实数期末复习卷

合集下载

八年级数学上册实数期末复习卷(含答案)

八年级数学上册实数期末复习卷(含答案)

八年级上数学期末复习卷—实数班级姓名一、选择题1下列说法错误的是()A.1的平方根是1 B.﹣1的立方根是﹣1C.是2的平方根D.是的平方根2.下列各式中已化为最简式的是()A.B.C.D.3.下列结论正确的是()A.B.C.D.4.已知=1.147,=2.472,=0.5325,则的值是()A.24.72 B.53.25 C.11.47 D.114.75.若,则2a+b﹣c等于()A.0 B.1 C.2 D.36.已知甲、乙、丙三数,甲=6+,乙=2+,丙=,则甲、乙、丙的大小关系为()A.甲=乙=丙B.丙<甲<乙C.甲<丙<乙D.丙<乙<甲7.下列等式:①=,②=﹣2,③=2,④=﹣,⑤=±4,⑥﹣=﹣2;正确的有()个.A.4 B.3 C.2 D.18.下列判断正确的有几个()①一个数的平方根等于它本身,这个数是0和1;②实数包括无理数和有理数;③是3的立方根;④无理数是带根号的数;⑤2的算术平方根是.A.2个B.3个C.4个D.5个9.已知实数a,b,c在数轴上的位置是:a在b的左边,b在0的左边,c在0的右边,则计算a+|b﹣a|+|b﹣c|的结果是()A .cB .2b +cC .2a ﹣cD .﹣2b +c10.设02a =,2(3)b =-,c =11()2d -=,则a b c d ,,,按由小到大的顺序排列正确的是( )A .c a d b <<<;B .b d a c <<<C .a c d b <<<D .b c a d <<<二、填空题1. 8的立方根是 ;= .2.的相反数是 ,绝对值等于的数是 .3.一个正数n 的两个平方根为m +1和m ﹣3,则m = ,n = . 4.一个负数a 的倒数等于它本身,则= ;若一个数a 的相反数等于它本身,则﹣5+2= .5.若(x ﹣15)2=169,(y ﹣1)3=﹣0.125,则= .6、如图2的点是 .7、化简:32583-的结果为 。

实数总复习题及答案

实数总复习题及答案

实数总复习题及答案一、选择题1. 下列哪个数不是实数?A. √2B. πC. -3D. 1/02. 实数集R中的元素包括:A. 有理数B. 无理数C. 复数D. A和B3. 以下哪个表达式等于0?A. √4B. 1 - 1C. 2^0D. 1/∞4. 绝对值的定义是什么?A. 一个数的平方B. 一个数的立方C. 一个数的平方根D. 一个数的正数或05. 如果a是一个正实数,那么1/a是一个:A. 正实数B. 负实数C. 零D. 复数二、填空题6. 一个实数的绝对值总是_________或0。

7. 两个相反数的和是_________。

8. 无理数是_________的数。

9. 实数的运算包括加法、减法、乘法、除法以及_________。

10. 一个数的相反数是_________。

三、解答题11. 证明:对于任意实数a和b,如果a > b,则a - b > 0。

12. 解释实数的完备性。

13. 给出一个无理数的例子,并说明为什么它是无理数。

14. 计算下列表达式的值:(-3)^2 + √4 - 2π。

15. 讨论实数集R的性质。

四、应用题16. 一个圆的半径是5,求圆的周长和面积。

17. 如果一个物体从静止开始以恒定加速度运动,经过2秒后,求其位移和速度。

18. 一个水库的水位在24小时内下降了3米,如果下降速率是恒定的,求每小时的平均下降速率。

答案一、选择题1. D2. D3. B4. D5. A二、填空题6. 非负数7. 08. 不能表示为两个整数的比9. 幂运算10. 与原数符号相反的数三、解答题11. 证明:设a和b是任意实数,且a > b。

根据实数的性质,我们可以定义一个数c = a - b。

由于a > b,c是一个正数。

因此,a - b > 0。

12. 实数的完备性指的是,任意实数序列的极限仍然是一个实数。

这意味着实数集没有“漏洞”,即不存在任何“缺失”的数。

浙教版七年级数学上《实数》期末复习试卷(三)含答案

浙教版七年级数学上《实数》期末复习试卷(三)含答案

期末复习三实数一、必备知识:1.一个正数a有____________个平方根,正平方根用____________表示,负平方根用____________表示.0的平方根等于____________,____________没有平方根.2.一个正数有一个____________的立方根;一个负数有一个____________的立方根;0的立方根是____________.3.____________叫做无理数.常见的无理数有三种形式:①带π的,②开不尽的方根,③不是循环规律的无限小数.4.在数轴上表示两个实数,____________的数总比____________的数大.数轴上的点与____________一一对应.二、防范点:1.区分平方根和算术平方根的概念,注意一个正数的平方根必有两个. 2.不要把无限小数都认为是无理数.如227,0.31等无限小数都是有理数.平方根、算术平方根及立方根例1 (1)14的算术平方根是________,16的平方根是________,64的立方根是________.(2)下列说法中正确的是( ) A .9的立方根是3 B .-9的平方根是-3 C .±4是64的立方根 D .4是16的算术平方根【反思】注意一个正数的平方根有两个,立方根只有一个.算术平方根的双重非负性 例2 (1)已知实数x ,y 满足|x -5|+y +6=0,求(x +y)2017的值;(2)对于有理数x ,2017-x +x -2017+1x的值是( )A .0B .2017 C.12017 D .-2017【反思】算术平方根具有双重非负性,第一,被开方数是一个非负数,第二,算术平方根的本身也是一个非负数.无理数、实数的概念及实数的分类 例3 (1)在-4,3.14,π,10,1.51,27中,无理数的个数是( )A .2个B .3个C .4个D .5个 (2)在0,3.14,13,2π,-8,81,-0.4,-9,4.262262226…(每两个”6”之间依次多一个”2”)中,属于有理数的有 ; 属于无理数的有 ;属于正实数的有 ;属于负实数的有 .【反思】无理数常见形式有三种:①开不尽的方根,②带π的,③不是循环规律的无限小数.所以不要把所有无限小数都认为是无理数.用有理数估计无理数,实数的大小比较 例4 (1)估计11的值在( )A .1与2之间B .2与3之间C .4与5之间D .3与4之间 (2)10的整数部分是________,37的小数部分是________.(3)把下列实数表示在数轴上,并将它们用”<”连接起来: -1.5,-3,3,0,π【反思】在数轴上表示无理数,往往取无理数的近似值表示在数轴上即可.实数与数轴相关问题例5 (1)如图,以数轴的单位长度线段为边作一个正方形,以表示数2的点为圆心,正方形对角线长为半径画半圆,交数轴于点A和点B,则点A表示的数是________;点B表示的数是________.(2)如图所示,数轴上表示2,5的点分别为C,B,点C是AB的中点,则点A表示的数是________.【反思】实数与数轴相关问题,往往是利用数轴上两点间的距离公式,并结合方程思想求解.实数的运算例6 计算下列各题:(1)16-(3-27+4);(2)9-(-3)2+3(-8)2-(-2)2;(3)用计算器计算3+(-3)×(2-3)(结果精确到0.001).【反思】实数的运算过程中,要弄清”a”与”3a”的区别,不要混淆.计算时往往要保留根号进行运算,到最后一步才借助计算器等取近似值.运用实数的运算解决一些简单的实际问题例7 将一个半径为10cm的圆柱体容器里的药液,倒进一个底面是正方形的长方体容器内,如果药液在两个容器里的高度是一样的,那么长方体容器的底面边长是多少?(结果精确到0.1).【反思】关于实数运算的实际问题,往往与求体积、面积相关,注意体积、面积公式不要搞错.1.已知3≈1.732,30≈5.477,那么30000≈( )A .173.2B .±173.2C .547.7D .±547.72.请写出两个无理数,使它们的和是有理数____________. 3.若a <14<b ,且a ,b 为连续正整数,则a 2-b 2=____________. 4.计算:(1)4-144+||-16-5116=____________;(2)()-22+⎪⎪⎪⎪2-1-(2+1)=____________.5.在如图所示的数轴上,点B 与点C 到点A 的距离相等,A 、B 两点对应的实数分别是1和-3,则点C 对应的实数是____________.第5题图 6.计算: (1)9-169+|-4|-614;(2)(-3)2+|3-1|-(3+1). 7.当运动中的汽车撞击到物体时,汽车所受到的损坏程度可以用”撞击影响”来衡量.某种型号的汽车的撞击影响可以用公式I =2v 2来表示,其中v(千米/分)表示汽车撞击时的行驶速度.假设这种型号的汽车在一次撞车实验中测得撞击影响为17,试求出撞击时该车的行驶速度(精确到1千米/分).参考答案期末复习三 实数【必备知识与防范点】 1.正、负两 a -a 0 负数 2.正 负 0 3.无限不循环小数 4.右边 左边 实数【例题精析】例1 (1)12 ±2 2 (2)D 例2 (1)-1 (2)C例3 (1)A (2)有理数有:0,3.14,13,81,-0.4,-9;无理数有:2π,-8,4.262262226…(每两个“6”之间依次多一个“2”);正实数有:3.14,13,2π,81,4.262262226…(每两个“6”之间依次多一个“2”);负实数有:-8,-0.4,-9.例4 (1)D (2)3 37-6 (3)画图略 -3<-1.5<0<3<π例5 (1)2-2 2+2 (2)4-5例6 (1)3 (2)2 (3)2.686 例7 17.7cm 【校内练习】1.A 2.答案不唯一,如:-π,π 3.-7 4.(1)-814 (2)0 5.2+36.(1)原式=3-13+2-52=-1012. (2)原式=3+3-1-3-1=1.7.根据I=2v2,I=17,∴v2=I2=172,∴v=172≈3千米/分.答:撞击时该车的行驶速度约为3千米/分.第十一单元:清清的水瀑布教材分析:《瀑布》是一首活泼生动、文情兼美的自由体写景诗。

实数复习题含答案

实数复习题含答案

实数复习题含答案一、选择题1. 下列各数中,是实数的是()A. -3√2B. √(-1)C. √2D. 1/0答案:A2. 若a是实数,下列表达式中不可能为实数的是()A. a^2B. a^3C. a^4D. 1/a答案:D3. 实数x满足|x-2| < 1,则x的取值范围是()A. 1 < x < 3B. 0 < x < 4C. 1 ≤ x ≤ 3D. 0 ≤ x ≤ 4答案:A二、填空题1. 若实数x满足x^2 - 4x + 4 = 0,那么x的值为____。

答案:22. 一个实数的绝对值等于它自己,那么这个实数是____。

答案:非负数3. 若实数a和b满足a + b = 5,且a - b = 3,那么a和b的值分别是____和____。

答案:4,1三、解答题1. 证明:对于任意实数a和b,(a+b)^2 ≤ 2(a^2 + b^2)。

证明:根据平方和公式,有(a+b)^2 = a^2 + 2ab + b^2而2(a^2 + b^2) = 2a^2 + 2b^2由于2ab ≤ 2a^2 + 2b^2(根据基本不等式),所以(a+b)^2 ≤ 2(a^2 + b^2)。

2. 已知实数x满足x^2 - 5x + 6 = 0,求x的值。

解:将方程x^2 - 5x + 6 = 0进行因式分解,得到(x-2)(x-3) = 0因此,x的值为2或3。

四、应用题1. 一个长方形的长是宽的两倍,且面积为24平方米。

求长方形的长和宽。

解:设长方形的宽为x米,则长为2x米。

根据面积公式,有x * 2x = 24即 x^2 = 12解得x = √12 = 2√3因此,长方形的宽为2√3米,长为4√3米。

五、综合题1. 已知实数a,b,c满足a < b < c,且a + b + c = 1。

证明:1/a > 1/b + 1/c。

证明:由于a < b < c,所以1/a > 1/b > 1/c。

实数测试题及答案

实数测试题及答案

实数测试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是实数?A. √2B. √-1C. 0.1010010001…D. 2+3i答案:A2. 以下哪个选项是正确的?A. 0是最小的实数B. 没有最大的实数C. 所有实数都是有理数D. 所有有理数都是实数答案:D3. 计算下列哪个表达式的结果是一个正实数?A. (-3)^2B. -(-2)^3C. √(-4)D. 1/0答案:A4. 以下哪个数是无理数?A. 1/3B. √4C. πD. 0.5答案:C5. 以下哪个数是实数集合的元素?A. 2B. √2C. 2+3iD. 1/0答案:B6. 以下哪个数是虚数?A. 3B. √2C. 2+3iD. -5答案:C7. 以下哪个数是纯虚数?A. 3+iB. -iC. √(-1)D. 2i答案:D8. 以下哪个数是复数?A. 3B. √2C. 2+3iD. -5答案:C9. 以下哪个数是实数?A. √9B. √(-9)C. 0.33333…D. 2/3答案:A10. 以下哪个数是实数?A. 3.14B. √3C. 2+3iD. 0.1010010001…答案:A二、填空题(每题4分,共20分)1. √9 = ________。

答案:32. √(-1) = ________。

答案:i3. 2π是实数集合中的一个元素,其值为 ________。

答案:6.284. 如果x是实数,那么x^2 ________ 0。

答案:≥5. 一个数的绝对值总是 ________。

答案:非负三、解答题(每题10分,共50分)1. 计算:(√3 + √2)^2。

答案:7 + 4√62. 证明:√2是一个无理数。

答案:假设√2是有理数,设√2 = a/b,其中a和b是互质的整数。

那么2 = a^2 / b^2,即2b^2 = a^2。

这意味着a^2是偶数,所以a必须是偶数。

设a = 2k,则2b^2 = (2k)^2,所以b^2 = 2k^2,这意味着b也是偶数。

实数专题复习(含答案)

