巴特沃斯有源高通滤波器的设计
有源滤波器的设计
176有源滤波器的设计一.设计方法有源滤波器的形式有好几种,下面只介绍具有巴特沃斯响应的二阶滤波器的设计。
巴特沃斯低通滤波器的幅频特性为:ncuo u A j A 21)(⎪⎪⎭⎫ ⎝⎛+=ωωω , n=1,2,3,. . . (1)写成:ncuou A j A 211)(⎪⎪⎭⎫ ⎝⎛+=ωωω (2) )(ωj A u其中A uo 为通带内的电压放大倍数,ωC A uo 为截止角频率,n 称为滤波器的阶。
从(2)式中可知,当ω=0时,(2)式有最大值1; 0.707A uoω=ωC 时,(2)式等于0.707,即A u 衰减了 n=2 3dB ;n 取得越大,随着ω的增加,滤波器 n=8 的输出电压衰减越快,滤波器的幅频特性 越接近于理想特性。
如图1所示。
0 ωC ω当 ω>>ωC 时,nc uo u A j A ⎪⎪⎭⎫⎝⎛≈ωωω1)( (3) 图1低通滤波器的幅频特性曲线 两边取对数,得: lg20cuo u n A j A ωωωlg20)(-≈ (4) 此时阻带衰减速率为: -20ndB/十倍频或-6ndB/倍频,该式称为衰减估算式。
表1列出了归一化的、n 为1 ~ 8阶的巴特沃斯低通滤波器传递函数的分母多项式。
表1 归一化的巴特沃斯低通滤波器传递函数的分母多项式 n 归一化的巴特沃斯低通滤波器传递函数的分母多项式 1 1+L s 2 122++L L s s 3 )1()1(2+⋅++L L L s s s4)184776.1()176537.0(22++⋅++L L L L s s s s1775 )1()161803.1()161807.0(22+⋅++⋅++L L L L L s s s s s6 )193185.1()12()151764.0(222++⋅++⋅++L L L L L L s s s s s s7)1()180194.1()124698.1()144504.0(222+⋅++⋅++⋅++L L L L L L L s s s s s s s8 )196157.1()166294.1()111114.1()139018.0(2222++⋅++⋅++⋅++L L L L L L L Ls s s s s s s s在表1的归一化巴特沃斯低通滤波器传递函数的分母多项式中,S L = csω,ωC 是低通滤波器的截止频率。
巴特沃斯滤波器的设计与仿真
信号与系统课程设计 题目巴特沃斯滤波器的设计与仿真学院英才实验学院学号2015180201019学生姓名洪 健指导教师王玲芳巴特沃斯滤波器的设计与仿真英才一班 洪健 2015180201019摘 要:工程实践中,为了得到较纯净的真实信号,常采用滤波器对真实信号进行处理。
本文对巴特沃斯模拟滤波器的幅频特性、设计方法及设计步骤进行了研究,并利用Matlab 程序和Multisim 软件,设计了巴特沃斯模拟滤波器,并分析了巴特沃斯模拟滤波器的幅频特性。
利用 Matlab 程序绘制了巴特沃斯模拟滤波器的幅频特性曲线,并利用Matlab 实现了模拟滤波器原型到模拟低通、高通、带通、带阻滤波器的转换。
通过Multisim 软件,在电路中设计出巴特沃斯滤波器。
由模拟滤波器原型设计模拟高通滤波器的实例说明了滤波器频率转换效果。
同时通过电路对巴特沃斯滤波器进行实现,说明了其在工程实践中的应用价值。
关键词:巴特沃斯滤波器 幅频特性 Matlab Multisim引言 滤波器是一种允许某一特定频带内的信号通过,而衰减此频带以外的一切信号的电路,处理模拟信号的滤波器称为模拟滤波器。
滤波器在如今的电信设备和各类控制系统里应用范围最广,技术最为复杂,滤波器的好坏直接决定着产品的优劣。
滤波器主要分成经典滤波器和数字滤波器两类。
从滤波特性上来看,经典滤波器大致分为低通、高通、带通和带阻等。
模拟滤波器可以分为无源和有源滤波器。
无源滤波器:这种电路主要有无源元件R、L 和C 组成。
