第5章 电流镜
CMOS模拟集成电路设计第5章电流镜
精品文档 行的普通股股数× (已发行时间÷报告期时间) -当期回购的普通股股数× (已回购时间÷ 报告期时间) (4)实例:本公司未发行可转换公司债券、认股权证、股份期权等稀释性潜在普通股,所 以计算过程与结果同基本每股收益。
(1)概念 : 复利是一种计算利息的方法。按照这种方法,利息除了会根据本金计算外,新 得到的利息同样可以生息,因此俗称“利滚利” 、“驴打滚”或“利叠利”。只要计算利息的 周期越密,财富增长越快,而随着年期越长,复利效应亦会越为明显。 (2)计算公式:最简单的复利公式如下: FV=PV(1+i)^n
ROE=144000195.15 ÷(916171029.94+144000195.15 ÷2-45240490.4 ×8÷12) =15.03%
精品文档
=36.22%
(1)概念:一项投资在特定时间期内的年度增长率。 (2)计算公式:复合增长率( CAGR )=(现有价值 /基础价值 )^(1/ 年数 ) – 1,
总资产收益率 =净利润÷【(期初资产总额 +期末资产总额)÷ 2】×100%=14.08%
(1)概念:又称所有者权益报酬率或股东权益收益率,是企业一定时期内净利润与平均净 资产的比率。用来衡量企业所有者权益获得报酬的水平。 (2)计算公式: ROE = P/(E0 + NP÷2 + Ei×Mi÷M0 - Ej×Mj÷M0) .
其中,现有价值是指你要计算的某项指标本年度的数目; 基础价值是指你计算的年度 上一年的这项指标的数据,如你计算 2 年,则是计算上溯第 3 年的数值; ^是乘方的意思, 开方方法为在计算器上点 x^y 健,再点( 1/年数)的数值即可。
(3)实例:以本公司 2009 年净利润为基数,计算 2010 年和 2011 年净利润的复合增 长率,给出数据如下:
第五章 电流镜
6
5.1 基本电流镜
观察MOS器件的电流公式 unCox W (VGS − VTH ) 2 I OUT ≈ 2 L 两个具有同样VGS的NMOS,如果管子尺寸相同,工艺偏差 不计(VTH相同),那么两个管子流过的电流就相同。从这一点 出发,我们考虑到法一: Av=GmRout 从右图计算Gm,由于X点的摆幅较小,可以认为X点 的变化对P点的影响很小,所以P点为虚地。那么
I out + g m1Vin / 2 = g m 2 ( −Vin / 2) ⇒| Gm |= g m1, 2
从右下图计算Rout。
IX = 2 2rO1, 2 VX VX + || rO 3 rO 4 + g1 m3 ) ⇒ Rout = rO 2
I OUT ≈ u nCox W R2 ( VDD − VTH ) 2,为了减小电流源消耗的电压余度 2 L R2 + R1 过驱动电压一般比较小100 ~ 400mV,若Vov = 200mV,有50mV的偏差, 就会导致输出电流有44%的误差。看来这种产生电流源的方式是不可取的。 同时,电源的噪声也会引起电流误差。
CMOS模拟集成电路设计
Design of Analog CMOS Integrated Circuit
Oct.2014
本章内容
第五章
电流镜
CMOS模拟集成电路设计
第五章 电流镜
2
本章内容
5.1 基本电流镜 5.2 共源共栅电流镜 5.3 低压共源共栅电流镜 5.4 与差动对结合的电流镜
第五章 电流镜
CMOS模拟集成电路设计
18
5.3 低压共源共栅电流镜
这个电路不采用电阻,避开了电阻的精度问题。 只要合理放大M7的尺寸就能够使VGS7≈VTH7,从而 获得前述要求的关系式。然而这个结构同样存在 衬偏效应的问题。 使用源跟随器MS,直接使共源共栅级的偏置下 降VTH,这样一来也可以使电压余度消耗为两 个过驱动电压。但A,B两点的电位将不能近似 相等,导致精度的损失。这种结构有时也会使 用,因为共源共栅结构的电流镜不单单是为了 实现高精度,我们也有时仅仅利用其高输出阻 抗。
CMOS模拟集成电路设计第5章—电流镜
• 3.2 小信号分析 • (忽略衬偏效应) • 方法一 • 利用 • 计算
得到,
gm1Vin/2
gm1Vin/2 gm2Vin/2
• 计算 • M1和M2用一个21,2代替,
从抽取的电流以单位增益(近 似),由M3镜像到M4。则,
若21,2>>(13)3,
• 电路增益:
1 I ss
• 3.3 共模特性 • 电路不存在器件失配时
• 两个都工作在饱和区且具有相等栅源电压的相同晶体管传 输相同的电流(忽略沟道长度调制效应)。
• 按比例复制电流 • (忽略沟道长度调制效应)
得到
该电路可以精确地复制电流而不受工艺和温度的影响; 与的比值由器件尺寸的比率决定。
忽略沟道长度调制效应!
