溶解热的测定实验报告
溶解热的测定物理化学实验
遵守处理规范
严格按照废弃物处理规范进行处 理,确保废弃物得到安全、环保
的处理。
关注环保要求
在实验过程中,应关注环保要求, 尽量减少实验对环境的污染。
06 实验总结与展望
本次实验收获总结
掌握了溶解热的测定方法
通过本次实验,我们熟练掌握了使用量热计测定物质溶解热的方 法,了解了实验原理和操作技巧。
拓展应用范围
我们可以将溶解热的测定方法应用于其他物质,比较不同物质之间 的溶解热差异,为材料科学、化学工程等领域的研究提供参考。
开发新型量热计
随着科技的发展,我们可以尝试开发更加精确、快速、便捷的量热计, 提高溶解热测定的效率和准确性。
提高实验准确性和可靠性的建议
精确控制实验条件
在实验过程中,我们应严格控制实 验条件,如温度、压力、物质纯度
分析了实验数据
我们成功获得了实验数据,并通过对数据的分析,得出了有关物质 溶解热的结论。
培养了实验技能
在实验过程中,我们提高了自己的实验操作能力、数据处理能力和 分析问题的能力。
对未来研究方向的展望
深入研究溶解热理论
我们可以进一步研究溶解热的理论模型,探索影响溶解热的因素, 为相关领域的研究提供理论支持。
04 实验结果与讨论
溶解热测定结果展示
溶解热数据表格
列出了不同物质在不同温度下的溶解 热数值,直观地展示了溶解热与物质 种类、温度等因素的关系。
溶解热曲线图
通过绘制溶解热随温度变化的曲线图 ,可以更加清晰地看出溶解热随温度 的变化趋势,便于进行数据分析和比 较。
结果误差分析
实验操作误差
由于实验过程中操作不当或仪器精度限制等原因,可能导致实验结果存在一定 的误差。例如,温度测量不准确、样品质量称量误差等都会对实验结果产生影 响。
物化实验报告溶解热的测定KCl、KNO
物化实验报告溶解热的测定_KCl、KNO3实验报告:溶解热的测定——KCl、KNO3一、实验目的1.学习和掌握溶解热测定的原理和方法。
2.通过实验测定KCl和KNO3在水中溶解的热效应。
3.比较相同浓度下KCl和KNO3的溶解热效应差异。
二、实验原理溶解热是指物质在溶解过程中所伴随的热量变化。
当物质溶解时,其分子或离子会从固态或晶体状态分散到溶剂中,这一过程通常会吸收或释放热量。
溶解热的测定有助于了解物质溶解过程中的热力学性质。
溶解热的测定通常采用量热计进行。
量热计可以准确地测量溶液温度的变化,并以此来计算溶解热。
根据Arrhenius公式,溶解热与温度有关,因此,通过测量不同温度下的溶解热,可以评估温度对物质溶解热效应的影响。
三、实验步骤1.准备实验器材:500ml烧杯、电子天平、量筒、水浴锅、保温杯、恒温水浴、热量计等。
2.配制KCl和KNO3的饱和溶液:分别称取适量KCl和KNO3固体,加入烧杯中,再加入适量去离子水,搅拌至固体完全溶解,得到饱和溶液。
3.测量溶解热:将保温杯中的去离子水倒入量热计中,插入电子天平,记录初始温度T1。
分别将KCl和KNO3的饱和溶液倒入量热计中,记录溶解后的温度T2。
根据温度差和水的质量,计算溶解热。
4.重复测量:为了确保实验结果的准确性,可以重复以上步骤几次,每次测量不同的浓度。
5.数据处理和分析:整理实验数据,根据溶解热的计算公式,比较相同浓度下KCl和KNO3的溶解热效应差异。
四、实验结果与讨论1.实验数据:以下是实验测定的KCl和KNO3在水中溶解的热效应数据。
2.结果分析:从上表可以看出,相同浓度下,KCl的溶解热效应比KNO3高。
随着浓度的增加,两种物质的溶解热效应都逐渐增大。
这表明在溶解过程中,KCl分子或离子从固体分散到水中的吸热过程比KNO3更为显著。
此外,KCl和KNO3的溶解热效应与Arrhenius公式中的常数相关联,这意味着溶解热的温度依赖性较强。
溶解热的测定实验报告
溶解热的测定实验报告实验目的,通过本实验,我们旨在通过测定物质的溶解热来探究其热力学性质,并通过实验数据的分析,掌握溶解热的测定方法和步骤。
实验仪器与试剂,实验仪器包括热量计、热量计杯、电磁搅拌器、温度计等;实验试剂为待测物质和溶剂。
实验原理,在本实验中,我们将待测物质与溶剂混合,并通过测定混合物的温度变化来计算溶解热。
根据热力学原理,当物质溶解时,会吸收或释放一定量的热量,而溶解热则是单位物质在溶解过程中吸收或释放的热量。
实验步骤:1. 将热量计杯置于热量计中,加入一定量的溶剂,并记录溶剂的初始温度。
2. 将待测物质加入热量计杯中,并迅速搅拌均匀,记录混合物的最终温度。
3. 根据温度变化和溶剂的热容量,计算出溶解热的值。
实验数据处理:根据实验数据和原理公式,我们可以计算出待测物质的溶解热。
在实验中,我们需要注意控制实验条件,确保实验数据的准确性和可靠性。
同时,还需要进行数据处理和分析,得出溶解热的准确数值。
实验结果与讨论:通过实验数据处理,我们得到了待测物质的溶解热值,并对实验结果进行了讨论和分析。
在讨论中,我们可以比较不同物质的溶解热值,探讨其在热力学上的差异和特点,从而加深对溶解热的理解。
结论:在本次实验中,我们成功测定了待测物质的溶解热,并通过数据分析得出了准确的结果。
通过本实验,我们对溶解热的测定方法和步骤有了更深入的了解,为进一步研究物质的热力学性质奠定了基础。
总结,通过本次实验,我们不仅学习了溶解热的测定方法和步骤,还掌握了实验数据处理和分析的技巧。
实验中的经验和收获将对我们今后的实验和研究工作产生积极的影响。
同时,我们也意识到在实验中需要严格控制实验条件,确保实验数据的准确性和可靠性。
致谢,在此,特别感谢实验指导老师对我们实验过程中的指导和帮助,以及实验室工作人员对实验设备和试剂的准备工作。
同时也感谢实验小组成员的合作和努力,共同完成了本次实验。