有源滤波器:集成运放和R、C 组成,具有不用电感、体积小、重量轻等优点。
集成运放的开环电压增益和输入阻抗均很高,输出电阻小,构成有源滤波电路后还具有一定的电压放大和缓冲作用。
但集成运放带宽有限,所以目前的有源滤波电路的工作频率难以做得很高。
MATLAB 是美国MathWorks 公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB 和Simulink 两大部分。
基于matlab的切比雪夫及巴特沃斯低通高通滤波器的设计
巴特沃斯低通、切比雪夫低通、高通IIR滤波器设计05941401 1120191454 焦奥一、设计思路IIR滤波器可以分为低通、高通、带通、带阻等不同类型的滤波器,而以系统函数类型又有巴特沃斯、切比雪夫等滤波器。
其中巴特沃斯较为简单,切比雪夫较为复杂;低阶比高阶简单,但却有着不够良好的滤波特性。
在满足特定的指标最低要求下,低阶、巴特沃斯滤波器能更大程度地节省运算量以及复杂程度。
滤波器在不同域内分为数字域和模拟域。
其中数字域运用最广泛。
在设计过程中,一般是导出模拟域的滤波器,之后通过频率转换变为数字域滤波器,实现模拟域到数字域的传递。
在针对高通、带通、带阻的滤波器上,可以又低通到他们的变换公式来进行较为方便的转换。
综上,IIR滤波器的设计思路是,先得到一个满足指标的尽可能简单的低通模拟滤波器,之后用频域变换转换到数字域。
转换方法有双线性变换法、冲激响应不变法等。
虽然方法不同,但具体过程有很多相似之处。
首先将数字滤波器的指标转换为模拟滤波器的指标,之后根据指标设计模拟滤波器,再通过变换,将模拟滤波器变换为数字滤波器,是设计IIR滤波器的最基本框架。
以下先讨论较为简单的巴特沃斯低通滤波器。
二、巴特沃斯低通滤波假设需要一个指标为0~4hz内衰减小于3db、大于60hz时衰减不小于30db的滤波器。
其中抽样频率为400hz。
以双线性变换方法来设计。
首先将滤波器转换到模拟指标。
T =1f f ⁄=1400Ωf ′=2ff f =8ff f =Ωf ′f =0.02fΩf ′=2ff f =120ff f =Ωf ′f =0.3f根据双线性变换Ω=2f tan (f 2) 得到Ωf =25.14Ωf =407.62这就得到了模拟域的指标。
由巴特沃斯的方程Α2(Ω)=|f f (f Ω)|2=11+(ΩΩf )2f20ff |f f (f Ω)|=−10ff [1+(ΩΩf)2f] {20ff |f f (f Ωf )|≥−320ff |f f (f Ωf )|≤−30ff得到{ −10ff [1+(Ωf Ωf)2f ]≥−3−10ff [1+(Ωf Ωf )2f]≤−30当N取大于最小值的整数时,解出N=2,因此为二阶巴特沃斯低通滤波器。
巴特沃斯滤波器原理
巴特沃斯滤波器原理巴特沃斯滤波器是一种常用的信号处理滤波器,它在信号处理领域有着广泛的应用。
巴特沃斯滤波器的原理是基于巴特沃斯函数而来的,它可以对信号进行低通滤波和高通滤波,从而实现对信号频率的调节和控制。
本文将详细介绍巴特沃斯滤波器的原理和工作方式。
巴特沃斯滤波器的原理基于巴特沃斯函数,该函数可以描述滤波器的频率响应特性。
巴特沃斯函数的形式为:H(ω) = 1 / [1 + (ω/ωc)^(2n)]其中,H(ω)表示频率响应,ω表示频率,ωc表示截止频率,n表示阶数。
从上式可以看出,巴特沃斯函数随着频率的增加而逐渐减小,当频率达到截止频率时,频率响应将下降至-3dB。
这就是巴特沃斯滤波器的频率特性,它可以实现对不同频率信号的滤波处理。
在实际应用中,巴特沃斯滤波器可以分为低通滤波器和高通滤波器两种类型。
低通滤波器可以通过调节截止频率来滤除高频信号,保留低频信号;而高通滤波器则可以滤除低频信号,保留高频信号。
这种灵活的频率调节方式使得巴特沃斯滤波器在信号处理中有着广泛的应用。
巴特沃斯滤波器的工作方式是通过电路中的电容和电感元件来实现的。
