5天.故转过2π只用天.由地球公转知.所以=27.3天.例3如图所示,A、B、C是在地球大气层外的圆形轨道上运行的三颗人造地球卫星,下列说法中正确的是哪个?()A.B、C的线速度相等,且大于A的线速度B.B、C的周期相等,且大于A的周期C.B、C的向心加速度相等,且大于A的向心加速度D.若C的速率增大可追上同一轨道上的B分析:由卫星线速度公式可以判断出,因而选项A是错误的.由卫星运行周期公式,可以判断出,故选项B是正确的.卫星的向心加速度是万有引力作用于卫星上产生的,由,可知,因而选项C是错误的.若使卫星C速率增大,则必然会导致卫星C偏离原轨道,它不可能追上卫星B,故D也是错误的.解:本题正确选项为B。

点评:由于人造地球卫星在轨道上运行时,所需要的向心力是由万有引力提供的,若由于某种原因,使卫星的速度增大。

则所需要的向心力也必然会增加,而万有引力在轨道不变的时候,是不可能增加的,这样卫星由于所需要的向心力大于外界所提供的向心力而会作离心运动。

万有引力定律讲解(附答案)

万有引力定律讲解(附答案)

万有引⼒定律讲解(附答案)6.3 万有引⼒定律班级:组别:姓名:【课前预习】1.万有引⼒定律:(1)内容:⾃然界中任何两个物体都相互吸引,引⼒的⽅向在它们的连线上,引⼒的⼤⼩与物体的质量m 1和m 2的乘积成正⽐,与它们之间距离r 的⼆次⽅成反⽐。

(2)表达式: F =G m 1m 2r 2 。

2.引⼒常量(1)引⼒常量通常取G = 6.67×10-11 N·m 2/kg 2,它是由英国物理学家卡⽂迪许在实验室⾥测得的。

(2)意义:引⼒常量在数值上等于两个质量都是1kg 的质点,相距1m 时的相互吸引⼒。

【新课教学】⼀、⽜顿的“⽉——地”检验 1.检验的⽬的:地球对⽉亮的⼒,地球对地⾯上物体的⼒,太阳对⾏星的⼒,是否是同⼀种⼒。

2.基本思路 (理论计算):如果是同⼀种⼒,则地⾯上物体的重⼒G ∝21R ,⽉球受到地球的⼒21r f ∝。

⼜因为地⾯上物体的重⼒mg G =产⽣的加速度为g ,地球对⽉球的⼒提供⽉球作圆周运动的向⼼⼒,产⽣的向⼼加速度,有向ma F =。

所以可得到:22Rr F G a g ==向⼜知⽉⼼到地⼼的距离是地球半径的60倍,即r=60R ,则有:322107.23600-?==?=g g r R a 向m/s 2。

3.检验的过程(观测计算):⽜顿时代已测得⽉球到地球的距离r⽉地 = 3.8×108 m ,⽉球的公转周期T = 27.3天,地球表⾯的重⼒加速度g = 9.8 m /s 2,则⽉球绕地球运动的向⼼加速度:=向a (2πT )2r ⽉地 (字母表达式) =向a (2π27.3×24×3600)2×3.8×108 (数字表达式) =向a 2.7×10-3m/s 2 (结果)。

4.检验的结果:理论计算与观测计算相吻合。

表明:地球上物体所受地球的引⼒、⽉球所受地球的引⼒,与太阳、⾏星间的引⼒遵从相同的规律。

高中物理万有引力定律知识点总结与典型例题精选汇总

高中物理万有引力定律知识点总结与典型例题精选汇总

m2 T
r 得M
4 2r3 GT 2
又M
4 R3 3
3 r3

GT 2 R 3
4.【例题】宇航员在一星球表面上的某高处,沿水平方向抛出一小球。经过时间
t,小球落到星球表面,
测得抛出点与落地点之间的距离为 L 。若抛出时初速度增大到 2 倍,则抛出点与落地点之间的距离为
3 L。已知两落地点在同一水平面上,该星球的半径为
同样质量的卫星在不同高度轨道上的机械能不同。其中卫星的动能为
E K GMm ,由于重力加速度 g 随
2r
高度增大而减小, 所以重力势能不能再用 Ek= mgh 计算,而要用到公式 E P
GMm (以无穷远处引力势
r
能为零, M 为地球质量, m 为卫星质量, r 为卫星轨道半径。由于从无穷远向地球移动过程中万有引力
B.当两物体间的距离趋近于零时,万有引力趋近于无穷大
C.两物体间的万有引力也符合牛顿第三定律
D.公式中万有引力常量 G 的值是牛顿规定的
2.【例题】设想人类开发月球,不断地把月球上的矿藏搬运到地球上.假如经过长时间开采后,地球仍
可看成均匀球体,月球仍沿开采前的圆轨道运动则与开采前比较(

A.地球与月球间的万有引力将变大
B.地球与月球间的万有引力将减小
C.月球绕地球运动的周期将变长
D.月球绕地球运动的周期将变短
类型题: 重力加速度 g 随离高度 h 变化情况
表面重力加速度:
Mm
GM
G R2
mg0 g 0
R2
轨道重力加速度:
GMm 2 mg h g h
Rh
GM
2
Rh
3.【例题】火星的质量和半径分别约为地球的

物理必修2第三章万有引力定律的应用知识点例题练习

物理必修2第三章万有引力定律的应用知识点例题练习

《万有引力与航天》万有引力定律的应用1.研究天体运动的基本方法:研究人造卫星、行星等天体的运动时,我们进行了以下近似:中心天体是不动的,绕行天体以中心天体的球心为圆心做匀速圆周运动;绕行天体只受到中心天体的万有引力作用。

(1)中心天体对绕行天体的引力充当绕行天体的向心力: F 引=F n即 2rMm G = ma n = m υ2r = m ω2r = r T m 224π① 中心天体质量:2323224GT r G r G r v M πω=== (公转周期易于测量,常用含周期的表达式) 密度: 又ρπ⋅=34R M 得 3233r πρ= (r 为公转轨道半径,R 为中心天体球体半径)② 卫星(行星)的线速度υ、角速度ω、加速度a n 、周期T 和轨道半径r 的关系 ①υ=GM r , 线速度 υ∝1r ; ②ω =GM r 3, 角速度 ω∝1r 3③T = GMr 324π,周期T ∝r 3,2234πGM T r k ==,(即开普勒第三定律k 由中心天体质量决定)④a n = GMr2, 向心加速度a n ∝1r 2(与距离成“平方反比”关系)(2)将重力看成与万有引力相等(忽略星球自转): F 引=mg地球质量:地球表面物体 G gR M mg RMm G 22=∴=重要代换式: 在星球表面:GM gR mg RMmG=∴=22 行星表面重力加速度g 、距地表一定高度处重力加速度h g 地表重力加速度: 22RGMg mg R Mm G=∴= 距地表一定高度处重力加速度: ()()g h R R h R GMg mg h R GMmh h 2222)(+=+=∴=+第一宇宙速度:v 1=gR R GM =/(最小发射速度,圆周运动最大绕行速度,近地卫星速度)2.课堂延伸:“双星”是两颗相距较近,它们之间的万有引力对两者运动都有显著影响,而其他天体的作用力影响可以忽略的特殊天体系统.它们之所以没有被强大的引力吸引到一起而保持距离L 不变,是因为它们绕着共同“中心”以相同的角速度做匀速圆周运动,它们之间的万有引力提供它们做圆周运动的向心力. “黑洞”是近代引力理论预言..的一种特殊天体,它的质量十分巨大,以致于其逃逸速度有可能超过真空中的光速,因此任何物体都不能脱离它的束缚,即光子也不能射出.已知物体从星球上的逃逸速度(即第二宇宙速度)是υ=2GMR,故一个质量为M 的天体,若它是一个黑洞,则其半径R 应有:R ≤2GMc2.假如把地球变成黑洞,那么半径就要缩小到几毫米。

2 万有引力定律学案2 - 副本

2 万有引力定律学案2 - 副本

第2节 万有引力定律1.牛顿的万有引力定律1.内容:自然界任何两个物体之间都存在着相互作用的引力,两物体间的引力的大小,跟它们的质量的乘积成正比,跟它们的距离的平方成反比.表达式:F =G221rm m 其中G =6.67×10-11 N·m2/kg2,叫万有引力常量,卡文迪许在实验室用扭秤装置,测出了引力常量.“能称出地球质量的人”2.适用条件:①公式适用于质点间的相互作用,②当两个物体间的距离远大于物体本身的大小时,物体可视为质点. ③均匀球体可视为质点,r 为两球心间的距离.3.万有引力遵守牛顿第三定律,即它们之间的引力总是大小相等、方向相反.2.重力与万有引力的关系(1)地球对物体的吸引力就是万有引力,重力只是万有引力的一个分力,万有引力的另一个分力是物体随地球自转所需的向心力。