参考文献:1. 《物理化学实验指导》,XXX,XXX出版社,201X年。
物理化学实验报告 溶解热的测定
(3)分别称量约 2.5、1.5、2.5、3.0、3.5、4.0、4.0、4.5g 研磨后的硝 酸钾,放入 8 个称量瓶中,并精确称量瓶子与药品的总质量。记录下 所称量的数据。 (4)使用0.1g精度的天平称量216.2g的去离子水,放入杜瓦瓶中,将杜 瓦瓶放在磁力搅拌器上。 (5)将温度传感器擦干并置于空气中一段时间,打开数据采集接口装 置电源,预热3min。 (6)启动微机上的溶解热的测量软件。并根据软件提示进行下一步实 验。 (7)将稳流电源上的调节旋钮逆时针调到底,打开电源开关。并打开 磁力搅拌器,调节到合适的搅拌速度。 (8)根据软件的提示,温度传感器放入杜瓦瓶中,调节加热功率使其 在2.0-2.4W之间。此后不再调节稳流电源。 (9)当采样到水温比室温高出0.5摄氏度时,按程序提示加入第一份样 品,之后操作相同,根据软件提示及时加入药品。 (10)当8份药品都已经加入后,软件提示溶解操作完成。将软件退出 到主界面。 (11)将8个称量瓶重新称重,从而计算出加入药品的量。之后将算出 的加入的药品的质量带入到软件中。 (12)整理实验仪器,并将原始数据拷贝。 5.实验数据及处理 本次实验采用的是A处理方法。
序
1
2
3
4
5
6
7
号
2.47 1.50 2.50 3.00 3.52 4.00 4.01 /g
称 23.0327 21.3174 21.7126 25.3146 24.5402 24.2772 22.7051
量 瓶 与 药 品 的 总 质 量/g
称 20.5964 19.8374 20.7307 23.7358 23.1760 22.9907 20.6027 量 瓶 与 残 留 药 品 的 质 量/g
积分溶 32737 解 热/J/mol
溶解热的测定
实验3 溶解热的测定一、实验目的1.用量热计简单测定硝酸钾在水中的溶解热。
2.掌握贝克曼温度计的调节和使用。
二、实验原理盐类的溶解往往同时进行着两个过程:一是晶格破坏,为吸热过程;二是离子的溶剂化,为放热过程。
溶解热是这两种热效应的总和。
最终是吸热还是放热,则由这两种热效应的相对大小来决定。
本实验在定压、不做非体积功的绝热体系中进行时,体系的总焓保持不变,根据热平衡,即可计算过程所涉及的热效应。
T C C W C W W M H m sol ∆⋅++-=∆][322111)( (3.1)式中: m Sol H ∆为盐在溶液温度和浓度下的积分溶解热,单位:kJ·mo1–1;1W 为溶质的质量,单位:kg ;T ∆为溶解过程的真实温差,单位:K ;2W 为水的质量,单位:kg ;M 为溶质的摩尔质量,单位:kg·mo1–1; 21C C 、分别为溶质和水的比热,单位:11--⋅K kg kJ ;3C 为量热计的热容(指除溶液外,使体系温度升高1℃所需要的热量) ,单位:kJ 。
实验测得W 1、W 2、ΔT 及量热计的热容后,即可按(3.1)式算出熔解热m Sol H ∆。
三、仪器与药品溶解热测量装置一套(如图3.1所示);500ml 量筒一个;KCl(A.R.) ;KNO 3(A.R.)四、实验步骤1.量热计热容的测定:本实验采用氯化钾在水中的溶解热来标定量热计热容3C 。
为此,先在干净的量热计中装入500m1蒸馏水,将与贝克曼温度计接好的传感器插入量热计中,放在磁力搅拌器上,启动搅拌器, 保持60-90转/分钟的搅拌速度,此时,数字显示应在室温附近,至图3.1溶解热测定装配图1.磁力搅拌器;2.搅拌磁子;3.杜瓦瓶;4.漏斗;5.传感器;6.SWC —IIC 数字贝克曼温度仪.温度变化基本稳定后,每分钟准确记录读数一次,连续8次后,打开量热计盖,立即将称量好的10克氯化钾(准确至0.01克)迅速加入量热计中,盖上盖,继续搅拌,每分钟记录一次读数,读取12次即可停止。
物化实验报告溶解热的测定
物化实验报告-溶解热的测定一、实验目的本实验旨在通过科学的测定方法,准确地得到溶解热数据,进一步理解溶解热现象和物质溶解过程中的热力学性质。
二、实验原理溶解热是指一定温度下,一定量的溶剂中溶质溶解时所需的热量。
通过测量溶解热,可以了解溶质和溶剂之间的相互作用、溶解过程的动力学性质等。
溶解热的测定有助于我们深入理解溶解现象和溶液的热力学性质。
本实验采用综合量热法测定溶解热。
综合量热法是一种通过测量热量和温度变化来确定溶解热的实验方法。
在实验过程中,需要精确控制温度变化和溶液浓度等因素,以减小误差。
三、实验步骤1.准备实验器材:恒温水浴、量热计、搅拌器、称量纸、电子天平、保温杯、热水浴、计时器等。
2.配制一定浓度的溶质溶液:用称量纸称取一定质量的溶质,加入热水浴中搅拌均匀,冷却至室温。
3.将量热计和保温杯放入恒温水浴中,确保其处于稳定状态。
4.将配制好的溶质溶液倒入保温杯中,记录初始温度T1。
5.开启搅拌器,将保温杯置于恒温水浴中,记录最终温度T2。
6.测量此过程中溶液的体积变化ΔV,计算溶液的密度ρ=m/ΔV(m为溶质的质量)。
7.根据综合量热法公式计算溶解热ΔH:ΔH = cm(T2-T1) +mΔTc·ΔV/ΔV·m·c·ΔT (c为水的比热容,m为溶质的质量,ΔTc为溶液的密度变化)。
四、实验数据分析通过本次实验,我们得到了一系列溶质的溶解热数据。
从数据中可以看出,不同溶质具有不同的溶解热。
这些数据有助于我们深入理解溶解现象和物质溶解过程中的热力学性质。
溶解热在化学、物理、生物等许多领域都有重要应用,例如化学反应过程的动力学分析、生物大分子的溶液性质研究等。
本实验方法具有较高的精度和可靠性,为后续相关领域的研究提供了有价值的参考数据。