• 例子:
• 实际设计中,所有晶体管采用相 同的栅长,以减小由于源漏区边 缘扩散所产生的误差。
• 沟道长度调制效应使得电流镜像产生极大误差,
因此
• 共源共栅电流源 • 为了抑制沟道长度调制的影响,
可以采用共源共栅电流源。共源共 栅结构可以使底部晶体管免受变化 的影响。
• 共源共栅电流镜 • 共源共栅电流镜 • 确定共源共栅电流源的偏置电压,
采用共源共栅电流镜结构。 •
– 共源共栅电流镜消耗了电压余度 – 忽略衬偏效应且假设所有晶体管都是相同的,则P点所允许的
模拟集成电路设计
电流镜
提纲
• 1、基本电流镜 • 2、共源共栅电流镜 • 3、电流镜作负载的差动对
Байду номын сангаас :电流源
• 处于饱和区的管可以作为一种电流源
Iou I tD 1 2n C oW L x(V G S V t) h 2 (1 V D )S
CMOS模拟集成电路设计第5章—电流镜ppt课件
忽略沟道长度调制效应!
17.04.2020
5
.
• 例子:
– 实际设计中,所有晶体管采用相同 的栅长,以减小由于源漏区边缘扩 散所产生的误差。
– 采用叉指结构。
如图,每个叉指的W为5±0.1μm ,则 M1和M2的实际的W为:
W1=5±0.1μm, W2=4(5±0.1)μm 则IOUT/IREF= 4(5±0.1)/ (5±0.1)=4
17.04.2020
10
.
– 低压的共源共栅电流镜中的偏置Vb如何产生? 设计思路: 让Vb等于(或稍稍大于)VGS2+(VGS1-VTH1),
例1:在图a中,选择I1和器件的尺寸,使M5 产生VGS5≈VGS2,进一步调整M6的尺寸和Rb的阻 值,使VDS6=VGS6-RbI1 ≈VGS1-VTH1。
11
.
3、电流镜作负载的差动对
• 3.1大信号分析
– Vin1-Vin2足够负时,M1、M3和M4均关断,M2和 M5工作在深线性区,传输的电流为0,Vout=0;
– 随Vin1-Vin2增长,M1开始导通,使ID5的一部分流 经M3,M4开启,Vout增长
– 当Vin1和Vin2相当时,M2和M4都处于饱和区, 产生一个高增益区。
若2rO1,2>>(1/gm3)||rO3,
• 电路增益:
1
17.04.2020
I ss
15
.
• 3.3 共模特性
– 电路不存在器件失配时
忽略rO1,2,并假设1/(2gm3,4)<<rO3,4,
则,
17.04.2020
17
.
2010年CMOS模拟集成电路复习提纲
2007年《大规模集成电路分析与设计》复习提纲第2章MOSFET 的工作原理及器件模型分析重点内容:* CMOS 模拟集成电路设计分析的最基本最重要的知识:MOS 器件的三个区域的判断,并且对应于各个区域的I D 表达式,和跨导的定义及表达式。
* 体效应的概念,体效应产生的原因,及体效应系数γ。
* 沟道调制效应的概念,沟长调制效应产生的原因,沟道电阻D o I r λ1=,λ与沟道长度成反比。
* MOS 管结构电容的存在,它们各自的表达式。
* MOS 管完整的小信号模型。
MOSFET 的I-V 特性 1. TH GS V V <,MOS 管截止 2. TH GS V V ≥,MOS 管导通a.TH GS DS V V V -<,MOS 管工作在三极管区;⎥⎦⎤⎢⎣⎡--=221)(DS DS TH GS ox n D V V V V L W C I μ 当)(2TH GS DS V V V -<<时,MOS 工作于深Triode 区,此时DS TH GS oxn D V V V LWC I )(-≈μ,DSD V I ~为直线关系. 导通电阻:)(1TH GS ox n DDSon V V LW C I V R -=∂∂=μb .THGS DSV V V -≥,MOS 管工作在饱和区;2)(21TH GS oxn D V V LWC I -=μ 跨导g m :是指在一定的V DS 下,I D 对V GS 的变化率。
饱和区跨导:TH GS DD oxn H T GS oxn m V V I I LW C V V LW C g -==-=22)(μμ三极管区跨导:DS ox n m V L WC g μ=MOSFET 的二级效应1. 体效应: 源极电位和衬底电位不同,引起阈值电压的变化.)22(0F SB F TH TH V V V φφγ-++=)22(0FP BS FP n TH THN V V V φφγ--+=)(H T GS oxn constV GSD m V V LW C V I g DS -=∂∂==μ)22(0FN FN BS P TH THP V V V φφγ---+=2. 沟长调制效应: MOS 工作在饱和区,↑DS V 引起↓L 的现象.)1()(212DS TH GS ox n D V V V LWC I λμ+-⎪⎭⎫⎝⎛= TH GS D DS D ox n DS H T GS oxn GSD m V V I V I L W C V V V LW C V I g -=+⎪⎭⎫⎝⎛=+-=∂∂=2)1(2 )1)((λμλμ 饱和区输出阻抗:λλμ⋅=⋅-⎪⎭⎫⎝⎛=∂∂=D TH GS ox n DS D o I V V LWC V I r 1)(21112线性区输出阻抗:()[]DS TH GS oxn o V V V LW C r --=μ13. 亚阈值导电性V GS <V TH ,器件处于弱反型区.V DS >200mV 后,饱和区I D -V GS 平方律的特性变为指数的关系:T GSD V V I I ζexp0=MOSFET 的结构电容(各电容的表达式见书)MOSFET 的小信号模型MOS 器件在某一工作点附近微小变化的行为,称为小信号分析.此时MOS 器件的工作模型称为小信号模型. MOS 管的交流小信号模型是以其直流工作点为基础的。