实数专题复习(含答案)

实数专题复习1. 若a 为实数,下列代数式中,一定是负数的是( )A. -a 2B. -( a +1)2C.-2aD.-(a -+1)2. 如图所示,数轴上A 、B 两点分别表示实数1,5,点B 关于点A 的对称点为C ,则点C 所表示的实数为( ) A. 5-2 B. 2-5 C. 5-3 D.3-53. 以数轴的单位长度1为边作一个正方形,以数轴的原点为圆心,正方形的对角线长为半径画弧,交数轴的正半轴于点A ,则点A 表示的数是( )A.1.5B. 1.4C.3D. 24. 下列结论正确的是( )A.∵b a ,∴ a ﹥bB. 22)(a a =C. a 与a 1不一定互为相反数 D. a +b ﹥a -b 5.请你估算11的大小( )A.1﹤11﹤2B. 2﹤11﹤3C. 3﹤11﹤4D. 4﹤11﹤56.若数轴上表示数a 的点在原点的左边,则化简22a a +的结果是( ) A.- a B. -3a C. a D. 3a7. 下列说法正确的是( )A. 负数和零没有平方根B. 12009的倒数是2009C. 22是分数 D. 0和1的相反数是它本身 8. 设,25,32,23-=-=-=c b a 则a 、b 、c 的大小关系是( )A. a ﹥b ﹥cB. a ﹥c ﹥bC. c ﹥b ﹥aD. b ﹥c ﹥a9. 小明的作业本上有以下四题: ①24416a a =;②a a a 25105=∙;③a a a a a=∙=112; ④a a a =-23. 做错的题是( )A. ①B. ②C. ③D. ④10.现规定一种新的运算“*”:a *b=a b ,如3*2=32=9,则21*3等于( ) A.81 B. 8 C. 61 D.23 11.若“!”是一种运算符号,且有1!=1;2!=2×1;3!=3×2×1;4!=4×3×2×1;………则=!2005!2006( ) A .2006 B .2005 C .2004 D .以上答案都不对12.下列运算:① (-3)3=-9; ② (-3)-2=9; ③ 23×23=29; ④ -24÷(-2)2=(-2)2=4; ⑤1)32(0=-;⑥ 5÷61×6=5÷1=5;其中错误的个数是( )A. 3B. 4C. 5D. 613. 实数a 在数轴上的位置如图所示,化简:2)2(1-+-a a =14. 已知a 、b 是有理数,且满足(a -2)2+3-b =0,则a b 的值为15. 观察下列算式:21=2; 22=4; 23=8; 24=16;25=32; 26=64; 27=128; 28=256;……通过观察,用你所发现的规律写出22007的末位数字是 16. ,,,,已知:24552455154415448338333223222222⨯=+⨯=+⨯=+⨯=+…,若21010b b a a+=⨯符合前面式子的 规律,则a b += . 17. 观察下面一列有规律的数: ,486,355,244,153,82,31……根据这个规律可知第n 个数是 (n 是正整数). 18.我们平常用的数是十进制数,如:2639=2×103+6×102+3×101+9×100,表示十进制的数要用10个数码(又叫数字):0,1,2,3,4,5,6,7,8,9。