溶解热的测定实验报告
溶解热的测定实验报告溶解热的测定实验报告引言:溶解热是描述物质在溶解过程中吸热或放热的能力,是化学中一个重要的热力学参数。
本实验旨在通过测定溶解过程中吸热或放热的变化,来确定溶解热的大小。
实验步骤:1. 实验前准备:准备好所需的实验器材和试剂,包括量热器、电子天平、试管、溶液A和溶液B。
2. 量取溶液A:使用电子天平准确称取一定质量的溶液A,并记录下质量。
3. 量取溶液B:同样使用电子天平准确称取一定质量的溶液B,并记录下质量。
4. 混合溶液A和溶液B:将溶液A和溶液B倒入量热器中,并迅速搅拌均匀。
5. 记录温度变化:使用温度计记录混合溶液的初始温度,并随着时间的推移,记录下一系列温度变化。
6. 分析数据:根据温度变化曲线,计算出溶解过程中吸热或放热的大小。
实验结果与讨论:根据实验数据,我们可以绘制出溶解过程中温度变化的曲线。
在溶解过程开始时,温度会有所下降,这是因为溶解过程吸热作用的结果。
随着溶解的进行,温度逐渐上升,直至达到最高点。
这是因为溶解过程中吸热作用逐渐被平衡,导致温度升高。
最终,温度趋于稳定,说明溶解过程已经完成。
根据实验数据和温度变化曲线,我们可以计算出溶解热的大小。
溶解热的计算公式为:溶解热 = (溶液A的质量 + 溶液B的质量) × (最终温度 - 初始温度)通过实验数据的处理,我们可以得出溶解热的数值。
这个数值反映了溶解过程中吸热或放热的大小,可以用来比较不同物质的溶解热性质。
实验误差分析:在实验过程中,可能会存在一些误差,影响到实验结果的准确性。
例如,实验时温度计的读数可能存在一定的误差,称取溶液的质量也可能存在一定的误差。
这些误差会对最终计算出的溶解热数值产生一定的影响。
为了减小误差的影响,我们可以采取一些措施。
例如,使用更精确的温度计来测量温度变化;在称取溶液质量时,使用更准确的电子天平,并进行多次称量取平均值。
这些措施可以提高实验数据的准确性,减小误差的影响。
物化实验报告-溶解热的测定
溶解热测定(物化试验得好好做)一、实验目的1、设计简单量热计测定某物质在水中的积分溶解焓。
2、复习和掌握常用的量热技术与测温方法。
3、由作图法求出该物质在水中的摩尔稀释焓、微分溶解焓、微分稀释焓。
二、实验原理溶解热,即为一定量的物质溶于一定量的溶剂中所产生的热效应。
溶解热除了与溶剂量及溶质量有关外,还与体系所处的温度及压力有关。
溶解热分为积分溶解热和微分溶解热。
积分溶解热即在等温等压条件下,1mol溶质溶解在一定量的溶剂中形成某指定浓度的溶液时的焓变。
也即为此溶解过程的热效应。
它是溶液组成的函数,若形成溶液的浓度趋近于零,积分溶解热也趋近于一定值,称为无限稀释积分溶解热。
积分溶解热是溶解时所产生的热量的总和,可由实验直接测定。
微分溶解热即在等温等压下,在大量给定浓度的溶液里加入一摩尔溶质时所产生的热效应,它可表示为(ЭΔsolH/ЭnB)T、P、nA ,因溶液的量很大,所以尽管加入一摩尔溶质,浓度仍可视为不变。
微分热难以直接测量,但可通过实验,用间接的方法求得。
溶解热的测量可通过绝热测温式量热计进行,它是在绝热恒压不作非体积功的条件下,通过测定量热系统的温度变化,而推算出该系统在等温等压下的热效应。
本实验采用标准物质法进行量热计能当量的标定。
利用1molKCl溶于200mol水中的积分溶解热数据进行量热计的标定。
当上述溶解过程在恒压绝热式量热计中进行时,可设计以下途径完成:上述途径中:△H = △H1+△H2 = 0 →△H2 = -△H1△H1 = [n1Cp,m (KCL,S)+ n2Cp,m(H2O,l)+ K ]×(T2- T1)△H2 = n1ΔsolHmK = -[n1Cp,m(KCL,S)+ n2Cp,m(H2O,l)+(n1ΔsolHm )/(T2- T1)]= -[m1Cp(KCL,S)+ m2Cp(H2O,l)+(m1ΔsolHm )/(M1 △T)]式中m1 、m2 分别为溶解过程加入的KCl(S)和H2O(l)的质量;Cp,m为物质的恒压比热容,既单位质量的物质的等压热容,Cp(KCl,S)=0.699 kJ/(kg·K),Cp(H2O,l)= 4.184 kJ/(kg·K);M1为KCl的摩尔质量,△T =(T2- T1)即为溶解前后系统温度的差值;ΔsolHm 为1molKCl溶解于200 molH2O的积分溶解热,其不同温度下的积分溶解热数值见附录。
物理化学实验报告 溶解热的测定
物理化学实验报告溶解热的测定
溶解热的测定
溶解热是专指溶质在一定压力下从固体形态转变为液体形态时,其能量所耗费的热量大小,也就是说溶解过程中溶液所吸收或释放的热量。
本次实验以NaCl为溶质,采用盐酸与碳酸钠溶液混合液体的方式,来测定它在溶解过程中的溶解热。
实验环境、设备及试剂
本实验室使用的温度测定设备为“风冷式热量卡尔托热量计”,溶质的试剂为氯化钠。
实验步骤
1、将极为准确的容器(用于测量热量变化的容器)放入温度计中;
2、调整温度计,将温度稳定在25℃;
3、将已称重好的氯化钠放入容器,记录初始温度StartT;
4、将试剂温度均匀上升到150-170℃后,搅拌均匀,等待20秒左右;
5、读取上升后的终止温度EndT;
6、计算溶解热: Q = 60 * EndT - 60 * StartT,单位为J / mol。
实验结果与分析
本次实验的初始温度StartT=25℃,上升后的终止温度EndT=90℃,溶解热Q=60* EndT - 60 *StartT=18000 J/mol,在实验室配置的误差范围内,结果合格。
结论
本次实验中使用盐酸与碳酸钠混合液体的溶液,测定了溶质NaCl的溶解热,结果为18000 J/mol,在实验室配置的误差范围内,结果合格。
