几个重要的离散型随机变量的分布列

合集下载

离散型随机变量及其分布列

离散型随机变量及其分布列

X 7 8 9 10
P
1 5
32 10 5
1 10
2021/8/6
21
3.某高校为了参加“CBA杯”安徽省大学生篮球联赛暨第 十届CUBA安徽省选拔赛,需要在各班选拔预备队员, 规定投篮成绩为甲级的可作为入围选手,选拔过程中每 人投篮5次,若投中3次则确定为乙级,若投中4次及以 上则可确定为甲级,一旦投中4次,即终止投篮,已知 某班同学小明每次投篮投中的概率是0.6. (1)求小明投篮4次才被确定为乙级的概率; (2)设小明投篮投中的次数为X,求X的分布列.
2021/8/6
23
P(X=4)=(0.6)4+C43(0.6)3×0.4×0.6=0.336 96,X的 分布列为:
X0
1
2
3
4
P 0.010 24 0.076 8 0.230 4 0.345 6 0.336 96
2021/8/6
17
[题组自测] 1.已知随机变量X的分布列为:
X0 1 234
P 0.1 0.2 0.3 x 0.1 则x=________.
解析:∵0.1+0.2+0.3+x+0.1=1, ∴x=0.3.
答案:0.3
2021/8/6
18
2.(2010·潍坊调研)如图,A,B两点间有5条线并联,它 们在单位时间内能通过的信息量依次为2,3,4,3,2.现从 中任取3条线且记在单位时间内通过的信息总量为X. 写出信息总量X的分布列.
2.超几何分布列
一般地,在含有M件次品的N件产品中,任取n件,其
中恰有X件次品,则事件{X=k}发生的概率为 P(X=k)=CkMCCnNnN--kM,k=0,1,2,…,m ,
其中m=min{M,n},且n≤N,M≤N,n,M,N∈N*.

第二章随机变量及其分一、基本要求、重点与难点

第二章随机变量及其分一、基本要求、重点与难点

第二章随机变量及其分一、基本要求、重点与难点(一)基本要求1.理解随机变量的概念。

2.掌握离散型随机变量和连续型随机变理的描述方法。

3.理解分布列与概率密度的概念及其性质。

4.理解分布函数的概念及性质。

5.会应用概率分布计算有关事件的概率。

6.掌握二项分布、泊松分布、均匀分布、正态分布和指数分布。

7.会求简单随机变量函数的分布。

(二)重点1.离散型随机变量的分布列和分布函数的概念及性质。

2.连续型随机变量的密度函数和分布函数的概念及性质。

3.掌握二项分布、泊松分布、均匀分布、正态分布和指数分布。

4.随机变量的一些简单函数的概率分布的求法。

(三)难点1.离散型随机变量的分布列与分布函数的关系。

2.连续型随机变量的密度函数与分布函数的关系。

3.随机变量函数的分布的计算。

二、重点内容简介§1 随机变量的概念及分类定义定义在样本空间Ω上的一个实值函数X=X(ω),使随机试验的每一个结果ω都可用一个实数X(ω)来表示,且实数X满足1)X是由ω唯一确定;2)对于任意给定的实数x,事件{X≤x}都是有概率的,则称X为一随机变量,一般用大写字母X,Y,Z等表示。

引入随机变量后,随机事件就可以通过随机变量来表示,这样,我们就把对事件的研究转化为对随机变量的研究。

随机变量一般可分为离散型和非离散型两大类。

非离散型又可分为连续型和混合型。

由于在实际工作中我们经常遇到的是离散型和连续型的随机变量,因此一般情况下我们仅讨论这两个类型的随机变量。

§2 随机变量的分布函数及其性质定义 设X 为一随机变量,x 是任意实数,称函数 F(x)=P(X ≤x) (-∞<x<+∞) 为随机变量X 的分布函数。

分布函数是一个以全体实数为其定义域,以事件{ω|∞<X(ω)≤∞}的概率为函数值的一个实值函数。

分布函数具有以下的基本性质: 1) 0≤F(x )≤1;2) F(x )是非减函数; 3) F(x )是右连续的; 4)lim ()0,lim ()1;x x F x F x →−∞→+∞==设随机变量X 的分布函数为F(x ),则可用F(x )来表示下列概率:(1) ()();(2) ()(0);(3) ()1()1();(4) ()1()1(0);(5) ()()()()(0);(6) (||)()()()(0)();P X a F a P X a F a P X a P X a F a P X a P X a F a P X a P X a P X a F a F a P X a P a X a P X a P X a F a F a ≤=<=−>=−≤=−≥=−<=−−==≤−<=−−<=−<<=<−≤−=−−−§ 3 离散型随机变量1 定义定义 如果随机变量X (ω)所有可能取值是有限个或可列多个,则称X (ω)为离散型随机变量(discrete random variable )简写作d .r .v .。

离散型随机变量的分布列(一)

离散型随机变量的分布列(一)
件一件的抽取产品,设各个产品被抽到的可能性相 同,在下列两种情况下,分别求出取到合格品为止
时所需抽取次数 的分布列。
(1)每次取出的产品都不放回该产品中; (2)每次取出的产品都立即放回该批产品中,然后
再取另一产品。
变式引申:
1、某射手射击目标的概率为0.9,求从开始射击到击中目标
所需的射击次数 的概率分布。
分布列的是(B )
A
0
1
P
0.6 0.3
B
0
1
2
P 0.9025 0.095 0.0025
C 0 1 2 …n D 0 1 2 … n
P 1 1 1 …1
2 48
2n1
P
1 3
12 33
1 3
2 3
2

1 3
2 3
n
2、设随机变量
的分布列为
P(
i)
a
1
i
,
i
1,2,3
则 a的值
27
3
引例
抛掷一枚骰子,所得的点数 有哪些值? 取每个
值的概率是多少?
解: 的取值有1、2、3、4、5、6
则 P( 1) 1
6
P( 4) 1
6
P( 2) 1
6
P( 5) 1
6
P( 3) 1
6
P( 6) 1
6
12
34
56
1
1
1
1
1
1
P6
6
6
6
6
6
⑴列出了随机变量 的所有取值. ⑵求出了 的每一个取值的概率.
6
O 1 2 3 4 5 6 78
1、离散型随机变量的分布列完全描述了由这个随机 变量所刻画的随机现象。

离散型随机变量的分布列及均值、方差

离散型随机变量的分布列及均值、方差

(2)方差
n
称 D(X)=
(xi-E(X))2pi
i=1
为随机变量 X 的方差,它刻画了随机变量 X 与其均
值 E(X)的 平均偏离程度 ,并称其算术平方根 DX为随机变量 X 的 标准差 .
4.均值与方差的性质 (1)E(aX+b)= aE(X)+b . (2)D(aX+b)= a2D(X) .(a,b 为常数)
题型一 分布列的求法 例 1 长春市的“名师云课”活动自开展以来获得广大家长和学生的高度赞誉,
在推出的第二季名师云课中,数学学科共计推出 36 节云课,为了更好地将课程
内容呈现给学生,现对某一时段云课的点击量进行统计:
点击量 [0,1 000] (1 000,3 000] (3 000,+∞)
节数
3 5
题型二 均值与方差 例 2 某投资公司在 2019 年年初准备将 1 000 万元投资到“低碳”项目上,现有 两个项目供选择: 项目一:新能源汽车.据市场调研,投资到该项目上,到年底可能获利 30%,也 可能亏损 15%,且这两种情况发生的概率分别为79和29;
项目二:通信设备.据市场调研,投资到该项目上,到年底可能获利 50%,可能 损失 30%,也可能不赔不赚,且这三种情况发生的概率分别为35,13和115. 针对以上两个投资项目,请你为投资公司选择一个合理的项目,并说明理由.
3.离散型随机变量的均值与方差 一般地,若离散型随机变量 X 的分布列为
X x1 x2 … xi … xn P p1 p2 … pi … pn (1)均值 称 E(X)= x1p1+x2p2+…+xipi+…+xnpn 为随机变量 X 的均值或 数学期望 .它 刻画了离散型随机变量取值的 平均水平 .
【思维升华】 离散型随机变量的均值与方差的常见类型及解题策略 (1)求离散型随机变量的均值与方差.可依题设条件求出离散型随机变量的分布 列,然后利用均值、方差公式直接求解. (2)由已知均值或方差求参数值.可依据条件利用均值、方差公式得出含有参数的 方程(组),解方程(组)即可求出参数值. (3)由已知条件,作出对两种方案的判断.可依据均值、方差的意义,对实际问题 作出判断.

常见离散型随机变量的分布

常见离散型随机变量的分布

P(X=2) =0.2304 P(X=4) =0.2592
P(X=3) =0.3456 P(X=5) =0.07776
若A和A是n重伯努利实验的两个对立结果,“成功”
可以指二者中任意一个, p 是“成功”的概率.
例如: 一批产品的合格率为0.8,有放回地抽取 4次, 每次一件, 取得合格品件数X, 以及取得不合 格品件数Y均服从分布为二项分布. “成功”即取得合格品的概率为p=0.8,
X对应的实验次数为n=4, 所以, X~B(4,0.8)
类似,Y~B(4,0.2)
二项分布的期望与方差 X ~ b(n, p)
1 如第i 次试验成功 X i 0 如第i 次试验失败
i 1,2,, n.
则 X X1 X2 Xn Xi ~ (0 1)分布 EX i p, DX i p(1 p)
两点分布的期望与方差
设X服从参数为p的0-1分布,则有
E(X ) p
E(X 2) p
X
0
1
pk 1 p
p
D( X ) E( X 2 ) [E( X )]2 p p2 p(1 p)
二、二项分布
若在一次伯努利实验中成功(事件A发生)的概率 为p(0<p<1),独立重复进行n次, 这n次中实验成功的 次数(事件A发生的次数)X的分布列为:
E(X ) 1 p
D(X )
q p2
EX 2 k 2 pqk1 p[ k(k 1)qk1 kqk1]
k 1
k 1
k 1
qp(
qk ) EX
qp( q ) 1 q
1 p
k 1
qp
2 (1 q)3
1 p
2q 1 p2 p
2