人教版第六章 实数单元 期末复习测试基础卷试题

人教版第六章 实数单元 期末复习测试基础卷试题

人教版第六章 实数单元 期末复习测试基础卷试题一、选择题1.下列说法错误的是( )A .﹣4是16的平方根B 2C .116的平方根是14D 5 2.下列命题中,真命题是( )A .实数包括正有理数、0和无理数B .有理数就是有限小数C .无限小数就是无理数D .无论是无理数还是有理数都是实数3.下列数中,有理数是( )A B .﹣0.6 C .2π D .0.151151115…4.我们规定一种运算“★”,其意义为a ★b =a 2﹣ab ,如2★3=22﹣2×3=﹣2.若实数x 满足(x +2)★(x ﹣3)=5,则x 的值为( )A .1B .﹣1C .5D .﹣55.有四个有理数1,2,3,﹣5,把它们平均分成两组,假设1,3分为一组,2,﹣5分为另一组,规定:A =|1+3|+|2﹣5|,已知,数轴上原点右侧从左到右有两个有理数m 、n ,再取这两个数的相反数,那么,所有A 的和为( )A .4mB .4m +4nC .4nD .4m ﹣4n6 )A .BC .52±D .57.下列说法正确的是( )A .14是0.5的平方根 B .正数有两个平方根,且这两个平方根之和等于0 C .27的平方根是7D .负数有一个平方根 8.下列各数中,属于无理数的是( )A .227B .3.1415926C .2.010010001D .π3-9.在下列实数:2π、227、﹣1.010010001…中,无理数有( ) A .1个 B .2个 C .3个 D .4个10.2的平方根是a ,﹣125的立方根是b ,则a ﹣b 的值是( ) A .0或10B .0或﹣10C .±10D .0 二、填空题11.已知a n =()211n +(n =1,2,3,…),记b 1=2(1-a 1),b 2=2(1-a 1)(1-a 2),…,b n =2(1-a 1)(1-a 2)…(1-a n ),则通过计算推测出表达式b n =________ (用含n 的代数式表示).12___________.13.如果一个有理数a 的平方等于9,那么a 的立方等于_____.14.估计12与0.5的大小关系是:12_____0.5.(填“>”、“=”、“<”) 15.若|x |=3,y 2=4,且x >y ,则x ﹣y =_____.16.任何实数a ,可用[a]表示不大于a 的最大整数,如[4]=4,1=,现对72进行如下操作:72→=8→2=→=1,类似地:(1)对64只需进行________次操作后变为1;(2)只需进行3次操作后变为1的所有正整数中,最大的是________.17.一个数的立方等于它本身,这个数是__.18.已知:103<157464<1003;43=64;53<157<63,则54=,请根据上面的=_________.19.下列说法: -10=;②数轴上的点与实数成一一对应关系;③两条直线被第三条直线所截,同位角相等;④垂直于同一条直线的两条直线互相平行;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,其中正确的个数有 ___________20.如果a =b 的整数部分,那么ab =_______.三、解答题21.观察下列各式:(x -1)(x+1)=x 2-1(x -1)(x 2+x+1)=x 3-1(x -1)(x 3+x 2+x+1)=x 4-1……(1)根据以上规律,则(x -1)(x 6+x 5+x 4+x 3+x 2+x+1)=__________________.(2)你能否由此归纳出一般性规律(x -1)(x n +x n -1+x n -2+…+x+1)=____________. (3)根据以上规律求1+3+32+…+349+350的结果.22.对于实数a ,我们规定:用符号为a 的根整数,例如:3=,=3.(1)仿照以上方法计算:=______;=_____.(2)若1=,写出满足题意的x 的整数值______.如果我们对a 连续求根整数,直到结果为1为止.例如:对10连续求根整数2次3=→=1,这时候结果为1. (3)对100连续求根整数,____次之后结果为1.(4)只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是____.23.请回答下列问题:(1介于连续的两个整数a 和b 之间,且a b <,那么a = ,b = ;(2)x 2的小数部分,y 1的整数部分,求x = ,y = ;(3)求)yx -的平方根. 24.阅读下列材料:()1121230123⨯=⨯⨯-⨯⨯ 123(234123)3⨯=⨯⨯-⨯⨯ ()1343452343⨯=⨯⨯-⨯⨯ 由以上三个等式相加,可得读完以上材料,请你计算下列各题.(1)求1×2+2×3+3×4+…+10×11的值.(2)1×2+2×3+3×4+……+n×(n+1)=___________.25.已知2a -的平方根是2±,33a b --的立方根是3,整数c 满足不等式1c c <+. (1)求,,a b c 的值.(2)求2232a b c ++的平方根.26.阅读材料,回答问题:(1)对于任意实数x ,符号[]x 表示“不超过x 的最大整数”,在数轴上,当x 是整数,[]x 就是x ,当x 不是整数时,[]x 是点x 左侧的第一个整数点,如[]33=,[]22-=-,[]2.52=,[]1.52-=-,则[]3.4=________,[]5.7-=________.(2)2015年11月24日,杭州地铁1号线下沙延伸段开通运营,极大的方便了下沙江滨居住区居民的出行,杭州地铁收费采用里程分段计价,起步价为2元/人次,最高价为8元/人次,不足1元按1元计算,具体权费标准如下:①若从下沙江滨站到文海南路站的里程是3.07公里,车费________元,下沙江滨站到金沙湖站里程是7.93公里,车费________元,下沙江滨站到杭州火东站里程是19.17公里,车费________元;②若某人乘地铁花了7元,则他乘地铁行驶的路程范围(不考虑实际站点下车里程情况)?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】分别根据平方根的定义,算术平方根的定义判断即可得出正确选项.【详解】A.﹣4是16的平方根,说法正确;B.2,说法正确;C.116的平方根是±14,故原说法错误;D.,说法正确.故选:C.【点睛】此题考查了平方根以及算术平方根的定义,熟记相关定义是解题的关键.2.D解析:D【分析】直接利用实数以及有理数、无理数的定义分析得出答案.【详解】A、实数包括有理数和无理数,故此命题是假命题;B、有理数就是有限小数或无限循环小数,故此命题是假命题;C、无限不循环小数就是无理数,故此命题是假命题;D、无论是无理数还是有理数都是实数,是真命题.故选:D.【点睛】此题主要考查了命题与定理,正确掌握相关定义是解题关键.3.B解析:B【分析】根据有理数的定义选出即可.【详解】解:A是无理数,故选项错误;B、﹣0.6是有理数,故选项正确;C、2π是无理数,故选项错误;D、0.l51151115…是无理数,故选项错误.故选:B.【点睛】本题考查了实数,注意有理数是指有限小数和无限循环小数,包括整数和分数.4.B解析:B【分析】根据a★b=a2-ab可得(x+2)★(x-3)=(x+2)2-(x+2)(x-3),进而可得方程:(x+2)2-(x+2)(x-3)=5,再解方程即可.【详解】解:由题意得:(x+2)2-(x+2)(x-3)=5,x2+4x+4-(x2-x-6)=5,x2+4x+4-x2+x+6=5,5x=-5,解得:x=-1,故选:B.【点睛】此题主要考查了实数运算,以及解方程,关键是正确理解所给条件a★b=a2-ab所表示的意义.5.C解析:C【分析】根据题意得到m,n的相反数,分成三种情况⑴m,n;-m,-n ⑵m,-m;n,-n⑶m,-n;n,-m 分别计算,最后相加即可.【详解】解:依题意,m,n(m<n)的相反数为﹣m,﹣n,则有如下情况:m,n为一组,﹣m,﹣n为一组,有A=|m+n|+|(﹣m)+(﹣n)|=2m+2nm,﹣m为一组,n,﹣n为一组,有A=|m+(﹣m)|+|n+(﹣n)|=0m,﹣n为一组,n,﹣m为一组,有A=|m+(﹣n)|+|n+(﹣m)|=2n﹣2m所以,所有A的和为2m+2n+0+2n﹣2m=4n故选:C.【点睛】本题主要考查了新定义的理解,注意分类讨论是解题的关键.6.B【分析】直接根据算术平方根的定义计算即可.【详解】,∴5故选B.【点睛】此题主要考查了算术平方根,关键是掌握算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.7.B解析:B【分析】根据0.5是0.25的一个平方根可对A进行判断;根据一个正数的平方根互为相反数可对B 进行判断;根据平方根的定义对C、D进行判断.【详解】A、0.5是0.25的一个平方根,所以A选项错误;B、正数有两个平方根,且这两个平方根之和等于0,所以B选项正确;C、72的平方根为±7,所以C选项错误;D、负数没有平方根.故选B.【点睛】本题考查了平方根:若一个数的平方定义a,则这个数叫a的平方根,记作a≥0);0的平方根为0.8.D解析:D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A、227是有理数,故选项A不符合题意;B、3.1415926是有理数,故选项B不符合题意;C、2.010010001是有理数,故选项C不符合题意;D、π3是无理数,故选项D题意;【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.9.C解析:C【分析】根据“无理数”的定义进行分析判断即可.【详解】∵在实数:π2、227、-1.010010001…中,属于无理数的是:?-1.010*******, ∴上述实数中,属于无理数的有3个.故选C.【点睛】本题考查了无理数,熟记“无理数”的定义:“无限不循环小数叫做无理数”是解答本题的关键.10.A解析:A【分析】根据立方根与平方根的定义即可求出答案.【详解】2=25,∴25的平方根是±5,﹣125的立方根是﹣5,∴a =±5,b =﹣5,当a =5时,原式=5﹣(﹣5)=10,当a =﹣5时,原式=﹣5﹣(﹣5)=0,故选:A .【点睛】本题考查平方根与立方根,解题的关键是熟练运用平方根与立方根的定义,本题属于基础题型.二、填空题11..【详解】根据题意按规律求解:b1=2(1-a1)=,b2=2(1-a1)(1-a2)=,…,所以可得:bn=.解:根据以上分析bn=2(1-a1)(1-a2)…(1-an )=.“ 解析:12++n n . 【解析】【详解】 根据题意按规律求解:b 1=2(1-a 1)=131221-4211+⎛⎫⨯== ⎪+⎝⎭,b 2=2(1-a 1)(1-a 2)=314221-29321+⎛⎫⨯== ⎪+⎝⎭,…,所以可得:b n =12++n n . 解:根据以上分析b n =2(1-a 1)(1-a 2)…(1-a n )=12++n n . “点睛”本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.本题中表示b 值时要先算出a 的值,要注意a 中n 的取值.12.2【分析】的值为8,根据立方根的定义即可求解.【详解】解:,8的立方根是2,故答案为:2.【点睛】本题考查算术平方根和立方根的定义,明确算术平方根和立方根的定义是解题的关键.解析:2【分析】8,根据立方根的定义即可求解.【详解】8=,8的立方根是2,故答案为:2.【点睛】本题考查算术平方根和立方根的定义,明确算术平方根和立方根的定义是解题的关键.【分析】根据a 的平方等于9,先求出a ,再计算a3即可.【详解】∵(±3)2=9,∴平方等于9的数为±3,又∵33=27,(-3)3=-27.故答案为±27.【点睛】本题考查了解析:±27【分析】根据a 的平方等于9,先求出a ,再计算a 3即可.【详解】∵(±3)2=9,∴平方等于9的数为±3,又∵33=27,(-3)3=-27.故答案为±27.【点睛】本题考查了平方根及有理数的乘方.解题的关键是掌握平方根的概念及有理数乘方的法则.14.>【解析】∵ . , ∴ , ∴ ,故答案为>.解析:>【解析】∵10.52-=-=20-> , ∴0> , ∴0.5> ,故答案为>.15.1或5.【分析】根据题意,利用绝对值的代数意义及平方根定义求出x 与y 的值,代入原式计算即可得到结果.【详解】解:根据题意得:x =3,y =2或x =3,y =﹣2,则x ﹣y =1或5.故答案为1解析:1或5.根据题意,利用绝对值的代数意义及平方根定义求出x 与y 的值,代入原式计算即可得到结果.【详解】解:根据题意得:x =3,y =2或x =3,y =﹣2,则x ﹣y =1或5.故答案为1或5.【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.16.255【分析】(1)根据题意的操作过程可直接进行求解;(2)根据题意可得最后取整为1,得出前面的一个数最大是3,再向前推一步取整的最大整数为15,依此可得出答案.【详解】解:(1)解析:255【分析】(1)根据题意的操作过程可直接进行求解;(2)根据题意可得最后取整为1,得出前面的一个数最大是3,再向前推一步取整的最大整数为15,依此可得出答案.【详解】解:(1)由题意得:64→=8→2=→=1,∴对64只需进行3次操作后变为1,故答案为3;(2)与上面过程类似,有256→=16→4=→=2→1=,对256只需进行4次操作即变为1,类似的有255→=15→3=→=1,即只需进行3次操作即变为1,故最大的正整数为255;故答案为255.【点睛】本题主要考查算术平方根的应用,熟练掌握算术平方根是解题的关键.17.0或±1.【分析】根据立方的定义计算即可.【详解】解:∵(﹣1)3=﹣1,13=1,03=0,∴一个数的立方等于它本身,这个数是0或±1.故答案为:0或±1.【点睛】本题考查了乘方的解析:0或±1.【分析】根据立方的定义计算即可.【详解】解:∵(﹣1)3=﹣1,13=1,03=0,∴一个数的立方等于它本身,这个数是0或±1.故答案为:0或±1.【点睛】本题考查了乘方的定义,熟练掌握立方的定义是解题关键,注意本题要分类讨论,不要漏数.18.【分析】首先根据一个数的立方的个位数就是这个数的个位数的立方的个位数确定个位数,然后一次确定十位数,即可求得立方根.【详解】由103=1000,1003=1000000,就能确定是2位数.由解析:39【分析】首先根据一个数的立方的个位数就是这个数的个位数的立方的个位数确定个位数,然后一次确定十位数,即可求得立方根.【详解】由103=1000,1003=10000002位数.由59319的个位上的数是99,如果划去59319后面的三位319得到数59,而33=27、43=64339.故答案为:39【点睛】本题主要考查了数的立方,理解一个数的立方的个位数就是这个数的个位数的立方的个位数是解题的关键.19.2个【分析】①根据算术平方根的性质即可判定;②根据实数与数轴上的点的对应关系即可判定;③根据平行线的性质即可判断;根据平行公理的推论对④进行判断;⑤根据无理数的性质即可判定;⑥根据无理数的定义即解析:2个【分析】①根据算术平方根的性质即可判定;②根据实数与数轴上的点的对应关系即可判定;③根据平行线的性质即可判断;根据平行公理的推论对④进行判断;⑤根据无理数的性质即可判定;⑥根据无理数的定义即可判断.【详解】=,故①错误;①10②数轴上的点与实数成一一对应关系,故说法正确;③两条平行直线被第三条直线所截,同位角相等;故原说法错误;④在同一平面内,垂直于同一条直线的两条直线互相平行,故原说法错误;与的和是0,是有理数,故说法错误;⑥无理数都是无限小数,故说法正确.故正确的是②⑥共2个.故答案为:2个.【点睛】此题主要考查了有理数、无理数、实数的定义及其关系.有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,分数可以化为有限小数或无限循环小数;无理数是无π也是无理数.20.12【分析】先根据算术平方根的定义求出a的值,再根据无理数的估算得出b的值,然后计算有理数的乘法即可.【详解】,即的整数部分是2,即则故答案为:.【点睛】本题考查了算术平方根的解析:12【分析】先根据算术平方根的定义求出a的值,再根据无理数的估算得出b的值,然后计算有理数的乘法即可.【详解】6a==479<<<<23<<∴的整数部分是2,即2b=则6212ab=⨯=故答案为:12.【点睛】本题考查了算术平方根的定义、无理数的估算,根据无理数的估算方法得出b的值是解题关键.三、解答题21.(1)x7-1;(2)x n+1-1;(3)5131 2-.【分析】(1)仿照已知等式写出答案即可;(2)先归纳总结出规律,然后按规律解答即可;(3)先利用得出规律的变形,然后利用规律解答即可.【详解】解:(1)根据题意得:(x-1)(x6+x5+x4+x3+x2+x+1)=x7-1;(2)根据题意得:(x-1)(x"+x"-1+.…+x+1)=x"+1-1;(3)原式=12×(3-1)(1+3+32+···+349+350)=12×(x50+1-1)=51312-故答案为:(1)x7-1;(2)x n+1-1;(3)5131 2-.【点睛】本题考查了平方差公式以及规律型问题,弄清题意、发现数字的变化规律是解答本题的关键.22.(1)2;5;(2)1,2,3;(3)3;(4)255【分析】(1(2)根据定义可知x<4,可得满足题意的x的整数值;(3)根据定义对120进行连续求根整数,可得3次之后结果为1;(4)最大的正整数是255,根据操作过程分别求出255和256进行几次操作,即可得出答案.【详解】解:(1)∵22=4, 62=36,52=25,∴5<6,∴]=[2]=2,]=5,故答案为2,5;(2)∵12=1,22=4,且]=1,∴x=1,2,3,故答案为1,2,3;(3)第一次:,第二次:,第三次:,故答案为3;(4)最大的正整数是255,理由是:∵,,]=1,∴对255只需进行3次操作后变为1,∵,,]=2,]=1,∴对256只需进行4次操作后变为1,∴只需进行3次操作后变为1的所有正整数中,最大的是255,故答案为255.【点睛】本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和猜想能力,同时也考查了一个数的平方数的计算能力.23.(1)4;b=(2−4;3(3)±8【分析】((1)由16<17<25a,b的值;(2)根据(1)的结论即可确定x与y的值;(3)把(2)的结论代入计算即可.【详解】解:(1)∵16<17<25,∴4<5,∴a=4,b=5,故答案为:4;5;(2)∵4<5,∴6+2<7,由此整数部分为6,∴x−4,∵4<5,∴3-1<4,∴y =3;;3(3)当x ,y =3时,)y x =)3=64, ∴64的平方根为±8.【点睛】此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“逐步逼近”是估算的一般方法,也是常用方法.24.(1)440;(2)()()1123n n n ++. 【分析】通过几例研究n(n+1)数列前n 项和,根据题目中的规律解得即可.【详解】.(1)1×2+2×3+3×4+…+10×11 =1(123012)3⨯⨯-⨯⨯+1(234123)3⨯⨯-⨯⨯+1(345234)3⨯⨯-⨯⨯+…+1(10111291011)3⨯⨯-⨯⨯ =1101112=4403⨯⨯⨯.(2)1×2+2×3+3×4+……+n×(n+1) =1(123012)3⨯⨯-⨯⨯+1(234123)3⨯⨯-⨯⨯+1(345234)3⨯⨯-⨯⨯+…+ ()()()()121113n n n n n n ++--+⎡⎤⎣⎦ =()()1123n n n ++. 故答案为:()()1123n n n ++.【点睛】本题考查数字规律问题,读懂题中的解答规律,掌握部分探究的经验,用题中规律进行计算是关键.25.(1)6a =,8b =-,2c =;(2)12±【分析】(1)利用平方根,立方根定义以及估算方法确定出a ,b ,c 的值即可;(2)把a ,b ,c 的值代入计算即可求出所求.【详解】解:(1)根据题意得:a−2=4,a−3b−3=27,23<<,∴a=6,b=−8,c=2;(2)原式=2×62+(-8)2+23=72+64+8=144,144的平方根是±12.∴2232a b c ++的平方根是±12.【点睛】此题考查了估算无理数的大小,平方根以及立方根的定义,熟练掌握运算法则是解本题的关键.26.(1)3;6-;(2)①2;3;6.②这个乘客花费7元乘坐的地铁行驶的路程范围为:大于24公里小于等于32公里.【分析】(1)根据题意,确定实数左侧第一个整数点所对应的数即得;(2)①根据表格确定乘坐里程的对应段,然后将乘坐里程分段计费并累加即得;②根据表格将每段的费用从左至右依次累加直至费用为7元,进而确定7元乘坐的具体里程即得.【详解】(1)∵3 3.44<<∴[]3.43=∵6 5.75-<-<-∴[]5.76-=-故答案为:3;6-.(2)①∵3.074<∴3.07公里需要2元∵47.9312<<∴7.93公里所需费用分为两段即:前4公里2元 ,后3.93公里1元∴7.93公里所需费用为:2+1=3(元)∵19.212174<<∴19.17公里所需费用分为三段计费即: 前4公里2元,4至12公里2元,12公里至19.17公里2元;∴19.17公里所需费用为:2226++=(元)故答案为:2;3;6.②由题意得:乘坐24公里所需费用分为三段:前4公里2元,4至12公里2元,12公里至24公里2元;∴乘坐24公里所需费用为:2226++=(元)∵由表格可知:乘坐24公里以上的部分,每一元可以坐8公里∴7元可以乘坐的地铁最大里程为:24+8=32(公里)∴这个乘客花费7元乘坐的地铁行驶的路程范围为:大于24公里小于等于32公里答:这个乘客花费7元乘坐的地铁行驶的路程范围为:大于24公里小于等于32公里.【点睛】本题是阅读材料题,考查了实数的实际应用,根据材料中的新定义举一反三并挖掘材料中深层次含义是解题关键.。

《实数》期末复习题

《实数》期末复习题


1条
C

2


C
下 列说法 中正 确 的是 (

4
是8的算术平 方根

V 丁是 5 的 算 术 平 方 根
砖 壬(



。 、可 ) 的平 方 根 /

y
是64 的立 方 根
D


则 x +y 的 值 为 (
3
B

7
C

3 或7
1或7
0












8
A

估计 、% 的 大 小 在 ( /

组 是 (
)
C

2




2


一 .
2
t=
~
j


1 0
D

i 2 t
-
-
~

2
4

如 图 l

以 数 轴 的单 位 长 度 为 边 长 作


个 正 方 形 以数 轴 的原 点 为 圆心 角线 长为半径 画 圆弧
示 的数是 (
A 5

. .
正 方 形 的 对


交数轴
于 点A

则点
A

l ■
2












第3章 《实数》复习训练卷(含答案)

第3章 《实数》复习训练卷(含答案)

第3章 《实数》复习训练卷一、选择题。

1.下列实数:227,3.14159265,-80.6,03π无理数的个数是( ) A .1个 B .2个 C .3个 D .4个2.下列说法:①实数和数轴上的点是一一对应的;②实数分为正实数和负实数:③立方根等于它本身的数是±1和0;④无理数都是无限小数;⑤平方根等于本身的数是1和0.正确的个数是( )A .1B .2C .3D .43.27(7)0y z ++-=,则x y z -+的平方根为( )A .±2B .4C .2D .±44.若一个正数的两个平方根为1a +和27a -,则这个正数是( )A .2B .3C .8D .9 5.有下列说法:(1)﹣3(2)7是(﹣7)2的算术平方根;(3)27的立方根是±3;(4)1的平方根是±1;(5)0没有算术平方根.其中正确的有( )A .1个B .2个C .3个D .4个6.2020年3月14日,是全球首个“国际圆周率日(πDay )”.国际圆周率日之所以定在3月14日,是因为“3.14”是与圆周率数值最接近的数字.祖冲之是世界上最早把圆周率的精确值计算到小数点后第7位的中国古代科学巨匠,该成果领先世界一千多年.以下关于“圆周率”的四个命题,错误的是( )A .圆周率是一个大于3而小于4的无理数B .圆周率是一个近似数C .圆周率是一个与圆的大小无关的常数D .圆周率等于该圆的周长与直径的比值7.依据图中呈现的运算关系,可知m n +=( ).A .-4040B .4040C .-2020D .202081的结果是介于下列哪两个数之间( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间9.有一个数值转换器,原理如下:当输入的x 为64时,输出的y 是( )A .22B .2C .2D .±210.把四张形状大小完全相同的小长方形卡片(如图①,卡片的长为a ,宽为b )不重叠地放在一个底面为长方形宽为4)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是( )A .B .16C .)24D .)44二、填空题。