专用集成电路设计基础教程第5章 模拟集成电路设计技术 共329页
(5-37)
当β=100,n=5时相对误差仅为0.06%。当β=5, n=5时, 相对误差为16%。现在再回头看,如果不用V0管,而用基本型 电流源,即把V管b、c极短接,此时有如下关系:
38
ir ic (n1)ib
ic(1
n1 )
io(1
n1 )
(5-38)
n1
io (1n1)ir
29
6. 横向PNP管电流源 横向PNP管在模拟集成电路中已得到广泛应用。所谓横向 PNP管,是指以N型外延层作为PNP管基区,其发射区和集电 区由硼扩散同时实现的,因此在工艺上容易制造出多个发射区 和集电区的晶体管。基本型电流源电路的两个晶体管的基区是 连在一起的,发射极也接相同电位,这样就可以用一个多集电 极的横向PNP管构成多个电流源。图5-6就是用一个多集电极 横向PNP管作为基本型电流源的电路,它的等效电路如图5-7 所示。
24
(5-26) (5-27)
现在来计算一下相对误差值。当β=100时,相对误差仅 为2%;当β=5时,相对误差约为29%。因此用β值很大的管 子作基本型电流源时,其误差可以忽略不计,但对β值很小的 管子来说,其误差就相当大了。为了减小输出电流io和参考电 流ir间的误差,需要对基本型电流源进行改进,改进后的电流 源电路如图5-5所示。这种改进型电流源又称为Wilson电流源。
17
在集成电路版图设计时,常把V1、V2两管靠得很近,加上 工艺相同,掺杂浓度相同,因此两个管子单位面积的反相漏电
流可以认为相同,即 is1 is2 。另外,由图5-2电路可知,V1、
V2两管的正向压降也相同,即UBE1=UBE2。这样由上面几个公 式可以得出
io Ae1 ir Ae2
第五章 电流镜
电流可以按照比例被复制,而且不受工艺和温度的影响。
CMOS模拟集成电路设计 第五章 电流镜 Copyright 2011, zhengran
5.4 与差动对结合的电流镜
7
5.1 基本电流镜
例,求图中M4的漏电流,所有管子都工作的饱和区,不考虑沟 道调制。
⇒ I D4 =
(W / L) 2 (W / L) 4 I REF (W / L)1 (W / L) 3
CMOS模拟集成电路设计
第五章 电流镜
Copyright 2011, zhengran
8
5.1 基本电流镜
因此我们一般使对管具有相同的沟道长度(Ldrawn),而改变 W,以获得需要的复制比例。
Copyright 2011, zhengran
CMOS模拟集成电路设计
第五章 电流镜
10
5.1 基本电流镜
计算图中的小信号电压增益。(不考虑沟道调制)
⇒ Av = g m1
(W / L) 3 RL (W / L) 2
输入共模电平范围: VGS 1, 2 + VDS 5 ≤ Vin ,CM ≤ Vout + VTH 2
CMOS模拟集成电路设计 第五章 电流镜 Copyright 2011, zhengran
20
5.4 与差动对结合的电流镜
例:假设电路完全对称,当VDD从3V变化到0V时,输出电压随 VDD变化的关系。认为VDD等于3V时所有器件都饱和。 VDD从3V减小时,VF与Vout以 斜率1下降(为什么?),下降到一 定程度时M1,M2进入线性区。 (Vout下降斜率还是1吗?)最后使 得M5进入线性区,Vout的下降 变缓。(为什么?)
模拟CMOS集成电路设计(拉扎维)第5章无源和有源电流镜PPT课件
常转用换复为制电方流法是先把IREF转换为电压,在由该电压
西电微电子学院-董刚-模拟集成电路设计
77
基本电流镜-等量复制
镜面
基本电流镜
I REF
=
n C ox
W (VGS
VTH ) 2
2L
I out = ff 1( I REF ) = I REF
I REF = f (VGS )
模拟集成电路原理
第5章 无源与有源电流镜
11
本讲 电流镜
基本电流镜
共源共栅电流镜
有源电流镜
电流镜做负载的差分放大器
大信号特性 小信号特性 共模特性
西电微电子学院-董刚-模拟集成电路设计
22
明确几个概念
电流源
Current source
电流沉
Current sink
电流镜
Current Mirror
西电微电子学院-董刚-模拟集成电路设计
55
基于电阻分压的电流源
电流值对工艺、电源、温度等变 化敏感
不同芯片阈值偏差可达100mV n 、VTH随温度变化
输出电压范围
大于M1管的VOV即可
为了输出电压范围较大,VOV取 典型值200mV
若VTH改变50mV,则IOUT改变44%
I OUT n Cox W ( R2 VDD
L L eff 2
drawn2
2LD= Ldrawn1 Leff 1= Ldrawn1 2LD Ldrawn1 2LD L L drawn2 eff 2 Ldrawn2 2LD Ldrawn2
结论: 取L1=L2,便于 获得期望的精确
电流值
西电微电子学院-董刚-模拟集成电路设计
集成电路版图设计基础第五章:匹配
school of phye
basics of ic layout design
11
匹配方法 之二:交叉法 interdigitating device
• 通常在电路中有些大堆部件都必须与一个给定的器件匹配,这个 器件称为定义部件(图5-5,P104)。
school of phye
basics of ic layout design
• Also use dummy poly strips to minimize mismatch induced by etch undercutting during fab. And these widths of dummy gates can be shorter than the actual gates.