在低通滤波器中,电容和电感元件会形成一个低通滤波的电路,从而实现对高频信号的滤除;而在高通滤波器中,电容和电感元件会形成一个高通滤波的电路,从而实现对低频信号的滤除。
通过合理选择电容和电感的数值,可以实现对不同频率信号的滤波处理。
除了频率响应特性外,巴特沃斯滤波器还具有良好的群延迟特性。
群延迟是指滤波器对不同频率信号的传输延迟,巴特沃斯滤波器的群延迟特性较为平坦,可以保持信号的相位特性,不会引起信号失真。
总的来说,巴特沃斯滤波器是一种常用的信号处理滤波器,它基于巴特沃斯函数的频率响应特性,可以实现对不同频率信号的滤波处理。
通过合理选择截止频率和阶数,可以实现对信号频率的精确控制。
同时,巴特沃斯滤波器还具有良好的群延迟特性,可以保持信号的相位特性,不会引起信号失真。
因此,在实际应用中,巴特沃斯滤波器有着广泛的应用前景。
巴特沃斯滤波器
巴特沃斯滤波器滤波器的作用顾名思义就是过滤掉不需要的信号,它可以将有用的信号与噪声分离,提高信号的抗干扰性及信噪比,滤掉不感兴趣的频率成分等。
巴特沃斯滤波器是三大原型模拟低通滤波器之一,今天小编要介绍的就是巴特沃斯滤波器。
巴特沃斯滤波器电路一阶巴特沃斯滤波器的衰减率为每倍频6分贝,每十倍频20分贝。
二阶巴特沃斯滤波器的衰减率为每倍频12分贝、三阶巴特沃斯滤波器的衰减率为每倍频18分贝、如此类推。
巴特沃斯滤波器原理巴特沃斯型滤波器在现代设计方法设计的滤波器中,是最为有名的滤波器,由于它设计简单,性能方面又没有明显的缺点,又因它对构成滤波器的元件Q值较低,因而易于制作且达到设计性能,因而得到了广泛应用。
其中,巴特沃斯滤波器的特点是通频带的频率响应曲线最平滑。
滤波器的截止频率的变换是通过先求出待设计滤波器的截止频率与基准滤波器的截止频率的比值M,再用这个M去除滤波器中的所有元件值来实现的,其计算公式如下:M=待设计滤波器的截止频率/基准滤波器的截止频率。
滤波器的特征阻抗的变换是通过先求出待设计滤波器的特征阻抗与基准滤波器的特征阻抗的比值K,再用这个K去乘基准滤波器中的所有电感元件值和用这个K去除基准滤波器中的所有电容元件值来实现的。
巴特沃斯低通滤波器简介D0表示通带的半径,n表示的是巴特沃斯滤波器的次数。
随着次数的增加,振铃现象会越来越明显。
巴特沃斯低通滤波器原理图图3二阶巴特沃斯低通滤波器原理图基于以上对有源一阶RC 低通滤波器、积分器以及两者之间的区别于联系的分析,在此给出阶巴特沃斯低通滤波器的原理图如下图3 所示:根据巴特沃斯-阶低通滤波器的原理图可知,在该滤波电路中R和C,构成低通级,R3和G构成积分环节,这两级电路同时表现出低通特性。
巴特沃斯滤波器优点巴特沃斯滤波器的特点是通频带内的频率响应曲线最大限度平坦,没有起伏,而在阻频带则逐渐下降为零。
在振幅的对数对角频率的波得图上,从某一边界角频率开始,振幅随着角频率的增加而逐渐减少,趋向负无穷大。
DSP实验4巴特沃斯滤波器的设计与实现(精)
DSP实验4巴特沃斯滤波器的设计与实现(精)实验四巴特沃斯数字滤波器的设计与实现1.数字滤波器的设计参数滤波器的4个重要的通带、阻带参数为:p f :通带截止频率(Hz ) s f :阻带起始频率(Hz )p R :通带内波动(dB ),即通带内所允许的最大衰减;s R :阻带内最小衰减设采样速率(即奈奎斯特速率)为N f ,将上述参数中的频率参数转化为归一化角频率参数:p ω:通带截止角频率(rad/s ),)2//(N p p f f =ω;s ω:阻带起始角频率(rad/s ),)2//(N s s f f =ω通过以上参数就可以进行离散滤波器的设计。
● 低通滤波器情况:采样频率为8000Hz ,要求通带截止频率为1500Hz ,阻带起始频率为2000Hz ,通带内波动3dB ,阻带内最小衰减为50dB ,则p ω=1500/4000,s ω=2000/4000,p R =3dB ,s R =50dB 。