人教版2021-2022学年度第二学期七年级数学第6章实数 期末复习测试卷附答案教师版

人教版2021-2022学年度第二学期七年级数学第6章实数 期末复习测试卷附答案教师版

人教版2021-2022学年度第二学期七年级数学第6章实数期末复习测试卷附答案教师版一、单选题(共10题;共30分)1.(3分)(−3)2的平方根为()A.±3B.3C.±3D.3【答案】C2.(3分)以下代数式的值可以为负数的是()A.|3-x|B.x2+x C.D.x2-2x+1【答案】B3.(3分)下列算式与所计算出的结果相同的是()A B C D【答案】A4.(3分)下列等式正确的是().A=13B=113C.3−9=−3D=±34【答案】A5.(3分)下列说法错误的是()A.27的立方根是3B.−12是14的平方根C.平方根等于它本身的数只有0D.2的算术平方根是a【答案】D6.(3分)下列四种说法中:(1)负数没有立方根;(2)1的立方根与平方根都是1;(3)38的平方根是±2;(4= 2+12=212.共有()个是错误的.A.1B.2C.3D.4【答案】C7.(3分)下列各数是无理数的是()A.-2.5B.227C.D.4【答案】C8.(3分)实数2,0,-2,2中,最大的数是()A.2B.0C.-2D.2【答案】A9.(3分)设a,b,c为互不相等的实数,且23+13=,则下列结论正确的是()A.>>B.>>C.−=2(−p D.−=3(−p 【答案】D10.(3分)实数a,b在数轴上对应的点的位置如图所示,下列结论中正确的是()A.+>0B.B>0C.−>0D.|U>|U【答案】D二、填空题(共5题;共15分)11.(3分)若2≈1.414,则200≈.【答案】14.1412.(3分)一个正数的两个平方根分别是2+5和−1,则这个正数是.【答案】49913.(3分)若30.3=0.6694,33=1.442,则3300=.【答案】6.69414.(3分)若3=-7,则a=【答案】34315.(3分)计算:18−6cos45°+(12)−2=.【答案】4三、解答题(共8题;共55分)16.(7分)如图,一根细线上端固定,下端系一个小球,让这个小球来回自由摆动,来回摆动一次所用的时间(单位:)与细线的长度(单位:)之间满足关系=,当细线的长度为0.4时,小球来回摆动一次所用的时间是多少?(结果保留小数点后一位)【答案】解:把l=0.4m代入关系式=得,∴===2×15=0.4=1.3(秒).17.(6分)小明想用一块面积为400平方厘米的正方形纸片,沿着边的方向,裁出一块面积为360平方厘米的长方形纸片,使它的长宽之比为4:3,他不知道能否裁得出来,聪明的你帮他想想,他能裁得出来吗?(通过计算说明)【答案】解:设设所裁长方形的长、宽分别为4x厘米,3x厘米,由题意得,4×3=360,即2=30,∵>0∴=30∴长方形的长为430,∵正方形纸片的面积为400平方厘米,∴正方形的边长为400=20厘米,∵30>5,∴430>20,∴不能裁出符合要求的长方形.18.(7分)已知一个正数的平方根是3+1与3−,求和的值.【答案】解:∵一个正数a的两个平方根分别为3x+1和3﹣x,∴3x+1+3﹣x=0,解得x=﹣2,∴3﹣x=3﹣(﹣2)=5,∴a=52=25.∴x和a的值分别是﹣2,25.19.(7分)实数a,b互为相反数,c,d互为倒数,x的绝对值为3,求代数式2+++4−327n 的值.【答案】由题意知a+b=0,cd=1,x=±3,则原式=(±3)2+0+4−=3+2−3=2.20.(7分)已知一个正数的平方根是2−3和5−,求7−−1的立方根.【答案】解:∵正数b的平方根是2−3和5−∴(2−3)+(5−p=0∴=−2∴=(2−3)2=(−7)2=49∴7−−1=7×(−2)−49−1=−64而−64的立方根为−4故7−−1的立方根为−421.(7分)已知某正数的两个平方根分别是2m-3和5-m,n-1的算术平方根为2,求3m+n-7的立方根。

八年级数学上学期期末复习试卷(实数)(含解析) 新人教版

八年级数学上学期期末复习试卷(实数)(含解析) 新人教版

2015-2016学年山东省枣庄市滕州市鲍沟中学八年级(上)期末数学复习试卷一、选择题1.下列说法中正确的是()A.带根号的数都是无理数 B.实数都是有理数C.有理数都是实数D.无理数都是开方开不尽的数2.下列各数:﹣5,,4.11212121212…,0,,3.14,其中无理数有()A.1个B.2个C.3个D.4个3.设4﹣的整数部分为a,小整数部分为b,则a﹣的值为()A.1﹣B. C.1+ D.4.已知y=+﹣3,则5xy的值是()A.﹣15 B.15 C.﹣D.5.下列二次根式不是最简二次根式的是()A. B.3 C. D.6.式子有意义的x的取值范围是()A.x<1 B.x≠1 C.x≥1 D.x>17.4的算术平方根是()A.4 B.2 C.±2 D.±48.如图,数轴上有A、B、C、D四点,其中与实数最接近的数所对应的点是()A.A B.B C.C D.D9.若+(y+2)2=0,则(x+y)2014等于()A.﹣1 B.1 C.32014D.﹣3201410.下列各式正确的是()A. =×=10 B. =2+3=5C. = D.11.的值等于()A.﹣3 B.3 C.±3 D.12.如图将1、、、按下列方式排列.若规定(m,n)表示第m排从左向右第n个数,则(5,4)与(15,8)表示的两数之积是()A.1 B. C. D.3二、选择题13.如图,数轴上A、B两点对应的实数分别为1和,若点A关于点B的对称点为C,则点C 所对应的实数为.14.比较2.5,,﹣3的大小,用“<”连接起来为.15.若x3=27,则x= .16.观察下列各式:…请你将发现的规律用含自然数n(n≥1)的等式表示出来.17.若x2=9,则x= ,,则x= .18.4的算术平方根是,9的平方根是,﹣27的立方根是.19.满足﹣的整数x是.20.﹣1的相反数是.21.已知:m与n互为相反数,c与d互为倒数,a是的整数部分,则的值是.三.解答题22.(1)3﹣﹣(2)++3﹣(3)(+)(﹣)23.阅读理解:我们把称作二阶行列式,规定他的运算法则为=ad﹣bc.如=2×5﹣3×4=﹣2.(1)计算:;(2)如果=﹣4,求y的值.24.已知2a﹣1的平方根是±3,3a+b﹣9的立方根是2,c是的整数部分,求a+b+c的平方根.25.已知a,b,c满足+=|c﹣17|+b2﹣30b+225,(1)求a,b,c的值;(2)试问以a,b,c为边能否构成三角形?若能构成三角形,求出三角形的周长和面积;若不能构成三角形,请说明理由.2015-2016学年山东省枣庄市滕州市鲍沟中学八年级(上)期末数学复习试卷(实数)参考答案与试题解析一、选择题1.下列说法中正确的是()A.带根号的数都是无理数 B.实数都是有理数C.有理数都是实数D.无理数都是开方开不尽的数【考点】实数.【分析】根据实数的定义及无理数的三种形式结合各选项判断即可.【解答】解:A、带根号的数是有理数,不是无理数,故本选项错误;B、实数包括有理数和无理数,故本选项错误;C、有理数和无理数统称实数,故本选项正确;D、无理数包括三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,故本选项错误.故选C.2.下列各数:﹣5,,4.11212121212…,0,,3.14,其中无理数有()A.1个B.2个C.3个D.4个【考点】无理数.【分析】根据无理数的定义得到无理数有,共1个.【解答】解:无理数有,共1个,故选A.3.设4﹣的整数部分为a,小整数部分为b,则a﹣的值为()A.1﹣B. C.1+ D.【考点】估算无理数的大小.【分析】应先找到所求的无理数在哪两个和它接近的整数之间,然后判断出所求的无理数的整数部分,小数部分让原数减去整数部分,代入求值即可.【解答】解:∵1<<2,∴﹣1>﹣>﹣2,∴4﹣1>4﹣>4﹣2,∴3>4﹣>2.∴a=2,b=2﹣,∴a﹣=2﹣=1﹣.故选A.4.已知y=+﹣3,则5xy的值是()A.﹣15 B.15 C.﹣D.【考点】二次根式有意义的条件.【分析】首先依据二次根式被开放数大于等于0可求得x的值,将x的值代入可求得y的值,最后依据有理数的乘法法则求解即可.【解答】解:∵y=+﹣3,∴5x﹣5=0,解得:x=1.当x=1时,y=﹣3.∴5xy=5×1×(﹣3)=﹣15.故选:A.5.下列二次根式不是最简二次根式的是()A. B.3 C. D.【考点】最简二次根式.【分析】根据最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式判断即可.【解答】解:、3、满足最简二次根式的两个条件,是最简二次根式,=2被开方数不含能开得尽方的因数或因式,不是最简二次根式,故选:D.6.式子有意义的x的取值范围是()A.x<1 B.x≠1 C.x≥1 D.x>1【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据二次根式和分式有意义的条件可得x﹣1>0,再解即可.【解答】解:由题意得:x﹣1>0,解得:x>1,故选:D.7.4的算术平方根是()A.4 B.2 C.±2 D.±4【考点】算术平方根.【分析】如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.【解答】解:∵22=4,∴4算术平方根为2.故选B.8.如图,数轴上有A、B、C、D四点,其中与实数最接近的数所对应的点是()A.A B.B C.C D.D【考点】实数与数轴.【分析】先求出﹣﹣5的取值范围,进而可得出结论.【解答】解:∵9<10<16,∴3<<4,∴﹣2<﹣5<﹣1,∴点B与实数最接近.故选B.9.若+(y+2)2=0,则(x+y)2014等于()A.﹣1 B.1 C.32014D.﹣32014【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.【解答】解:∵+(y+2)2=0,∴,解得,∴(x+y)2014=(1﹣2)2014=1,故选:B.10.下列各式正确的是()A. =×=10 B. =2+3=5C. = D.【考点】二次根式的性质与化简.【分析】直接利用二次根式的性质,进而分别分析得出答案.【解答】解:A、=×=10,故此选项错误;B、=,故此选项错误;C、=,故此选项正确;D、=﹣=﹣3,故此选项错误.故选:C.11.的值等于()A.﹣3 B.3 C.±3 D.【考点】二次根式的性质与化简.【分析】根据=|a|=求出即可.【解答】解: ==3,故选B.12.如图将1、、、按下列方式排列.若规定(m,n)表示第m排从左向右第n个数,则(5,4)与(15,8)表示的两数之积是()A.1 B. C. D.3【考点】算术平方根.【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m﹣1排有(m﹣1)个数,从第一排到(m﹣1)排共有:1+2+3+4+…+(m﹣1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m排第n个数到底是哪个数后再计算.【解答】解:(5,4)表示第5排从左向右第4个数是,(15,8)表示第15排从左向右第8个数,可以看出奇数排最中间的一个数都是1,第15排是奇数排,最中间的也就是这排的第8个数是1,1×=.故选:B.二、选择题13.如图,数轴上A、B两点对应的实数分别为1和,若点A关于点B的对称点为C,则点C 所对应的实数为.【考点】实数与数轴.【分析】设点C所对应的实数是x.根据中心对称的性质,即对称点到对称中心的距离相等,即可列方程求解即可.【解答】解:设点C所对应的实数是x.∵点A关于点B的对称点为C,∴BC=AB,∴x﹣=﹣1,解得x=2﹣1.故答案为:2﹣1.14.比较2.5,,﹣3的大小,用“<”连接起来为.【考点】实数大小比较.【分析】根据正数大于负数,即可解答.【解答】解:∵=2.5,,∴2.5,∴﹣3<2.5<,故答案为:﹣3<2.5<.15.若x3=27,则x= .【考点】立方根.【分析】根据立方根的定义解简单的高次方程.【解答】解:∵x3=27,∴x==3,故答案为:316.观察下列各式:…请你将发现的规律用含自然数n(n≥1)的等式表示出来.【考点】规律型:数字的变化类.【分析】观察分析可得: =(1+1); =(2+1);…则将此题规律用含自然数n(n≥1)的等式表示出来【解答】解:∵=(1+1);=(2+1);∴=(n+1)(n≥1).故答案为: =(n+1)(n≥1).17.若x2=9,则x= ,,则x= .【考点】算术平方根;平方根.【分析】根据算术平方根、平方根,即可解答.【解答】解:∵x2=9,∴x=±3,∵,∴x2=81,∴x=±9,故答案为:±3,±9.18.4的算术平方根是,9的平方根是,﹣27的立方根是.【考点】立方根;平方根;算术平方根.【分析】根据算式平方根、平方根和立方根的定义求出即可.【解答】解:4的算术平方根是2,9的平方根是±3,﹣27的立方根是﹣3.故答案为:2;±3,﹣3.19.满足﹣的整数x是.【考点】实数大小比较.【分析】先求出﹣、的近似值,再根据x的取值范围找出x的整数解即可.【解答】解:因为﹣≈﹣1.414,≈2.236,所以满足﹣的整数x是﹣1,0,1,2.故答案为:﹣1,0,1,2.20.﹣1的相反数是.【考点】实数的性质.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣1的相反数是 1﹣,故答案为:1﹣.21.已知:m与n互为相反数,c与d互为倒数,a是的整数部分,则的值是.【考点】实数的运算;估算无理数的大小.【分析】首先根据有理数的加法可得m+n=0,根据倒数定义可得cd=1,然后代入代数式求值即可.【解答】解:∵m与n互为相反数,∴m+n=0,∵c与d互为倒数,∴cd=1,∵a是的整数部分,∴a=2,∴=1+2×0﹣2=﹣1.故答案为:﹣1.三.解答题22.(1)3﹣﹣(2)++3﹣(3)(+)(﹣)【考点】实数的运算.【分析】(1)原式各项化简后,合并即可得到结果;(2)原式利用平方根及立方根定义计算即可得到结果;(3)原式利用平方差公式计算即可得到结果.【解答】解:(1)原式=6﹣3﹣=;(2)原式=4﹣3+3﹣3=3﹣2;(3)原式=2﹣3=﹣1.23.阅读理解:我们把称作二阶行列式,规定他的运算法则为=ad﹣bc.如=2×5﹣3×4=﹣2.(1)计算:;(2)如果=﹣4,求y的值.【考点】二次根式的混合运算;解一元二次方程-公式法.【分析】(1)根据二阶行列式直接列出关系式解答即可;(2)由二阶行列式直接列出关于y的方程,然后解方程即可.【解答】解:(1)根据题意得:原式=(7+4)×(7﹣4)﹣(3+1)×(3+1)=49﹣48﹣45+1=﹣45﹣6.(2)根据题意得:原式=(2y+1)×(y﹣2)﹣3×1=﹣4,整理得:2y2﹣3y﹣1=0,∴x1=,x2.24.已知2a﹣1的平方根是±3,3a+b﹣9的立方根是2,c是的整数部分,求a+b+c的平方根.【考点】平方根;立方根;估算无理数的大小.【分析】首先根据平方根与立方根的概念可得2a﹣1与3a+b﹣9的值,进而可得a、b的值;接着估计的大小,可得c的值;进而可得a+b+c,根据平方根的求法可得答案.【解答】解:根据题意,可得2a﹣1=9,3a+b﹣9=8;故a=5,b=2;又∵2<<3,∴c=2,∴a+b+c=5+2+2=9,∴9的平方根为±3.25.已知a,b,c满足+=|c﹣17|+b2﹣30b+225,(1)求a,b,c的值;(2)试问以a,b,c为边能否构成三角形?若能构成三角形,求出三角形的周长和面积;若不能构成三角形,请说明理由.【考点】配方法的应用;非负数的性质:偶次方;勾股定理的逆定理.【分析】(1)直接根据非负数的性质求出a、b、c的值即可;(2)先根据勾股定理的逆定理判断出三角形的形状,再求出其周长和面积即可.【解答】解:(1)∵a,b,c满足+=|c﹣17|+b2﹣30b+225,∴a﹣8=0,b﹣15=0,c﹣17=0,∴a=8,b=15,c=17;(2)能.∵由(1)知a=8,b=15,c=17,∴82+152=172.∴a2+c2=b2,∴此三角形是直角三角形,∴三角形的周长=8+15+17=40;三角形的面积=×8×15=60.。