• analog transistors often have a large W/L ratio. • Interdigitization can be used in a multiple transistor circuit layout to distribute process gradients across the circuit. This improves matching. • two matched transistors with one node in common: ★ split them in an equal part of fingers (for example 4) ★ interdigitate the 8 elements: AABBAABB or ABBAABBA
跨导运算放大器
5.2 双极型集成 OTA
5.2.1 OTA 的基本概念
OTA 是跨导运算放大器的简称,它是一种通用标准部件。OTA 的符号如图 5.1 所示,它有 两个输入端,一个输出端,一个控制端。符号上的“+”号代表同相输入端, “-”号代表反相 输入端,io 是输出电流,IB 是偏置电流,即外部控制电流。 OTA 的传输特性可用下列方程式描述
186
式(5.10)是传输特性的精确表达式,显然 io 与 uid 之间具有非线性函数关系。在输入电压信 号很小,即 uid<<2UT 条件下,利用双曲正弦函数的特性(即当 x<<1 时,thx≈ x) , 。则由式(5.10) 可得,io 与 uid 之间具有的近似线性关系为
io ic1 ic2 I B
i o G m ( u i u i ) G m u id
(Hale Waihona Puke .1)183式中 io 是输出电流;uid 是差模输入电压;Gm 是开环跨导增益。 通常由双极型集成工艺制作的 OTA 在小信号下,跨导增益 Gm 是偏置电流 IB 的线性函数, 其关系式为
G m hI B
h q 1 2 kT 2U T
VD6
-EE
图 5.4 基本型 OTA 电路
在图 5. 4 所示电路中,VT1、VT2 组成跨导输入级,它是共射差动式电路,输入电压信号, 输出电流信号,因此是跨导放大级。VT3 和 VD1 组成一个基本镜象电流镜,与结构框图 5.3 中 Mw 的作用相同,将外加偏置电流 IB 送到输入级作 VT1、VT2 的射极长尾电流。VT7、VT8、VT9 和 VD5 组成威尔逊电流镜, 起结构框图 5.3 中 Mz 的作用, VT8 与 VT9 的达林顿接法可提高电流 镜的输出电阻, 并联在 VT8 发射结上的二极管 VD4 用来加快电路的工作速度。 同理, VT4、 VT5、 VT6 与 VD2、VD3 组成威尔逊电流镜,起结构框图 5.3 中 Mx 的作用。VT10、VT11 和 VD6 组成第 三个威尔逊电流镜起框图中 My 的作用。输出端为 VT9 集电极与 VTl0 集电极的相交点。因此是 高阻抗输出端,输出电流为 VT9 集电极电流与 VT10 集电极电流之差。 如果上述电路中 4 个电流镜的电流传输比均等于 1 ,从而使得 ic9=ic2 , ic10=icl , io= ic9-ic10=ic2-ic1。因此,上述 OTA 电路的传输特性(即 io 与 uid 的函数关系)将由差动输入级的传输 特性来决定。
5模拟电子技术基础简明教程(第三版)杨素行_PPT课件_第五章
~+1 2 uId
~+1 2
uId
R
+ uo
VT1
VT2
Re
VEE
无负反馈。
图 5.2.8 长尾式差分放大电路
(2)静态分析
当 uId = 0 时,由于电路结构对称,故: IBQ1 = IBQ2 = IBQ,ICQ1 = ICQ2 = ICQ ,UBEQ1 = UBEQ2
= UBEQ,UCQ1 =UCQ2 = UCQ, 1= 2=
第五章 集成运算放大电路
5.1 集成放大电路的特点 5.2 集成运放的基本组成部分 5.3 集成运放的典型电路 5.4 集成运放的主要技术指标 5.5 理想运算放大器 5.6 各类集成运放的性能特点 5.7 集成运放使用中的几个具体问题
5.1 集成放大电路的特点
集成电路简称 IC (Integrated Circuit)
当 uId = 0,时
+ uId
UCQ1 = UCQ2
UO = 0
Rb1
Rc1 + uo
Rc2 Rb2
R1
~+1 2 uId
~+1 2
uId
R2
VT1
VT2
图 5.2.6 差分放大电路的基本形式
(2)电压放大倍数 VT1 和 VT2 基极输入电压大小相等,极性相反,— —称为差模输入电压(uId)。
由于 UBE1 = UBE2,VT1 与 VT2 参数基本相同,则
IB1 = IB2 = IB;IC1 = IC2 = IC
R IREF
2IB
IC2
VT1
IB1 +
UBE1
IC2 IB2
U+BE2 VT2
第五章 电流镜
19
5.4 与差动对结合的电流镜
电流镜与差动对的结合可以将差动输入信号转换为单端输出信号。
M1的小信号电流经过M3镜像到M4中,M4和M2的小信 号电流的矢量和流过输出端的负载使Vout发生变化。这 也是差分运放的一种形式。
大信号分析