● 高通滤波器情况:采样频率为8000Hz ,要求通带截止频率为1500Hz ,阻带起始频率为1000Hz ,通带内波动3dB ,阻带内最小衰减为65dB ,则p ω=1500/4000,s ω=1000/4000,p R =3dB ,s R =65dB 。
● 带通滤波器情况:采样频率为8000Hz ,要求通带截止频率为[800Hz ,1500Hz],阻带起始频率为[500Hz ,1800Hz],通带内波动3dB ,阻带内最小衰减为45dB ,则p ω=[800/4000,1500/4000],s ω=[500/4000,1800/4000],p R =3dB ,s R =45dB 。
● 带阻滤波器情况:采样频率为8000Hz ,要求通带截止频率为[800Hz ,1500Hz],阻带起始频率为[1000Hz ,1300Hz],通带内波动3dB ,阻带内最小衰减为55dB ,则p ω=[800/4000,1500/4000],sω=[1000/4000,1300/4000],p R =3dB ,s R =45dB 。
数字高通巴特沃斯滤波器的设计
目录摘要 (1)Abstract (1)引言 (1)1.数字高通滤波器的设计原理 (1)1.1双线性变换法简介 (1)1.2方案论证及确定 (2)2.设计步骤 (2)3.设计方案 (3)3.1解析计算 (3)3.2 MATLAB程序仿真 (4)结束语 (7)参考文献 (8)数字高通巴特沃斯滤波器的设计摘要:本文基于巴特沃斯高通滤波器的设计原理及双线性变换,介绍了数字高通滤波器的设计原理和设计步骤,并结合MATLAB实现数字高通巴特沃斯滤波器的仿真。
该设计证明数字高通巴特沃斯滤波器具有平稳的幅频特性。
关键词:巴特沃斯;模拟低通;数字高通;频率;MATLAB仿真The Analysis of Digital Butterworth High-Pass Filter Design Abstract: Based on the Butterworth high-pass filter design principle and the bilinear transform, this paper introduce digital high-pass filter design principles and design steps, and with the help of MATLAB a simulation on digital high pass Butterworth filter is successfully finished.The design demonstrates that the Butterworth high-pass filter has smooth amplitude frequency characteristics.Key words:Butterworth;Analog low-pass filter;Digital high-pass filter;Frequency;MATLAB simulation引言滤波器是一种对信号有处理作用的器件或电路。
(整理)巴特沃斯高通数字滤波器设计
巴特沃斯高通数字滤波器设计要求:3dB 数字截止频率为rad c πω2.0=,阻带下边频πω05.0=s rad ,阻带衰减为dB A s 48≥。
一、课程设计目的:数字信号处理(Digital Signal Processing DSP )是20世纪60年代以来,随着信息学科和计算机学科的高速发展而迅速发展起来的一门新兴学科。
数字信号处理是利用计算机或其他专用处理设备,以数值计算的方法对信号进行采集、变换、滤波、压缩、传输、估值与识别等加工处理,借以达到提取信息和便于应用的目的的一种技术。
数字信号处理随着计算机技术信息技术的进步获得了飞速的发展。
数字信号处理已广泛应用于科学研究和工程技术的各个领域,是新一代IT 工程师必须掌握的信息处理技术。