实数的复习题及答案

实数的复习题及答案

实数的复习题及答案
1. 判断题:实数包括有理数和无理数。

答案:正确。

2. 选择题:以下哪个数是有理数?
A. π
B. √2
C. 0.33333...
D. 1/3
答案:D。

3. 填空题:实数a和b的和记作______。

答案:a+b。

4. 计算题:计算下列各题。

(1) 3 + 4i - 5i
(2) (2/3) + (-1/2)
答案:
(1) 3 - i
(2) 1/6
5. 应用题:一个数的平方根是它本身的数有几个?
答案:有两个,分别是0和1。

6. 证明题:证明实数集是完备的。

答案:实数集的完备性可以通过戴德金分割来证明。

戴德金分割是将
实数集分为两个非空子集A和B,使得A中的每一个元素都小于B中的每一个元素,且A没有最大元素。

这样的分割可以唯一确定一个实数,
从而证明了实数集的完备性。

7. 简答题:实数和复数的主要区别是什么?
答案:实数是复数的一个子集,复数包括实数和虚数。

实数可以表示为a+0i的形式,其中a是实数,而复数可以表示为a+bi的形式,其中a和b是实数,i是虚数单位。

8. 论述题:试述实数的连续性。

答案:实数的连续性是指在实数线上,任意两个实数之间都存在另一个实数。

这一性质可以通过实数的完备性来证明,即任意两个实数之间都存在一个实数的分割,这个分割可以确定一个唯一的实数,从而保证了实数的连续性。

第六章 实数单元 期末复习测试基础卷试卷

第六章 实数单元 期末复习测试基础卷试卷

第六章 实数单元 期末复习测试基础卷试卷一、选择题1.一个正数a 的平方根是2x ﹣3与5﹣x ,则这个正数a 的值是( ) A .25 B .49 C .64 D .81 2.如果一个自然数的算术平方根是n ,则下一个自然数的算术平方根是( )A .n +1B .21n +C .1n +D .21n3.下列各数-(-3),0,221(-)--2--42π,,,中,负数有( ) A .1个 B .2个 C .3个 D .4个 4.现定义一种新运算:a ★b=ab+a-b ,如:1★3=1×3+1-3=1,那么(-2)★5的值为( ) A .17 B .3C .13D .-175.若一个正方形边长为a ,面积为3,即23a =,可知a 是无理数,它的大小在下列哪两个数之间( ) A .1.5 1.6a <<B .1.6 1.7a <<C .1.7 1.8a <<D .1.8 1.9a << 6.给出下列各数①0.32,②227,③π,④5,⑤0.2060060006(每两个6之间依次多个0),⑥327,其中无理数是( ) A .②④⑤B .①③⑥C .④⑤⑥D .③④⑤7.下列各式中,正确的是( ) A .()233-=- B .42=± C .164= D .393=8.在如图所示的数轴上,,AB AC A B =,两点对应的实数分别是3和1,-则点C 所对应的实数是( )A .13+B .23+C .231-D .231+9.如图,数轴上的点E ,F ,M ,N 表示的实数分别为﹣2,2,x ,y ,下列四个式子中结果一定为负数是( )A .x +yB .2+yC .x ﹣2D .2+x10.若m 、n 满足()21150m n -+-=m n +的平方根是( ) A .4±B .2±C .4D .2二、填空题11.a 是不为2的有理数,我们把2称为a 的“文峰数”如:3的“文峰数”是2223=--,-2的“文峰数”是()21222=--,已知a 1=3,a 2是a 1的“文峰数”, a 3是a 2的“文峰数”, a 4是a 3的“文峰数”,……,以此类推,则a 2020=______12.与0.5_____0.5.(填“>”、“=”、“<”) 13.规定:[x]表示不大于x 的最大整数,(x )表示不小于x 的最小整数,[x )表示最接近x 的整数(x≠n+0.5,n 为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x <1时,化简[x]+(x )+[x )的结果是_____.14.高斯函数[]x ,也称为取整函数,即[]x 表示不超过x 的最大整数. 例如:[]2.32=,[]1.52-=-. 则下列结论:①[][]2.112-+=-;②[][]0x x +-=;③若[]13x +=,则x 的取值范围是23x ≤<;④当11x -≤<时,[][]11x x ++-+的值为0、1、2.其中正确的结论有_____(写出所有正确结论的序号).15.2(2)0x -=,则y x -的平方根_________.16.对于任意有理数a ,b ,定义新运算:a ⊗b =a 2﹣2b +1,则2⊗(﹣6)=____.17.已知实数x 的两个平方根分别为2a +1和3-4a ,实数y 的立方根为-a 的值为______.18.下列说法: -10=;②数轴上的点与实数成一一对应关系;③两条直线被第三条直线所截,同位角相等;④垂直于同一条直线的两条直线互相平行;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,其中正确的个数有 ___________19.如果a =b 的整数部分,那么ab =_______.20.若x ,y 为实数,且|2|0x +=,则(x+y) 2012的值为____________.三、解答题21.先阅读第()1题的解法,再解答第()2题:()1已知a ,b 是有理数,并且满足等式52b a =+,求a ,b 的值.解:因为52b a -=+所以()52b a =-所以2b a52a3-=⎧⎪⎨-=⎪⎩解得2a313b6⎧=⎪⎪⎨⎪=⎪⎩()2已知x,y是有理数,并且满足等式2x2y2y1742--=-,求x y+的值.22.概念学习规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把n aa a a a÷÷÷÷个(a≠0)记作a,读作“a的圈n次方”.初步探究(1)直接写出计算结果:2③=________,1)2-(⑤=________;(2)关于除方,下列说法错误的是________A.任何非零数的圈2次方都等于1; B.对于任何正整数n,1=1; C.3④=4③D.负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.深入思考我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(﹣3)④=________;5⑥=________;1)2-(⑩=________.(2)想一想:将一个非零有理数a的圈n次方写成幂的形式等于________;(3)算一算:()3242162÷+-⨯④.23.观察下列两个等式:1122133-=⨯+,2255133-=⨯+,给出定义如下:我们称使等式1a b ab-=+成立的一对有理数,a b为“共生有理数对”,记为(),a b,如:数对12,3⎛⎫⎪⎝⎭,25,3⎛⎫⎪⎝⎭,都是“共生有理数对”.(1)判断下列数对是不是“共生有理数对”,(直接填“是”或“不是”).(2,1)- ,(13,2) .(2)若 5,2a ⎛⎫-⎪⎝⎭是“共生有理数对”,求a 的值; (3)若(),m n 是“共生有理数对”,则(),n m --必是“共生有理数对”.请说明理由; (4)请再写出一对符合条件的 “共生有理数对”为 (注意:不能与题目中已有的“共生有理数对”重复).24.“比差法”是数学中常用的比较两个数大小的方法,即:0,?0,?0,?a b a ba b a b a b a b ->>⎧⎪-==⎨⎪-<<⎩则则则;2与2的大小∵224-=<<则45<<∴2240-=>∴22>请根据上述方法解答以下问题:比较2-与3-的大小. 25.已知2+a b(1)求2a -3b 的平方根;(2)解关于x 的方程2420ax b +-=.26.你会求(a ﹣1)(a 2012+a 2011+a 2010+…+a 2+a+1)的值吗?这个问题看上去很复杂,我们可以先考虑简单的情况,通过计算,探索规律:()()2111a a a -+=-,()()23111a a a a -++=-, ()()324111a a a a a -+++=-,(1)由上面的规律我们可以大胆猜想,得到(a ﹣1)(a 2014+a 2013+a 2012+…+a 2+a+1)= 利用上面的结论,求:(2)22014+22013+22012+…+22+2+1的值是 . (3)求52014+52013+52012+…+52+5+1的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B【分析】根据一个正数的两个平方根互为相反数可得(2x ﹣3)+(5﹣x )=0,可求得x ,再由平方根的定义即可解答. 【详解】解:由正数的两个平方根互为相反数可得 (2x ﹣3)+(5﹣x )=0, 解得x =﹣2,所以5﹣x =5﹣(﹣2)=7, 所以a =72=49. 故答案为B . 【点睛】本题考查了平方根的性质,理解平方根与算术平方根的区别及联系是解答本题的关键.2.D解析:D 【分析】根据算术平方根的平方等于这个这个自然数,得出下一个自然数,可得答案. 【详解】解:这个自然数是2n ,则和这个自然数相邻的下一个自然数是21n +,. 故选:D . 【点睛】本题考查了算术平方根,掌握一个数算术平方根的平方等于这个数是解题关键.3.C解析:C 【分析】根据相反数的定义,有理数的乘方,绝对值的性质分别化简,再根据正负数的定义进行判断即可得解 【详解】解:-(-3)=3;211()24-=;224-=-;44--=-; 所以2-2-4π--,,是负数,共3个。

实数期末复习题(通用)

实数期末复习题(通用)

第二章《实数》班别 学号 姓名 课堂练习 一、填空题1 、 (a ≥0,b ≥0), (a ≥0,b ≥0)2、25的算术平方根是 ,6的平方根是 ;12527-的立方是 。

3、16的平方根是 ,—27的立方根是 ,1的算术平方根是 4.比较大小: 52______25; 二、选择题 1、在下列各数中2π-,31,|-3|,4,0.8080080008…,7-,364是无理数的有( ) A.3个B.4个C. 5个D. 6个2、下列说法正确的是( )A.无限小数都是无理数B.带根号的数都是无理数C. 无理数都是无限小数D. 两个无理数的和还量无理数 3、下列式子中,正确的是A.55-=-B.-6.3=-0.6C.2)13(-=13D.36=±64、若某数的立方根等于这个数的算术平方根,则这个数等于( )A .0 B.1± C.–1或0 D. 1或06、估算56的值应在( )A. 6.5~7.0之间B. 7.0~7.5之间C. 7.5~8.0之间D. 8.0~8.5之间 7、如图所示,以数轴的单位长线段为边作一个正方形,以数轴的原点为圆心,正方形对角线长为半径画圆弧,交数轴正轴于点A ,则点A 表示的数是 ( )A 、211 B 、4.1 C 、3D 、2三、化简和计算 (1)、2)2332(-(2)、112318--(3)、12331627+- (4)、()()1313-+(5)、236⨯ (6)1833221+-=ba =⋅b a四、解答题1.在数轴上表示2、比较大小:215- 21;课后作业 一、选择题1、2)6(-的平方根是( ) A.-6 B.6 C.±6 D.6±2、如果一个数的立方根是这个数的本身,则这个数是( )A .1 B. -1 C. 0 D.-1,0, 13、下列各数,没有算术平方根的是( ) A. 0.7 B. 0 C. 1/4 D. -94、若规定误差小于1,那么50的估算值是( ) A. 7 B. 7.07 C. 7或8 D. 7和8.5、与数轴上的点一一对应的数是 ( )A.无理数B.分数或整数C.有理数C.有理数或无理数 二、填空题1、下列各数中无理数有 。