离散型随机变量及其分布规律

离散型随机变量及其分布规律

解:
例5. 某射手连续向一目标射击,直到命中为止,
已知他每发命中的概率是p,求射击次数X 的分布列.
解: 显然,X 可能取的值是1,2,… , 为计算 P(X =k ), k = 1,2, …,
设 Ak = {第k 次命中},k =1, 2, …,
于是
P(X =1)=P(A1)=p,
P(X 2)P(A1A2 ) (1 p)p
P(X 3)P(A1A2 A3)(1 p)2p
可见 P(Xk)(1 p)k1p k1,2,
这就是所求射击次数 X 的分布列.
若随机变量X的分布律如上式, 则称X 服从
几何分布. 不难验证:
(1 p)k1p 1
k 1
几个重要的离散性随机变量模型
(0,1)分布 二项分布 波松分布
一、 (0-1)分布 (二点分布)
按Po
k
n=10 n=20 n=40 n=100 =np=1 p=0. p=0.05 p=0.02 p=0.01
0 10.349 0.3585 0.369 0.366
0
1 0.305 0.377 0.372 0.370
0
2 0.194 0.189 0.186 0.185
0
3 0.057 0.060 0.060 0.061
•• • • • • • 56 7 8 9 10








•20x
二项分布的图形特点:
X ~ Bn, p
对于固定n 及 P, 当k 增加时 , 概率P (X = k ) 先是随之增加
Pk
直至达到最大值, 随后单调减少.
当 n 1p 不为整数时, n 1p 二项概率 PX k