如图6-1-1所示。

(2)物体在地球上不同的纬度处随地球自转所需的向心力的大小不同,重力大小也不同:两极处:物体所受重力最大,大小等于万有引力,即2R Mm G mg =。

赤道上:物体所受重力最小,22自ωmR RMm G mg -= 自赤道向两极,同一物体的重力逐渐增大,即g 逐渐增大。

(3)一般情况下,由于地球自转的角速度不大,可以不考虑地球的自转影响,近似的认为2R Mm G mg =即___________.【例题1】已知火星的半径为地球半径的一半,火星表面的重力加速度是地球表面重力加速度的4/9倍,则火星的质量约为地球质量的多少倍? 1/93.万有引力定律的两个重要推论(1)在匀质球层的空腔内任意位置处,质点受到地壳万有引力的合力为零。

即质量分布均匀的球壳对壳内物体的引力为零。

(2)在匀质球体内部距离球心r 处,质点受到的万有引力就等于半径为r 的球体的引力。

例:(2012全国卷).假设地球是一半径为R 、质量分布均匀的球体。

一矿井深度为d 。

已知质量分布均匀的球壳对壳内物体的引力为零。

万有引力定律的应用例题

万有引力定律的应用例题

万有引力定律的应用例题万有引力定律是描述物体之间相互作用的重要定律,它可以应用于多个领域。

下面是一些关于万有引力定律应用的例题:1. 两个质量分别为2kg和4kg的物体,在它们之间的距离为3米的地方,求它们之间的引力大小。

根据万有引力定律,F = G * (m1 * m2) / r^2,其中G为万有引力常数(约等于6.67430 × 10^-11 N·m^2/kg^2),m1和m2分别为物体1和物体2的质量,r为它们之间的距离。

代入数据可得:F = (6.67430 × 10^-11 N·m^2/kg^2) * (2kg * 4kg) / (3m)^2 ≈ 8.83 × 10^-10 N。

2. 地球的质量为5.97 × 10^24 kg,半径为6.37 × 10^6 m。

一个质量为70 kg的人站在地球表面上,请计算他所受到的重力大小。

根据万有引力定律,我们可以计算出人所受到的地球引力。

将地球看作质点,人与地球的距离为地球半径。

代入数据可得:F = (6.67430 × 10^-11 N·m^2/kg^2) * (70kg * 5.97 × 10^24 kg) / (6.37 × 10^6 m)^2 ≈ 686 N。

3. 在国际空间站(ISS)轨道上,距离地球表面约400公里的地方,一个质量为600 kg的卫星以4 km/s的速度绕地球运动。

求该卫星所受到的引力大小。

在空间站轨道上,卫星的质量和距离会随时间变化,但我们可以假设在给定时刻,质量和距离保持恒定。

根据万有引力定律,我们可以计算出卫星所受到的引力。

代入数据可得:F = (6.67430 × 10^-11 N·m^2/kg^2) * (600kg * 5.97 × 10^24 kg) / (400km + 地球半径)^2 ≈ 2.10 × 10^4 N。

万有引力定律公式、例题及其应用[1][1]

万有引力定律公式、例题及其应用[1][1]

②若 h=600 km,R=6400 km,则圈数为多少?
GmM 解析:(1)在轨道上 (R h)2
m v2 Rh
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资,配料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高与中带资负料荷试下卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并3中试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内 纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