当Vin1<<Vin2时,M1,3,4关断,各支路无电流Vout=0。随 着Vin1逐渐增大,I4逐渐变大,I2逐渐变小,Vout处的寄生 电容被充电,电位升高。Vin1=Vin2时,Vout=VF=VDD-VSG3 。Vin1>>Vin2时,M2关断,Vout变为VDD。(Vin=Vin2时, 为什么Vout=VF?) 若Vout<VF,M1流过的电流将大于M2,M3流过的电流将 小于M4,这是互相矛盾的。
CMOS模拟集成电路设计 第五章 电流镜
16
5.3 低压共源共栅电流镜
低压共源共栅电流镜,或者叫“低电压余度消耗”的共源共 栅电流镜。 (b)图比(a)图多消耗了相当于一个 阈值的电压余度。主要是因为M1 的二极管形式连接。因此将拓扑 改造成左下方所示的结构。只要 合理的设置Vb就可以减小电压余 度消耗。 VGS1 ≥ Vb − VTH 2 , Vb − VGS 2 ≥ VGS1 − VTH 1 ⇒ VGS 2 + VGS1 − VTH 1 ≤ Vb ≤ VGS1 + VTH 2
共源共栅电流镜
体效应在两个管子上表现出相同的阈值变化。
CMOS模拟集成电路设计
第五章 电流镜
14
5.2 共源共栅电流镜
例:画出VX和VY与IREF的关系草图。如果IREF作为电流源工作, 其两端的电压不能小于0.5V,则IREF能提供的最大电流值是多少? (不考虑体效应,管子尺寸及工艺参数已知)
电流镜在电流模式电路中的应用
电流镜在电流模式电路中的应用徐文彬 20102484在当今信息时代,信息技术己深入到国民经济的各个领域,人们在日常生活中无处不体会到信息技术带来的变化。
信息技术的基础是微电子技术,而集成电路是微电子技术的核心,是整个信息产业和信息社会最根本的技术基础。
在社会的信息化程度快速提高的过程中,集成电路芯片的作用也越来越重要,无论移动手持设备还是不断升级的笔记本电脑,集成电路芯片都被广泛应用。
集成电路设计和制造水平无疑已成为衡量一个国家技术水平的一个重要标准,同时成为一个国家经济实力和国防实力的一个重要标志。
近二十年来,以电流为信号变量的电流模式电路的巨大潜在优势逐渐被各国科学家发现并挖掘出来,促进了模拟集成电路朝低电压、低功耗等方面的发展。
而电流传输器是目前电流模式电路中使用最广泛、功能最强的标准模块。
1996年,A.Fabre在电流传输器的基础上提出了电流控制电流传输器的基本理论[1]。
电流传输器不仅有电压输入端,而且有电流输入端,因此它能实现电压模式电路,也能实现电流模式电路。
电流传输器无论在信号大小的情况下,都能比相应运算放大器提供更大带宽下更高的电压增益,而且电流控制电流传输器还具有电可调特性。
CMOS工艺由于具有输入阻抗高、功耗低、集成度高、占有芯片面积小、抗辐射能力强等特点,正日益成为最广泛应用的集成电路设计工艺。
因此,应用CMOS工艺设计电流传输器及电流控制电流传输器引起了越来越多的关注。
同时,基于电流传输器的优点和易于和其他电子元件组合构成应用电路的特点,电流传输器被广泛的应用于各种模拟滤波器的设计。
电流镜的基本理论电流镜(Current Mirror)是一种信号处理的标准部件,同运算放大器、电流传输器、电流反馈放大器一样,使用在模拟和数模混合模式VLSI电路中。
它能将电路中某一支路的参考电流在其它支路中得以重现或复制[3]。
由于其电流复制能力,它常被用来构成模拟集成电路和器件中支流偏置电流源,成为模拟集成电路中应用最为广泛的电路技术之一。
第五章 电流镜
VOD=VGS-VTH VTH+VOD
VTH+2VOD
2(VTH+VOD)
2VOD
VTH+VOD
电流镜作负载的差动对
增益Av=gmRout=gm(rO1,2||rO3,4)
1 I ss
共模特性要比全差动电路差
2010/11/4
小结
29
结论:取L1=L2,便于获得期望的精确电流值
电流镜中晶体管的W的取值方法
电流镜中晶体管的W的取值方法
例子:
实际设计中,所有晶体管采用相同 的栅长,以减小由于源漏区边缘扩 散所产生的误差。
采用叉指结构。
如图,每个叉指的W为5±0.1μm ,则 M1和M2的实际的W为:
W1=5±0.1μm, W2=4(5±0.1)μm 则IOUT/IREF= 4(5±0.1)/ (5±0.1)=4
第五章 电流镜
提纲
1、基本电流镜 2、共源共栅电流镜 3、有源电流镜
★ 电流镜做负载的差分放大器 大信号特性 小信号特性 共模特性
1、基本电流镜
★ AIC中经常需要电流源 ★ 对电流源的期望
● 电流值能由设计者方便地设定在某一期 望值,并且电流值的偏差能被控制在一定 范围内
电流值往往会随工艺、电源、温度等变化而变化
20
输入共模电压的选择 为使M2饱和,输出电压不能小 于Vin,CM-VTH,因此,为提高输 出摆幅,应采用尽量低的输入 共模电平,输入共模电平的最 小值为VGS1,2+VDS5,min。
当Vin1=Vin2时,电路的输出电压 Vout=VF=VDD-|VGS3|
2010/11/4
电流镜作负载的差动对
电流镜和参考源
提要
电流镜:基本特性、简单MOS型电流镜、共 源共栅 MOS型电流镜、低压共源共栅MOS 型电流镜
参考源:Widlar电流源、电源电压不灵敏型 偏置、恒温偏置(Bandgap)
电流镜的基本特性 电流镜结构及其优缺点
电流镜
什么是电流镜?