它在越来越多的应用领域中迅速替代传统的模拟信号处理技术,并且开辟出许多新的领域。
数字信号处理有很多深奥的数学概念,理论也相对抽象,而且是一门理论与实践密切结合的课程。
我们通过课程设计深入掌握课程内容,深入理解与消化关于巴特沃斯滤波器的基本理论,锻炼我们独立解决问题的能力,培养我们的创新意识,加强我们的实践学习。
二、设计原理:1、数字滤波器所谓数字滤波器,是指输入输出均为数字信号,通过数字运算处理改变输入信号所含频率成分的相对比例,或者滤除某些频率成分的数字器件或程序。
正因为数字滤波通过数值运算实现滤波,所以数字滤波器处理精度高、稳定、体积小、重量轻、灵活、不存在阻抗匹配问题,可以实现模拟滤波器无法实现的特殊滤波功能。
按照不同的分类方式,数字滤波器可以有很多种类型,但总起来可以分为两大类:经典滤波器和现代滤波器。
经典滤波器的特点是其输入信号中有用的频率成分和希望滤除的成分分别占有不同的频带,通过一个合适的选频滤波器滤除干扰,得到纯净信号,达到滤波目的。
但是,如果信号和干扰的频谱相互重叠,则经典滤波器无法有效滤除干扰,最大限度恢复信号,这就需要现代滤波器。
现代滤波器是根据随机信号的一些统计特性,在某种最佳准则下,最大限度抑制干扰,同时最大限度恢复信号,达到最佳的滤波效果的目的。
巴特沃斯高通滤波器系数计算
b为H(z)的分子多项式系数; a为H(z)的分母多项式系数。
(4)巴特沃斯带阻滤波器系数计算 [b,a]=butter(ceil(n/2),[W1,W2],′stop′)
n为用buttord()设计出的带阻滤波器阶数。 butter(n,[W1,W2],′stop′)将返回2*n阶滤波器系数;
高通滤波器 在采样频率为8000Hz的条件下设计一个高通滤波器,要求 通带截止频率为1500Hz,阻带起始频率为1000Hz,通带内 波动3dB,阻带内最小衰减65dB。
则有:
ωp=1500/4000 ωs=1000/4000 Rp=3 Rs=65
带通滤波器 在采样频率为8000Hz的条件下设计一个带通滤波器,要求 通 带 截 止 频 率 为 [ 8 0 0 Hz,1500Hz], 阻 带 起 始 频 率 为 [ 5 0 0 Hz,1800Hz], 通 带 内 波 动 3 dB, 阻 带 内 最 小 衰 减 45dB。
数字滤波器
一、数字滤波器的设计参数
fp:通带截止频率(Hz); fs:阻带起始频率(Hz); R
减; Rs:阻带内最小衰减(dB)。
设采样率为fN,则可将以上频率参数转换为归一化角频率: ωp:通带截止角频率(rad/s)
ωp =fp/(fN/2) ωs:阻带起始角频率(rad/s)
2 系数计算 由巴特沃斯滤波器的阶数n以及截止频率ωn可以计算出对应 传递函数H(z) 的分子分母系数。 MATLAB提供的命令是: (1) [b,a]=butter(n,Wn)
n为低通滤波器阶数; Wn为低通滤波器截止频率; b为H(z)的分子多项式系数; a为H(z)的分母多项式系数。
Butterworth (巴特沃斯)滤波器设计参考
高通滤波器:
1 z 1 s C1 , 1 1 z
C1 c tan
c
2
,
c 1
(Note: 参考 陈佩青《数字信号处理教程》第二版 291 页 表 6-8)
2
其他带通、带阻滤波器频率变换式参考表 6-8 (下图)
3
参考设计: 1. 1 阶 Butterworth LPF 设计
频响如下
8
Butterworth 1~2 阶 LPF & HPF Filter Coefficients 以及制作成 Excel 表格分享在: /s/1hqw2mby 可以下载使用,选择对应的类型,设定相应的 fs & fc 就能自动计算出 Filter Coefficients。
(Note: 参考 陈佩青《数字信号处理教程》第二版 266 页 表 6-4)
上面的表达式是 s 域的表达式,下面是变化到 z 域的方法。
低通滤波器:
1 1 z 1 s C 1 1 z 1 C 1 c tan c 2 c 1, c 2 f c / f s
Butterworth (巴特沃斯)滤波器设计参考
-- By Water 在嵌入式音频产品开发过程中经常会到 LPF(Low Pass Filter 低通滤波器)和 HPF(High Pass Filter 高通滤 波器),一般情况下都是离线用工具(如: Matlab)设计好滤波器的参数(Filter Coefficients)再应用到产品中 去。但有些状况下需要用户自己根据需求来实时(Real-time)调整 Filter Frequency Response (滤波器频率响应), 这种情形下就需要在嵌入式系统中实时根据客户的设定需求来产生相应的 Filter Coefficients。 下文就汇总出了 N 阶 IIR LPF & HPF Butterworth 滤波器系数的设计方法, 具体的算法原理推导可以参考陈佩 青《数字信号处理教程》一书,此处只给出工程上可以应用的结论。
滤波器参数设计方案说明
滤波器参数设计方案说明一、设计指标1、滤波器函数类型:巴特沃斯、契比雪夫2、滤波器类型:低通、高通、带通3、中心频率或截至频率范围:1Hz~140kHz4、滤波器阶数:4阶5、输入信号范围:最大幅值4Vpp,最小幅值mV级6、输入信号:正弦波(0~40MHz)、方波(0~1MHz,默认占空比50%)两种,幅度可通过电位器调节7、输出信号:两级程控放大(0~96dB),一级程控衰减(0~48dB)二、设计中使用的公式及数据表2.1 中心频率及Q值计算公式'C)C=Q为各阶巴特沃斯和契c B C比雪夫对应的归一化系数;为带通滤波器的中心频率,BW为带通滤波器的带宽,Q’为带(2)Ω0通滤波器的品质因数。
表2.2 各阶滤波器二阶滤波器节B、C表注:契比雪夫滤波器的各阶系数是在通带波纹为0.1dB下求得。
表2.3 4阶滤波器设计参数表(采用归一化频率)注:(1)表中给出的巴特沃斯和契比雪夫滤波器系数均为4阶滤波器; (2)契比雪夫滤波器的通带波纹为0.1dB ,两种滤波器的带通模式下为'0/(Hz)5BP Q f BW ==时的参数,BW 为带通滤波器的带宽,Q ´为带通滤波器的品质因数。
三、低通滤波器设计 1、截止频率及Q 值计算由文献《有源滤波器精确设计手册》可以查得四阶巴特沃斯和契比雪夫滤波器各二阶节的B 、C 值,见表2.2。
根据表2.1,计算得到四阶巴特沃斯和契比雪夫滤波器各二阶滤波器节的Q 值,如表2.3,我们重新整理成表3.1。
表3.1 四阶低通滤波器各二阶滤波器节的Q 值和归一化频率2、0/clk f f 、Q和工作模式编程参数的确定f clk /f 0编程参数的确定有两种方法:(1)固定f clk /f 0比值,即无需改变频率比的N F 编程值,通过改变时钟频率f clk 对应改变中心频率(截止频率)f 0值。
也即根据输入中心频率(截止频率)f 0计算得到时钟频率f clk 。
滤波器设计中的巴特沃斯滤波器
滤波器设计中的巴特沃斯滤波器滤波器在信号处理和电子通信中扮演着至关重要的角色,能够去除原始信号中的噪声或者限制信号在感兴趣频率范围内。
在滤波器的设计中,巴特沃斯滤波器是一种常用的滤波器类型,其具有平坦的幅频响应和极窄的过渡带宽。
本文将介绍巴特沃斯滤波器的原理和设计方法。
一、巴特沃斯滤波器的原理巴特沃斯滤波器基于巴特沃斯多项式来实现滤波功能。
巴特沃斯多项式的特点是它在通带内具有最平坦的幅频响应,即没有波纹或峰谷,而在过渡带和阻带中有最陡峭的衰减。
这使得巴特沃斯滤波器在高通和低通滤波器应用中非常有用。
巴特沃斯滤波器的频率响应函数可以通过以下公式表示:H(s) = 1 / (1 + (s/wc)^2N)^0.5其中,H(s)为频率响应函数,s为复变量,wc为截止频率,N为滤波器的阶数。
通过调整截止频率和阶数,可以实现不同类型的巴特沃斯滤波器,如低通滤波器、高通滤波器、带通滤波器和带阻滤波器。