万有引力定律 经典例题讲课讲稿

万有引力定律 经典例题讲课讲稿

1.天体运动的分析方法2.中心天体质量和密度的估算(1)已知天体表面的重力加速度g 和天体半径R G MmR2=mg ⇒⎩⎨⎧天体质量:M =gR 2G天体密度:ρ=3g 4πGR(2)已知卫星绕天体做圆周运动的周期T 和轨道半径r⎩⎪⎨⎪⎧①G Mm r 2=m 4π2T 2r ⇒M =4π2r 3GT2②ρ=M 43πR 3=3πr3GT 2R3③卫星在天体表面附近飞行时,r =R ,则ρ=3πGT21.火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知( ) A .太阳位于木星运行轨道的中心B .火星和木星绕太阳运行速度的大小始终相等C .火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方D .相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积 解析:由开普勒第一定律(轨道定律)可知,太阳位于木星运行轨道的一个焦点上,A 错误;火星和木星绕太阳运行的轨道不同,运行速度的大小不可能始终相等,B 错误;根据开普勒第三定律(周期定律)知所有行星轨道的半长轴的三次方与它的公转周期的平方的比值是一个常数,C 正确;对于某一个行星来说,其与太阳连线在相同的时间内扫过的面积相等,不同行星在相同的时间内扫过的面积不相等,D 错误.答案:C2.(2016·郑州二检)据报道,目前我国正在研制“萤火二号”火星探测器.探测器升空后,先在近地轨道上以线速度v 环绕地球飞行,再调整速度进入地火转移轨道,最后再一次调整速度以线速度v ′在火星表面附近环绕飞行.若认为地球和火星都是质量分布均匀的球体,已知火星与地球的半径之比为1∶2,密度之比为5∶7,设火星与地球表面重力加速度分别为g ′和g ,下列结论正确的是( )A .g ′∶g =4∶1B .g ′∶g =10∶7C .v ′∶v =528D .v ′∶v =514解析:在天体表面附近,重力与万有引力近似相等,由GMm R 2=mg ,M =ρ43πR 3,解两式得g =43G πρR ,所以g ′∶g =5∶14,A 、B 项错;探测器在天体表面飞行时,万有引力充当向心力,由G Mm R 2=m v 2R ,M =ρ43πR 3,解两式得v =2RG πρ3,所以v ′∶v =528,C 项正确,D 项错.答案:C3.嫦娥三号”探月卫星于2013年12月2日1点30分在西昌卫星发射中心发射,将实现“落月”的新阶段.若已知引力常量G ,月球绕地球做圆周运动的半径r 1、周期T 1,“嫦娥三号”探月卫星绕月球做圆周运动的环月轨道(见图)半径r 2、周期T 2,不计其他天体的影响,则根据题目条件可以( )A .求出“嫦娥三号”探月卫星的质量B .求出地球与月球之间的万有引力C .求出地球的密度 D.r 13T 12=r 23T 22 解析:绕地球转动的月球受力为GMM ′r 12=M ′r 14π2T 12得T 1=4π2r 13GM=4π2r 13Gρ43πr 3.由于不知道地球半径r ,无法求出地球密度,C 错误;对“嫦娥三号”而言,GM ′mr 22=mr 24π2T 22,T 2=4π2r 23GM ′,已知“嫦娥三号”的周期和半径,可求出月球质量M ′,但是所有的卫星在万有引力提供向心力的运动学公式中卫星质量都约掉了,无法求出卫星质量,因此探月卫星质量无法求出,A错误;已经求出地球和月球质量,而且知道月球绕地球做圆周运动的半径r1,根据F=GMM′r12可求出地球和月球之间的引力,B正确;由开普勒第三定律即半长轴三次方与公转周期二次方成正比,前提是对同一中心天体而言,但是两个圆周运动的中心天体一个是地球一个是月球,D错误.答案:B估算天体质量和密度时应注意的问题(1)利用万有引力提供天体做圆周运动的向心力估算天体质量时,估算的只是中心天体的质量,并非环绕天体的质量.(2)区别天体半径R和卫星轨道半径r,只有在天体表面附近的卫星才有r≈R;计算天体密度时,V=43πR3中的R只能是中心天体的半径.考点二人造卫星的运行授课提示:对应学生用书第57页1.人造卫星的a、ω、v、T与r的关系GMmr2=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫ma―→a=GMr2―→a∝1r2mv2r―→v=GMr―→v∝1rmω2r―→ω=GMr3―→ω∝1r3m4π2T2r―→T=4π2r3GM―→T∝r32.近地时mg=GMmR2―→GM=gR2.1.地球同步卫星的特点(1)轨道平面一定:轨道平面和赤道平面重合.(2)周期一定:与地球自转周期相同,即T =24 h =86 400 s. (3)角速度一定:与地球自转的角速度相同.(4)高度一定:根据G Mm r 2=m 4π2T 2r 得r =3GMT 24π2=4.23×104 km ,卫星离地面高度h =r -R ≈6R (为恒量).(5)绕行方向一定:与地球自转的方向一致. 2.极地卫星和近地卫星(1)极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖.(2)近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的轨道半径可近似认为等于地球的半径,其运行线速度约为7.9 km/s.(3)两种卫星的轨道平面一定通过地球的球心.1.(2015·高考福建卷)如图,若两颗人造卫星a 和b 均绕地球做匀速圆周运动,a 、b 到地心O 的距离分别为r 1、r 2,线速度大小分别为v 1、v 2,则( )A.v 1v 2=r 2r 1B.v 1v 2=r 1r 2C.v 1v 2=⎝⎛⎭⎫r 2r 12D.v 1v 2=⎝⎛⎭⎫r 1r 22 解析:根据万有引力定律可得G Mmr 2=m v 2r ,即v =GMr ,所以有v 1v 2=r 2r 1,所以A 项正确,B 、C 、D 项错误.答案:A2.2015年3月30号晚上9点52分,我国在西昌卫星发射中心用长征三号丙运载火箭,将我国首颗新一代北斗导航卫星发射升空,于31号凌晨3点34分顺利进入预定轨道.这次发射的新一代北斗导航卫星,是我国发射的第17颗北斗导航卫星.北斗卫星导航系统空间段计划由35颗卫星组成,包括5颗静止轨道卫星、27颗中地球轨道卫星、3颗倾斜同步轨道卫星.中地球轨道卫星和静止轨道卫星都绕地球球心做圆周运动,中地球轨道卫星离地面高度低,则中地球轨道卫星与静止轨道卫星相比,做圆周运动的( )A .周期大B .线速度小C .角速度小D .向心加速度大解析:卫星离地面的高度越低,则运动半径越小.根据万有引力提供圆周运动向心力得G Mm r 2=m v 2r =mω2r =m 4π2r T 2=ma ,则周期T =4π2r 3GM,知半径r 越小,周期越小,故A 错误;线速度v =GMr,知半径r 越小,线速度越大,故B 错误;角速度ω=GMr 3,知半径r 越小,角速度越大,故C 错误;向心加速度a =GMr 2,知半径r 越小,向心加速度越大,故D 正确.答案:D3.“空间站”是科学家进行天文探测和科学试验的特殊而又重要的场所.假设“空间站”正在地球赤道平面内的圆周轨道上运行,其离地球表面的高度为同步卫星离地球表面高度的十分之一,且运行方向与地球自转方向一致.下列说法正确的有( )A .“空间站”运行时的加速度小于同步卫星运行的加速度B .“空间站”运行时的速度等于同步卫星运行速度的10倍C .站在地球赤道上的人观察到“空间站”向东运动D .在“空间站”工作的宇航员因不受重力而可在舱中悬浮解析:根据G Mm r 2=ma 得a =Gmr 2,知“空间站”运行的加速度大于同步卫星运行的加速度,故A 错误;根据G Mmr 2=m v 2r得v =GMr,离地球表面的高度不是其运动半径,所以线速度之比不是10∶1,故B 错误;轨道半径越大,角速度越小,同步卫星和地球自转的角速度相同,所以空间站的角速度大于地球自转的角速度,所以站在地球赤道上的人观察到空间站向东运动,故C 正确;在“空间站”工作的宇航员处于完全失重状态,重力充当向心力和空间站一起做圆周运动,故D 错误.答案:C人造卫星问题的解题技巧(1)利用万有引力提供向心力的不同表达式 GMm r 2=m v 2r =mrω2=m 4π2r T2=ma n (2)解决力与运动关系的思想还是动力学思想,解决力与运动的关系的桥梁还是牛顿 第二定律.①卫星的a n 、v 、ω、T 是相互联系的,其中一个量发生变化,其他各量也随之发生 变化.②a n 、v 、ω、T 均与卫星的质量无关,只由轨道半径r 和中心天体质量共同决定. (3)要熟记经常用到的常数,如地球自转一周为一天,绕太阳公转一周为一年,月球 绕地球公转一周为一月(27.3天)等.考点三 卫星的发射和变轨问题 授课提示:对应学生用书第57页1.第一宇宙速度(环绕速度)v 1=7.9 km/s ,既是发射卫星的最小发射速度,也是卫星绕地球运行的最大环绕速度,还是绕地面附近环绕地球做匀速圆周运动时具有的速度.2.第二宇宙速度(脱离速度)v 2=11.2 km/s ,使卫星挣脱地球引力束缚的最小发射速度. 3.第三宇宙速度(逃逸速度)v 3=16.7 km/s ,使卫星挣脱太阳引力束缚的最小发射速度.1.