将输入支路的电流拷贝到输出 支路,给其它子系统提供电流源, 本质上是一个电流放大器
IIN N (W / L)1
晶体管宽度不变,长度作比例变化
L2
N M
L1
晶体管长度不变,宽度作比例变化
W2
M N
W1
M个相同的晶体管并联作M2,N个相同的晶体管并联作M1
W2 MW ,W1 NW
第三种方案好于第二种,第二种方案好于第一种(工艺偏差)
IOUT M (W / L)2 4
IIN N (W / L)1
简单CMOS电流镜的噪声
输出端的噪声电流:
io2n id22 2 id21
4kT (gm2 2 gm1)f
4kT gm2 (1 )f
4kT
I
IN
(
gm ID
)2
(1
)f
低噪声:
减小电流增益
Cbig
减小(gm/ID)与输出电压低的要求矛盾 在栅极增加滤波电容,影响响应速度(见后面的讨论)
Cascode电流镜
输出电压大于一定值时,输出电流基本不随 输出电压的变化而变化 没有电流增益系统误差 最小输出电压:VOUT(min) Vt 2Vov
低压Cascode电流镜
VX Vb VGS 3 VY Vb VGS 4 M1、M2的漏源电压相等, 电流增益系统误差为0
偏置电压考虑(Vb): VOUT (min) VY Vov4 Vb VGS 4 Vov4
模拟电子技术基础简明教程第三版PPT课件第五章
差分放大电路四种接法的性能比较
接法 差分输入 性能 双端输出
差分输入 单端输出
单端输入 双端输出
单端输入 单端输出
Ad
( RC
//
RL 2
)
1 (Rc // RL )
(Rc
//
RL 2
)
R rbe
2 R rbe
R rbe
KCMR
很高
较高
很高
1 (Rc // RL )
2 R rbe 较高
2、长尾式差分放大电路
可减小每个管子输出端的温漂。
(1)电路组成
Re 称为“长尾电阻”。
且引入共模负反馈。
Rc
Rc +VCC
Re 愈大,共
模负反馈愈强。
Ac 愈小。每个管
+ uId
子的零漂愈小。
对差模信号
R
~+1 2 uId
~+1 2 uId
R
+ uo
VT1
VT2
Re
VEE
无负反馈。
图 5.2.8 长尾式差分放大电路
Δ uo Δ uId
Au1
(3) 共模抑制比
差分放大电路 输入电压
差模输入电压 uId
共模输入电压 uIc (uIc大小相等,极性相同) +VCC
共模电压放大倍数:
Ac
Δ uo Δ uIc
+
uIc ~
Ac 愈小愈好,而 Ad 愈大愈好
Rb
Rc
+ uo
Rc Rb
R
VT1
VT2
R
图 5.2.7 共模输入电压
Ad
( RC
//
电流镜的原理及应用毕业论文.doc
TheResearch andApplication of Current Mirrors
Liao YΒιβλιοθήκη long(Hunan Institute of the Humanities Science and Technology Hunan Loudi 417000)
2.2.1第一代电流传输器CCI
(1)第一代电流传输器(CCI)的电路符号及端口特性
K.C.Smith和A.Sedra在1968年提出了第一代电流传输器(CCI)[4]。第一代电流传输器是一个三端口器件。它有两个电流输入端和一个电流输出端,分别用X、Y、Z表示。CCI的输入与输出端口特性可用矩阵式(2-1)所示。
Abstract:The paper studies the principle and improvements of CMOS current controlled conveyor. Regardless of the size of the signal, CMOS current controlled conveyor always provides higher voltage gain under wider bandwidth than the corresponding bandwidth operational amplifier and has the power adjustable features.The circuit used widely by scholars is the traditional CCCⅡproposed by Fabre and it consists of translinear loop and the basic current mirror circuit.However, the weakness of the basic current mirror circuit is low transmission precision, low output impedance and no current negative feedback circuit. Therefore,the paper presents a CMOS current controlled current conveyor based on cascode current mirror. The improved CCCⅡcircuit is constructed by a translinear loop and cascade current mirror. Compared with CCCⅡbased on the basic current mirror, the improved CCCⅡcircuit has the following merits: high output impedance, high current transfer accuracy. Performance principle of the circuits is analyzed and experiment results are given. The results of experiment verify the feasibility of the improved CCCⅡ.