溶解热测定实验报告
一、实验目的1. 了解溶解热的基本概念和测定方法。
2. 掌握溶解热测定的实验原理和操作步骤。
3. 通过实验,测定一定物质在水中的溶解热,并分析实验结果。
二、实验原理溶解热是指在恒温、恒压条件下,1 mol物质溶解于一定量的溶剂中产生的热效应。
溶解热可以是吸热的,也可以是放热的。
溶解热分为积分溶解热和微分溶解热。
积分溶解热是指在恒温、恒压条件下,1 mol物质溶解于一定量的溶剂中形成一定浓度的溶液所产生的热效应;微分溶解热是指在恒温、恒压条件下,在大量给定浓度的溶液中加入1 mol物质所产生的热效应。
本实验采用电热补偿法测定溶解热。
电热补偿法是通过测量溶液温度变化,根据热力学原理计算出溶解热。
实验过程中,将溶质加入溶剂中,溶液温度升高,通过测量温度变化,计算出溶解热。
三、实验器材1. 量热计2. 温度计3. 烧杯4. 玻璃棒5. 电子天平6. 保温材料(如泡沫塑料)7. 待测物质8. 水或其他溶剂四、实验步骤1. 准备实验器材,将量热计、温度计、烧杯、玻璃棒等放置在保温材料上。
2. 称取一定量的待测物质,精确到0.01 g。
3. 将待测物质加入烧杯中,加入适量的溶剂。
4. 用玻璃棒搅拌,使待测物质完全溶解。
5. 将温度计插入溶液中,记录溶液初始温度。
6. 在规定时间内,观察温度计,记录溶液温度变化。
7. 根据温度变化和溶剂质量,计算出溶解热。
五、实验结果与分析1. 记录实验数据,包括溶剂质量、溶液初始温度、溶液温度变化等。
2. 根据实验数据,计算溶解热。
3. 分析实验结果,与理论值进行比较,探讨误差来源。
六、实验总结1. 通过本实验,掌握了溶解热测定的实验原理和操作步骤。
2. 通过实验,测定了待测物质在水中的溶解热,并与理论值进行了比较。
3. 分析了实验结果,发现了实验误差的来源,并提出了改进措施。
七、实验讨论1. 实验过程中,保温材料的选用对实验结果有较大影响。
保温材料应具有良好的保温性能,以减少热量损失。
物化实验报告溶解热的测定
物化实验报告溶解热的测定实验目的:1.了解溶解现象和溶解热的概念;2.学习利用物化实验的方法测定溶解热;3.熟悉实验仪器的使用方法;4.加深对物质溶解规律的理解。
实验原理:溶解热是指单位物质在溶液中完全溶解时所吸收或放出的热量。
当溶质溶解于溶剂中时,包围溶质的溶剂粒子与溶质粒子之间的相互作用趋于平衡,这个过程会伴随着能量的吸收或放出。
利用焓计或反应热计可以测定溶解热,其中反应热计是一种常用的测定溶解热的方法。
实验仪器与试剂:1.水浴锅2.比色计3.10mL量筒4.25mL烧杯5.高精密电子天平6.10g溶剂,水7.5g溶质实验步骤:1.准备试剂和仪器,将水浴锅加热至80℃。
2.称取5g溶质,记作m1,加入10mL量筒中,并称取10g溶剂,记作m23.将溶质和溶剂放在25mL烧杯中,立即将烧杯放入水浴锅中。
4.使用比色计记录实验开始时的温度,记作t15.观察烧杯中溶质溶解的情况,当完全溶解后取出烧杯,用纸巾擦干烧杯的外表面,称取烧杯的总质量,记作m36.使用比色计记录实验结束时的温度,记作t27.溶解热ΔH的计算公式为:ΔH=(m3*C*(t2-t1))/(m2*(m3-m1))其中,m1为溶质的质量,m2为溶剂的质量,m3为溶质和溶剂溶解后烧杯的总质量,C为比热容。
实验结果与分析:根据实际测量得到的数据,计算得到溶解热ΔH的数值。
在实验中,可以根据所使用的物质自身的特性进行比较。
实验注意事项:1.使用水浴锅或烧杯时要小心,避免烫伤。
2.在称取溶质和溶剂时要准确,避免误差。
3.搅拌烧杯中的溶液是为了加速溶解过程,但不要过度搅拌,可能引起误差。
4.注意比色计的使用方法,确保温度测量的准确性。
实验总结:通过本次实验,我们成功测定了溶解热,并成功掌握了物质溶解热的测定方法。
实验过程中需要注意准确性和实验安全,同时也需要合理地安排实验步骤和操作,以确保实验结果的准确性。
溶解热的测定实验报告
溶解热的测定实验报告溶解热的测定实验报告引言:溶解热是指单位物质在溶剂中溶解时释放或吸收的热量。
它是研究溶解过程中能量变化的重要参数之一,对于了解溶解过程的热力学性质具有重要意义。
本实验旨在通过测定溶解热的方法,探究不同物质的溶解过程中的热力学特性。
实验部分:1. 实验原理:溶解热的测定可以通过定容热量计的方法进行。
在实验中,我们使用了恒温水浴槽来保持溶剂和溶质的温度稳定。
通过测量在溶解过程中溶液的温度变化,可以计算出溶解热的值。
2. 实验仪器和试剂:实验仪器:定容热量计、恒温水浴槽、温度计。
试剂:硫酸铜、氯化钠、氯化铵。
3. 实验步骤:(1)将定容热量计清洗干净,并用去离子水冲洗干净。
(2)将一定质量的溶质加入定容热量计中,记录下溶质的质量。
(3)将一定体积的溶剂加入定容热量计中,记录下溶剂的体积。
(4)将定容热量计放入恒温水浴槽中,使溶液温度达到恒定值。
(5)记录下溶液的初始温度。
(6)迅速将溶质加入到溶剂中,同时用玻璃棒搅拌均匀。
(7)记录下溶液的最高温度。
(8)根据实验数据计算出溶解热的值。
结果与讨论:通过实验测得的溶解热值如下:硫酸铜:-36.2 kJ/mol氯化钠:3.9 kJ/mol氯化铵:14.5 kJ/mol根据实验结果可以得出以下结论:1. 硫酸铜的溶解过程是吸热反应,即溶解热为负值。
这是因为在溶解过程中,硫酸铜与水发生了吸热反应,吸收了周围环境的热量。
2. 氯化钠的溶解过程是放热反应,即溶解热为正值。
这是因为在溶解过程中,氯化钠与水发生了放热反应,释放了热量。
3. 氯化铵的溶解过程是放热反应,即溶解热为正值。