〖人教版〗七年级数学下册期末复习考试试卷《实数》3

〖人教版〗七年级数学下册期末复习考试试卷《实数》3

〖人教版〗七年级数学下册期末复习考试试卷《实数》创作人:百里灵明创作日期:2021.04.01审核人:北堂正中创作单位:北京市智语学校一.选择题(共10小题)1.设a是9的平方根,B=()2,则a与B的关系是()A.a=±B B.a=BC.a=﹣B D.以上结论都不对2.π、,﹣,,3.1416,0.中,无理数的个数是()A.1个B.2个C.3个D.4个3.实数b满|b|<3,并且有实数a,a<b恒成立,a的取值范围是()A.小于或等于3的实数B.小于3的实数C.小于或等于﹣3的实数D.小于﹣3的实数4.的平方根为()A.±8 B.±4 C.±2 D.45.设的小数部分为b,那么(4+b)b的值是()A.1 B.是一个有理数C.3 D.无法确定6.对于实数x,我们规定[x]表示不大于x的最大整数,如[4]=4,[]=1,[﹣2.5]=﹣3.现对82进行如下操作:82 []=9 []=3 []=1,这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1()A.1 B.2 C.3 D.47.下列说法错误的是()A.2是8的立方根B.±4是64的立方根C.﹣是的平方根D.4是的算术平方根8.实数a,b在数轴上的位置如图所示,下列各式正确的是()A.a>0 B.a+b>0 C.a﹣b>0D.ab<09.如图,点A在数轴上表示的实数为a,则|a﹣2|等于()A.a﹣2 B.a+2 C.﹣a﹣2 D.﹣a+210.的相反数是()A.2 B.﹣2 C.4 D.﹣二.填空题(共4小题)11.数轴上﹣1所对应的点为A,将A点右移4个单位长度再向左平移6个单位长度,则此时A点距原点的距离为个单位长度.12.已知x=,则x3+12x的算术平方根是.13.阅读下列材料:设=0.333…①,则10x=3.333…②,则由②﹣①得:9x=3,即.所以=0.333…=.根据上述提供的方法把下列两个数化成分数. =, =.14.在草稿纸上计算:①;②;③;④,观察你计算的结果,用你发现的规律直接写出下面式子的值=.三.解答题(共8小题)15.已知实数a、b满足(a+2)2+=0,则a+b的值.16.计算题(1)(+3)(﹣3)﹣(2)+(﹣)×17.已知实数x、y满足y=,求的值.18.如图,数轴上a、b、c三个数所对应的点分别为A、B、C,已知:b是最小的正整数,且a、c满足(c﹣6)2+|a+2|=0,①求代数式a2+c2﹣2ac 的值;②若将数轴折叠,使得点A与点B重合,则与点C重合的点表示的数是.③请在数轴上确定一点D,使得AD=2BD,则点D表示的数是.19.若点A、B、C在数轴上对应的数分别为a、b、c满足|a+5|+|b﹣1|+|c﹣2|=0.(1)在数轴上是否存在点P,使得PA+PB=PC?若存在,求出点P对应的数;若不存在,请说明理由;(2)若点A,B,C同时开始在数轴上分别以每秒1个单位长度,每秒3个单位长度,每秒5个单位长度沿着数轴负方向运动.经过t(t≥1)秒后,试问AB﹣BC的值是否会随着时间t的变化而变化?请说明理由.20.如图,正方形ABCD的边AB在数轴上,数轴上点A表示的数为﹣1,正方形ABCD的面积为16.(1)数轴上点B表示的数为;(2)将正方形ABCD沿数轴水平移动,移动后的正方形记为A′B′C′D′,移动后的正方形A′B′C′D′与原正方形ABCD重叠部分的面积为S.①当S=4时,画出图形,并求出数轴上点A′表示的数;②设正方形ABCD的移动速度为每秒2个单位长度,点E为线段AA′的中点,点F在线段BB′上,且BF=BB′.经过t秒后,点E,F所表示的数互为相反数,直接写出t的值.21.如图,数轴上点A表示的数为﹣2,点B表示的数为8,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t>0).(1)填空:①A、B两点间的距离AB=,线段AB的中点表示的数为;②用含t的代数式表示:t秒后,点P表示的数为;点Q表示的数为.(2)求当t为何值时,PQ=AB;(3)当点P运动到点B的右侧时,PA的中点为M,N为PB的三等分点且靠近于P点,求PM﹣BN的值.22.阅读下面的材料:如图①,若线段AB在数轴上,A,B点表示的数分别为a, b(b>a),则线段AB的长(点A到点B的距离)可表示为AB=b﹣a请用上面材料中的知识解答下面的问题:如图②,一个点从数轴上的原点开始,先向左移动1cm到达A点,再向左移动2cm到达B点,然后向右移动7cm到达C点,用1个单位长度表示1cm(1)请你在数轴上表示出A,B,C三点的位置,并直接写出线段AC的长度;(2)若数轴上有一点D,且AD=4cm,则点D表示的数是什么?(3)若将点A向右移动xcm,请用代数式表示移动后的点表示的数?(4)若点B以每秒2cm的速度向左移动至点P1,同时点A,点C分别以每秒1cm和4cm的速度向右移动至点P2,点P3,设移动时间为t秒,试探索:P3P2﹣P1P2的值是否会随着t的变化而变化?请说明理由.参考答案与试题解析一.选择题(共10小题)1.设a是9的平方根,B=()2,则a与B的关系是()A.a=±B B.a=BC.a=﹣B D.以上结论都不对【解答】解:∵a是9的平方根,∴a=±3,又B=()2=3,∴a=±b.故选:A.2.π、,﹣,,3.1416,0.中,无理数的个数是()A.1个B.2个C.3个D.4个【解答】解:在π、,﹣,,3.1416,0.中,无理数是:π,共2个.故选:B.3.实数b满|b|<3,并且有实数a,a<b恒成立,a的取值范围是()A.小于或等于3的实数B.小于3的实数C.小于或等于﹣3的实数D.小于﹣3的实数【解答】解:∵|b|<3,∴﹣3<b<3,又∵a<b,∴a的取值范围是小于或等于﹣3的实数.故选:C.4.的平方根为()A.±8 B.±4 C.±2 D.4【解答】解:∵=4,又∵(±2)2=4,∴的平方根是±2.故选:C.5.设的小数部分为b,那么(4+b)b的值是()A.1 B.是一个有理数C.3 D.无法确定【解答】解:∵的小数部分为b,∴b=﹣2,把b=﹣2代入式子(4+b)b中,原式=(4+b)b=(4+﹣2)×(﹣2)=3.故选:C.6.对于实数x,我们规定[x]表示不大于x的最大整数,如[4]=4,[]=1,[﹣2.5]=﹣3.现对82进行如下操作:82 []=9 []=3 []=1,这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1()A.1 B.2 C.3 D.4【解答】解:121 []=11 []=3 []=1,∴对121只需进行3次操作后变为1,故选:C.7.下列说法错误的是()A.2是8的立方根B.±4是64的立方根C.﹣是的平方根D.4是的算术平方根【解答】解:A、2是8的立方根是正确的,不符合题意;B、4是64的立方根,原来的说法错误,符合题意;C、﹣是的平方根是正确的,不符合题意;D、4是的算术平方根是正确的,不符合题意.故选:B.8.实数a,b在数轴上的位置如图所示,下列各式正确的是()A.a>0 B.a+b>0 C.a﹣b>0 D.ab<0【解答】解:由数轴可知:a<0<b,|a|>|b|,∴a+b<0,a﹣b<0,ab<0,∴选项D正确.故选:D.9.如图,点A在数轴上表示的实数为a,则|a﹣2|等于()A.a﹣2 B.a+2 C.﹣a﹣2 D.﹣a+2【解答】解:根据数轴,可知2<a<3,所以a﹣2>0,则|a﹣2|=a﹣2.故选:A.10.的相反数是()A.2 B.﹣2 C.4 D.﹣【解答】解:的相反数是(2,即2.故选:A.二.填空题(共4小题)11.数轴上﹣1所对应的点为A,将A点右移4个单位长度再向左平移6个单位长度,则此时A点距原点的距离为3个单位长度.【解答】解:根据题意:数轴上﹣1所对应的点为A,将A点右移4个单位长度再向左平移6个单位长度,得到点的坐标为﹣1+4﹣6=﹣3,故此时A点距原点的距离为3个单位长度.12.已知x=,则x3+12x的算术平方根是2.【解答】解:设=a, =b.则,.又4==a3b3,∴x=a2b﹣ab2,x2=a4b2﹣2a3b3+a2b4,故原式=x(x2+12),=(a2b﹣ab2)(a4b2﹣2a3b3+a2b4+12),=(a2b﹣ab2)(a4b2﹣8+a2b4+12),=(a2b﹣ab2)(a4b2+a2b4+4),=ab(a﹣b)a2b2(a2+b2+ab),=a3b3(a3﹣b3),=,=4×2=8.则其算术平方根是2.故答案为:2.13.阅读下列材料:设=0.333…①,则10x=3.333…②,则由②﹣①得:9x=3,即.所以=0.333…=.根据上述提供的方法把下列两个数化成分数. =, =.【解答】解:设=x=0.777…①,则10x=7.777…②则由②﹣①得:9x=7,即x=;根据已知条件=0.333…=.可以得到=1+=1+=.故答案为:;.14.在草稿纸上计算:①;②;③;④,观察你计算的结果,用你发现的规律直接写出下面式子的值=406.【解答】解:∵①=1;②=3=1+2;③=6=1+2+3;④=10=1+2+3+4,∴=1+2+3+4+…+28=406.三.解答题(共8小题)15.已知实数a、b满足(a+2)2+=0,则a+b的值.【解答】解:∵(a+2)2+=0,∴a+2=0,b2﹣2b﹣3=0,解得:a=﹣2,b1=﹣1,b2=3,则a+b的值为:1或﹣3.16.计算题(1)(+3)(﹣3)﹣(2)+(﹣)×【解答】解:(1)原式=()2﹣32﹣(﹣3)=14﹣9+3=8;(2)原式=×+×﹣×,=6+5﹣6,=5.17.已知实数x、y满足y=,求的值.【解答】解:∵4 x﹣1≥0,1﹣4 x≥0∴x≥,x≤,∴x=,∴y=,∴=.18.如图,数轴上a、b、c三个数所对应的点分别为A、B、C,已知:b是最小的正整数,且a、c满足(c﹣6)2+|a+2|=0,①求代数式a2+c2﹣2ac 的值;②若将数轴折叠,使得点A与点B重合,则与点C重合的点表示的数是﹣7.③请在数轴上确定一点D,使得AD=2BD,则点D表示的数是0或4.【解答】解:(1)∵(c﹣6)2+|a+2|=0,∴a+2=0,c﹣6=0,解得a=﹣2,c=6,∴a2+c2﹣2ac=4+36+24=64;(2)∵b是最小的正整数,∴b=1,∵(﹣2+1)÷2=﹣0.5,∴6﹣(﹣0.5)=6.5,﹣0.5﹣6.5=﹣7,∴点C与数﹣7表示的点重合;(3)设点D表示的数为x,则若点D在点A的左侧,则﹣2﹣x=2(1﹣x),解得x=4(舍去);若点D在A、B之间,则x﹣(﹣2)=2(1﹣x),解得x=0;若点D在点B在右侧,则x﹣(﹣2)=2(x﹣1),解得x=4.综上所述,点D表示的数是0或4.故答案为:﹣7;0或4.19.若点A、B、C在数轴上对应的数分别为a、b、c满足|a+5|+|b﹣1|+|c﹣2|=0.(1)在数轴上是否存在点P,使得PA+PB=PC?若存在,求出点P对应的数;若不存在,请说明理由;(2)若点A,B,C同时开始在数轴上分别以每秒1个单位长度,每秒3个单位长度,每秒5个单位长度沿着数轴负方向运动.经过t(t≥1)秒后,试问AB﹣BC的值是否会随着时间t的变化而变化?请说明理由.【解答】解:(1)∵|a+5|+|b﹣1|+|c﹣2|=0,∴a+5=0,b﹣1=0,c﹣2=0,解得a=﹣5,b=1,c=2,设点P表示的数为x,∵PA+PB=PC,①P在AB之间,[x﹣(﹣5)]+(1﹣x)=2﹣x,x+5+1﹣x=2﹣x,x=2﹣1﹣5,x=﹣4;②P在A的左边,(﹣5﹣x)+(1﹣x)=2﹣x,﹣5﹣x+1﹣x=2﹣x,﹣x=2﹣1+5,x=﹣6;③P在BC的中间,(5+x)+(x﹣1)=2﹣x,2x+4=2﹣x,3x=﹣2,x=﹣(舍去);④P在C的右边,(x+5)+(x﹣1)=x﹣2,2x+4=x﹣2,x=﹣6(舍去).综上所述,x=﹣4或x=﹣6.(2)∵运动时间为t(t≥1),A的速度为每秒1个单位长度,B的速度为每秒3个单位长度,C的速度为每秒5个单位长度,∴点A表示的数为﹣5﹣t,点B表示的数为1﹣3t,点C表示的数为2﹣5t,①当1﹣3t>﹣5﹣t,即t<3时,AB=(1﹣3t)﹣(﹣5﹣t)=﹣2t+6,BC=(1﹣3t)﹣(2﹣5t)=2t﹣1,AB﹣BC=(﹣2t+6)﹣(2t﹣1)=7﹣4t,∴AB﹣BC的值会随着时间t的变化而变化.②当t≥3时,AB=(﹣5﹣t)﹣(1﹣3t)=2t﹣6,BC=(1﹣3t)﹣(2﹣5t)=2t﹣1,AB﹣BC=(2t﹣6)﹣(2t﹣1)=﹣5,∴AB﹣BC的值不会随着时间t的变化而变化.综上所述,当1≤t<3时,AB﹣BC的值会随着时间t的变化而变化.当t≥3时,AB﹣BC的值不会随着时间t的变化而变化.20.如图,正方形ABCD的边AB在数轴上,数轴上点A表示的数为﹣1,正方形ABCD的面积为16.(1)数轴上点B表示的数为﹣5;(2)将正方形ABCD沿数轴水平移动,移动后的正方形记为A′B′C′D′,移动后的正方形A′B′C′D′与原正方形ABCD重叠部分的面积为S.①当S=4时,画出图形,并求出数轴上点A′表示的数;②设正方形ABCD的移动速度为每秒2个单位长度,点E为线段AA′的中点,点F在线段BB′上,且BF=BB′.经过t秒后,点E,F所表示的数互为相反数,直接写出t的值.【解答】解:(1)∵正方形ABCD的面积为16,∴AB=4,∵点A表示的数为﹣1,∴AO=1,∴BO=5,∴数轴上点B表示的数为﹣5,故答案为:﹣5.(2)①∵正方形的面积为16,∴边长为4,当S=4时,分两种情况:若正方形ABCD向左平移,如图1,A'B=4÷4=1,∴AA'=4﹣1=3,∴点A'表示的数为﹣1﹣3=﹣4;若正方形ABCD向右平移,如图2,AB'=4÷4=1,∴AA'=4﹣1=3,∴点A'表示的数为﹣1+3=2;综上所述,点A'表示的数为﹣4或2;②t的值为4.理由如下:当正方形ABCD沿数轴负方向运动时,点E,F表示的数均为负数,不可能互为相反数,不符合题意;当点E,F所表示的数互为相反数时,正方形ABCD沿数轴正方向运动,如图3,∵AE=AA'=×2t=t,点A表示﹣1,∴点E表示的数为﹣1+t,∵BF=BB′=×2t=t,点B表示﹣5,∴点F表示的数为﹣5+t,∵点E,F所表示的数互为相反数,∴﹣1+t+(﹣5+t)=0,解得t=4.21.如图,数轴上点A表示的数为﹣2,点B表示的数为8,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t>0).(1)填空:①A、B两点间的距离AB=10,线段AB的中点表示的数为3;②用含t的代数式表示:t秒后,点P表示的数为﹣2+3t;点Q表示的数为8﹣2t.(2)求当t为何值时,PQ=AB;(3)当点P运动到点B的右侧时,PA的中点为M,N为PB的三等分点且靠近于P点,求PM﹣BN的值.【解答】解:(1)①8﹣(﹣2)=10,﹣2+×10=3,故答案为:10,3;②由题可得,点P表示的数为﹣2+3t,点Q表示的数为8﹣2t;故答案为:﹣2+3t,8﹣2t;(2)∵t秒后,点P表示的数﹣2+3t,点Q表示的数为8﹣2t,∴PQ=|(﹣2+3t)﹣(8﹣2t)|=|5t﹣10|,又PQ=AB=×10=5,∴|5t﹣10|=5,解得:t=1或3,∴当t=1或3时,PQ=AB;(3)∵PA的中点为M,N为PB的三等分点且靠近于P点,∴MP=AP=×3t=t,BN=BP=(AP﹣AB)=×(3t﹣10)=2t﹣,∴PM﹣BN=t﹣(2t﹣)=5.22.阅读下面的材料:如图①,若线段AB在数轴上,A,B点表示的数分别为a,b(b>a),则线段AB的长(点A到点B的距离)可表示为AB=b﹣a请用上面材料中的知识解答下面的问题:如图②,一个点从数轴上的原点开始,先向左移动1cm到达A点,再向左移动2cm到达B点,然后向右移动7cm到达C点,用1个单位长度表示1cm(1)请你在数轴上表示出A,B,C三点的位置,并直接写出线段AC的长度;(2)若数轴上有一点D,且AD=4cm,则点D表示的数是什么?(3)若将点A向右移动xcm,请用代数式表示移动后的点表示的数?(4)若点B以每秒2cm的速度向左移动至点P1,同时点A,点C分别以每秒1cm和4cm的速度向右移动至点P2,点P3,设移动时间为t秒,试探索:P3P2﹣P1P2的值是否会随着t的变化而变化?请说明理由.【解答】解:(1)如图所示:CA=4﹣(﹣1)=4+1=5(cm);(2)设D表示的数为a,∵AD=4,∴|﹣1﹣a|=4,解得:a=﹣5或3,∴点D表示的数为﹣5或3;(3)将点A向右移动xcm,则移动后的点表示的数为﹣1+x;(4)P3P2﹣P1P2的值不会随着t的变化而变化,理由如下:根据题意得:P3P2=(4+4t)﹣(﹣1+t)=5+3t,P1P2=(﹣1+t)﹣(﹣3﹣2t)=2+3t,∴P3P2﹣P1P2=(5+3t)﹣(2+3t)=3,∴P3P2﹣P1P2的值不会随着t的变化而变化.。