模拟CMOS
21()ds on ds n gs thV R I K V V ==-12()ds on ds n gs th V R I K V V ==-12()ds on dsn gs th dsVR I K V V V ==--第二章:MOS 器件物理1.概念:熟悉增强型NMOS 管的工作原理,画出NMOS 输出特性曲线并指出线性区和饱和区NMOS 漏电流随V GS 的变化曲线:当Vgs 小于Vth 时,NMOS 管截止;当Vgs 大于Vth 时,在NMOS管漏极和源极间形成反型层,即导电沟道。
这时在Vds 的正向电压的作用下,NMOS 管漏极和源极间有电流产生。
当Vds<Vgs-Vth 时, NMOS 管工作在线性区;当Vds ≧Vgs-Vth 时, NMOS 管工作在饱和区。
画出NMOS 截止区,线性区和饱和区的实际物理结构图:2.直流导通电阻:⑴ 线性区的直流导通电阻(Vgs>Vth, Vds<Vgs-Vth ):⑵ 深线性区的直流导通电阻(Vgs>Vth, Vds<<2(Vgs-Vth ):⑶ 饱和区的直流导通电阻 (Vgs>Vth, Vds ≧Vgs-Vth ):3.衬底效应:由于V bs 不为0而引起阈值电压的变化的效应。
)|2||2|(0f BS f th th V V V Φ--Φ+=γ4.沟道调制效应:在MOS 管工作于饱和状态时,MOS 管的导电沟道会发生夹断,且夹断点的位置随栅漏间的电压差的增加而向源极移动,既有效沟道、长度实际上是Vds 的函数。
这一效应称为“沟道调制效应”。
21()(1)2n ox gs th ds W Id C V V V L μλ≈-+ , 211()ds o ds n gs th d V r I K V V I λλ∂===∂- 5.亚阈值效应:当MOS 管的Vgs 略小于Vth 时,在实际中MOS 管已开始导通,仍会在MOS 管的导电沟道产生一个弱反型层,从而产生由漏极向源极的电流,该现象称为NMOS 管的亚阈值效应,且Id 与Vgs 呈指数关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二 • 共源共栅电流镜
基本共源共栅电流镜
选择Vb使VX=VY, Iout即是IREF的精确复制! 即使VP变化, 因∆VY= ∆VP /(gm3r03), 故VX≈VY , Iout≈ IREF。注意, 这是 靠牺牲电压余度来获得的精度!
M0、M3选择合适的宽长比使 VGS0=VGS3,则VX=VY 。
虚框内电路对称,可用半电 路虚地概念
三 • 有源电流镜 有源负载差动对的小信号增益(2)
由KVL定理,得:
V
V
in
in
V = -g (- )r +g r =g V r
eq
m2
02 m1 01 m1(2) in 01(2)
2
2
由戴维南定理,显然: R = r +r = 2r eq 01 02 01(2)
较少的电压余度而采用较小的偏置电压时,这个问
题更严重。
例如,若Von1=200mV,VTH有50mV的误差就会使输出电流产生44%的误差。
如何产生精度、稳定性均较好的电流源?
一 • 基本电流镜
用基准来产生电流源
用相对较复杂的电路(有时需要外部的 调整)来产生一个稳定的基准电流IREF。
在模拟电路中,电流源的设计是基于对一个稳定的基准电流IREF的复制 ( IREF常由基 准电路(第11章)产生,这里不作讨论) ,从而得到众多的电流源 。现在我们关心 的是,如何产生一个基准电流的精确复制呢?
二 • 共源共栅电流镜
低压共源共栅电流镜的原理
上图中VA=VGS1-VDS2,若选取VDS2≈ VT , 则:
VB =
VA ≈ Von1(3), 于是:VXmin=Von4+Von3, 比基本共源共栅电流
镜减小了一个阈值电压VT, 低压共源共栅电流镜由此得
名。
二 • 共源共栅电流镜
低压共源共栅电流镜V 的产生
r
03(4)
三 • 有源电流镜 有源负载差动对的小信号增益(6)
∴(1+
r
01(2)
)V
=g
r
V
0 m1(2) 01(2) in
r
03(4)
∴A
V
0
=
gr
m1(2) 01(2)
=
=g
(r
//r
这就是输出结点的小信
) 号增益!
V
m1(2) 01(2) 03(4)
Vr
in
01(2)
1+
r
03(4)
V
3
A
=
ΔV
out
CM
ΔV
in,CM
三 • 有源电流镜 有源负载差动对的共模增益
负载电阻
−
1
r
o3,4
||
A
≈
2g
m3,4
2=
−1
g
m1,2
CM
1 +R
1 + 2g R g m1,2 SS m3,4
R
D
V =V +V
Xmin on3 B(A)
M3退出饱和 = V +(V - V )+ V
on3 GS1(2) T T
M2退出饱和
=V +V +V
on3 on2 T
这比M2和M3同时退出饱
和时的: VXmin = Von3 +Von2大了一个开启电压
VT这在低电源电压运用中是一个很大的电压损失!