第一宇宙速度的两种计算方法 (1)由G MmR 2=m v 2R 得v =GMR. (2)由mg =m v 2R 得v =gR .2.卫星变轨的分析(1)变轨原因:当卫星由于某种原因速度突然改变时(开启或关闭发动机或空气阻力作用),万有引力不再等于向心力,卫星将变轨运行.(2)变轨分析:卫星在圆轨道上稳定时,G Mmr 2=m v 2r=mω2r =m ⎝⎛⎭⎫2πT 2r . ①当卫星的速度突然增大时,G Mmr 2<m v 2r ,即万有引力不足以提供向心力,卫星将做离心运动,脱离原来的圆轨道,轨道半径变大.当卫星进入新的轨道稳定运行时,由v = GMr可知其运行速度比原轨道时减小,但重力势能、机械能均增加; ②当卫星的速度突然减小时,G Mmr 2>m v 2r ,即万有引力大于所需要的向心力,卫星将做近心运动,脱离原来的圆轨道,轨道半径变小.当卫星进入新的轨道稳定运行时,由v =GMr可知其运行速度比原轨道时增大,但重力势能、机械能均减小.1.(多选)(2015·高考广东卷)在星球表面发射探测器,当发射速度为v 时,探测器可绕星球表面做匀速圆周运动;当发射速度达到2v 时,可摆脱星球引力束缚脱离该星球.已知地球、火星两星球的质量比约为10∶1,半径比约为2∶1.下列说法正确的有( )A .探测器的质量越大,脱离星球所需要的发射速度越大B .探测器在地球表面受到的引力比在火星表面的大C .探测器分别脱离两星球所需要的发射速度相等D .探测器脱离星球的过程中,势能逐渐增大 解析:由G MmR 2=m v 2R得,v =GMR,2v =2GMR,可知探测器脱离星球所需要的发射速度与探测器的质量无关,A 项错误;由F =G MmR 2及地球、火星的质量、半径之比可知,探测器在地球表面受到的引力比在火星表面的大,B 项正确;由2v =2GMR可知,探测器脱离两星球所需的发射速度不同,C 项错误;探测器在脱离两星球的过程中,引力做负功,引力势能增大,D 项正确.答案:BD2.(多选)2013年12月2日,我国探月探测器“嫦娥三号”在西昌卫星发射中心成功发射升空,此飞行轨道示意图如图所示,地面发射后奔向月球,在P 点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,Q 为轨道Ⅱ上的近月点.下列关于“嫦娥三号”的运动,正确的说法是( )A .发射速度一定大于7.9 km/sB .在轨道Ⅱ上从P 到Q 的过程中速率不断增大C .在轨道Ⅱ上经过P 的速度小于在轨道Ⅰ上经过P 的速度D .在轨道Ⅱ上经过P 的加速度小于在轨道Ⅰ上经过P 的加速度解析:“嫦娥三号”探测器的发射速度一定大于7.9 km/s ,A 正确.在轨道Ⅱ上从P 到Q 的过程中速率不断增大,选项B 正确.“嫦娥三号”从轨道Ⅰ上运动到轨道Ⅱ上要减速,故在轨道Ⅱ上经过P 的速度小于在轨道Ⅰ上经过P 的速度,选项C 正确.在轨道Ⅱ上经过P 的加速度等于在轨道Ⅰ上经过P 的加速度,D 错.答案:ABC3.(2016·成都石室中学二诊)如图所示,在同一轨道平面上的三个人造地球卫星A 、B 、C ,在某一时刻恰好在同一条直线上.它们的轨道半径之比为1∶2∶3,质量相等,则下列说法中正确的是( )A .三颗卫星的加速度之比为9∶4∶1B .三颗卫星具有机械能的大小关系为E A <E B <EC C .B 卫星加速后可与A 卫星相遇D .A 卫星运动27周后,C 卫星也恰回到原地点解析:根据万有引力提供向心力G Mm r 2=ma ,得a =GM r 2,故a A ∶a B ∶a C =1r A 2∶1r B 2∶1r C2=112∶122∶132=36∶9∶4,故A 错误;卫星发射的越高,需要克服地球引力做功越多,故机械能越大,故E A <E B <E C ,故B 正确;B 卫星加速后做离心运动,轨道半径要变大,不可能与A 卫星相遇,故C 错误;根据万有引力提供向心力G Mm r 2=m 4π2T 2r ,得T =2πr 3GM,所以T AT C=r A 3r C 3=127,即T C =27T A .若A 卫星运动27周后,C 卫星也恰回到原地点,则C 的周期应为A 的周期的27倍,故D 错误.答案:B航天器变轨问题的三点注意事项(1)航天器变轨时半径的变化,根据万有引力和所需向心力的大小关系判断;稳定在新轨判断.道上的运行速度变化由v=GMr(2)航天器在不同轨道上运行时机械能不同,轨道半径越大,机械能越大.(3)航天器经过不同轨道相交的同一点时加速度相等,外轨道的速度大于内轨道的速度.考点四天体运动中的双星或多星模型授课提示:对应学生用书第58页1.模型构建绕公共圆心转动的两个星体组成的系统,我们称之为双星系统,如图所示.2.模型条件(1)两颗星彼此相距较近.(2)两颗星靠相互之间的万有引力做匀速圆周运动.(3)两颗星绕同一圆心做圆周运动.3.模型特点(1)“向心力等大反向”——两颗星做匀速圆周运动的向心力由它们之间的万有引力提供,故F1=F2,且方向相反,分别作用在两颗行星上,是一对作用力和反作用力.(2)“周期、角速度相同”——两颗行星做匀速圆周运动的周期、角速度相等. (3)“半径反比”——圆心在两颗行星的连线上,且r 1+r 2=L ,两颗行星做匀速圆周运动的半径与行星的质量成反比.1.双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T ,经过一段时间演化后,两星总质量变为原来的k 倍,两星之间的距离变为原来的n 倍,则此时圆周运动的周期为( )A.n 3k 2T B.n 3k T C.n 2kT D.n kT 解析:设两颗双星的质量分别为m 1、m 2,做圆周运动的半径分别为r 1、r 2,根据万有引力提供向心力可得G m 1m 2(r 1+r 2)2=m 1r 14π2T 2,G m 1m 2(r 1+r 2)2=m 2r 24π2T 2,联立两式解得m 1+m 2=4π2(r 1+r 2)3GT 2,即T 2=4π2(r 1+r 2)3G (m 1+m 2),因此,当两星总质量变为原来的k 倍,两星之间的距离变为原来的n 倍时,两星圆周运动的周期为T ′=n 3kT ,B 正确,A 、C 、D 错误. 答案:B2.(多选)宇宙中存在一些质量相等且离其他恒星较远的四颗星组成的四星系统,通常可忽略其他星体对它们的引力作用.设四星系统中每个星体的质量均为m ,半径均为R ,四颗星稳定分布在边长为a 的正方形的四个顶点上.已知引力常量为G .关于四星系统,下列说法正确的是( )A .四颗星围绕正方形对角线的交点做匀速圆周运动B .四颗星的轨道半径均为a 2C .四颗星表面的重力加速度均为GmR 2D .四颗星的周期均为2πa2a(4+2)Gm解析:其中一颗星体在其他三颗星体的万有引力作用下,合力方向指向对角线的交点,围绕正方形对角线的交点做匀速圆周运动,由几何知识可得轨道半径均为22a ,故A正确,B 错误;在星体表面,根据万有引力等于重力,可得Gmm ′R 2=m ′g ,解得g =Gm R 2,故C 正确;由万有引力定律和向心力公式得Gm 2(2a )2+2Gm 2a 2=m 4π2T 2·2a2,T =2πa2a(4+2)Gm ,故D 正确.答案:ACD3.如图所示,双星系统中的星球A 、B 都可视为质点.A 、B 绕两者连线上的O 点做匀速圆周运动,A 、B 之间距离不变,引力常量为G ,观测到A 的速率为v 、运行周期为T ,A 、B 的质量分别为m 1、m 2.(1)求B 的周期和速率.(2)A 受B 的引力F A 可等效为位于O 点处质量为m ′的星体对它的引力,试求m ′.(用m 1、m 2表示)解析:(1)设A 、B 的轨道半径分别为r 1、r 2,它们做圆周运动的周期T 、角速度ω都相同,根据牛顿第二定律有F A =m 1ω2r 1,F B =m 2ω2r 2,即r 1r 2=m 2m 1.故B 的周期和速率分别为:T B =T A =T ,v B =ωr 2=ωm 1r 1m 2=m 1vm 2.(2)A 、B 之间的距离r =r 1+r 2=m 1+m 2m 2r 1,根据万有引力定律有F A =Gm 1m 2r 2=Gm 1m ′r 12,所以m ′=m 23(m 1+m 2)2.答案:(1)T m 1v m 2 (2)m 23(m 1+m 2)2解答双星问题应注意“两等”“两不等”(1)双星问题的“两等” ①它们的角速度相等.②双星做匀速圆周运动的向心力由它们之间的万有引力提供,即它们受到的向心力大小总是相等的. (2)双星问题的“两不等”①双星做匀速圆周运动的圆心是它们连线上的一点,所以双星做匀速圆周运动的半 径与双星间的距离是不相等的,它们的轨道半径之和才等于它们间的距离. ②由m 1ω2r 1=m 2ω2r 2知,由于m 1与m 2一般不相等,故r 1与r 2一般也不相等.[随堂反馈]授课提示:对应学生用书第59页1.(2015·高考重庆卷)宇航员王亚平在“天宫1号”飞船内进行了我国首次太空授课,演示了一些完全失重状态下的物理现象.若飞船质量为m ,距地面高度为h ,地球质量为M ,半径为R ,引力常量为G ,则飞船所在处的重力加速度大小为( )A .0 B.GM (R +h )2 C.GMm (R +h )2D.GM h2 解析:由GMm (R +h )2=mg ′得g ′=GM(R +h )2,B 项正确.