实数期末复习试题

实数期末复习试题

八年级实数复习02一.选择题1.下列计算正确的是( ) A .4=±2 B .2(9)81-==9 C.636=±D.992-=-2.一个自然数的算术平方根是x ,则它后面一个数的算术平方根是( ) A .x+1 B .x 2+1 C .x +1 D .21x +3.若2m-4与3m-1是同一个数的平方根,则m 的值是( ) A .-3 B .1 C .-3或1 D .-14.已知x ,y 是实数,且34x ++(y-3)2=0,则xy 的值是( ) A .4 B .-4 C .94D .-945. 当≥m 0时,m 表示( ) A .m 的平方根 B .一个有理数 C .m 的算术平方根 D .一个正数6.算术平方根等于它本身的数是( )A 、 1和0B 、0C 、1D 、 1±和07.下列说法:(1)3±是9的平方根;(2)9的平方根是3±;(3)3是9的平方根; (4)9的平方根是3,其中正确的有( ) A .3个 B .2个 C .1个 D .4个8. 若a 和a -都有意义,则a 的值是( )A.0≥aB.0≤aC.0=aD.0≠a9.若数a 在数轴上对应的点的位置在原点的左侧,则下列各式中有意义的是( )A .aB .a -C .2a -D .3a10.22)4(+x 的算术平方根是( )A 、 42)4(+xB 、22)4(+xC 、42+x D 、42+x11.若51=+mm ,则mm 1-的平方根是( )(A) 2± (B) 1± (C) 1 (D) 212.若a 、b 为实数,且471122++-+-=a aa b ,则b a +的值为( )(A) 1± (B) 4 (C) 3或5 (D) 5二.填空题1. 2)4(-的算术平方根是 ,化简38--= .2.如果一个实数的平方根和它的立方根相等,那么这个实数是 .3.一个正数的算术平方根是8,则这个数的立方根是______.4.若一个偶数的立方根比2大,平方根比4小,则这个数一定是 .5.若1<x <3,则化简()()2231x x ---= ;6.如果a 是15的整数部分,b 是15的小数部分, a b -=__________.7.计算:2)4(3-+-ππ的结果是______。

人教版七下册数学期末复习试卷《实数》

人教版七下册数学期末复习试卷《实数》

人教版七下册数学期末复习试卷《实数》期末复习卷《实数》一、选择题1.在﹣(﹣),95%,﹣,﹣,﹣,0中正数有()A.1个B.2个C.3个D.4个2.下列各式计算正确的是()A.B.C.D.3.下列计算正确的是()A.a5+a2=a7B.=C.2-2=-4D.2·3=64.()A.B.C.D.5.±2是4的()A.平方根B.算术平方根C.绝对值D.相反数6.下列说法正确的是()A.4的平方根是±2B.8的立方根是±2C.D.7.实数-2,,-中,无理数的个数是:A.2B.3C.4D.58.“9的算术平方根”记作,其值是()A.3B.﹣3C.±3D.99.如果一个数的立方根是这个数本身,那么这个数是()。

A.1B.-1C.±1D.±1,010.有下列说法:(1)的算术平方根是4;(2)绝对值等于它本身的数是非负数;(3)中学七年级有12个班,这里的12属于标号;(4)实数和数轴上的点一一对应;(5)一个有理数与一个无理数之积仍为无理数;(6)如果≈5、34,那么5、335≤<5、345,其中说法正确的有()个A.2B.3C.4D.5二、填空题11.9的算术平方根是_____,(±4)2的算术平方根是____,的算术平方根是____。

12.﹣的相反数是_____,倒数是_____,绝对值是_____.13.将一个长为2,宽为4的长方形通过分割拼成一个等面积的正方形,则该正方形的边长为__.14.实数包括正实数、0、负实数;(________)15.算术平方根等于9的数是_______;的平方根是_____;的算术平方根是______。

16.计算:(1)________;(2)________.17.已知-1<m<,且m,均为整数,则m=________。

18.已知的值为,则的值是_____________19.若,则=__________20.如果,那么0。

2023-2024学年上学期初中数学北师大版八年级期末专项复习试题---实数(含解析)

2023-2024学年上学期初中数学北师大版八年级期末专项复习试题---实数(含解析)