离散型随机变量的分布列、均值与方差

离散型随机变量的分布列、均值与方差

离散型随机变量的分布列、均值与方差1.离散型随机变量的均值与方差 一般地,若离散型随机变量X 的分布列为(1)分布列的性质①p i ≥0,i =1,2,3,…,n . ②11=∑=ni i p(2)均值称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望,它反映了离散型随机变量取值的平均水平. (3)方差称D (X )=i 12))((P X E x ni i ∑=-为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的平均偏离程度,其算术平方根D (X )为随机变量X 的标准差. 2.均值与方差的性质 (1)E (aX +b )=aE (X )+b .(2)D (aX +b )=a 2D (X ).(a ,b 为常数)3.判断下列结论的正误(正确的打“√”错误的打“×”)(1)随机变量的均值是常数,样本的平均值是随机变量,它不确定.(√)(2)随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度,方差或标准差越小,则偏离变量平均程度越小.(√)(3)离散型随机变量的概率分布列中,各个概率之和可以小于1.(×) (4)离散型随机变量的各个可能值表示的事件是彼此互斥的.(√) (5)期望值就是算术平均数,与概率无关.(×)(6)随机变量的均值是常数,样本的平均值是随机变量.(×)(7)在篮球比赛中,罚球命中1次得1分,不中得0分.如果某运动员罚球命中的概率为0.7,那么他罚球1次的得分X 的均值是0.7.(√)(8)在一组数中,如果每个数都增加a ,则平均数也增加a .(√) (9)在一组数中,如果每个数都增加a ,则方差增加a 2.(×)(10)如果每个数都变为原来的a 倍,则其平均数是原来的a 倍,方差是原来的a 2倍.(√)考点一 离散型随机变量的分布列及性质[例1] (1)设X 是一个离散型随机变量,其分布列为则q 等于( )A .1B .1±22C .1-22D .1+22 解析:由分布列的性质知⎩⎪⎨⎪⎧1-2q ≥0,q 2≥0,12+1-2q +q 2=1,∴q =1-22.答案:C(2)设离散型随机变量X 的分布列为求:①2X +1的分布列; ②|X -1|的分布列. 解:由分布列的性质知:0.2+0.1+0.1+0.3+m =1,∴m =0.3. 首先列表为从而由上表得两个分布列为①2X +1的分布列为②|X -1|的分布列为[方法引航] (1)概率值均为非负数.(2)求随机变量在某个范围内的取值概率时,根据分布列,将所求范围内随机变量对应的取值概率相加即可,其依据是互斥事件的概率加法公式.1.随机变量的分布列为:其中a ,b ,c 成等差数列,若E (ξ)=13,则D (ξ)=________. 解析:由a ,b ,c 成等差数列及分布列性质得, ⎩⎪⎨⎪⎧a +b +c =1,2b =a +c ,-a +c =13,解得b =13,a =16,c =12.∴D (ξ)=16×2)311(--+13×2)310(-+12×2)311(-=59.答案:592.在本例(2)条件下,求X 2的分布列. 解:X 2的分布列为考点二 离散型随机变量的均值与方差[例2] (1)(2017·湖南益阳调研)某工厂有两条相互不影响的生产线分别生产甲、乙两种产品,产品出厂前需要对产品进行性能检测.检测得分低于80的为不合格品,只能报废回收;得分不低于80的为合格品,可以出厂,现随机抽取这两种产品各60件进行检测,检测结果统计如下:②生产一件甲种产品,若是合格品可盈利100元,若是不合格品则亏损20元;生产一件乙种产品,若是合格品可盈利90元,若是不合格品则亏损15元,在①的前提下:a .记X 为生产1件甲种产品和1件乙种产品所获得的总利润,求随机变量X 的分布列和数学期望;b .求生产5件乙种产品所获得的利润不少于300元的概率.解:①甲种产品为合格品的概率约为4560=34,乙种产品为合格品的概率约为4060=23. ②a .随机变量X 的所有取值为190,85,70,-35,且P (X =190)=34×23=12,P (X =85)=34×13=14,P (X =70)=14×23=16,P (X =-35)=14×13=112. 所以随机变量X 的分布列为所以E (X )=1902+854+706-3512=125.b .设生产的5件乙种产品中合格品有n 件,则不合格品有(5-n )件, 依题意得,90n -15(5-n )≥300,解得n ≥257,取n =4或n =5, 设“生产5件乙种产品所获得的利润不少于300元”为事件A ,则P (A )=C 454)32(13+5)32(=112243. (2)(2016·高考全国乙卷)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数. ①求X 的分布列;②若要求P (X ≤n )≥0.5,确定n 的最小值;③以购买易损零件所需费用的期望值为决策依据,在n =19与n =20之中选其一,应选用哪个?解:①由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2.从而P (X =16)=0.2×0.2=0.04; P (X =17)=2×0.2×0.4=0.16; P (X =18)=2×0.2×0.2+0.4×0.4=0.24; P (X =19)=2×0.2×0.2+2×0.4×0.2=0.24; P (X =20)=2×0.2×0.4+0.2×0.2=0.2;P (X =21)=2×0.2×0.2=0.08; P (X =22)=0.2×0.2=0.04. 所以X 的分布列为②由①知P (X ≤③记Y 表示2台机器在购买易损零件上所需的费用(单位:元). 当n =19时,E(Y)=19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4 040.当n=20时,E(Y)=20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4 080. 可知当n=19时所需费用的期望值小于当n=20时所需费用的期望值,故应选n=19.[方法引航](1)已知随机变量的分布列求它的均值、方差和标准差,可直接按定义(公式)求解;(2)已知随机变量ξ的均值、方差,求ξ的线性函数η=aξ+b的均值、方差和标准差,可直接用ξ的均值、方差的性质求解;(3)由已知条件,作出对两种方案的判断.可依据均值、方差的意义,对实际问题作出判断.某商店试销某种商品20天,获得如下数据:试销结束后(3件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.(1)求当天商店不进货的概率;(2)记X为第二天开始营业时该商品的件数,求X的分布列.解:(1)P(当天商店不进货)=P(当天商品销售量为0件)+P(当天商品销售量为1件)=120+520=310.(2)由题意知,X的可能取值为2,3.P(X=2)=P(当天商品销售量为1件)=520=1 4;P(X=3)=P(当天商品销售量为0件)+P(当天商品销售量为2件)+P(当天商品销售量为3件)=120+920+520=34.所以X的分布列为考点三[例3] (1)若X ~B (n ,p ),且E (X )=6,D (X )=3,则P (X =1)的值为( ) A .3·2-2 B .2-4 C .3·2-10 D .2-8解析:∵E (X )=np =6,D (X )=np (1-p )=3,∴p =12,n =12,则P (X =1)=C 112·12·11)21(=3·2-10.答案:C(2)某居民小区有两个相互独立的安全防范系统(简称系统)A 和B ,系统A 和系统B 在任意时刻发生故障的概率分别为110和p .①若在任意时刻至少有一个系统不发生故障的概率为4950,求p 的值;②设系统A 在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的分布列及均值E (ξ).解:①设“至少有一个系统不发生故障”为事件C ,那么 1-P (C )=1-110·p =4950,解得p =15. ②由题意,得 P (ξ=0)=3)101(=11 000,P (ξ=1)=C 132)101)(1011(-=271 000, P (ξ=2)=C 23×2)1011(-×110=2431 000,P (ξ=3)=3)1011(-=7291 000. 所以,随机变量ξ的分布列为故随机变量ξ的均值E (ξ)=0×11 000+1×271 000+2×2431 000+3×7291 000=2710. (或∵ξ~B )109,3(,∴E (ξ)=3×910=2710.)[方法引航] 如果ξ~B (n ,p ),可直接按公式E (ξ)=np ,D (ξ)=np (1-p )求解.假设某班级教室共有4扇窗户,在每天上午第三节课上课预备铃声响起时,每扇窗户或被敞开或被并闭,且概率均为0.5.记此时教室里敞开的窗户个数为X.(1)求X的分布列;(2)若此时教室里有两扇或两扇以上的窗户被关闭,班长就会将关闭的窗户全部敞开,否则维持原状不变.记每天上午第三节课上课时刻教室里敞开的窗户个数为Y,求Y的数学期望.解:(1)∵X的所有可能取值为0,1,2,3,4,X~B(4,0.5),∴P(X=0)=C044)21(=116,P(X=1)=C144)21(=14,P(X=2)=C244)21(=38,P(X=3)=C344)21(=14,P(X=4)=C444)21(=116,∴X的分布列为(2)Y的所有可能取值为3,4,则P(Y=3)=P(X=3)=1 4,P(Y=4)=1-P(Y=3)=34,∴Y的数学期望E(Y)=3×14+4×34=154.[规范答题]求离散型随机变量的期望与方差[典例](2017·山东青岛诊断)为了分流地铁高峰的压力,某市发改委通过听众会,决定实施低峰优惠票价制度.不超过22公里的地铁票价如下表:6公里的概率分别为14,13,甲、乙乘车超过6公里且不超过12公里的概率分别为12,13.(1)求甲、乙两人所付乘车费用不相同的概率;(2)设甲、乙两人所付乘车费用之和为随机变量ξ,求ξ的分布列与数学期望.[规范解答] (1)由题意可知,甲、乙乘车超过12公里且不超过22公里的概率分别为14,13.2分则甲、乙两人所付乘车费用相同的概率P 1=14×13+12×13+14×13=13.3分 所以甲、乙两人所付乘车费用不相同的概率P =1-P 1=1-13=23.4分 (2)由题意可知,ξ=6,7,8,9,10.且P (ξ=6)=14×13=112, P (ξ=7)=14×13+12×13=14.P (ξ=8)=14×13+14×13+12×13=13. P (ξ=9)=12×13+14×13=14.P (ξ=10)=14×13=112,10分 所以ξ的分布列为则E (ξ)=6×112+7×14+8×13+9×14+10×112=8.12分[规范建议] 1.分清各事件间的关系:独立事件、互斥事件、对立事件.2.求随机变量的分布列,先把随机变量所有可能值列举出来,逐个求对应的概率. 3.利用期望公式求期望值.[高考真题体验]1.(2016·高考四川卷)同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X 的均值是________.解析:同时抛掷两枚质地均匀的硬币,至少有一枚硬币正面向上的概率为1-2)21(=34,且X ~B )43,2(,∴均值是2×34=32.答案:322.(2015·高考广东卷)已知随机变量X 服从二项分布B (n ,p ).若E (X )=30,D (X )=20,则p =________.解析:因为X~B(n,p),所以E(X)=np=30,D(X)=np(1-p)=20,解得n=90,p=1 3.答案:1 33.(2016·高考全国甲卷)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:(1)(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;(3)求续保人本年度的平均保费与基本保费的比值.解:(1)设A表示事件:“一续保人本年度的保费高于基本保费”,则事件A发生当且仅当一年内出险次数大于1,故P(A)=0.2+0.2+0.1+0.05=0.55.(2)设B表示事件:“一续保人本年度的保费比基本保费高出60%”,则事件B发生当且仅当一年内出险次数大于3,故P(B)=0.1+0.05=0.15.又P(AB)=P(B),故P(B|A)=P(AB)P(A)=P(B)P(A)=0.150.55=311.因此所求概率为311.(3)记续保人本年度的保费为X元,则X的分布列为E(X)=0.85a×0.30×0.05=1.23a.因此续保人本年度的平均保费与基本保费的比值为1.23.4.(2013·高考课标全国卷Ⅱ)经销商经销某种农产品,在一个销售季度内,每售出1 t该产品获利润500元,未售出的产品,每1 t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如下图所示.经销商为下一个销售季度购进了130 t该农产品.以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T 表示为X 的函数;(2)根据直方图估计利润T 不少于57 000元的概率.(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量X ∈[100,110),则取X =105,且X =105的概率等于需求量落入[100,110)的频率),求T 的数学期望. 解:(1)当X ∈[100,130)时,T =500X -300(130-X )=800X -39 000, 当X ∈[130,150]时,T =500×130=65 000. 所以T =⎩⎨⎧800X -39 000,100≤X <130,65 000, 130≤X ≤150.(2)由(1)知利润T 不少于57 000元当且仅当120≤X ≤150.由直方图知需求量X ∈[120,150]的频率为0.7,所以下一个销售季度内的利润T 不少于57 000元的概率的估计值为0.7. (3)依题意可得T 的分布列为所以E (T )=45 000×0.1课时规范训练 A 组 基础演练1.设随机变量ξ的分布列为P (ξ=k )=15(k =2,4,6,8,10),则D (ξ)等于( ) A .5 B .8 C .10 D .16 解析:选B.∵E (ξ)=15(2+4+6+8+10)=6, ∴D (ξ)=15[(-4)2+(-2)2+02+22+42]=8.2.已知某一随机变量X 的分布列如下,且E (X )=6.3,则a 的值为( )A.5 B .6 C .解析:选C.由分布列性质知:0.5+0.1+b =1,∴b =0.4. ∴E (X )=4×0.5+a ×0.1+9×0.4=6.3,∴a =7.3.某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( )A .100B .200C .300D .400 解析:选B.记“不发芽的种子数为ξ”, 则ξ~B (1 000,0.1),所以E (ξ)=1 000×0.1=100, 而X =2ξ,故E (X )=E (2ξ)=2E (ξ)=200.4.如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过混合后,从中随机取一个小正方体,记它的油漆面数为X ,则X 的均值E (X )等于( )A.126125 B.65 C.168125 D.75解析:选B.125个小正方体中8个三面涂漆,36个两面涂漆,54个一面涂漆,27个没有涂漆,∴从中随机取一个正方体,涂漆面数X 的均值E (X )=54125×1+36125×2+8125×3=150125=65. 5.一射手对靶射击,直到第一次命中为止,每次命中的概率都为0.6,现有4颗子弹,则射击停止后剩余子弹的数目X 的期望值为( )A .2.44B .3.376C .2.376D .2.4 解析:选C.X 的所有可能取值为3,2,1,0,其分布列为∴E (X )=3×0.6+2×0.24+6.已知随机变量ξ的分布列为P (ξ=k )=12k -1,k =1,2,3,…,n ,则P (2<ξ≤5)=________. 解析:P (2<ξ≤5)=P (ξ=3)+P (ξ=4)+P (ξ=5)=14+18+116=716.答案:7 167.有一批产品,其中有12件正品和4件次品,有放回地任取3件,若X表示取到次品的件数,则D(X)=__________.解析:由题意知取到次品的概率为14,∴X~B)41,3(,∴D(X)=3×14×)411(-=916.答案:9 168.随机变量ξ的分布列如下:其中a,b,c成等差数列,则P(|ξ|d的取值范围是________.解析:因为a,b,c成等差数列,所以2b=a+c.又a+b+c=1,所以b=13.所以P(|ξ|=1)=a+c=23.又a=13-d,c=13+d,根据分布列的性质,得0≤13-d≤23,0≤13+d≤23,所以-13≤d≤13,此即公差d的取值范围.答案:23]31,31[-9.一次考试共有12道选择题,每道选择题都有4个选项,其中有且只有一个是正确的.评分标准规定:“每题只选一个选项,答对得5分,不答或答错得零分”.某考生已确定有8道题的答案是正确的,其余题中:有两道题都可判断两个选项是错误的,有一道题可以判断一个选项是错误的,还有一道题因不理解题意只好乱猜.请求出该考生:(1)得60分的概率;(2)所得分数ξ的分布列和数学期望.解:(1)设“可判断两个选项是错误的”两道题之一选对为事件A,“有一道题可以判断一个选项是错误的”选对为事件B,“有一道题不理解题意”选对为事件C,∴P(A)=12,P(B)=13,P(C)=14,∴得60分的概率为P=12×12×13×14=148.(2)ξ可能的取值为40,45,50,55,60.P(ξ=40)=12×12×23×34=18;P(ξ=45)=C12×12×12×23×34+12×12×13×34+12×12×23×14=1748;P(ξ=50)=12×12×23×34+C12×12×12×13×34+C12×12×12×23×14+12×12×13×14=1748;P(ξ=55)=C12×12×12×13×14+12×12×23×14+12×12×13×34=748;P(ξ=60)=12×12×13×14=148.ξ的分布列为E(ξ)=40×18+45×1748+50×1748+55×748+60×148=57512.10.随着人们对环境关注度的提高,绿色低碳出行越来越受到市民重视,为此某市建立了公共自行车服务系统,市民凭本人二代身份证到公共自行车服务中心办理诚信借车卡借车,初次办卡时卡内预先赠送20分,当诚信积分为0时,借车卡将自动锁定,限制借车,用户应持卡到公共自行车服务中心以1元购1个积分的形式再次激活该卡,为了鼓励市民租用公共自行车出行,同时督促市民尽快还车,方便更多的市民使用,公共自行车按每车每次的租用时间进行扣分收费,具体扣分标准如下:①租用时间不超过1小时,免费;②租用时间为1小时以上且不超过2小时,扣1分;③租用时间为2小时以上且不超过3小时,扣2分;④租用时间超过3小时,按每小时扣2分收费(不足1小时的部分按1小时计算).甲、乙两人独立出行,各租用公共自行车一次,两人租车时间都不会超过3小时,设甲、乙租用时间不超过一小时的概率分别是0.5和0.6;租用时间为1小时以上且不超过2小时的概率分别是0.4和0.2.(1)求甲、乙两人所扣积分相同的概率;(2)设甲、乙两人所扣积分之和为随机变量ξ,求ξ的分布列和数学期望.解:(1)设甲、乙所扣积分分别为x1,x2,由题意可知,P(x1=0)=0.5,P(x1=1)=0.4,P(x1=2)=1-0.5-0.4=0.1,P(x2=0)=0.6,P(x2=1)=0.2,P(x2=2)=1-0.6-0.2=0.2,所以P(x1=x2)=P(x1=x2=0)+P(x1=x2=1)+P(x1=x2=2)=0.5×0.6+0.4×0.2+0.1×0.2=0.4.(2)由题意得,变量ξ的所有取值为0,1,2,3,4.P (ξ=0)=0.5×0.6=0.3,P (ξ=1)=0.5×0.2+0.6×0.4=0.34,P (ξ=2)=0.5×0.2+0.6×0.1+0.4×0.2=0.24, P (ξ=3)=0.4×0.2+0.2×0.1=0.1, P (ξ=4)=0.1×0.2=0.02, 所以ξ的分布列为E (ξ)=0×0.3+1×0.34+2B 组 能力突破1.已知X 的分布列则在下列式子中①E (X )=-13;②D (X )=2327;③P (X =0)=13,正确的个数是( )A .0B .1C .2D .3解析:选C.由E (X )=(-1)×12+0×13+1×16=-13,故①正确.由D (X )=2)311(+-×12+2)310(+×13+2)311(+×16=59,知②不正确.由分布列知③正确.2.已知ξ的分布列如下表,若η=2ξ+2,则D (η)的值为( )A.-13B.59C.109D.209解析:选D.E (ξ)=-1×12+0×13+1×16=-13,D (ξ)=2)311(+-×12+2)310(+×13+2)311(+×16=59∴D (η)=D (2ξ+2)=4D (ξ)=209,故选D.3.已知随机变量X +η=8,若X ~B (10,0.6),则E (η)和D (η)分别是( )A .6和2.4B .2和2.4C .2和5.6D .6和5.6 解析:选B.由已知随机变量X +η=8,所以η=8-X .因此,E (η)=8-E (X )=8-10×0.6=2,D (η)=(-1)2D (X )=10×0.6×0.4=2.4.4.两封信随机投入A ,B ,C 三个空邮箱,则A 邮箱的信件数ξ的数学期望E (ξ)=________. 解析:两封信投入A ,B ,C 三个空邮箱,投法种数是32=9,A 中没有信的投法种数是2×2=4,概率为49,A 中仅有一封信的投法种数是C 12×2=4,概率为49, A 中有两封信的投法种数是1,概率为19,故A 邮箱的信件数ξ的数学期望是49×0+49×1+19×2=23. 答案:235.李先生家在H 小区,他在C 科技园区工作,从家开车到公司上班有L 1,L 2两条路线(如图),路线L 1上有A 1,A 2,A 3三个路口,各路口遇到红灯的概率均为12;路线L 2上有B 1,B 2两个路口,各路口遇到红灯的概率依次为34,35.(1)若走路线L 1,求最多遇到1次红灯的概率; (2)若走路线L 2,求遇到红灯次数X 的数学期望;(3)按照“平均遇到红灯的次数最少”的要求,请你帮助李先生分析上述两条路线中,选择哪条路线上班更好些,并说明理由.解:(1)设“走路线L 1最多遇到1次红灯”为事件A ,则P (A )=C 03×2)21(+C 13×12×2)21(=12. 所以走路线L 1最多遇到1次红灯的概率为12. (2)依题意,知X 的可能取值为0,1,2. P (X =0)=)531)(431(--=110.P (X =1)=34×)531(-+)431(-×35=920,P (X =2)=34×35=920. 随机变量X 的分布列为所以E (X )=110×0+920×1+920×2=2720.(3)设选择路线L 1遇到红灯的次数为Y ,随机变量Y 服从二项分布,即Y ~B )21,3(,所以E (Y )=3×12=32.因为E (X )<E (Y ),所以选择路线L 2上班更好.。