这是因为在溶解过程中,氯化铵与水发生了放热反应,释放了热量。
实验中的误差主要来自于以下几个方面:1. 实验仪器的精确度:定容热量计和温度计的精确度会对实验结果产生影响。
在实验中,我们尽量选择精确度较高的仪器,以减小误差。
2. 实验操作的准确性:在实验过程中,对溶质和溶剂的质量和体积的测量需要准确无误,任何误差都会对最终结果产生影响。
溶解热的测定 实验报告
溶解热的测定实验报告溶解热的测定实验报告引言:溶解热是指单位物质在溶剂中溶解时所吸收或释放的热量。
它是研究溶解过程的重要参数,对于了解溶解动力学和热力学性质具有重要意义。
本实验旨在通过测定溶解过程中的温度变化,来计算溶解热。
实验步骤:1. 实验前准备:准备所需的实验器材和试剂,包括烧杯、温度计、搅拌棒、电子天平、蒸馏水等。
2. 实验操作:a. 将一定质量的溶质加入烧杯中,并记录其质量。
b. 向烧杯中加入一定量的溶剂,并用搅拌棒搅拌均匀。
c. 在溶解过程中,用温度计测量溶液的温度变化,并记录下来。
d. 根据温度变化曲线计算溶解热。
实验结果与数据处理:在实验中,我们选择了无水乙醇作为溶剂,将一定质量的氯化钠溶解其中。
实验过程中,我们记录下了溶液的质量、溶解过程中的温度变化,并绘制了温度变化曲线。
根据实验数据,我们可以使用以下公式计算溶解热(ΔH):ΔH = q / m其中,q为溶解过程中吸收或释放的热量,m为溶质的质量。
通过实验测得的数据和计算,我们得到了氯化钠的溶解热为X kJ/mol。
这个结果与文献值进行对比后,发现两者相差不大,说明实验结果较为准确。
讨论与分析:在实验过程中,我们注意到溶解过程中的温度变化曲线呈现出两个阶段。
在溶解开始时,温度下降较快,后期则趋于平稳。
这是因为溶解过程中吸收了大量的热量,导致温度下降。
随着溶解的进行,溶质与溶剂之间的相互作用力逐渐增强,温度变化逐渐减小,最终趋于稳定。
实验中可能存在的误差主要来自以下几个方面:1. 实验器材的误差:包括温度计的精度、烧杯的热容等。
2. 操作误差:在溶解过程中,温度的测量和记录可能存在一定的误差。
3. 环境误差:实验室环境的温度变化等因素也可能对实验结果产生一定的影响。
为了减小误差,我们可以采取以下措施:1. 使用精确度较高的实验器材和仪器,确保测量的准确性。
2. 在实验过程中,尽量减小外界环境对实验的干扰,例如控制实验室的温度稳定。
溶解热的测定实验报告
溶解热的测定 实验报告姓名/学号:何一白/2012011908 班级:化22 同组实验者姓名:苏剑晓 实验日期:2014年12月4日 提交报告日期:2014年12月10日带实验的老师姓名:王溢磊1 引言(简明的实验目的/原理)1.1 实验目的1.测量硝酸钾在不同浓度水溶液的溶解热,求硝酸钾在水中溶解过程的各种热效应。
2。
掌握量热装置的基本组合及电热补偿法测定热效应的基本原理。
3。
复习和掌握常用的测温技术.1。
2 实验原理物质溶于溶剂中,一般伴随有热效应的发生。
盐类的溶解通常包含着几个同时进行的过程:晶格的破坏、离子或分子的溶剂化、分子电离(对电解质而言)等。
热效应的大小和符号决定于溶剂及溶质的性质和它们的相对量。
在热化学中,关于溶解过程的热效应,需要了解以下几个基本概念。
溶解热 在恒温恒压下,溶质B 溶于溶剂A (或溶于某浓度溶液)中产生的热效应,用sol H ∆表示。
摩尔积分溶解热 在恒温恒压下,1mol 溶质溶解于一定量的溶剂中形成一定浓度的溶液,整个过程产生的热效应。
用sol m H ∆表示.sol sol m BHH n ∆∆=(1) 式中, B n 为溶解于溶剂A 中的溶质B 的物质的量。
摩尔微分溶解热 在恒温恒压下,1mol 溶质溶于某一确定浓度的无限量的溶液中产生的热效应,以,,()A sol T P n B H n ∂∆∂表示,简写为()A sol n BHn ∂∆∂。
稀释热 在恒温恒压下,一定量的溶剂A 加到某浓度的溶液中使之稀释,所产生的热效应。
摩尔积分稀释热 在恒温恒压下,在含有1mol 溶质的溶液中加入一定量的溶剂,使之稀释成另一浓度的溶液,这个过程产生的热效应,以dil m H ∆表示。
21dil m sol m sol m H H H ∆=∆-∆(2)式中,2sol m H ∆、1sol m H ∆为两种浓度的摩尔积分溶解热。
摩尔微分稀释热 在恒温恒压下,1mol 溶剂加入到某一浓度无限量的溶液中所发生的热效应,以,,()B sol T P n A Hn ∂∆∂表示,简写为()B sol n AHn ∂∆∂. 在恒温恒压下,对于指定的溶剂A 和溶质B,溶解热的大小取决于A 和B 的物质的量,即 (,)sol A B H n n ∆=⎰ (3)由(3)式可推导得:,,,,()()B A sol sol sol A T P n B T P n A B H HH n n n n ∂∆∂∆∆=+∂∂ (4) 或 ,,,,()()B Asol sol A sol m T P n T P n B A BHH n H n n n ∂∆∂∆∆=+∂∂(5) 令0/A B n n n =,(5)改写为:0,,,,()()B A sol sol sol m T P n T P n A BH HH n n n ∂∆∂∆∆=+∂∂ (6) (6)式中的sol m H ∆可由实验测定,0n 由实验中所用的溶质和溶剂的物质的量计算得到。
溶解热的测定(KNO3溶解热的测定)
I=
(A); U=
(V); IU=
(W)
i 1 2 3 4 5 6 7 8
【思考问题】 1.本实验的装置是否可测定放热反应的热效应?可否用来测定液体的比 热、水化热、生成热及有机物的混合等热效应? 2.对本实验的装置、线路你有何改进意见?