答案:B2.(2015·高考北京卷)假设地球和火星都绕太阳做匀速圆周运动,已知地球到太阳的距离小于火星到太阳的距离,那么( )A .地球公转周期大于火星的公转周期B .地球公转的线速度小于火星公转的线速度C .地球公转的加速度小于火星公转的加速度D .地球公转的角速度大于火星公转的角速度 解析:地球的公转半径比火星的公转半径小,由GMm r 2=m ⎝⎛⎭⎫2πT 2r ,可知地球的周期比火星的周期小,故A 项错误;由GMmr 2=m v 2r ,可知地球公转的线速度大,故B 项错误;由GMm r 2=ma ,可知地球公转的加速度大,故C 项错误;由GMmr 2=mω2r ,可知地球公转的角速度大,故D 项正确.答案:D3.已知地球质量为M ,半径为R ,自转周期为T ,地球同步卫星质量为m ,引力常量为G .有关同步卫星,下列表述正确的是( )A .卫星距离地面的高度为GMRB .卫星的运行速度等于第一宇宙速度C .卫星运行时受到的向心力大小为G MmR2D .卫星运行的向心加速度小于地球表面的重力加速度解析:由GMm (R +h )2=m (R +h )⎝⎛⎭⎫2πT 2得h =3GMT 24π2-R ,A 项错误;近地卫星的运行速度等于第一宇宙速度,同步卫星的运行速度小于第一宇宙速度,B 错误;同步卫星运行时的向心力大小为F 向=GMm (R +h )2,C 错误;由G Mm R 2=mg 得地球表面的重力加速度g =G MR 2,而同步卫星所在处的向心加速度g ′=GM(R +h )2,D 正确.答案:D4.(2015·成都七中二诊)2013年12月2日,嫦娥三号探测器由长征三号乙运载火箭从西昌卫星发射中心发射,首次实现月球软着陆和月面巡视勘察.假设嫦娥三号在环月圆轨道和椭圆轨道上运动时,只受到月球的万有引力.则( )A .若已知嫦娥三号环月圆轨道的半径、运动周期和引力常量,则可以计算出月球的密度B .嫦娥三号由环月圆轨道变轨进入环月椭圆轨道时,应让发动机点火使其加速C .嫦娥三号在环月椭圆轨道上P 点的速度大于Q 点的速度D .嫦娥三号在环月圆轨道上的运行速率比月球的第一宇宙速度小解析:根据万有引力提供向心力G Mm r 2=m 4π2T 2r ,可以解出月球的质量M =4π2r 3GT 2,由于不知道月球的半径,无法知道月球的体积,故无法计算月球的密度,故A 错误;嫦娥三号在环月段圆轨道上P 点减速,使万有引力大于向心力做近心运动,才能进入环月段椭圆轨道,故B 错误;嫦娥三号从环月椭圆轨道上P 点向Q 点运动过程中,距离月球越来越近,月球对其引力做正功,故速度增大,即嫦娥三号在环月段椭圆轨道上P 点的速度小于Q 点的速度,故C 错误;卫星越高越慢,第一宇宙速度是星球表面近地卫星的环绕速度,故嫦娥三号在环月圆轨道上的运行速率比月球的第一宇宙速度小,故D 正确.答案:D5.一物体在距某一行星表面某一高度处由静止开始做自由落体运动,依次通过A 、B 、C 三点,已知AB 段与BC 段的距离均为0.06 m ,通过AB 段与BC 段的时间分为0.2 s 与0.1 s ,求:(1)该星球表面重力加速度值;(2)若该星球的半径为180 km ,则环绕该行星的卫星做圆周运动的最小周期为多少? 解析:(1)根据运动学公式,由题意可得⎩⎨⎧x =v 1t 1+12gt 122x =v 1(t 1+t 2)+12g (t 1+t 2)2代入数值可求得g =2 m/s 2.(2)对质量为m 的卫星有G Mmr 2=m ⎝⎛⎭⎫2πT 2r 星球表面有G Mm ′R2=m ′g可知当R =r 时卫星做圆周运动的最小周期为 T =2πR g代入数据解得T 最小=600π s. 答案:(1)2 m/s 2 (2)600π s[课时作业]授课提示:对应学生用书第243页一、单项选择题1.(2016·成都市石室中学一诊)下列说法正确的是( ) A .洗衣机脱水桶脱水时利用了离心运动 B .牛顿、千克、秒为力学单位制中的基本单位C .牛顿提出了万有引力定律,并通过实验测出了万有引力常量D .理想实验是把实验的情况外推到一种理想状态,所以是不可靠的解析:洗衣机脱水时利用离心运动将附着在衣服上的水分甩掉,水做离心运动.故A 正确;米、千克、秒为力学单位制中的基本单位,而牛顿不是基本单位,故B 错误;牛顿提出了万有引力定律,卡文迪许通过实验测出了万有引力常量,故C 错误;理想实验是把实验的情况外推到一种理想状态,是可靠的,故D 错误.答案:A2.欧洲天文学家在太阳系之外发现了一颗可能适合人类居住的行星,命名为“格利斯581c ”.该行星的质量是地球的5倍,直径是地球的1.5倍.设想在该行星表面附近绕行星圆轨道运行的人造卫星的动能为E k1,在地球表面附近绕地球沿圆轨道运行的相同质量的人造卫星的动能为E k2,则E k1E k2为( )A .0.13B .0.3C .3.33D .7.5解析:在行星表面运行的卫星其做圆周运动的向心力由万有引力提供 故有G Mmr 2=m v 2r,所以卫星的动能为E k =12m v 2=GMm2r故在地球表面运行的卫星的动能E k2=GM 地m2R 地在“格利斯”行星表面运行的卫星的动能E k1=GM 行m2R 行所以有E k1E k2=GM 行m2R 行GM 地m 2R 地=M 行M 地·R 地R 行=51×11.5=103=3.33.答案:C3.(2015·高考天津卷)未来的星际航行中,宇航员长期处于零重力状态,为缓解这种状态带来的不适,有人设想在未来的航天器上加装一段圆柱形“旋转舱”,如图所示.当旋转舱绕其轴线匀速旋转时,宇航员站在旋转舱内圆柱形侧壁上,可以受到与他站在地球表面时相同大小的支持力.为达到上述目的,下列说法正确的是( )A .旋转舱的半径越大,转动的角速度就应越大B .旋转舱的半径越大,转动的角速度就应越小C .宇航员质量越大,旋转舱的角速度就应越大D .宇航员质量越大,旋转舱的角速度就应越小解析:宇航员站在旋转舱内圆柱形侧壁上,受到的侧壁对他的支持力等于他站在地球表面时的支持力,则mg =mrω2,ω=gr,因此角速度与质量无关,C 、D 项错误;半径越大,需要的角速度越小,A 项错误,B 项正确.答案:B4.一人造地球卫星绕地球做匀速圆周运动,假如该卫星变轨后仍做匀速圆周运动,速度大小减小为原来的12,则变轨前后卫星的( )A .轨道半径之比为1∶2B .向心加速度大小之比为4∶1C .角速度大小之比为2∶1D .周期之比为1∶8解析:卫星绕地球做圆周运动过程中,万有引力充当向心力,G Mmr 2=m v 2r ⇒v =GM r ,v 1v 2=r 2r 1=2⇒r 1r 2=14,A 项错;G Mm r 2=ma ⇒a =GM r 2,所以a 1a 2=16,B 项错;由开普勒第三定律T 12T 22=r 13r 23=143⇒T 1T 2=18,D 项正确;因为T =2πω,角速度与周期成反比,故ω1ω2=8,C 项错.答案:D5.美国宇航局2011年12月5日宣布,他们发现了太阳系外第一颗类似地球的、可适合居住的行星“开普勒-226”,它每290天环绕着一颗类似于太阳的恒星运转一周,距离地球约600光年,体积是地球的 2.4倍.已知万有引力常量和地球表面的重力加速度.根据以上信息,下列推理中正确的是( )A .若能观测到该行星的轨道半径,可求出该行星所受的万有引力B .若该行星的密度与地球的密度相等,可求出该行星表面的重力加速度C .根据地球的公转周期与轨道半径,可求出该行星的轨道半径D .若已知该行星的密度和半径,可求出该行星的轨道半径解析:根据万有引力公式F =G Mmr 2,由于不知道中心天体的质量,无法算出向心力,故A 错误;根据万有引力提供向心力公式G Mm r 2=mg ,有g =G Mr 2,若该行星的密度与地球的密度相等,体积是地球的2.4倍,则有M 行M 地=V 行V 地=2.4,r 行r 地=3V行V 地=32.4,根据g 行g =M 行r 地2M 地r 行2,可以求出该行星表面的重力加速度,故B 正确;由于地球与行星不是围绕同一个中心天体做匀速圆周运动,故根据地球的公转周期与轨道半径,无法求出该行星的轨道半径,故C 错误;由于不知道中心天体的质量,已知该行星的密度和半径,无法求出该行星的轨道半径,故D 错误.答案:B6.如图所示,在火星与木星轨道之间有一小行星带.假设该带中的小行星只受到太阳的引力,并绕太阳做匀速圆周运动.下列说法正确的是( )A .小行星带内侧小行星的向心加速度值大于外侧小行星的向心加速度值B .小行星带内各小行星圆周运动的线速度值大于地球公转的线速度值C .太阳对各小行星的引力相同D .各小行星绕太阳运动的周期均小于一年解析:小行星绕太阳做匀速圆周运动,万有引力提供圆周运动向心力,有G Mmr 2=mv 2r =ma =m 4π2T 2r ,小行星的加速度a =GMr 2,小行星内侧轨道半径小于外侧轨道半径,故内侧向心加速度大于外侧的向心加速度,故A 正确;线速度v =GMr知,小行星的轨道半径大于地球的轨道半径,故小行星的公转线速度小于地球公转的线速度,故B 错误;太阳对小行星的引力F =G Mmr 2,由于各小行星的轨道半径、质量均未知,故不能得出太阳对小行星的引力相同的结论,故C 错误;由周期T =2πr 3GM知,由于小行星轨道半径大于地球公转半径,故小行星的运动周期均大于地球公转周期,即大于一年,故D 错误.答案:A。