2.1.2 离散型随机变量的分布列

2.1.2 离散型随机变量的分布列

2.1.2 离散型随机变量的分布列1.离散型随机变量的分布列(1)定义:一般地,若离散型随机变量X 可能取的不同值为x 1、x 2、…、x i 、…、x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,以表格的形式表示如下:(2)表示:离散型随机变量可以用表格法、解析法、图象法表示. (3)性质:离散型随机变量的分布列具有如下性质: ①p i ≥0,i =1,2,…,n ; ②11=∑=ni ip2.两个特殊分布列 (1)两点分布列如果随机变量X 的分布列是P (X =1)为成功概率. (2)超几何分布列一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{X =k }发生的概率为P (X =k )=nNkn MN k M C C C --,k =0,1,2,…,m ,其中m =min{M ,n },且n ≤N ,M ≤N ,n 、M 、N ∈N *,称分布列如果随机变量X 的分布列为超几何分布列,则称随机变量X 服从超几何分布.(3)公式P (X =k )=C k M C n -k N -MC n N的推导由于事件{X =k }表示从含有M 件次品的N 件产品中,任取n 件,其中恰有k 件次品这一随机事件,因此它的基本事件为从N 件产品中任取n 件.由于任一个基本事件是等可能出现的,并且它有nN C 个基本事件,而其中恰有k 件次品,则必有(n -k )件正品,因此事件{X =k }中含有kn M N k M C C --个基本事件,由古典概型的概率公式可知P (X =k )=C k M C n -kN -MC n N.[知识点拨]1.离散型随机变量分布列表格形式的结构特征分布列的结构为两行,第一行为随机变量的所有可能取得的值;第二行为对应于随机变量取值的事件发生的概率.看每一列,实际上是:上为“事件”,下为事件发生的概率. 2.两点分布的特点(1)两点分布中只有两个对应结果,且两个结果是对立的. (2)由对立事件的概率求法可知:P(X =0)+P(X =1)=1.3.两点分布的适用范围(1)研究只有两个结果的随机试验的概率分布规律. (2)研究某一随机事件是否发生的概率分布规律.如抽取的彩券是否中奖;买回的一件产品是否为正品;新生婴儿的性别;投篮是否命中等,都可以用两点分布列来研究.4.对超几何分布的三点说明 (1)超几何分布的模型是不放回抽样. (2)超几何分布中的参数是M ,N ,n.(3)超几何分布可解决产品中的正品和次品、盒中的白球和黑球、同学中的男和女等问题,往往由差异明显的两部分组成.题型一、离散型随机变量的分布列例1、一袋中装有6个同样大小的小球,编号分别为1、2、3、4、5、6,现从中随机取出3个球,以X 表示取出球的最大号码,求X 的分布列.[解析] 随机变量X 的可能取值为3、4、5、6.从袋中随机地取出3个球,包含的基本事件总数为C 36,事件“X =3”包含的基本事件总数为C 33;事件“X =4”包含的基本事件总数为C 23;事件“X =5”包含的基本事件总数为C 24;事件“X =6”包含的基本事件总数为C 25.从而有P (X =3)=C 33C 36=120,P (X =4)=C 23C 36=320,P (X =5)=C 24C 36=310,P (X =6)=C 25C 36=12.所以随机变量X 的分布列如下表:例[解析] 将一颗骰子连掷两次共出现6×6=36种等可能的基本事件,其最大点数ξ可能取的值为1、2、3、4、5、6.P (ξ=1)=136,ξ=2包含三个基本事件(1,2)、(2,1)、(2,2),(x ,y )表示第一枚骰子点数为x ,第二枚骰子点数为y .∴P (ξ=2)=336=112.同理可求P (ξ=3)=536,P (ξ=4)=736,P (ξ=5)=14,P (ξ=6)=1136,∴ξ的分布列为例3、设随机变量ξ的分布列为P (ξ=k )=a (13)k .(k =1,2,…,n ),求实数a 的值.[解析] 依题意,有P (ξ=1)=13a ,P (ξ=2)=(13)2a ,…,P (ξ=n )=(13)n a ,由P (ξ=1)+P (ξ=2)+…+P (ξ=n )=1知,a (13+132+…+13n )=1.则a ·13(1-13n )1-13=1.∴a =2×3n 3n -1.例4、(1)设随机变量X 的分布列P (X =i )=k2i (i =1,2,3),则P (X ≥2)=________.(2)设随机变量X 的概率分布列为,则P (|X -3|=1)=________.[答案] (1)37 (2)512题型三、两点分布例5、袋内有10个白球,5个红球,从中摸出2个球,记X =⎩⎨⎧0,两球全红;1,两球非全红.求X 的分布列.[解析] 由题设可知X 服从两点分布P (X =0)=C 25C 215=221,P (X =1)=1-P (X =0)=1921.∴X 的分布列为例6η,才能使η满足两点分布,并求其分布列.[解析] 随机变量η可以定义为:η=⎩⎨⎧1 掷出点数小于4,0 掷出点数不小于4.显然η只取0,1两个值.且P (η=1)=P (掷出点数小于4)=36=12,故η的分布列为题型四、超几何分布列例7、盒中有16个白球和4个黑球,从中任意取出3个,设ξ表示其中黑球的个数,求出ξ的分布列.(精确到0.001)[解析] ξ可能取的值为0、1、2、3,P (ξ=0)=C 04C 316C 320≈0.491,P (ξ=1)=C 14C 216C 320≈0.421,P (ξ=2)=C 24C 116C 320≈0.084,P (ξ=3)=C 34C 016C 320≈0.004.∴ξ的分布列为箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X 为取出此3球所得分数之和.求X 的分布列.[解析] 由题意得X 取3、4、5、6,且P (X =3)=C 35C 39=542;P (X =4)=C 14·C 25C 39=1021;P (X =5)=C 24·C 15C 39=514;P (X =6)=C 34C 39=121. 所以X 的分布列为题型五、综合应用例9、已知A 盒中有2个红球和2个黑球;B 盒中有2个红球和3个黑球,现从A 盒与B 盒中同时各取出一个球再放入对方盒中.(1)求A 盒中有2个红球的概率;(2)求A 盒中红球数ξ的分布列.[解析] (1)A 盒与B 盒中各取出一个球来再放入对方盒中后,A 盒中还有2个红球有下面两种情况:①互换的是红球,将该事件记为A 1,则P (A 1)=C 12·C 12C 14·C 15=15. ②互换的是黑球,将该事件记为A 2,则P (A 2)=C 12·C 13C 14·C 15=310.故A 盒中有2个红球的概率为P =P (A 1)+P (A 2)=15+310=12.(2)A 盒中红球数ξ的所有可能取值为1,2,3.而P (ξ=1)=C 12·C 13C 14·C 15=310;P (ξ=2)=12; P (ξ=3)=C 12·C 12C 14·C 15=15,因而ξ的分布列为抽签的方式随机确定各单位的演出顺序(序号为1,2,…,6),求:(1)甲、乙两单位的演出序号至少有一个为奇数的概率; (2)甲、乙两单位之间的演出单位个数X 的分布列.[解析] (1)设A 表示“甲、乙的演出序号至少有一个为奇数”,则A -表示“甲、乙的演出序号均为偶数”,由等可能性事件的概率计算公式,得P (A )=1-P (A -)=1-C 23C 26=1-15=45.(2)X 的所有可能值为0、1、2、3、4,且P (X =0)=5C 26=13;P (X =1)=4C 26=415;P (X =2)=3C 26=15;P (X =3)=2C 26=215;P (X =4)=1C 26=115.从而知X 的分布列为:用完后装回盒中,此时盒中旧球个数ξ是一个随机变量,求ξ的分布列.[正解] ξ的所有可能取值为3,4,5,6.P (ξ=3)=C 33C 312=1220;P (ξ=4)=C 19C 23C 312=27220;P (ξ=5)=C 29C 13C 312=2755;P (ξ=6)=C 39C 312=2155.所以ξ的分布列为例12在学校组织的足球比赛中,某班要与其他4个班级各赛一场,在这4场比赛的任意一场中,此班级每次胜、负、平的概率相等.已知当这4场比赛结束后,该班胜场多于负场.(1)求该班级胜场多于负场的所有可能的个数和; (2)若胜场次数为X ,求X 的分布列.[解析] (1)若胜一场,则其余为平,共有C 14=4种情况;若胜两场,则其余两场为一负一平或两平,共有C 24C 12+C 24=18种情况;若胜三场,则其余一场为负或平,共有C 34×2=8种情况;若胜四场,则只有一种情况.综上,共有31种情况.(2)X 的可能取值为1,2,3,4,P (X =1)=431,P (X =2)=1831,P (X =3)=831,P (X =4)=131,所以X 的分布列为课后作业1.已知随机变量X 的分布列为:P (X =k )=12k ,k =1、2、…,则P (2<X ≤4)=( )A .316B .14C .116D .516[答案] A[解析] P (2<X ≤4)=P (X =3)+P (X =4) =123+124=316. 2.已知随机变量ξ的概率分布如下:则P (ξ=10)=( A .239 B .2310 C .139D .1310[答案] C[解析] P (ξ=10)=m =1-⎝⎛⎭⎫23+232+…+239=1-23⎣⎡⎦⎤1-⎝⎛⎭⎫1391-13=139.3.已知随机变量ξ的分布列为P (ξ=i )=i2a(i =1,2,3),则P (ξ=2)=( )A .19B .16C .13D .14[答案] C[解析] 由离散型随机变量分布列的性质知12a +22a +32a =1,∴62a =1,即a =3,∴P (ξ=2)=1a =13.4.已知在10件产品中可能存在次品,从中抽取2件检查,其次品数为ξ,已知P (ξ=1)=1645,且该产品的次品率不超过40%,则这10件产品的次品率为( )A .10%B .20%C .30%D .40%[答案] B[解析] 设10件产品中有x 件次品,则P (ξ=1)=C 1x ·C 110-xC 210=x (10-x )45=1645,∴x =2或8. ∵次品率不超过40%,∴x =2, ∴次品率为210=20%.5.设随机变量ξ的概率分布为P (ξ=k )=ck +1,k =0、1、2、3,则c =________.[答案]1225[解析] c +c 2+c 3+c 4=1,∴c =1225.6.已知离散型随机变量X 的分布列P (X =k )=k15,k =1、2、3、4、5,令Y =2X -2,则P (Y >0)=________.[答案]1415[解析] 由已知Y 取值为0、2、4、6、8,且P (Y =0)=115,P (Y =2)=215,P (Y =4)=315=15,P (Y =6)=415,P (Y =8)=515.则P (Y >0)=P (Y =2)+P (Y =4)+P (Y =6)+P (Y =8)=1415. 7.某学院为了调查本校学生2015年9月“健康上网”(健康上网是指每天上网不超过两个小时)的天数情况,随机抽取了40名本校学生作为样本,统计他们在该月30天内健康上网的天数,并将所得的数据分成以下六组:[0,5],(5,10],(10,15],…,(25,30],由此画出样本的频率分布直方图,如图所示.导学号 03960365(1)根据频率分布直方图,求这40名学生中健康上网天数超过20天的人数;(2)现从这40名学生中任取2名,设Y 为取出的2名学生中健康上网天数超过20天的人数,求Y 的分布列.[解析] (1)由图可知,健康上网天数未超过20天的频率为(0.01+0.02+0.03+0.09)×5=0.15×5=0.75,所以健康上网天数超过20天的学生人数是40×(1-0.75)=40×0.25=10. (2)随机变量Y 的所有可能取值为0、1、2.P (Y =0)=C 230C 240=2952;P (Y =1)=C 110C 130C 240=513;P (Y =2)=C 210C 240=352.所以Y 的分布列为:8.将一骰子抛掷两次,所得向上的点数分别为m 和n ,则函数y =23mx 3-nx +1在[1,+∞)上为增函数的概率是( )A .12B .56C .34D .23[答案] B[解析] 由题可知,函数y =23mx 3-nx +1在[1,+∞)上单调递增,所以y ′=2mx 2-n ≥0在[1,+∞)上恒成立,所以2m ≥n ,则不满足条件的(m ,n )有(1,3),(1,4),(1,5),(1,6),(2,5),(2,6)共6种情况,所以满足条件的共有30种情况,则函数y =23mx 3-nx +1在[1,+∞)上单调递增的概率为P =3036=56,故选B .9.从6名男同学和4名女同学中随机选出3名同学参加一项竞技测试,则在选出的3名同学中,至少有一名女同学的概率是______.[答案] 56[解析] 从10名同学中选出3名同学有C 310种不同选法,在3名同学中没有女同学的选法有C 36种,∴所求概率为P =1-C 36C 310=56.10.某校2015~2016学年高二年级某班的数学课外活动小组有6名男生,4名女生,从中选出4人参加数学竞赛考试,用X 表示其中男生的人数.(1)请列出X 的分布列;(2)根据你所列的分布列求选出的4人中至少有3名男生的概率. [解析] (1)依题意得,随机变量X 服从超几何分布, ∵随机变量X 表示其中男生的人数,∴X 可能取的值为0,1,2,3,4.∴P (X =k )=C k 6·C 4-k4C 410,k =0,1,2,3,4.∴X 的分布列为:(2)即P (X ≥3)=P (X =3)+P (x =4)=821+114=1942.11.盒子中装着标有数字1、2、3、4、5的卡片各2张,从盒子中任取3张卡片,每张卡片被取出的可能性都相等,用ξ表示取出的3张卡片上的最大数字,求: (1)取出的3张卡片上的数字互不相同的概率; (2)随机变量ξ的概率分布.[解析] (1)记“一次取出的3张卡片上的数字互不相同的事件”为A ,则P (A )=C 35C 12C 12C 12C 310=23. (2)由题意ξ可能的取值为2、3、4、5,P (ξ=2)=C 22C 12+C 12C 22C 310=130, P (ξ=3)=C 24C 12+C 14C 22C 310=215,P (ξ=4)=C 26C 12+C 16C 22C 310=310, P (ξ=5)=C 28C 12+C 18C 22C 310=815.所以随机变量ξ的分布列为:。