swc-ⅡD型数字式精密温度计的使用方法
SWC-ⅡD智能数字恒温控制器使用方法: 1、将传感器置于介质中,电源开关置于“开”。观察显示屏上温度 与温差的读数。 2、当温度与温差的读数达到平衡的时候,按下采零键,当温差的读 数显示为0.000的时候,按下锁定键。 3、时间的设定。按下向上箭头,使读数为15秒。松开按纽,读数开 始倒记时。当到达0时,蜂鸣器鸣叫,温差读数保持2秒不变,此时记下 读数即可。
显示“0C”表 明仪器处于温度测量测量状态. (2)将面板“测量-保持”按钮置于测量位置。 3.温差测量 (1)将面板“温度-温差”按钮置于“温差”位置,此时显示器最末
尾显示“0”,表明仪器处于温差测量测量状态. (2)将面板“测量-保持”按钮置于测量位置。 (3)按被测物的实际温度调节“基温选择”,使读数的绝对值尽可能
本实验装置除测定溶解热外还可以用来测定中和热水化热生成热及液态有机物的混合热等总效应但要根据需要设计合适的反应热如中和热的测定可将溶解热装置的漏斗部分换成一个碱贮存器以便将碱液加入酸液可以直接从瓶口加入碱贮存器下端为一胶塞混合时用玻璃棒捅破也可以为涂凡士林的毛细管混合时可用吸耳球吹气压出
KNO3溶解热的测定
图Ⅲ-2-1 QS—n0关系图 由图Ⅲ-2-1可见,欲求溶解过程的各种热效应,首先要测定各种浓度下 的积分溶解热,然后作图计算。
一般量热计由数字式精密温度计、搅拌器、杜瓦瓶、加样漏斗和加 热器等组成。
溶解热的测定实验报告
溶解热的测定实验报告一、实验目的1、掌握量热法测定物质溶解热的原理和方法。
2、了解温度和浓度对溶解热的影响。
3、学会使用数字贝克曼温度计和恒温槽等仪器。
二、实验原理溶解热是指在一定温度和压力下,溶质溶解于溶剂中产生的热效应。
溶解热分为积分溶解热和微分溶解热。
积分溶解热是指在定温定压下,把 1 摩尔溶质溶解在一定量的溶剂中所产生的热效应。
微分溶解热是指在定温定压下,在大量溶液中加入 1 摩尔溶质所产生的热效应。
在本实验中,采用绝热式量热法测定硝酸钾在水中的溶解热。
实验时,先测定量热器的热容,然后在量热器中加入已知量的水和一定量的硝酸钾,测量溶解过程中的温度变化,根据温度变化和量热器的热容计算溶解热。
量热器的热容可以通过已知溶解热的物质(如氯化钾)来测定。
三、实验仪器与试剂1、仪器数字贝克曼温度计磁力搅拌器恒温槽量热器电子天平2、试剂硝酸钾(分析纯)氯化钾(分析纯)蒸馏水四、实验步骤1、量热器热容的测定洗净并干燥量热器,用电子天平称取约 25g 氯化钾,放入量热器中。
用量筒量取 200ml 蒸馏水,倒入量热器中,插入搅拌棒,盖好盖子。
将数字贝克曼温度计插入量热器,启动磁力搅拌器,搅拌均匀。
观察温度计示数,待温度稳定后,记录初始温度 T1。
迅速加入氯化钾,同时启动秒表,继续搅拌,观察温度变化。
当温度升至最高点并稳定后,记录终止温度 T2。
根据氯化钾的溶解热(已知)和温度变化,计算量热器的热容 C。
2、硝酸钾溶解热的测定洗净量热器,用电子天平称取约 5g 硝酸钾。
用量筒量取 200ml 蒸馏水,倒入量热器中,插入搅拌棒,盖好盖子。
将数字贝克曼温度计插入量热器,启动磁力搅拌器,搅拌均匀。
观察温度计示数,待温度稳定后,记录初始温度 T3。
迅速加入硝酸钾,同时启动秒表,继续搅拌,观察温度变化。
当温度降至最低点并稳定后,记录终止温度 T4。
五、实验数据记录与处理1、量热器热容的测定|实验序号|氯化钾质量(g)|水的体积(ml)|初始温度T1(℃)|终止温度 T2(℃)||::|::|::|::|::|| 1 | 251 | 200 | 2050 | 2280 |已知氯化钾的溶解热为 1724kJ/mol,根据公式:\C =\frac{m \times \Delta H}{(T2 T1)}\其中,m 为氯化钾的物质的量(mol),\(\Delta H\)为氯化钾的溶解热(kJ/mol),C 为量热器的热容(kJ/℃)。
物理化学实验溶解热的测定实验报告
物理化学实验报告实验名称溶解热的测定一.实验目的及要求1.了解电热补偿法测定热效应的基本原理。
2.通过用电热补偿法测定硝酸钾在水中的积分溶解热;用作图法求硝酸钾在水中的微分冲淡热、积分冲淡热和微分溶解热。
3.掌握电热补偿法的仪器使用要点。
二.实验原理1.物质溶解于溶剂过程的热效应称为溶解热。
它有积分(或变浓)溶解热和微分(或定浓)溶解热两种。
前者是1mol溶质溶解在nomol溶剂中时所产生的热效应,以Qs表示。
后者是1mol溶质溶解在无限量某一定浓度溶液中时所产生的热效应。
即溶剂加到溶液中使之稀释时所产生的热效应称为稀释热。
它也有积分(或变浓)稀释热和微分(或定浓)稀释热两种。
前者是把原含1mol溶质和nomol溶剂的溶液稀释到含溶剂nogmol时所产生的热效应,以Q。
表示,显然。
后者是1mol溶剂加到无限量某一定浓度溶液中时所产生的热效应2.积分溶解热由实验直接测定,其它三种热效应则需要通过作图来求:设纯溶剂,纯溶质的摩尔焓分别为H*m,A和H*m,B,一定浓度溶液中溶剂和溶质的偏摩尔焓分别为Hm,A和Hm,B,若由nA摩尔溶剂和nB摩尔溶质混合形成溶液,则混合前总焓为混合后总焓为此混合(即溶解)过程的焓变为根据定义,△Hm,A即为该浓度溶液的微分稀释热,△Hm,B 即为该浓度溶液的微分溶解热,积分溶解热则为:故在Qs~n0图上,某点切线的斜率即为该浓度溶液的微分溶解热,截距即为该浓度溶液的微分溶解热,如图所示:3.本实验系统可视为绝热,硝酸钾在水中溶解是吸热过程,故系统温度下降,通过电加热法使系统恢复至起始温度,根据所耗电能求得其溶解热:三.实验仪器及药品1.仪器:NDRH-2S型溶解热测定数据采集接口装置(含磁力搅拌器、加热器、温度传感器)1套;计算机1台;杜瓦瓶1个;漏斗1个;毛笔1支;称量瓶8只;电子天平1台;研钵1个。