万有引力挖补法例题

万有引力挖补法例题

万有引力挖补法例题英文回答:The inverse square law of gravitation states that the force of attraction between two objects is directly proportional to the product of their masses and inversely proportional to the square of the distance between them. Mathematically, this can be expressed as:F =G (m1 m2) / r^2。

Where:F is the force of attraction.G is the gravitational constant (6.674 × 10^-11 N m^2 kg^-2)。

m1 and m2 are the masses of the two objects.r is the distance between the two objects.Problem:Two objects, A and B, have masses of 5 kg and 10 kg, respectively. They are separated by a distance of 10 m. Calculate the force of attraction between them.Solution:Using the inverse square law of gravitation, we can calculate the force of attraction as follows:F =G (m1 m2) / r^2。

F = 6.674 × 10^-11 N m^2 kg^-2 (5 kg 10 kg) / (10 m)^2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.天体运动的分析方法2.中心天体质量和密度的估算(1)已知天体表面的重力加速度g和天体半径RG=mg?(2)已知卫星绕天体做圆周运动的周期T和轨道半径r1.火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知()A.太阳位于木星运行轨道的中心B.火星和木星绕太阳运行速度的大小始终相等C.火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方D.相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积解析:由开普勒第一定律(轨道定律)可知,太阳位于木星运行轨道的一个焦点上,A错误;火星和木星绕太阳运行的轨道不同,运行速度的大小不可能始终相等,B错误;根据开普勒第三定律(周期定律)知所有行星轨道的半长轴的三次方与它的公转周期的平方的比值是一个常数,C正确;对于某一个行星来说,其与太阳连线在相同的时间内扫过的面积相等,不同行星在相同的时间内扫过的面积不相等,D错误.答案:C2.(2016·郑州二检)据报道,目前我国正在研制“萤火二号”火星探测器.探测器升空后,先在近地轨道上以线速度v环绕地球飞行,再调整速度进入地火转移轨道,最后再一次调整速度以线速度v′在火星表面附近环绕飞行.若认为地球和火星都是质量分布均匀的球体,已知火星与地球的半径之比为1∶2,密度之比为5∶7,设火星与地球表面重力加速度分别为g′和g,下列结论正确的是()A.g′∶g=4∶1B.g′∶g=10∶7C.v′∶v=D.v′∶v=解析:在天体表面附近,重力与万有引力近似相等,由G=mg,M=ρπR3,解两式得g=GπρR,所以g′∶g=5∶14,A、B项错;探测器在天体表面飞行时,万有引力充当向心力,由G=m,M=ρπR3,解两式得v=2R,所以v′∶v=,C项正确,D 项错.答案:C3.嫦娥三号”探月卫星于2013年12月2日1点30分在西昌卫星发射中心发射,将实现“落月”的新阶段.若已知引力常量G,月球绕地球做圆周运动的半径r1、周期T1,“嫦娥三号”探月卫星绕月球做圆周运动的环月轨道(见图)半径r2、周期T2,不计其他天体的影响,则根据题目条件可以()A.求出“嫦娥三号”探月卫星的质量B.求出地球与月球之间的万有引力C.求出地球的密度D.=解析:绕地球转动的月球受力为=M′r1得T1==.由于不知道地球半径r,无法求出地球密度,C错误;对“嫦娥三号”而言,=mr2,T2=,已知“嫦娥三号”的周期和半径,可求出月球质量M′,但是所有的卫星在万有引力提供向心力的运动学公式中卫星质量都约掉了,无法求出卫星质量,因此探月卫星质量无法求出,A错误;已经求出地球和月球质量,而且知道月球绕地球做圆周运动的半径r1,根据F=可求出地球和月球之间的引力,B正确;由开普勒第三定律即半长轴三次方与公转周期二次方成正比,前提是对同一中心天体而言,但是两个圆周运动的中心天体一个是地球一个是月球,D错误.答案:B估算天体质量和密度时应注意的问题(1)利用万有引力提供天体做圆周运动的向心力估算天体质量时,估算的只是中心天体的质量,并非环绕天体的质量.(2)区别天体半径R和卫星轨道半径r,只有在天体表面附近的卫星才有r≈R;计算天体密度时,V=πR3中的R只能是中心天体的半径.考点二人造卫星的运行授课提示:对应学生用书第57页1.人造卫星的a、ω、v、T与r的关系=2.近地时mg=―→GM=gR2.1.地球同步卫星的特点(1)轨道平面一定:轨道平面和赤道平面重合.(2)周期一定:与地球自转周期相同,即T=24h=86400s.(3)角速度一定:与地球自转的角速度相同.(4)高度一定:根据G=mr得r==4.23×104 km,卫星离地面高度h=r-R≈6R(为恒量).(5)绕行方向一定:与地球自转的方向一致.2.极地卫星和近地卫星(1)极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖.(2)近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的轨道半径可近似认为等于地球的半径,其运行线速度约为7.9 km/s.(3)两种卫星的轨道平面一定通过地球的球心.1.(2015·高考福建卷)如图,若两颗人造卫星a和b均绕地球做匀速圆周运动,a、b 到地心O的距离分别为r1、r2,线速度大小分别为v1、v2,则()A.=B.=C.=2D.=2解析:根据万有引力定律可得G=m,即v=,所以有=,所以A项正确,B、C、D项错误.答案:A2.2015年3月30号晚上9点52分,我国在西昌卫星发射中心用长征三号丙运载火箭,将我国首颗新一代北斗导航卫星发射升空,于31号凌晨3点34分顺利进入预定轨道.这次发射的新一代北斗导航卫星,是我国发射的第17颗北斗导航卫星.北斗卫星导航系统空间段计划由35颗卫星组成,包括5颗静止轨道卫星、27颗中地球轨道卫星、3颗倾斜同步轨道卫星.中地球轨道卫星和静止轨道卫星都绕地球球心做圆周运动,中地球轨道卫星离地面高度低,则中地球轨道卫星与静止轨道卫星相比,做圆周运动的()A.周期大B.线速度小C.角速度小D.向心加速度大解析:卫星离地面的高度越低,则运动半径越小.根据万有引力提供圆周运动向心力得G=m=mω2r=m=ma,则周期T=,知半径r越小,周期越小,故A错误;线速度v=,知半径r越小,线速度越大,故B错误;角速度ω=,知半径r越小,角速度越大,故C错误;向心加速度a=,知半径r越小,向心加速度越大,故D正确.答案:D3.“空间站”是科学家进行天文探测和科学试验的特殊而又重要的场所.假设“空间站”正在地球赤道平面内的圆周轨道上运行,其离地球表面的高度为同步卫星离地球表面高度的十分之一,且运行方向与地球自转方向一致.下列说法正确的有()A.“空间站”运行时的加速度小于同步卫星运行的加速度B.“空间站”运行时的速度等于同步卫星运行速度的倍C.站在地球赤道上的人观察到“空间站”向东运动D.在“空间站”工作的宇航员因不受重力而可在舱中悬浮解析:根据G=ma得a=,知“空间站”运行的加速度大于同步卫星运行的加速度,故A错误;根据G=m得v=,离地球表面的高度不是其运动半径,所以线速度之比不是∶1,故B错误;轨道半径越大,角速度越小,同步卫星和地球自转的角速度相同,所以空间站的角速度大于地球自转的角速度,所以站在地球赤道上的人观察到空间站向东运动,故C正确;在“空间站”工作的宇航员处于完全失重状态,重力充当向心力和空间站一起做圆周运动,故D错误.