离散型随机变量及其分布列知识点

离散型随机变量及其分布列知识点

离散型随机变量及其分布列知识点离散型随机变量及其分布列知识点离散型随机变量是指在有限个或无限个取值中,只能取其中一个数值的随机变量。

离散型随机变量可以用分布列来描述其概率分布特征。

离散型随机变量的概率分布列概率分布列是描述离散型随机变量的概率分布的表格,通常用符号P 表示。

其一般形式如下:P(X=x1)=p1P(X=x2)=p2P(X=x3)=p3…P(X=xn)=pn其中,Xi表示随机变量X的取值,pi表示随机变量X取值为Xi的概率。

离散型随机变量的特点1. 离散型随机变量只取有限或无限个取值中的一个,变化不连续。

2. 取值之间具有间隔或间距。

3. 每个取值对应一个概率,概率分布可用概率分布列来体现。

4. 概率之和为1。

离散型随机变量的常见分布1. 0-1分布0-1分布是指当进行一次伯努利试验时,事件发生的概率为p,不发生的概率为1-p的离散型随机变量的分布。

其分布列为:P(X=0)=1-pP(X=1)=p2. 二项分布二项分布是进行n次伯努利试验中,事件发生的概率为p,不发生的概率为1-p时,恰好出现k次事件发生的离散型随机变量的分布。

其分布列为:P(X=k)=C(n,k)p^k(1-p)^(n-k)其中,C(n,k)为从n中选出k个的组合数。

3. 泊松分布泊松分布是指在某个时间段内,某一事件发生的次数符合泊松定理的离散型随机变量的分布。

其分布列为:P(X=k)=λ^ke^(-λ)/k!其中,λ为这段时间内事件的平均发生次数。

总结离散型随机变量及其分布列是概率论中的重要基础概念之一,具有广泛的应用。

掌握离散型随机变量及其分布列的知识点对于深入理解概率论及其实际应用有重要意义。

离散型随机变量的分布列

离散型随机变量的分布列

C C 的概率为 P ( X r ) C
r M
中 l min M , n ,且 n ≤ N , M ≤ N , n, M , N N .
*
n r N M n N
(r 0,1, 2, , l ) 其
称随机变量 X 的分布列为超几何分布列,且称随机 变量 X 服从超几何分布,记为 X~ H(n,M,N) 注:⑴超几何分布的模型是不放回抽样 ⑵超几何分布中的参数是 M,N,n
N
N
a 1
• 例2、一个口袋中有5个同样大小的球,编 号为1、2、3、4、5,从中同时取出3只, 以X表示取出球最小的号码,求X的分布列。
例3、
从一批有10个合格品与3个次品的产品中一件一件的抽 取产品,设每次抽取时各个产品被抽取到的可能性相同, 每次取出的产品都不放回,求直到取到合格品为止所需 抽取的次数X的概率分布列。 变式1:在上题的基础上,每次取出的产品都立即放回, 然后再取出一件产品,求直到取出合格品为止所需抽取 次数Y的分布列。 变式2:每次取出一件次品后,总有另外一件同样的合 格品被放回此批产品中,求直到取出合格品为止所需抽 取次数Z的分布列。
总结: 随机变量的分类
随机变量
离散型
连续型
随机变量所取的可能值是有限多个或无限 可列个, 叫做离散型随机变量. 随机变量所取的可能值可以连续地充满某个 区间,叫做连续型随机变量.
在抛掷一枚质地均匀的骰子的随机 试验中,用X表示向上一面的点数。
一、离散型随机变量的分布列
定义 设离散型随机变量 X 所有可能取的值为
pk
非负性 规范性