二 • 共源共栅电流镜
三 • 有源电流镜
有源负载差动对的小信号增益(3)
1 V = V +I (R + r // )
0 eq X eq 03(4)
g
m3(4)
将虚框内电路看成一个大节点,由KCL可得:
V
V
0
3
- = 2g V + = 2I +I
m3(4) 3
1 r03(4)
r
r
03(4)
03(4)
有源负载差动对的小信号增益(4)
A
D
REF
GS3
2I
REF
+ V -I R ≤ V
T
REF
T
β
3
∴I ≥ REF
2
∴
2
2
≤I
≤
V
T
L
L
(1 )
βR
2
REF
3
βR
R
3
(1)式有解要求:
2
V
2
≤ T ⇒ R≥
2
βR
R
βV
3
3T
二 • 共源共栅电流镜
例:假定λ=γ=0,IR=100uA,µnCox=1.44×10-5A•V-2
M1~M8的(W/L)均为400u/5u,完成如下问题: 1. 求图(1)电路的Vomin,并求VA, VB的值。 2. 求图(2)电路的Vomin,并求VC, VD以及电阻R的值
静态时(Vin1=Vin2) ,如果电路完全对称,则 VF=Vout, 证明如下: 假定VF>Vout (即ID3<ID4), 则 由于沟道调制效应ID1>ID2, 因ID1=ID3, ID2=ID4, 故ID3>ID4, 这与假设矛盾; 反之也成立, 故必 有VF=Vout
三 • 有源电流镜
有源负载差动对的不对称摆幅
三 • 有源电流镜
带有源电流镜的差动对
也称“有源”负载
该电路的重要特性是将差动输入信号变成了单 端输出信号,完成了“双—单端”变换
三 • 有源电流镜
有源负载差动对的大信号分析
大信号时, V0max=VDD, V0min=0
M2饱和要求: V0min≥Vin-VT 上式表明小信号时V0min 依赖于输入共模电平的 大小, 为得到最大输出摆幅, 输入共模电平必须尽可能低, 输出摆幅与输入共模电平之间的 矛盾是该电路的一个缺陷。
out o2 o4 ,
o1,2
m3
o3
A ≈ g (r ||r ) v m1,2 o2 o4
三 • 有源电流镜
如何求有源负载差动对的小信号增益?
在有源负载的基本差分对中,因电路实际上 不是完全对称,P点如果不看作是虚地呢, 我们用戴维南定理来求其小信号增益。
三 • 有源电流镜
有源负载差动对的小信号增益(1)
A 2g r
VY
m3(4) 03(4)
Hale Waihona Puke 1I1∴A
V
3
=≈
g
m3(4)
=
VX
gr
m1(2) 01(2)
<<g (r //r )=A m1(2) 01(2) 03(4) VY
V V 2g (r +r )
in
in
m3(4) 01(2) 03(4)
三 • 有源电流镜 有源负载差动对的共模特性
共模增益的定义:
+λ
V
)
D1 ref
n,1 1 GS,1 TH,1
1 DS,1
2L
I =I
= 1 k′
W ( ) (V
−V
2
) (1
+λ
V
)
D2 out
n,2 2 GS,2 TH,2
2 DS,2
2L
I
out
I
ref
= 1 + λV DS2 1 + λV
DS1
电流镜中所有MOS管取相同的沟道长度 L,以减小源漏区边缘扩散(LD)所产生的
V
V
0
3
- =2g V + =2I +I ≈2I
m3(4) 3
1 r03(4) X
r
03(4)
代 入
r
03(4)
I=
r
03(4)
I ≈I
1
XX
1
r+
03(4)
1
g
m3(4)
g
1
m3(4)
I=
I=
I <<I ≈I
r03(4)
X
X
X1
1 1+g r
r+
m3(4) 03(4)
03(4)
g
m3(4)
三 • 有源电流镜
b 左图中, 若(W/L)1〜4=1, (W/L)5=1/4, 记Von=VGS-VT, 若不考虑沟道调制效应,则: VGS 1〜4= VT + Von。
∵VC= VT + 2Von ∴VA= VB = Von ∴V0min= 2 Von
该电路的缺点是为给M3和M4产生合适的偏置增加了M5支路,这给电路带来了附 加功耗。下面介绍实用自偏置低压共源共栅电流镜。
m3
m3
ΔVY ≈ΔI(r04//r02)≈gm1(2)ΔVin(r04//r02)
∴A
ΔV
Y
= ≈g
(r //r )
Y
m1(2) 04 02
ΔV
in
显然AY >> AX
三 • 有源电流镜
利用半电路近似计算 G
m
为了简化计算, 可认为P点是 虚地,稍后来 作个比较
I = I = I = g V /2 D1 D3 D4 m1,2 in
Rin=1/gm3
Rin=r04
即AX≠AY
为理解有源差动对的不对称摆幅, 假定λ=0, 则流 过M1、M2的小信号电流△ I/2=gm1(2)△Vin/2大小 相等,方向相反。
∴A
ΔV g
X
m1(2)
=≈
X
ΔV 2g