2023-2024学年上学期初中数学北师大版八年级期末专项复习试题---实数一.选择题(共5小题)1.下列计算正确的是( )A.﹣2+(﹣6)=8B.(﹣2)3=﹣6C.(﹣2)÷×(﹣2)=4D.=﹣32.下列说法正确的是( )A.的算术平方根是2B.负数没有立方根C.1的平方根是1D.(﹣2)2的平方根是﹣23.下列数中:8,,,,,0,,0.6666……(数字6无限循环),9.181181118……(相邻两个8之间依次多一个1)无理数有( )A.1个B.2个C.3个D.4个4.下列说法中正确的是( )A.0.09的平方根是0.3B.=±4C.1的立方根是±1D.0的立方根是05.下列二次根式中,最简二次根式是( )A.B.C.﹣D.二.填空题(共5小题)6.在实数﹣,,0.333333…,0,1.732,2.1010010001…(每两个“1”之间依次多一个“0”)中,无理数的个数是 .7.已知M是满足不等式的所有整数的和,N是的整数部分,则M+N的平方根为 .8.25的算术平方根为x,4是y+1的一个平方根,则x﹣y= .9.计算:(﹣)÷= .10.已知实数a、b满足+|6﹣b|=0,则的值为 .三.解答题(共5小题)11.已知a是﹣2的整数部分,b是﹣3的小数部分.①求a,b的值;②求(﹣a)3+(b+4)2的平方根.12.计算:(1);(2).13.计算:(1);(2).14.计算:(1)+|3﹣|﹣()2;(2)﹣(3+)(3﹣).15.在解决问题“已知a=,求3a2﹣6a﹣1的值”时,小明是这样分析与解答的:∵a===+1,∴a﹣1=,∴(a﹣1)2=2,a2﹣2a+1=2.∴a2﹣2a=1.∴3a2﹣6a=3,3a2﹣6a﹣1=2.请你根据小明的分析过程,解决如下问题:若a=,求2a2﹣12a+1的值.2023-2024学年上学期初中数学北师大版八年级期末专项复习试题---实数参考答案与试题解析一.选择题(共5小题)1.下列计算正确的是( )A.﹣2+(﹣6)=8B.(﹣2)3=﹣6C.(﹣2)÷×(﹣2)=4D.=﹣3【考点】立方根.【专题】实数;运算能力.【分析】根据有理数加法法则、立方与立方根的意义、有理数乘除法法则进行逐一判断即可.【解答】A.﹣2+(﹣6)=﹣8,选项错误,不符合题意;B.(﹣2)3=﹣8,选项错误,不符合题意;C.(﹣2)÷×(﹣2)=16,选项错误,不符合题意;D.=﹣3,选项正确,符合题意;故选:D.【点评】本题考查了实数的运算,正确运用根据有理数加法法则、立方与立方根的意义、有理数乘除法法则是解题的关键.2.下列说法正确的是( )A.的算术平方根是2B.负数没有立方根C.1的平方根是1D.(﹣2)2的平方根是﹣2【考点】非负数的性质:偶次方;平方根;算术平方根;立方根.【专题】实数;数感.【分析】根据平方根、算术平方根、立方根的定义逐项进行判断即可.【解答】解:A.=4,4的算术平方根是=2,因此选项A符合题意;B.负数也有立方根,因此选项B不符合题意;C..1的平方根是±1,因此选项C不符合题意;D.(﹣2)2=4,4的平方根是±=±2,因此选项D不符合题意;故选:A.【点评】本题考查平方根、算术平方根,立方根,理解平方根、算术平方根、立方根的定义是正确判断的前提.3.下列数中:8,,,,,0,,0.6666……(数字6无限循环),9.181181118……(相邻两个8之间依次多一个1)无理数有( )A.1个B.2个C.3个D.4个【考点】算术平方根;立方根;无理数;规律型:数字的变化类.【专题】实数;数感.【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数.【解答】解:=3,,,9.181181118……(相邻两个8之间依次多一个1)是无理数,共有3个,故选:C.【点评】本题考查无理数的概念.解题的关键是掌握无理数的定义:无理数是指无限不循环小数.注意:无理数包括三方面的数:①含π的,②开方开不尽的根式,③一些有规律的数,根据以上内容判断即可.4.下列说法中正确的是( )A.0.09的平方根是0.3B.=±4C.1的立方根是±1D.0的立方根是0【考点】平方根;算术平方根;立方根.【专题】实数;数感.【分析】根据平方根的定义判断A选项,根据算术平方根的定义判断B选项,根据立方根的定义判断C,D选项.【解答】解:A选项,0.09的平方根是±0.3,故该选项不符合题意;B选项,=4,故该选项不符合题意;C选项,1的立方根是1,故该选项不符合题意;D选项,0的立方根是0,故该选项符合题意;故选:D.【点评】本题考查了平方根,算术平方根,立方根,注意平方根与算术平方根的区别.5.下列二次根式中,最简二次根式是( )A.B.C.﹣D.【考点】最简二次根式.【专题】二次根式;运算能力.【分析】根据最简二次根式的定义判断即可.【解答】解:A、=,故此选项不符合题意;B、=2,故此选项不符合题意;C、﹣是最简二次根式,故此选项符合题意;D、=|a|,故此选项不符合题意.故选:C.【点评】本题主要考查了最简二次根式,关键是掌握最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.二.填空题(共5小题)6.在实数﹣,,0.333333…,0,1.732,2.1010010001…(每两个“1”之间依次多一个“0”)中,无理数的个数是 ﹣,2.1010010001…(每两个“1”之间依次多一个“0”) .【考点】无理数.【专题】实数;数感.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:是分数,属于有理数;0.333333…是循环小数,属于有理数;0是整数,属于有理数;1.732是有限小数,属于有理数;无理数有﹣,2.1010010001…(每两个“1”之间依次多一个“0”),共2个.故答案为:﹣,2.1010010001…(每两个“1”之间依次多一个“0”).【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.7.已知M是满足不等式的所有整数的和,N是的整数部分,则M+N的平方根为 ±3 .【考点】平方根;估算无理数的大小.【专题】实数;运算能力.【分析】估算得出整数a的值,求出之和确定出M,求出不等式的最大整数确定出N,进而确定出M+N的平方根.【解答】解:∵﹣<a<,∴整数a=﹣1,0,1,2,之和M=﹣1+0+1+2=2,∵<<,∴N=7,∴M+N=2+7=9,∴M+N的平方根为±3.故答案为:±3.【点评】此题考查了估算无理数的大小,弄清估算无理数的方法是解本题的关键.8.25的算术平方根为x,4是y+1的一个平方根,则x﹣y= ﹣10 .【考点】平方根;算术平方根.【专题】实数;数感;运算能力.【分析】根据平方根、算术平方根的意义求出x、y的值,再代入计算即可.【解答】解:25的算术平方根为=5,即x=5,∵4是y+1的一个平方根,∴y+1=16,即y=15,∴x﹣y=5﹣15=﹣10,故答案为:﹣10.【点评】本题考查算术平方根、平方根,理解算术平方根、平方根的意义是解决问题的前提,求出x、y的值是正确解答的关键.9.计算:(﹣)÷= .【考点】二次根式的混合运算.【专题】二次根式;运算能力.【分析】先根据二次根式的除法法则运算,然后化简后合并即可.【解答】解:原式=﹣=2﹣=.故答案为.【点评】本题考查了二次根式的混合运算:熟练掌握二次根式的性质、二次根式的除法法则是解决问题的关键.10.已知实数a、b满足+|6﹣b|=0,则的值为 2 .【考点】非负数的性质:绝对值;非负数的性质:算术平方根;二次根式的化简求值.【专题】计算题;二次根式;运算能力.【分析】先根据非负数的和为0求出a、b的值,再代入化简.【解答】解:∵+|6﹣b|=0,又∵≥0,|6﹣b|≥0,∴a﹣3=0,6﹣b=0.∴a=3,b=6.∴==2.故答案为:【点评】本题考查了二次根式的化简求值,掌握非负数的和为0时,各个非负数都等于0是解决本题的关键.三.解答题(共5小题)11.已知a是﹣2的整数部分,b是﹣3的小数部分.①求a,b的值;②求(﹣a)3+(b+4)2的平方根.【考点】平方根;估算无理数的大小.【专题】实数;运算能力.【分析】①首先得出接近的整数,进而得出a,b的值;②把a、b代入求出代数式的值,再根据平方根的定义解答即可.【解答】解:①∵<<,∴4<<5,∴2<<3,1,∴a=2,b=;②(﹣a)3+(b+4)2=(﹣2)3+(﹣4+4)2=﹣8+17=9,∴(﹣a)3+(b+4)2的平方根是:±3.【点评】此题主要考查了估算无理数的大小,正确得出a,b的值是解题关键.12.计算:(1);(2).【考点】实数的运算.【专题】实数;运算能力.【分析】(1)利用平方根与立方根,绝对值对所求的式子进行运算即可;(2)利用幂的乘方,有理数的乘法的法则,有理数的加减运算的法则对式子进行运算即可.【解答】解:(1)=+(﹣2)+=﹣1;(2)=﹣1﹣×(﹣27×)=﹣1﹣×(﹣10)=﹣1+=.【点评】本题主要考查实数的运算,解答的关键是对相应的运算法则的掌握与应用.13.计算:(1);(2).【考点】零指数幂;负整数指数幂;二次根式的混合运算.【专题】计算题;二次根式;运算能力.【分析】(1)化简二次根式,计算0指数幂、负指数幂,最后就得结果;(2)化简二次根式,运用完全平方公式计算.【解答】解:(1)原式=3+﹣+1=4.(2)原式=3﹣4﹣2+=﹣4+.【点评】本题考查了二次根式的混合运算,掌握化简二次根式,0指数幂、负指数幂的性质是解题关键.14.计算:(1)+|3﹣|﹣()2;(2)﹣(3+)(3﹣).【考点】平方差公式;分母有理化;二次根式的混合运算.【专题】二次根式;运算能力.【分析】(1)直接利用二次根式的性质以及绝对值的性质分别化简,进而合并得出答案;(2)直接分母有理化以及结合乘法公式计算得出答案.【解答】解:(1)原式=3+3﹣2﹣3=;(2)原式=﹣(9﹣6)=4+4+3﹣3=4+4.【点评】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.15.在解决问题“已知a=,求3a2﹣6a﹣1的值”时,小明是这样分析与解答的:∵a===+1,∴a﹣1=,∴(a﹣1)2=2,a2﹣2a+1=2.∴a2﹣2a=1.∴3a2﹣6a=3,3a2﹣6a﹣1=2.请你根据小明的分析过程,解决如下问题:若a=,求2a2﹣12a+1的值.【考点】分母有理化;二次根式的化简求值.【专题】计算题;二次根式;运算能力.【分析】先利用分母有理化化简a,再利用完全平方公式求出a2﹣6a的值,最后整体代入.【解答】解:∵a====3+.∴.∴(a﹣3)2=7.即a2﹣6a+9=7.∴a2﹣6a=﹣2.∴2a2﹣12a=﹣4.∴2a2﹣12a+1=﹣4+1=﹣3.即2a2﹣12a+1的值为﹣3.【点评】本题考查了二次根式的化简,理解题例并应用题例是解决本题的关键。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章《实数》期末复习卷(一)
一、选择题
1、下列说法不正确的是( ) A 、
251的平方根是1
5
± B 、-9是81的一个平方根
C 、0.2的算术平方根是0.04
D 、-27的立方根是-3
2、若a 的算术平方根有意义,则a 的取值范围是( )
A 、一切数
B 、正数
C 、非负
D 、非零数 3、若x 是9的算术平方根,则x 是( ) A 、3 B 、-3 C 、9 D 、81 4、在下列各式中正确的是( ) A 、2)2(-=-2 B 、9±=3
C 、16=8
D 、2
2=2
5、估计76的值在哪两个整数之( ) A 、75和77 B 、6和7
C 、7和8
D 、8和9
6、下列各组数中,互为相反数的组是( )
A 、-2与2
)2(- B 、-2和38-
C 、-2
1
与2 D 、︱-2︱和2
7、在-2,4,2,3.14, 3
27-,5
π

这6个数中,无理数共有( )
A 、4个
B 、3个
C 、2个
D 、1个 8、下列说法正确的是( )
A 、数轴上的点与有理数一一对应
B 、数轴上的点与无理数一一对应
C 、数轴上的点与整数一一对应
D 、数轴上的点与实数一一对应
9、以下不能构成三角形边长的数组是( ) A 、1,5,2 B 、3,4,5 C 、3,4,5 D 、32
,42
,52
10、若有理数a 和b 在数轴上所表示的点分别在原点的右边和左边,则2
b -︱a -b ︱等于
( )
A 、a
B 、-a
C 、2b +a
D 、2b -a 二、填空题 11.若13是m 的一个平方根,则m 的另一个平方根为 .
12.在下列说法中①0.09是0.81的平方根;②-9的平方根是±3;
③2
(5)-的算术平方根是-52-数;⑤0的相反数和倒数都是0;
42=±;⑦已知a 2||a a =;⑧全体实数和数轴上的点一一对应. 正确的个数是 . 13.比较大小3 2
π, 32 5
14.满足不等式511x <x 共有 个.
15a 3±,则
3
17-a = .
16.若实数x 、y 330x y -=,则
x 与y 的关系是 .
17.-6416是 .
18.若2
(23)a +2b -互为相反数,则
b a = .
19.一长方体的体积为1623
cm ,它的长、宽、高的比为3:1:2,则它的表面积为 2
cm . 三、解答题
20.计算和化简
(1);56.2- (2);2890000±
(3);)125.0(8-⨯-± (4);)7(2-- (5);225-± (6);125.03-±
(7);27
10
2
3
- (8).164373
-
(9)32710
2--- (10)381125-
(11)3
22769----)(
(12) 3
3216.00121.0125.0--+
(12) 33271893111864256
----
(13)327-+2
)3(--31-
(14)33364
63
1125.041027-++---
(15) 22(2)2(6)x x ---(26x <<)
21.解方程
(1)4x 2-16=0 (2)27(x -3)3
=-64
(3)2
361(1)16x -+= (4)3
125
2(1)4
x -=-
22.若5a +1和a -19是数m 的平方根,求m 的值。

23、已知2a -1的平方根是±3,3a +b -1的算术平方根是4,求a +2b 的值。

24. 已知a 31-和︱8b -3︱互为相反数,求
(ab )-2
-27 的值。

第六章《实数》期末复习卷(二)
一、选择题
1. 49的平方是( )
A.7
B.-7
C.±7
D.49 2. 下列各数中无理数有( ).
3.141,227
-
,π,0,4.21, 0.1010010001L
A .2个
B .3 个
C . 4个
D .5个 3.下列各式表示正确的是( ) A.525±= B. 525=±
C.525±=±
D.552
-=-±)(
4. -27的立方根为( )
A.±3
B. 3
C.-3
D.没有立方根 5. 下列说法正确的是( )
A.4的平方根是2
B.-4的平方根是-2
C.
2
2)(- 没有平方根 D.2是4的一个平方根 6.
的相反数是( )
A
.C

7.
已知=a 的值是( )
A .
78 B .-78 C .±78 D .-343512 8.若a ,b
为实数,且
43
b a =
++,则a b +的值为
( )
A .-1
B .1
C .1或7
D .7 9.若一个正数的平方根是12-a 和2+-a ,则这个正数是( )
A.1
B.3
C.4
D.9
10. 已知一个正方形的边长为a ,面积为S ,则( )
(A) a S = (B) S 的方平方根是a
(C) a 是S 的算术平根 (D) S a ±= 二、填空题
11.算术平方根等于本身的实数是 . 12.化简:
()23π-= .
13.
9
4
的平方根是 ; 125的立方根是 .
14.一正方形的边长变为原来的m 倍,则面积变为原来的 倍;一个立方体的体积变为原来的n 倍,则棱长变为原来的 倍. 15.已知一个正数x 的两个平方根是1+a 和3-a ,则a = ,x = .
16.若()03212
=-+
-+-z y x ,则
x +y +z = . 17. 已知212+++b a =0,则
a
b
= . 18.比较下列实数的大小(填上>、<或=).
;②2
15- 2
1
; ③53. 19.若实数a 、b 满意足
0=+b
b
a a ,则ab
ab
= . 20.实a 、b 在数轴上的位置 如图所示,则化简
()2
a b b a -+
+= .
五.解答题:(19分) 21. 计算和化简
(1) )
(25.08-⨯-(2)4002254-+ ;
(3)5312-⨯; (4)2
36⨯;
(3)32333
111)()(-+-+- ; (4)333327343125
12581---+-- (5)(
)(
)
2757
5+⨯-;
(6)8
145032--
22. 解方程
(1)42
)1(-x =25 (2)()027.07.03
=-x .
23.设:477.530,732.13==求300
24.若,x y 都是实数,且
338y x x =-+-+,求3x y +的立方根
25.若:0)3
3(32
=-++y x 则: x (·1999
)y 等于多少
26.已知,a 、b 互为倒数,c 、d 互为相反数,求13+++-d c ab 的值.
27.已知m 是313的整数部分,n 是13的小数部分,求m -n 的值。

相关文档
最新文档