pk 0, k 1,2,
pk 1
k 1

用这两条性质 判断一个函数 是否是分布律

常见离散型随机变量分布列示例

常见离散型随机变量分布列示例

常见随机事件的概率与分布列示例1、耗用子弹数的分布列例 某射手有5发子弹,射击一次命中概率为0.9,如果命中就停止射击,否则一直到子弹用尽,求耗用子弹数ξ的分布列.分析:确定ξ取哪些值以及各值所代表的随机事件概率,分布列即获得.解:本题要求我们给出耗用子弹数ξ的概率分布列.我们知道只有5发子弹,所以ξ的取值只有1,2,3,4,5.当1=ξ时,即9.0)1(==ξP ;当2=ξ时,要求第一次没射中,第二次射中,故09.09.01.0)2(=⨯==ξP ;同理,3=ξ时,要求前两次没有射中,第三次射中,009.09.01.0)3(2=⨯==ξP ;类似地,0009.09.01.0)4(3=⨯==ξP ;第5次射击不同,只要前四次射不中,都要射第5发子弹,也不考虑是否射中,所以41.0)5(==ξP ,所以耗用子弹数ξ的分布列为:ξ0 1 2 3P 0.9 0.09 0.009 0.0001说明:搞清5=ξ的含义,防止这步出错.5=ξ时,可分两种情况:一是前4发都没射中,恰第5发射中,概率为0.14×0.9;二是这5发都没射中,概率为0.15,所以,541.09.01.0)5(+⨯==ξP .当然,5=ξ还有一种算法:即0001.0)0009.0009.009.09.0(1)5(=+++-==ξP .2、独立重复试验某事件发生偶数次的概率例 如果在一次试验中,某事件A 发生的概率为p ,那么在n 次独立重复试验中,这件事A 发生偶数次的概率为________.分析:发生事件A的次数()p n B ,~ξ,所以,),,2,1,0,1(,)(n k p q q p C k p kn k k n =-===-ξ其中的k 取偶数0,2,4,…时,为二项式n q p )(+ 展开式的奇数项的和,由此入手,可获结论.解:由题,因为()p n B ,~ξ且ξ取不同值时事件互斥,所以,[][]n n n n n n n n n p p q p q q p C q p C q p C P P P P )21(121)()(21)4()2()0(44422200-+=-++=+++=+=+=+==-- ξξξ.(因为1=+q p ,所以p p q 21-=-)说明:如何获得二项展开式中的偶数次的和?这需要抓住np q )(+与np q )(-展开式的特点:联系与区分,从而达到去除p 奇次,留下p 偶次的目的.3、根据分布列求随机变量组合的分布列例 已知随机变量ξ 的分布列为ξ-2 -1 0 1 2 3P121123 124 121 122 121 分别求出随机变量221,2ξ η ξ η ==的分布列. 解: 由于ξ η 211=对于不同的ξ 有不同的取值x y 21=,即2321,121,2121,021,2121,121665544332211========-==-==x y x y x y x y x y x y ,所以1η 的分布列为1η-121- 021 132 P121123 124 121 122 121 22ξ η =对于ξ 的不同取值-2,2及-1,1,2η分别取相同的值4与1,即2η 取4这个值的概率应是ξ 取-2与2值的概率121与122合并的结果,2η 取1这个值的概率就是ξ 取-1与1值的概率123与121合并的结果,故2η 的分布列为 2η0 1 4 9P124 124 123 121 说明:在得到的1η 或2η 的分布列中,1η 或2η 的取值行中无重复数,概率得中各项必须非负,且各项之和一定等于1.4、成功咨询人数的分布列例 某一中学生心理咨询中心服务电话接通率为43,某班3名同学商定明天分别就同一问题询问该服务中心.且每人只拨打一次,求他们中成功咨询的人数ξ的分布列.分析:3个人各做一次试验,看成三次独立重复试验,拨通这一电话的人数即为事件的发生次数ξ,故符合二项分布.解:由题:⎪⎭⎫ ⎝⎛43,3~B ξ,所以3,2,1,0,4143)(33=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==-k C k P kk k ξ,分布列为ξ 0 1 2 3P641 649 6427 6427说明:次独立重复实验中,以事件发生的次数ξ为随机变量.5、盒中球上标数于5关系的概率分布列例 盒中装有大小相等的球10个,编号分别为0,1,2,…,9,从中任取1个,观察号码是“小于5”“等于5”“大于5”三类情况之一.规定一个随机变量,并求其概率分布列.分析:要求其概率的分布列可以先求个小球所对应的概率.解:分别用321,,x x x 表示题设中的三类情况的结果:1x 表示“小于5”的情况,2x 表示“等于5”的情况,3x 表示“大于5”的情况.设随机变量为ξ ,它可能取的值为ξ ,,,321x x x 取每个值的概率为P x P ==)(1ξ (取出的球号码小于5)=105, P x P ==)(2ξ (取出的球号码等于5)=101, P x P ==)(3ξ (取出的球号码大于5)=104. 故ξ 的分布列为ξ1x 2x 3xP21101 52小结:分布列是我们进一步解决随机变量有关问题的基础,因此准确写出随机变量的分布列是很重要的,但是我们不能保证它的准确性,这时我们要注意运算的准确性外,还可以利用11=∑=ni ip进行检验.6、求随机变量的分布列例 一袋中装有5只球,编号为1,2,3,4,5,在袋中同时取3只,以ξ 表示取出的3只球中的最大号码,写出随机变量ξ 的分布列.分析:由于任取三个球,就不是任意排列,而要有固定的顺序,其中球上的最大号码只有可能是3,4,5,可以利用组合的方法计算其概率.解:随机变量ξ 的取值为3,4,5.当ξ =3时,即取出的三只球中最大号码为3,则其他二球的编号只能是1,2,故有;101C C )3(3523===ξ P当ξ =4时,即取出的三只球中最大号码为4,则其他二球只能在编号为1,2,3的3球中取2个,故有;103C C )4(3523===ξ P当ξ =5时,即取出的三只球中最大号码为5,则其他二球只能在编号为1,2,3,4的4球中取2个,故有.53106C C )5(3523====ξ P因此,ξ 的分布列为ξ3 4 5P101103 106 说明:对于随机变量ξ 取值较多或无穷多时,应由简单情况先导出一般的通式,从而简化过程.7、取得合格品以前已取出的不合格品数的分布列例 一批零件中有9个合格品与3个不合格品.安装机器时,从这批零件中任取一个.如果每次取出的不合格品不再放回去,求在取得合格品以前已取出的不合格品数的分布列.分析:取出不合格品数的可能值是0,1,2,3,从而确定确定随机变量的可能值.解:以ξ 表示在取得合格品以前取出的不合格品数,则ξ 是一个随机变量,由题设ξ 可能取的数值是0,1,2,3.当ξ =0时,即第一次就取到合格品,其概率为;750.0123)0(===ξ P 当ξ =1时,即第一次取得不合格品,不放回,而第二次就取得合格品,其概率为;204.0119123)1(≈⋅==ξ P 当ξ =2时,即第一、二次取得不合格品,不放回,第三次取得合格品,其概率为;041.0119112123)2(≈⋅⋅==ξ P 当ξ =3时,即第一、二、三次均取得不合格品,而第四次取得合格品,其概率为.005.099101112123)3(≈⋅⋅⋅==ξ P 所以ξ 的分布列为ξ0 1 2 3 P0.7500.2040.0410.005说明:一般分布列的求法分三步:(1)首先确定随机变量ξ的取值哟哪些;(2)求出每种取值下的随机事件的概率;(3)列表对应,即为分布列.8、关于取球的随机变量的值和概率例 袋中有1个红球,2个白球,3个黑球,现从中任取一球观察其颜色.确定这个随机试验中的随机变量,并指出在这个随机试验中随机变量可能取的值及取每个值的概率.分析:随机变量变量是表示随机试验结果的变量,随机变量的可能取值是随机试验的所有可能的结果组成.解: 设集合},,{321x x x M =,其中1x 为“取到的球为红色的球”,2x 为“取到的球为白色的球”,3x 为“取到的球为黑色的球”. 我们规定:)3,2,1()(===i i x i ξ ξ ,即当i x x =时,i x =)(ξ,这样,我们确定)(x ξ 就是一个随机变量,它的自变是量x 取值不是一个实数,而是集合M 中的一个元素,即M x ∈,而随机变量ξ 本身的取值则为1,2,3三个实数,并且我们很容易求得ξ 分别取1,2,3三个值的概率,即.2163)3(,3162)2(,61)1(========ξ ξ ξ P P P说明:确定随机变量的取值是根据随机试验的所有可能的结果.。

常见的离散型随机变量的分布列、均值与方差(学生)

常见的离散型随机变量的分布列、均值与方差(学生)

常见的离散型随机变量的分布列、均值与方差【知识要点】一、离散型随机变量及其分布列 1、随机变量如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量。

长用希腊字母ηξ,来表示。

若ξ是随机变量,b a +=ξη,其中b a ,是常数,则η也是随机变量。

2、离散型随机变量如果对于随机变量可能取的值,可以一一列出,这样的随机变量叫做离散型随机变量。

3、离散型随机变量的分布列(1)若离散型随机变量X 可能取的不同值为n i x x x x ,,,,,⋅⋅⋅⋅⋅⋅21,X 取每一个值)21(n i x i ,,,⋅⋅⋅=的概率i i p x X P ==)(,以表格的形式表示如下:此表称为离散型随机变量X 的分布列,简称X 的分布列。

有时为了表达简单,也用等式i i p xX P ==)(,n i ,,,⋅⋅⋅=21,表示X 的分布列。

(2)性质:①n i p i ,,,,⋅⋅⋅=≥210;②11=∑=ni i p ;③在某个范围内取值的概率等于这个范围内每个随机变量值的概率的总和。

4、常见离散型随机变量 (1)两点分布若随机变量X 的分布列是则这样的分布列称为两点分布列。

如果随机变量X 的分布列为两点分布列,就称X 服从两点分布(也称伯努利分布),而称)1(==x P p 为成功概率。

其EX=p ,DX=p(1-p). (2)超几何分布一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品数,则事件{X=k}发生的概率为m k C C C X P nNkn MN k M ,,,,,⋅⋅⋅=⋅==--210)k (,其中}min{n M m ,=,且*∈≤≤N N M n N M N n 、、,,,称分布列为超几何分布列。

如果随机变量X 的分布列为超几何分布列,则称随机变量X 服从超几何分布。

记作:1)1()(---•==N nN N M N nM DX N nM EX n M N H X ,,其,,—。

常见的离散型随机变量

常见的离散型随机变量

分布列.
第二章 第四节 常见的离散型随机变量
16
Poisson分布的应用
Poisson分布是概率论中重要的分布之一.
自然界及工程技术中的许多随机指标都服 从Poisson分布.
例如,可以证明,电话总机在某一时间间 隔内收到的呼叫次数,放射物在某一时间 间隔内发射的粒子数,容器在某一时间间 隔内产生的细菌数,某一时间间隔内来到 某服务台要求服务的人数,等等,在一定 条件下,都是服从Poisson分布的.
可用 Poisson 分布近似计算.
令 np 600 0.012 7.2 ,则有
PB PX 3 1 PX 3
1 PX 0 PX 1 PX 2
1 7.20 e7.2 7.21 e7.2 7.22 e7.2 0.9745
0!
1!
2!
第二章 第四节 常见的离散型随机变量
28
12
例 3(续)
由于 n 1p 300 1 0.44 132.44 不是整数,
所以最可能的射击命中次数
k0 n 1p 132 .44 132 . 其相应的概率为
PX k0 PX 132
C 132 300
0.44132
0.56168
0.04636
第二章 第四节 常见的离散型随机变量
第二章 第四节 常见的离散型随机变量
17
例4
设随机变量 X 服从参数为 的 Poisson 分布,而且
PX 1 PX 2, 试求 PX 4.
解:
由于随机变量 X 服从参数为 的 Poisson 分布,故 X
的分布列为
PX k k e
k!
k 0, 1, 2, 3, , n,
第二章 第四节 常见的离散型随机变量