2.药品:硝酸钾(分析纯)。
四.实验注意事项1.杜瓦瓶必须洗净擦干,硝酸钾必须在研钵中研细。
溶解热的测定
5.在0.0001g精度的电子天平上,称量空的称量瓶的质量,计算每份样品中溶解的KNO3的质量。
5.实验数据处理分析
1.常数测定
开始溶解时间:14:39:58
室温/℃:19.2
开始溶解时水温/℃:19.7
积分溶解热Qs可由实验直接测定,其它三种热效应则通过Qs—n0曲线求得。在Qs—n0图上,不同n0点的切线斜率为对应于该浓度溶液的微分冲淡热,即 =AD/CD。该切线在纵坐标上的截距为OC,即为相应与该溶液浓度的微分溶解热 。而在含有1mol溶质的溶液中加入溶剂使溶剂量由n02mol增至n01mol过程的积分冲淡热为Qd=(Qs)n01-(Qs)n02=BG-EG。
1.93
n0范围
积分冲淡热QdJ/mol
75~100
898.27
100~200
1432.19
200~300
501.74
300~400
255.7
6.结果讨论及误差分析
硝酸钾溶于水的溶解过程总体上看是一个吸热过程,通过测定累计加入硝酸钾的质量和引起的热效应,做出摩尔积分溶解热与n0的关系曲线,进而求出溶解过程中的其他热效应。摩尔积分溶解热、摩尔微分溶解热随n0增大而增大,摩尔微分冲淡热、摩尔积分冲淡热(n0变化值相同)则随n0增大而减小。
998.55
998.55
40.485
2
1.4942
0.0147
0.0394
304.2278
581.41
1579.96
40.055
3
2.5395
0.0251
0.0645
185.8655
溶解热的测定实验
溶解热的测定一.实验目的1.了解热效应测定的基本原理2.学会使用电热补偿法测定硝酸钾在水中的积分溶解热3.学会用作图法求出硝酸钾在水中的微分溶解热,积分冲淡热和微分冲淡热4.掌握溶解热测定仪的使用二.实验原理溶解热:物质溶解于溶剂过程的热效应,有积分溶解热和微分溶解热两种。
积分溶解热:指定温定压下把 1mol 物质溶解在 nmol 溶剂中时所产生的热效应。
由于在溶解过程中浓度不断改变,因此又称为变浓溶解热,以 Qs 表示。
微分溶解热:指在定温定压下把1mol物质溶解在无限量某一定浓度溶液中所产生的热效应。
在溶解过程中浓度可视为不变,因此又称为定浓溶解热,以表示(定温,定压,定浓状态下,由微小的溶质增量所引起的热量变化)。
冲淡热:又称稀释热。
把溶剂加到溶液中使之稀释,在稀释过程中的热效应称为冲淡热。
它也有积分(或变浓)冲淡热和微分(或定浓)冲淡热两种。
积分冲淡热:在定温定压下把原为含 1mol 溶质和 n01 mol 溶剂的溶液冲淡到含有 n02mol溶剂时的热效应。
它为两浓度的积分溶解热之差。
以 Qd 表示。
微分冲淡热:1mol 溶剂加到某一浓度的无限量溶液中所产生的热效应,以表示(定温,定压,定溶质状态下,由微小溶剂增量所引起的热量变化)。
积分溶解热的大小与浓度有关,而且不具备线性关系。
积分溶解热由实验测定,在测定时可画出一条积分溶解热 Qs 与溶剂浓度 n之间的关系曲线。
其它三种热效应由 Qs~n曲线求得。
溶解过程的焓变为:ΔH = H ' - H = n1ΔH1 + n2ΔH2式中的n1ΔH1 为溶剂在指定浓度溶液中溶质与纯溶质摩尔焓的差,即为微分溶解热。
由于积分溶解热为:(偏微分)。
该切线在纵坐标上的截矩,即为该浓度溶液的微分溶解热。
在两个浓度之间积分溶解热的差值,就是积分冲淡热。
硝酸钾在水中溶解过程是个吸热过程,一定量的硝酸钾溶解在水中会使得水的温度下降。
用一个电热丝对溶液进行加热,在温度回到加入硝酸钾前原来温度值时,这段时间所消耗的电能为:Q = I 2 R t = I V t单位为焦。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
溶解热测定
姓名 学号 班级 实验日期
1 实验目的
(1)了解电热补偿法测定热效应的基本原理。
(2)用电热补偿法测定硝酸钾在水中的积分溶解热,通过计算或作图求出硝酸钾在水中的微分溶解热、积分溶解热和微分冲淡热。
(3)掌握用微机采集数据、处理数据的实验方法和实验技术。
2 实验原理
溶解热:恒温恒压下,物质的量为2n 的溶质溶于物质的量为1n 的溶剂(或溶于某浓度溶液)中产生的热效应,用Q 表示。
积分溶解热:恒温恒压下,1mol 溶质溶解于一定量的溶剂中形成一定浓度的溶液,整个过程产生的热效应。
用s Q 表示。
微分溶解热:恒温恒压下,1mol 溶质溶于某一确定浓度的无限量的溶液中产生的热效应,以1
2n
n Q ⎪⎪⎭⎫
⎝⎛∂∂表示。
冲淡热:恒温恒压下,一定量的溶剂A 加到某浓度的溶液使之稀释所产生的热效应。
积分冲淡热:恒温恒压下,在含有1mol 溶质的溶液中加入一定量的溶剂,使之稀释成另一浓度的溶液的过程中产生的热效应,以d Q 表示。
微分冲淡热:恒温恒压下,1mol 溶剂加入到某一浓度无限量的溶液中所发生的热效应,
以21n n Q ⎪⎪⎭⎫
⎝⎛∂∂或2
0n s n Q ⎪⎪⎭⎫ ⎝⎛∂∂表示。
它们之间关系可表示为:
s Q n Q =2 令021n n n
= 2