二、巴特沃斯滤波器的设计方法巴特沃斯滤波器的设计过程可以通过以下步骤进行:1. 确定滤波器类型:根据实际需求确定滤波器的类型,例如低通滤波器或高通滤波器。
2. 确定滤波器的通带和阻带范围:根据信号的频率范围确定滤波器的通带和阻带范围。
通带是信号允许通过的频率范围,而阻带是信号被抑制的频率范围。
3. 确定滤波器的截止频率:根据滤波器类型和信号需求,确定滤波器的截止频率。
截止频率是信号通过滤波器时的临界点,可以控制滤波器的频率特性。
4. 确定滤波器的阶数:根据滤波器的要求,确定滤波器的阶数。
阶数越高,滤波器的衰减特性越陡。
5. 计算滤波器的巴特沃斯多项式:根据选择的滤波器类型、截止频率和阶数,计算滤波器的巴特沃斯多项式。
6. 实现滤波器:根据计算得到的巴特沃斯多项式,采用电路或者数字滤波器的方式来实现滤波器。
多种实现方式包括RC电路、LC电路、激励响应滤波器等。
三、巴特沃斯滤波器的应用巴特沃斯滤波器广泛应用于各个领域,包括通信系统、音频处理、图像处理等。
巴特沃斯滤波器设计
巴特沃斯滤波器设计1、巴特沃斯滤波器设计原理低通滤波器的幅值响应如下图所示。
maxA 为通带内允许最大衰减;minA 为阻带内允许最小衰减,c ω为通带角频率,s ω为阻带角频率。
一个n 阶低通巴特沃斯滤波器的幅频函数为:1-7阶巴特沃斯多项式如下:常数ε的作用是调整通带内允许的最大衰减,使其可小于3dB。
逼近过程中,A 需要确定的参数为ε和巴特沃斯多项式的阶数n,其中,通带内允许最大衰减maxA。
首先,推导确定了ε的大小;阶数n的大小取决于阻带内允许的最小衰减minε。
习惯上,多用衰减(分贝数)表示幅频特性。
因此,巴特沃斯低通响应为:ωω时,产生通带内最大衰减,即当=c解上式,可得:ωω时,产生阻带内最小衰减当=s上式可写为:对上式求解,可得:把 的表达式带入,可得:例子:用matlab 重复以上计算过程:wp=90*pi; ws=150*pi; Rp=3; Rs=10;N_true=(10^(Rp/10)-1)/(10^(Rs/10)-1);%真数 Num_Base=wp/ws;%底数N=ceil(log10(N_true)/log10(Num_Base)/2); wc=ws/((10^(Rs/10)-1)^(1/(2*N)));附加:Matlab 计算对数的时候,没有以a 为底b 的对数的函数,因此需要通过lgblog lg b a a改为以10为底的对数或者自然对数进行计算。
来源:https:///view/06e71fc5c67da26925c52cc58bd63186bceb92ca.html2、matlab 的巴特沃斯滤波器设计matlab 中提供了函数进行巴特沃斯滤波器设计同样对应上边的例子,通带90πHz ,通带最大衰减3dB ,阻带150πHz ,阻带最小衰减10 dB 。
Matlab 计算方法如下:229010lg 1315010lg 110nc nc πωπω⎧⎡⎤⎛⎫⎪⎢⎥+= ⎪⎪⎢⎥⎝⎭⎪⎣⎦⎨⎡⎤⎪⎛⎫⎢⎥+=⎪⎪⎢⎥⎝⎭⎪⎣⎦⎩20.32901010.995261501019nc nc πωπω⎧⎛⎫⎪=-= ⎪⎪⎝⎭⎨⎛⎫⎪=-= ⎪⎪⎝⎭⎩两式相除有:2290150900.99526/0.110581509nncc πππωωπ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭ 整理得:()20.60.11058n=因此,0.110580.61log 2.15532n ==取3n =,带入215010lg 110n c πω⎡⎤⎛⎫⎢⎥+= ⎪⎢⎥⎝⎭⎣⎦,即21509nc πω⎛⎫= ⎪⎝⎭计算得:1/6150326.7388/9c rad s πω== 3n =,查表得对应的巴特沃斯滤波器,并去归一化:7323232711 3.488210221653.5 2.135 3.488210221c c c s s s