离散型随机变量的分布列

离散型随机变量的分布列

P(Y=60)=CC11C21031=435=115.
(10 分)
因此随机变量 Y 的分布列为
Y
010 205060P12
1
2
1
(12分)
3
5
15
15 15
【题后反思】 解决超几何分布问题的两个关键点 (1)超几何分布是概率分布的一种形式,一定要注意公式 中字母的范围及其意义,解决问题时可以直接利用公式求 解,但不能机械地记忆. (2)超几何分布中,只要知道M,N,n就可以利用公式求 出X取不同k的概率P(X=k),从而求出X的分布列.
张中奖或 2 张都中奖.故所求概率 P=C14C16C+210C24C06=3405=23. (6 分)
②X 的所有可能取值为 0,10,20,50,60,且
P(Y=0)=CC04C21062=1455=13,P(Y=10)=CC13C21061=1485=25,
P(Y=20)=CC23C21060=435=115,P(Y=50)=CC11C21061=465=125,
(2)超几何分布列
一般地,在含有 M 件次品的 N 件产品中,任取 n 件,其中
恰有 k 件次品,则事件{X=k}发生的概率为 P(X=k)=
CkMCCnNnN--kM,k=0,1,2,…,m,其中 m=min{M,n},且 n≤N, M≤N,n,M,N∈N*,则称分布列
X
0
1

m
P
C0MCnN--0M ___C__nN___
离散型随机变量的分布列
1.离散型随机变量的分布列 (1)定义:若离散型随机变量X可能取的不同值为x1, x2,…,xi,…,xn,X取每一个值xi(i=1,2,…,n)的 概率P(X=xi)=pi,以表格的形式表示如下:

第十章 第五节 离散型随机变量的分布列及数字特征

第十章 第五节 离散型随机变量的分布列及数字特征
①求 X 的分布列,并求 X 的均值和方差; ②若网约车计费细则如下:起步价为 5 元,行驶路程不超过 3 km 时,收费 5 元,行驶路程超过 3 km 时,则按每超出 1 km(不足 1 km 也按 1 km 计程)收费 3 元 计费.试计算此人一天中出车一次收入的均值和方差.
(1)C 解析:D(3X-1)=9D(X),只需求 D(X)的最大值即可,根据题意 a+b
又 0≤p1≤1,∴0≤13 -d≤1,∴-23 ≤d≤13 .同理,由 0≤p3≤1,p3=d+13 , ∴-13 ≤d≤23 ,∴-13 ≤d≤13 ,即公差 d 的取值范围是-13,13 .
3.随机变量 X 的概率分布列如下:
X0
1
2
3
4
5
6
P
1 a
1 a
C16
1 a
C26
1 a
C36
1 a

X x1 x2 …
xi

xn
P p1 p2 …
pi

pn
则称 E(X)=x1p1+x2p2+…+xnpn 为 X 的数学期望或均值.
意义:离散型随机变量的数学期望刻画了这个离散型随机变量的平均水平.
(2)离散型随机变量的方差定义:
设离散型随机变量 X 的分布列为
X
x1
x2

xi

xn
P
p1
p2

X
-1
0
1
P
1 4
1 2
1 4
A.0 B.1 C.14
D.12
D 解析:E(X)=-1×14 +0×12 +1×14 =0,
则 D(X)=14 ×(-1-0)2+12 ×(0-0)2+14 ×(1-0)2=12 .

随机变量及其分布列

随机变量及其分布列

随机变量及其分布列.几类典型的随机分布一、离散型随机变量及其分布列随机变量是指在试验中可能出现的结果可以用一个变量X 来表示,并且X是随着试验的结果的不同而变化的。

离散型随机变量是指所有可能的取值都能一一列举出来的随机变量。

离散型随机变量常用大写字母X,Y表示。

离散型随机变量的分布列是将所有可能的取值与对应的概率列出的表格。

二、几类典型的随机分布1.两点分布二点分布是指随机变量X的分布列为X:1,P:pq,其中p 为0~1之间的参数,q为1-p。

伯努利试验只有两种可能结果的随机试验,因此又称为伯努利分布。

2.超几何分布超几何分布是指有总数为N件的两类物品,其中一类有M件,从所有物品中任取n件,这n件中含有这类物品件数X 是一个离散型随机变量,它取值为m时的概率为C(n,m)C(M,m)/C(N,n)。

超几何分布只要知道N,M和n,就可以根据公式求出X取不同值时的概率P(X=m),从而列出X的分布列。

3.二项分布二项分布是指在n次独立重复试验中,事件A发生的次数X服从二项分布,事件A不发生的概率为q=1-p,事件A恰好发生k次的概率为P(X=k)=C(n,k)p^kq^(n-k)。

其中p为事件A发生的概率,k为事件A发生的次数,n为试验的总次数。

首先,将文章中的格式错误和明显有问题的段落删除。

然后对每段话进行小幅度改写。

对于二项分布,当一个试验重复进行n次,每次成功的概率为p,失败的概率为q=1-p时,事件发生k次的概率可以用公式P(n,k) = n。

/ (k!(n-k)!) * p^k * q^(n-k)来计算。

这个公式可以展开成X的分布列,其中X表示事件发生的次数。

因为每个值都可以对应到表中的某个项,所以我们称这样的散型随机变量X服从参数为n,p的二项分布,记作X~B(n,p)。

二项分布的均值和方差可以用公式E(X) = np和D(X) = npq(q=1-p)来计算。

正态分布是一种连续型随机变量的概率分布。

中国海洋大学 《概率论》第二章-离散型随机变量

中国海洋大学 《概率论》第二章-离散型随机变量
4 则答5道题相当于做5重Bernoulli试验.
设:X:该学生靠猜测能答对的题数 则 X ~ B 5, 1 4
概率论
所以
P至少能答对4道题 P X 4
P X 4 P X 5

C54

1 4

4

3 4


1 4
5
解: 显然,X 可能取的值是1,2,… ,
设 Ak = {第k期中奖},k =1, 2, …, 于是
P( X k ) P( A1A2 Ak1Ak )
P( A1)P( A2 ) P( Ak1)P( Ak )
(1 p)k1 p
k1,2,
概率论
二、离散型随机变量的分布函数
例子
或 记作 X ~ B1, p 其中0 p 1 为参数
概率论
Bernoulli分布也称作 0-1 分布或两点分布.
Bernoulli分布的概率背景
进行一次Bernoulli试验,设:
PA p, PA 1 p q
令X:在这次Bernoulli试验中事件A发生的次数.
n


c
1

n
n1 4

c

1
4
1

c 3
4
所以
c=3
概率论
概率论
例2 一汽车沿一街道行驶,需要通过三个均设有红绿 信号灯的路口,每个信号灯为红或绿与其它信号灯为 红或绿相互独立,且红绿两种信号灯显示的时间相等. 以X表示该汽车首次停下时已通过的路口的个数,求 X的分布律.
概率论
P(Bk ) P( A1A2 Ak Ak1 An ) P( A1A2 Ank Ank1 An )

离散型随机变量的均值与方差(4类必考点)(北师大版2019选择性必修第一册)(解析版)

离散型随机变量的均值与方差(4类必考点)(北师大版2019选择性必修第一册)(解析版)

专题6.3 离散型随机变量的均值与方差【基础知识梳理】 (1)【考点1:求离散型随机变量的均值】 (1)【考点2:均值的性质】 (7)【考点3:求离散型随机变量的方差】 (11)【考点4:方差的性质】 (16)【基础知识梳理】1.离散型随机变量的均值与方差若离散型随机变量X的分布列为X x1x2…x i…x nP p1p2…p i…p n(1)称E(X)=x1p1+x2p2i i n n量取值的平均水平.(2)称D(X)=(x i-E(X))2p i为随机变量X的方差,它刻画了随机变量X与其均值E(X)的平均偏离程度,其算术平方根D(X)为随机变量X的标准差.2.均值与方差的性质(1)E(aX+b)=aE(X)+b;(2)D(aX+b)=a2D(X)(a,b为常数).[方法技巧]求离散型随机变量的均值与方差的步骤(1)找出随机变量X的所有可能取值x i(i=1,2,3,…,n);(2)求出各取值的概率P(X=x i)=p i;(3)列成表格并用分布列的性质检验所求的分布列或某事件的概率是否正确;(4)利用公式求均值或方差.【考点1:求离散型随机变量的均值】【知识点:求离散型随机变量的均值】1.(2023·河南平顶山·校联考模拟预测)甲、乙两人进行围棋比赛,两人共比赛两局,每局比赛甲赢的概率为0.6,两人平局的概率为0.1,设每局的胜方得3分,负方得−1分,若该局为平局,则两人各得2分.(1)求甲、乙各赢一局的概率;(2)记两局结束后甲的最后得分为X,求X的数学期望.【答案】(1)0.36(2)3.4【分析】(1)由题可知比赛乙赢的概率为0.3,甲、乙各赢一局相当于甲赢第一局乙赢第二局或乙赢第一局甲赢第二局.据此可得答案;(2)依次写出对局情况及相应概率,后可计算期望.【详解】(1)依题意可得每局比赛乙赢的概率为0.3,甲、乙各赢一局相当于甲赢第一局乙赢第二局或乙赢第一局甲赢第二局,故甲、乙各赢一局的概P=2×0.6×0.3=0.36.(2)若甲赢两局,得分6分,P(X=6)=0.62=0.36;若甲一赢一平,得分5分,P(X=5)=2×0.6×0.1=0.12;若甲平两局,得分4分,P(X=4)=0.12=0.01;若甲一赢一输,得分2分,P(X=2)=2×0.6×0.3=0.36;若甲一平一输,得分1分,P(X=1)=2×0.3×0.1=0.06;若甲输两局,得分−2,P(X=−2)=0.32=0.09.故E(X)=6×0.36+5×0.12+4×0.01+2×0.36+1×0.06−2×0.09=3.42.(2023·四川·校联考一模)甲袋中装有大小相同的红球2个,白球2个:乙袋中装有与甲袋中相同大小的红球3个,白球4个.先从甲袋中取出1个球投入乙袋中,然后从乙袋中取出3个小球.(1)求从乙袋中取出的3个小球中仅有1个红球的概率;(2)记从乙袋中取出的3个小球中白球个数为随机变量ξ,求ξ的分布列和数学期望.【答案】(1)2756.(2)分布列见解析,数学期望E(ξ)=189112【分析】(1)分“从甲袋中取出1红球投入乙袋”和“从甲袋中取出1白球投入乙袋” 两个类型,利用组合数和古典概型公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当 时,即只取一次就取到合格品,故 ;
当 时,即只取一次就取到次品,而第二次取到合格品,故