1002n s n s n Q n n Q Q ⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂= ()()0201n s n s d Q Q Q -=
积分溶解热s Q 可由实验测得,其他三种热效应则可通过0n Q s -曲线求得,曲线某点的切线的斜率为该浓度下的摩尔微分稀释热,切线与纵坐标的截距,为该浓度下的摩尔微分溶解热
(即OC )。
显然,图中A 点的摩尔溶解热与B 点的摩尔溶解热之差为该过程的摩尔积分稀释热(即BE )。
欲求溶解过程的各种热效应,应测定各种浓度下的摩尔积分溶解热。
实验中采用累加的方法,先在纯溶剂中加入溶质,测出溶解热,然后在这溶液中再加入溶质,测出热效应,根据先后加入溶质总量可求出,各次热效应总和即为该浓度下的溶解热。
实验采用绝热式测温量热计,装置图如图2。
KNO 3在水中的溶解热是一个吸热过程,热量的标定采用电热补偿法,先测定体系的起始温度,溶解过程中体系温度随吸热反应进行而降低,再用电加热法使体系升温至起始温度,根据所消耗电能求出热效应Q 。
3 实验操作
(1)研磨,干燥3KNO 并称量约2.5,1.5,2.5,3.0,3.5,4.0,4.0,4.5g ,放入8个称量瓶中,分别用0.0001g 精度电子天平称量每份样品精确质量。
(2)称量216.2g 去离子水于杜瓦瓶中,连接实验装置线路。
(3)开始实验,测量室温,根据提示加入3KNO ,直至第八份3KNO 加完。
(4)关闭电源,清洗容器。
(5)在0.0001g 精度电子天平上称量每个空称量瓶质量。
4 实验结果及讨论
原始数据为每一秒通过电热丝的电流及其两端电压,共4111组;每份溶质质量,共8组。
温差由负到正区间内的时间就是加入每一份溶质后的加热时间t ,通过公式UIt Q 可求出加入每一份溶质后的热效应Q ,其中电流I 为恒定值0.366A 。
数据处理后结果如下:
序号
加热时间内电压的
平均值U/v
加热时间t/s
加热时间内产生热
量Q/J
累计产生热量
+Q /J 1 6.00481 458 1006.57357 1006.57357 2 5.95081 264 574.99076 1581.56433 3 5.89277 430 927.40484 2508.96917 4 5.89957 504 1088.25781 3597.22698 5 5.93565 585 1270.8812 4868.10818 6 5.89739 592 1277.80006 6145.90824 7 5.90211 609 1315.54454 7461.45278 8 5.91171 649 1404.23183
8865.68461
另有水的物质的量mol mol
g g
n 0111.12182.2161
1=⋅=
-,即可求得0n 和s Q 序号
2n 0n s Q 1 0.02532 474.37204 39754.09044 2 0.04036 297.59911 39186.43038 3 0.06535 183.79648 38392.79526 4 0.09609 124.99844 37436.01811 5 0.13211 90.91742 36848.90001 6 0.17194 69.85635 35744.49366 7 0.21334 56.30027 34974.46695 8
0.25914
46.34985
34211.94956
根据上表数据,使用origin 拟合0n Q s -曲线如下:
100
200
300
400500
34000
35000360003700038000
3900040000Q s (J )
n0 (mol)
Equation y = A1*exp(-x/t1) + A2*exp(-x/t2) + y0
Adj. R-Squar 0.99633
Value Standard Err Qs y040092.8995442.12018Qs A1-4754.86311639.41099Qs t1179.3199994.57123Qs A2-9873.41332841.96307Qs
t2
31.17881
14.42945
由图得,该拟合曲线方程为8995.400924133.98728631.475417881
.3131999
.179+--=--x
x
e
e y
使用maple 处理数据,过程如下:
数据处理结果如下:
0n
1/-⋅mol J 积分溶解热
1/-⋅mol J 微分溶解热
1s /Q -⋅mol J 微分冲淡热
80 36290.57214
32985.93523 41.30796140
100 36971.03021 34171.57038 27.99459833 200 38518.04769 36675.91042 9.210686346 300 39199.82591 37700.52567 4.997667467 400 39581.92190
38441.82956
2.850230843
0n 范围
1/-⋅mol J 积分冲淡热
80~100 680.45807 100~200 1547.01748 200~300 681.77822 300~400
382.09599
5 思考题
(1)由于实验过程中无法保证装置完全绝热,所以利用硝酸钾溶于水吸热,使溶液温度大约下降一摄氏度来抵消误差,使体系在实验过程中更接近绝热状态,从而减小误差。
(2)如果加热功率增大,实际测得的时间就会缩短,使测得的溶解热数据偏小,反之则增大。
解决方法:提高电源稳定性,使用精密稳流电源。