答案:C人造卫星问题的解题技巧(1)利用万有引力提供向心力的不同表达式=m=mrω2=m=ma n(2)解决力与运动关系的思想还是动力学思想,解决力与运动的关系的桥梁还是牛顿第二定律.①卫星的a n、v、ω、T是相互联系的,其中一个量发生变化,其他各量也随之发生变化.②a n、v、ω、T均与卫星的质量无关,只由轨道半径r和中心天体质量共同决定.(3)要熟记经常用到的常数,如地球自转一周为一天,绕太阳公转一周为一年,月球绕地球公转一周为一月(27.3天)等.考点三卫星的发射和变轨问题授课提示:对应学生用书第57页1.第一宇宙速度(环绕速度)v1=7.9 km/s,既是发射卫星的最小发射速度,也是卫星绕地球运行的最大环绕速度,还是绕地面附近环绕地球做匀速圆周运动时具有的速度.2.第二宇宙速度(脱离速度)v2=11.2 km/s,使卫星挣脱地球引力束缚的最小发射速度.3.第三宇宙速度(逃逸速度)v3=16.7 km/s,使卫星挣脱太阳引力束缚的最小发射速度.1.第一宇宙速度的两种计算方法(1)由G=m得v=.(2)由mg=m得v=.2.卫星变轨的分析(1)变轨原因:当卫星由于某种原因速度突然改变时(开启或关闭发动机或空气阻力作用),万有引力不再等于向心力,卫星将变轨运行.(2)变轨分析:卫星在圆轨道上稳定时,G=m=mω2r=m2r.①当卫星的速度突然增大时,G<m,即万有引力不足以提供向心力,卫星将做离心运动,脱离原来的圆轨道,轨道半径变大.当卫星进入新的轨道稳定运行时,由v=可知其运行速度比原轨道时减小,但重力势能、机械能均增加;②当卫星的速度突然减小时,G>m,即万有引力大于所需要的向心力,卫星将做近心运动,脱离原来的圆轨道,轨道半径变小.当卫星进入新的轨道稳定运行时,由v =可知其运行速度比原轨道时增大,但重力势能、机械能均减小.1.(多选)(2015·高考广东卷)在星球表面发射探测器,当发射速度为v时,探测器可绕星球表面做匀速圆周运动;当发射速度达到v时,可摆脱星球引力束缚脱离该星球.已知地球、火星两星球的质量比约为10∶1,半径比约为2∶1.下列说法正确的有()A.探测器的质量越大,脱离星球所需要的发射速度越大B.探测器在地球表面受到的引力比在火星表面的大C.探测器分别脱离两星球所需要的发射速度相等D.探测器脱离星球的过程中,势能逐渐增大解析:由G=m得,v=,v=,可知探测器脱离星球所需要的发射速度与探测器的质量无关,A项错误;由F=G及地球、火星的质量、半径之比可知,探测器在地球表面受到的引力比在火星表面的大,B项正确;由v=可知,探测器脱离两星球所需的发射速度不同,C项错误;探测器在脱离两星球的过程中,引力做负功,引力势能增大,D项正确.答案:BD2.(多选)2013年12月2日,我国探月探测器“嫦娥三号”在西昌卫星发射中心成功发射升空,此飞行轨道示意图如图所示,地面发射后奔向月球,在P点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,Q为轨道Ⅱ上的近月点.下列关于“嫦娥三号”的运动,正确的说法是()A.发射速度一定大于7.9 km/sB.在轨道Ⅱ上从P到Q的过程中速率不断增大C.在轨道Ⅱ上经过P的速度小于在轨道Ⅰ上经过P的速度D.在轨道Ⅱ上经过P的加速度小于在轨道Ⅰ上经过P的加速度解析:“嫦娥三号”探测器的发射速度一定大于7.9km/s,A正确.在轨道Ⅱ上从P到Q的过程中速率不断增大,选项B正确.“嫦娥三号”从轨道Ⅰ上运动到轨道Ⅱ上要减速,故在轨道Ⅱ上经过P的速度小于在轨道Ⅰ上经过P的速度,选项C正确.在轨道Ⅱ上经过P的加速度等于在轨道Ⅰ上经过P的加速度,D错.答案:ABC3.(2016·成都石室中学二诊)如图所示,在同一轨道平面上的三个人造地球卫星A、B、C,在某一时刻恰好在同一条直线上.它们的轨道半径之比为1∶2∶3,质量相等,则下列说法中正确的是()A.三颗卫星的加速度之比为9∶4∶1B.三颗卫星具有机械能的大小关系为E A<E B<E CC.B卫星加速后可与A卫星相遇D.A卫星运动27周后,C卫星也恰回到原地点解析:根据万有引力提供向心力G=ma,得a=,故a A∶a B∶a C=∶∶=∶∶=36∶9∶4,故A错误;卫星发射的越高,需要克服地球引力做功越多,故机械能越大,故E A<E B<E C,故B正确;B卫星加速后做离心运动,轨道半径要变大,不可能与A卫星相遇,故C错误;根据万有引力提供向心力G=mr,得T=2π,所以==,即T C=T A.若A卫星运动27周后,C卫星也恰回到原地点,则C的周期应为A的周期的27倍,故D错误.答案:B航天器变轨问题的三点注意事项(1)航天器变轨时半径的变化,根据万有引力和所需向心力的大小关系判断;稳定在新轨道上的运行速度变化由v=判断.(2)航天器在不同轨道上运行时机械能不同,轨道半径越大,机械能越大.(3)航天器经过不同轨道相交的同一点时加速度相等,外轨道的速度大于内轨道的速度.考点四天体运动中的双星或多星模型授课提示:对应学生用书第58页1.模型构建绕公共圆心转动的两个星体组成的系统,我们称之为双星系统,如图所示.2.模型条件(1)两颗星彼此相距较近.(2)两颗星靠相互之间的万有引力做匀速圆周运动.(3)两颗星绕同一圆心做圆周运动.3.模型特点(1)“向心力等大反向”——两颗星做匀速圆周运动的向心力由它们之间的万有引力提供,故F1=F2,且方向相反,分别作用在两颗行星上,是一对作用力和反作用力.(2)“周期、角速度相同”——两颗行星做匀速圆周运动的周期、角速度相等.(3)“半径反比”——圆心在两颗行星的连线上,且r1+r2=L,两颗行星做匀速圆周运动的半径与行星的质量成反比.1.双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T,经过一段时间演化后,两星总质量变为原来的k倍,两星之间的距离变为原来的n倍,则此时圆周运动的周期为()A.TB.TC.TD.T解析:设两颗双星的质量分别为m1、m2,做圆周运动的半径分别为r1、r2,根据万有引力提供向心力可得G=m1r1,G=m2r2,联立两式解得m1+m2=,即T2=,因此,当两星总质量变为原来的k倍,两星之间的距离变为原来的n倍时,两星圆周运动的周期为T′=T,B正确,A、C、D错误.答案:B2.(多选)宇宙中存在一些质量相等且离其他恒星较远的四颗星组成的四星系统,通常可忽略其他星体对它们的引力作用.设四星系统中每个星体的质量均为m,半径均为R,四颗星稳定分布在边长为a的正方形的四个顶点上.已知引力常量为G.关于四星系统,下列说法正确的是()A.四颗星围绕正方形对角线的交点做匀速圆周运动B.四颗星的轨道半径均为C.四颗星表面的重力加速度均为D.四颗星的周期均为2πa解析:其中一颗星体在其他三颗星体的万有引力作用下,合力方向指向对角线的交点,围绕正方形对角线的交点做匀速圆周运动,由几何知识可得轨道半径均为a,故A正确,B错误;在星体表面,根据万有引力等于重力,可得G=m′g,解得g=,故C正确;由万有引力定律和向心力公式得+=m·,T=2πa,故D正确.答案:ACD3.如图所示,双星系统中的星球A、B都可视为质点.A、B绕两者连线上的O点做匀速圆周运动,A、B之间距离不变,引力常量为G,观测到A的速率为v、运行周期为T,A、B的质量分别为m1、m2.(1)求B的周期和速率.(2)A受B的引力F A可等效为位于O点处质量为m′的星体对它的引力,试求m′.(用m1、m2表示)解析:(1)设A、B的轨道半径分别为r1、r2,它们做圆周运动的周期T、角速度ω都相同,根据牛顿第二定律有F A=m1ω2r1,F B=m2ω2r2,即=.故B的周期和速率分别为:T B=T A=T,v B=ωr2=ω=.(2)A、B之间的距离r=r1+r2=r1,根据万有引力定律有F A==,所以m′=.答案:(1)T(2)解答双星问题应注意“两等”“两不等”(1)双星问题的“两等”①它们的角速度相等.②双星做匀速圆周运动的向心力由它们之间的万有引力提供,即它们受到的向心力大小总是相等的.(2)双星问题的“两不等”①双星做匀速圆周运动的圆心是它们连线上的一点,所以双星做匀速圆周运动的半径与双星间的距离是不相等的,它们的轨道半径之和才等于它们间的距离.②由m1ω2r1=m2ω2r2知,由于m1与m2一般不相等,故r1与r2一般也不相等.[随堂反馈]授课提示:对应学生用书第59页1.