类似地,有

所以 的分布列为:
1
2
3
4
10/13
5/26
5/143
1/286
(2)由于取球后放回,所以 的取值为1,2,3,…,n,…,则随机变量 服从几何分布。
当 时,即第一次就取到合格品,故 ;
当 时,即第一次没有到合格品,而第二次取到合格品,故 ;
(2)每次取出的产品都立即放回次批产品中,然后再取一件产品;
(3)每次取出一件产品后总把一件合格品放回此批产品中。
分析:(1)由于取求后不放回,每次取产品的结果互相影响;
(2)由于取球后放回,各次取产品相互独立,它是一个几何分布;
(3)有放回取且放回正品,基本事件总数发生变化。
解:(1)由题知 的取值为1,2,3,4。
类似地,有 , ,
因此 的分布列为:
3
4
点评:此题主要考查等可能事件的概率问题,有放回和没有放回的基本事件总数是不一样的,特别是第2问是有放回摸球问题,表示第 次独立重复试验时事件第一次发生,而前 次独立重复试验时,事件都没有发生,这样的独立重复试验可以无限的进行下去,因而是一个典型的几何分布问题.
解:在批量为40的多批保险丝中,某一批有10%的不合格品,因此在这一批中不合格品的根数为4,所以由超几何分布可知,抽检的4根保险丝中有1根为不合格品的概率为:
;该批被接受的概率为:
由此可见,即使不合格品为10%的一批任有64%的接受概率。
点评:在应用超几何分布时,适用的条件是从有限总体中无放回抽样问题,在解题时一定要分清是否放回,正确使用概率模型。




为随机变量 的概率分布,简称 的分布列.
由概率的性质可知,任一离散型随机变量的分布列都有以下两个性质
(1)
(2)
离散型随机变量在某个范围内取值的概率等于它取这个范围内各个值的概率的和.
一、几何分布
在独立重复试验中,某事件第一次发生时所做试验的次数 是一个取值为正整数的离散型随机变量,“ ”表示第 次独立重复试验时事件第一次发生。如果把第 次试验时事件A发生记为 、事件A不发生记为 , ,那么
;
所以随机变量 的分布列为:
3
4
5
点评(1)当袋中球的个数很多时,是否放回对每次取到白球和黑球的概率可认为没有影响;但当袋中球的个数有限时,是否放回每次取到白球和黑球的概率是不一样的,因而要分两种情况.
(2)当离散型随机变量 是指抽查 次.而并不表示第 次独立重复试验时事件第一次发生时,它不服从几何分布,不能硬套公式.例如:某射手每次命中目标的概率为0.15,现在该射手连续向某目标射击,若命中目标则停止射击,否则继续射击,直到命中目标,但射击次数最多不超过10次,求射击次数 的分布列.此题独立事件指定 次发生的问题,每个概率应为 ,而 应理解为前9次未命中目标而第10次命中或前9次未命中且第10次也未命中两重含义,它不是几何分布,也不是二项分布.
分析:假设不考虑英文写作15分,若按60分及格算,85道题必须答对51道以上。着可以看成是85重贝努利实验。
解:设随机变量X表示答对的题数,则 ,
,k=0、1、2、3、…、85
若要及格必须X 51,其概率为
此概率非常小,故可认为靠运气通过英语四级考试几乎不可能,相当于在1000亿个碰运气的考生中,仅有0.874人能通过英语四级考试,而整个地球才不到70亿人口,所以这样发生的可能性极小,但并不意味着就一定不发生.
= ,n是独立重复试验的次数,p是每一次试验中某事件发生的概率。
例5、从学校乘汽车到火车站的途中有3个交通岗,假设在各个遇到红灯的事件是相
互独立的,并且概率。
分析:由于在各个交通岗遇到红灯的事件是相互独立的,而途中有3个交通岗且每次遇到红灯的概率都是 ,因而可认为是做了3次独立重复试验,每次试验中事件A发生的概率都是 ,一次途中遇到红灯次数X服从参数为3, 的二项分布 。
下面先了解几个概念:
随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量就叫随机变量.随机变量常用希腊字母 等表示.
离散型随机变量:对于随机变量可能取的值,我们可以按一定次序一一列出,这样的随机变量就叫离散型随机变量.
离散型随机变量的分布列:一般地设离散型随机变量 可能取得值为
取每一个值 的概率 ,则称表
几个重要的离散型随机变量的分布列
井潇(鄂尔多斯市东胜区东联现代中学017000)
随着高中新课程标准在全国各地的逐步推行,新课标教材越来越受到人们的关注,新教材加强了对学生数学能力和数学应用意识的培养,而概率知识是现代公民应该具有的最基本的数学知识,掌握几种常见的离散型随机变量的分布列是新课标教材中对理科学生的最基本的要求,也是高考必考的内容,先结合新教材,具体谈一谈几个重要的离散型随机变量分布列及其简单的应用。
当 时,即第一、二次都没有到合格品,而第三次取到合格品,故 ;
类似地,当 时,即前n-1次都没有取到合格品,而第n次取到合格品,故 因此 的分布列为:
1
2
3
...
n



(3)由题知 的取值为1,2,3,4.
当 时,即第一次就取到合格品,故 ;
当 时,即第一次取到次品而第二次取到合格品,注意第二次再取时这批产品有11个合格品,2个次品故 ;
点评:小概率事件发生的可能性极小,但早大量的独立重复试验中是不可忽略的,它在大量的重复试验中发生几乎又是必然的.
通过以上的例子可以看出,几何分布和二项分布是研究独立重复试验中的有放回抽样问题,而超几何分布是研究有限不放回抽样问题,但在研究超几何分布时,当总体中的个体的数目特别多时,有放回抽样和无放回抽样基本上对结果没有太大的影响,这时近似用二项分布,因而二项分布是超几何分布的近似分布,也就是说二项分布是超几何分布的极限分布,特别地在二项分布中,当n=1时,二项分布就成为两点分布了。另外,知道了随机变量的分布列,就可以算出它的数学期望和方差,所以求分布列是基础,分布列是重点。
四、二项分布
一般地,在一次试验中某事件发生的概率为 ,那么在n次独立重复试验中这个事件恰好发生k次的概率为 ,其中 ,于是得到随机变量 的概率分布如下:
0
1
2

k
….
n
。。。
。。。
由于 恰好是二项展开式 + + +。。。+ +。。。+ 中的第k+1项(这里k可取0,1,2,。。。,n中的各个值),所以称这样的随机变量服从二项分布,记作 ,其中 为参数,并记:
0
1
0.3
0.7
点评:两点分布的应用十分广泛,如抽取的彩票是否中奖;买回的一件产品是否为正品;新生婴儿的性别;投篮是否命中等,都可用两点分布来研究。
三、超几何分布
一般地,在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则事件 的概率为: 其中 ,且 称分布列 为超几何分布列。如果随机变量X的分布列为超几何分布列,则称随机变量X服从超几何分布,它适用于有限不放回抽样问题。
解:由题设知:随机变量X的可能取值为0、1、2、3,所以
其分布列为:
0
1
2
3
至多遇到一次红灯的概率为 。
点评:在应用二项分布求概率时,一定要分清参数n、p,否则容易出错。
例6、大学英语四级考试是全面检查大学生英语水平的一种考试具有一定的难度。这种考试包括听力、语法结构、阅读理解、综合填空、协写作等。除了写作占15分以外,其余85分为85道单选题,每道题附有A、B、C、D四个选项,这种考试方法使个别学生产生了碰运气和侥幸心理。那么靠运气能通过英语四级考试吗?
二、两点分布(0—1分布)
某事件在一次试验中或者发生或者不发生只有两种情况,发生的概率为 ,不发生的概率为 ,此时我们称事件发生的概率服从0---1分布.
例3、篮球比赛中每次罚球命中球得1分,不中得0分,已知某运动员罚球命中的概率为0,求他一次罚球得分的分布列.
解:设他罚球得分为 ,则 的分布列为:
,根据相互独立事件的概率的乘法公式得

于是得到随机变量 的概率分布
1
2
3


我们称 服从几何分布,并记 ,其中 .
例1、从一批有10个合格品与3个次品的产品中,一件一件地抽取产品,设每个产品被抽到的可能性相同,在下列三种情况下,分别求出直到取出合格品为止时所需抽取次数 的分布列。
(1)每次取出的产品都不放回此批产品中;
例2、袋中有1个白球和4个黑球,每次从其中任取一个球,直到取到白球为止,求取球次数 的分布列.
分析:题中球的个数很少,并没有指出取出黑球是否放回,所以,应分两种情况考虑.
解:当取出的球为黑球时就放回,则随机变量 服从几何分布, ,
于是随机变量 的分布列为:
3

n
….

(2)当取出的球为黑球时不放回,则随机变量 不服从几何分布.
例4、一家工厂收到批量为40的多批保险丝,接到部门从每一批中随机检查4根保险丝只要在任何一根为不合格,则拒绝该批,若某一批却有 %的不合格品,则抽检的4根保险丝中有一根不合格的概率是多少?该批被接受的概率是多大?
分析:设X表示抽取的4根中不合格品的根数,则X可能取值为0、1、2、3、4,某一批的40根保险丝,可分为两类,即合格品和不合格品,从中随机抽取4根,可以看成是不放回抽取4次,因此X服从超几何分布。
相关文档
最新文档