(2015·高考重庆卷)宇航员王亚平在“天宫1号”飞船内进行了我国首次太空授课,演示了一些完全失重状态下的物理现象.若飞船质量为m,距地面高度为h,地球质量为M,半径为R,引力常量为G,则飞船所在处的重力加速度大小为() A.0 B.C. D.解析:由=mg′得g′=,B项正确.答案:B2.(2015·高考北京卷)假设地球和火星都绕太阳做匀速圆周运动,已知地球到太阳的距离小于火星到太阳的距离,那么()A.地球公转周期大于火星的公转周期B.地球公转的线速度小于火星公转的线速度C.地球公转的加速度小于火星公转的加速度D.地球公转的角速度大于火星公转的角速度解析:地球的公转半径比火星的公转半径小,由=m2r,可知地球的周期比火星的周期小,故A项错误;由=m,可知地球公转的线速度大,故B项错误;由=ma,可知地球公转的加速度大,故C项错误;由=mω2r,可知地球公转的角速度大,故D项正确.答案:D3.已知地球质量为M,半径为R,自转周期为T,地球同步卫星质量为m,引力常量为G.有关同步卫星,下列表述正确的是()A.卫星距离地面的高度为B.卫星的运行速度等于第一宇宙速度C.卫星运行时受到的向心力大小为GD.卫星运行的向心加速度小于地球表面的重力加速度解析:由=m(R+h)2得h=-R,A项错误;近地卫星的运行速度等于第一宇宙速度,同步卫星的运行速度小于第一宇宙速度,B错误;同步卫星运行时的向心力大小为F向=,C错误;由G=mg得地球表面的重力加速度g=G,而同步卫星所在处的向心加速度g′=,D正确.答案:D4.(2015·成都七中二诊)2013年12月2日,嫦娥三号探测器由长征三号乙运载火箭从西昌卫星发射中心发射,首次实现月球软着陆和月面巡视勘察.假设嫦娥三号在环月圆轨道和椭圆轨道上运动时,只受到月球的万有引力.则()A.若已知嫦娥三号环月圆轨道的半径、运动周期和引力常量,则可以计算出月球的密度B.嫦娥三号由环月圆轨道变轨进入环月椭圆轨道时,应让发动机点火使其加速C.嫦娥三号在环月椭圆轨道上P点的速度大于Q点的速度D.嫦娥三号在环月圆轨道上的运行速率比月球的第一宇宙速度小解析:根据万有引力提供向心力G=mr,可以解出月球的质量M=,由于不知道月球的半径,无法知道月球的体积,故无法计算月球的密度,故A错误;嫦娥三号在环月段圆轨道上P点减速,使万有引力大于向心力做近心运动,才能进入环月段椭圆轨道,故B错误;嫦娥三号从环月椭圆轨道上P点向Q点运动过程中,距离月球越来越近,月球对其引力做正功,故速度增大,即嫦娥三号在环月段椭圆轨道上P点的速度小于Q点的速度,故C错误;卫星越高越慢,第一宇宙速度是星球表面近地卫星的环绕速度,故嫦娥三号在环月圆轨道上的运行速率比月球的第一宇宙速度小,故D正确.答案:D5.一物体在距某一行星表面某一高度处由静止开始做自由落体运动,依次通过A、B、C三点,已知AB段与BC段的距离均为0.06 m,通过AB段与BC段的时间分为0.2s与0.1s,求:(1)该星球表面重力加速度值;(2)若该星球的半径为180 km,则环绕该行星的卫星做圆周运动的最小周期为多少?解析:(1)根据运动学公式,由题意可得代入数值可求得g=2m/s2.(2)对质量为m的卫星有G=m2r星球表面有G=m′g可知当R=r时卫星做圆周运动的最小周期为T=2π代入数据解得T最小=600πs.答案:(1)2m/s2(2)600πs[课时作业]授课提示:对应学生用书第243页一、单项选择题1.(2016·成都市石室中学一诊)下列说法正确的是()A.洗衣机脱水桶脱水时利用了离心运动B.牛顿、千克、秒为力学单位制中的基本单位C.牛顿提出了万有引力定律,并通过实验测出了万有引力常量D.理想实验是把实验的情况外推到一种理想状态,所以是不可靠的解析:洗衣机脱水时利用离心运动将附着在衣服上的水分甩掉,水做离心运动.故A正确;米、千克、秒为力学单位制中的基本单位,而牛顿不是基本单位,故B错误;牛顿提出了万有引力定律,卡文迪许通过实验测出了万有引力常量,故C错误;理想实验是把实验的情况外推到一种理想状态,是可靠的,故D错误.答案:A2.欧洲天文学家在太阳系之外发现了一颗可能适合人类居住的行星,命名为“格利斯581c”.该行星的质量是地球的5倍,直径是地球的1.5倍.设想在该行星表面附近绕行星圆轨道运行的人造卫星的动能为E k1,在地球表面附近绕地球沿圆轨道运行的相同质量的人造卫星的动能为E k2,则为()A.0.13B.0.3C.3.33 D.7.5解析:在行星表面运行的卫星其做圆周运动的向心力由万有引力提供故有G=m,所以卫星的动能为E k=m v2=故在地球表面运行的卫星的动能E k2=在“格利斯”行星表面运行的卫星的动能E k1=所以有==·=×==3.33.答案:C3.(2015·高考天津卷)未来的星际航行中,宇航员长期处于零重力状态,为缓解这种状态带来的不适,有人设想在未来的航天器上加装一段圆柱形“旋转舱”,如图所示.当旋转舱绕其轴线匀速旋转时,宇航员站在旋转舱内圆柱形侧壁上,可以受到与他站在地球表面时相同大小的支持力.为达到上述目的,下列说法正确的是() A.旋转舱的半径越大,转动的角速度就应越大B.旋转舱的半径越大,转动的角速度就应越小C.宇航员质量越大,旋转舱的角速度就应越大D.宇航员质量越大,旋转舱的角速度就应越小解析:宇航员站在旋转舱内圆柱形侧壁上,受到的侧壁对他的支持力等于他站在地球表面时的支持力,则mg=mrω2,ω=,因此角速度与质量无关,C、D项错误;半径越大,需要的角速度越小,A项错误,B项正确.答案:B4.一人造地球卫星绕地球做匀速圆周运动,假如该卫星变轨后仍做匀速圆周运动,速度大小减小为原来的,则变轨前后卫星的()A.轨道半径之比为1∶2B.向心加速度大小之比为4∶1C.角速度大小之比为2∶1D.周期之比为1∶8解析:卫星绕地球做圆周运动过程中,万有引力充当向心力,G=m?v=,==2?=,A项错;G=ma?a=,所以=16,B项错;由开普勒第三定律==?=,D项正确;因为T=,角速度与周期成反比,故=8,C项错.答案:D5.美国宇航局2011年12月5日宣布,他们发现了太阳系外第一颗类似地球的、可适合居住的行星“开普勒-226”,它每290天环绕着一颗类似于太阳的恒星运转一周,距离地球约600光年,体积是地球的2.4倍.已知万有引力常量和地球表面的重力加速度.根据以上信息,下列推理中正确的是()A.若能观测到该行星的轨道半径,可求出该行星所受的万有引力B.若该行星的密度与地球的密度相等,可求出该行星表面的重力加速度C.根据地球的公转周期与轨道半径,可求出该行星的轨道半径D.若已知该行星的密度和半径,可求出该行星的轨道半径解析:根据万有引力公式F=G,由于不知道中心天体的质量,无法算出向心力,故A错误;根据万有引力提供向心力公式G=mg,有g=G,若该行星的密度与地球的密度相等,体积是地球的2.4倍,则有==2.4,==,根据=,可以求出该行星表面的重力加速度,故B正确;由于地球与行星不是围绕同一个中心天体做匀速圆周运动,故根据地球的公转周期与轨道半径,无法求出该行星的轨道半径,故C错误;由于不知道中心天体的质量,已知该行星的密度和半径,无法求出该行星的轨道半径,故D错误.答案:B6.如图所示,在火星与木星轨道之间有一小行星带.假设该带中的小行星只受到太阳的引力,并绕太阳做匀速圆周运动.下列说法正确的是()A.小行星带内侧小行星的向心加速度值大于外侧小行星的向心加速度值B.小行星带内各小行星圆周运动的线速度值大于地球公转的线速度值C.太阳对各小行星的引力相同D.各小行星绕太阳运动的周期均小于一年解析:小行星绕太阳做匀速圆周运动,万有引力提供圆周运动向心力,有G=m=ma=mr,小行星的加速度a=,小行星内侧轨道半径小于外侧轨道半径,故内侧向心加速度大于外侧的向心加速度,故A正确;线速度v=知,小行星的轨道半径大于地球的轨道半径,故小行星的公转线速度小于地球公转的线速度,故B错误;太阳对小行星的引力F=G,由于各小行星的轨道半径、质量均未知,故不能得出太阳对小行星的引力相同的结论,故C错误;由周期T=2π知,由于小行星轨道半径大于地球公转半径,故小行星的运动周期均大于地球公转周期,即大于一年,故D错误.答案:A7.由于火星表面的特征非常接近地球,人类对火星的探索一直不断,可以想象,在不久的将来,地球的宇航员一定能登上火星.已知火星半径是地球半径的,火星质量是地球质量的,地球表面重力加速度为g,假若宇航员在地面上能向上跳起的最大高度为h,在忽略地球、火星自转影响的条件下,下述分析正确的是()。

相关文档
最新文档