s s s s s s ωωω⨯==++++++⨯⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭Matlab 代码如下: wp=90*pi; ws=150*pi; Rp=3; Rs=10;[N,wc]=buttord(wp,ws,Rp,Rs,'s');[B,A]=butter(N,wc,'s');f=1:300;w=2*pi*f;H=freqs(B,A,w);figure(1)plot(f,20*log10(abs(H)));grid on,xlabel('频率(Hz)'),ylabel('幅度(dB)')title('巴特沃斯模拟滤波器')设计滤波器幅值响应如下:3、pscad和matlab关于滤波器的配合设计的滤波器的系数经常很大,连续的滤波器在pscad中用s的传递函数实现,pscad中该元件系数有限制要在-810之间,实际的滤波器不满足该条件。
巴特沃斯高通滤波器
巴特沃斯高通滤波器简介巴特沃斯高通滤波器,也称为Butterworth高通滤波器,是一种常用的信号处理滤波器。
它被广泛应用于音频处理、图像处理、无线通信等领域,用于去除低频噪音或增强高频成分。
巴特沃斯高通滤波器具有平滑的频率响应特性,在截止频率之外的频段对信号进行衰减,保留高频成分。
巴特沃斯高通滤波器的设计原理巴特沃斯高通滤波器的设计基于巴特沃斯多项式。
巴特沃斯多项式是一类具有最平坦的幅频特性的多项式,它的频率响应在通带范围内是最均匀的。
因此,巴特沃斯高通滤波器通过巴特沃斯多项式的特性来实现对信号的滤波。
巴特沃斯多项式可以由以下递推关系式定义:H(n, ω) = s + ω * H(n-1, ω), n > 1H(1, ω) = s + ωH(0, ω) = 1其中,H(n, ω)表示巴特沃斯多项式的第n阶。
通过使用巴特沃斯多项式,可以得到巴特沃斯高通滤波器的传递函数:H(s) = 1 / H(n, s/ω0)其中,n表示滤波器的阶数,s为复数变量,ω0为截止频率。
巴特沃斯高通滤波器的实现方法巴特沃斯高通滤波器的实现可以通过模拟滤波器电路或数字滤波器实现。
模拟滤波器电路对于模拟滤波器电路,巴特沃斯高通滤波器可以使用电容和电感的组合来实现。
电容和电感的数值可以根据设计要求来选择,从而实现不同阶数的滤波器。
数字滤波器对于数字滤波器,巴特沃斯高通滤波器可以通过离散化巴特沃斯多项式的传递函数来实现。
常用的数字滤波器设计方法包括脉冲响应、零相位等。
巴特沃斯高通滤波器的应用巴特沃斯高通滤波器在信号处理中有着广泛的应用。
以下是一些常见的应用场景:音频处理巴特沃斯高通滤波器可以用于音频处理中,例如去除低频噪音。
在音频信号中,低频噪音往往会影响音频的质量。
通过使用巴特沃斯高通滤波器,可以将低频噪音滤除,从而提升音频的清晰度。
图像处理在图像处理中,巴特沃斯高通滤波器可以用于增强图像的高频成分。
通过滤除低频分量,可以使图像的细节更加清晰。
巴特沃斯滤波器原理语音去除噪声
巴特沃斯滤波器原理语音去除噪声在现代传输和通信系统中,声音信号的质量对于保证通话质量和听觉体验至关重要。
然而,在日常生活和工作中,我们常常会受到各种环境噪声的干扰,这些噪声会影响到语音信号的准确性和清晰度。
为了有效地去除这些噪声,巴特沃斯滤波器被广泛应用于语音信号处理中。
巴特沃斯滤波器是一种常见的数字滤波器,它基于巴特沃斯滤波器原理,能够有效地去除不同频率下的噪声。
其原理主要是通过设计滤波器的传递函数,实现在频域上对信号进行滤波,减少或消除特定频率下的干扰噪声。
在语音信号处理中,巴特沃斯滤波器可以被用来去除各种类型的噪声,包括白噪声、背景噪声等。
通过调整滤波器的参数和阶数,可以实现对不同频率范围内的噪声进行有效地去除。
这种滤波器在语音通信、语音识别和音频处理等领域有着广泛的应用。
巴特沃斯滤波器的设计原则是使得在通带范围内的信号能够尽可能保持不变,同时在阻带范围内对信号进行衰减。
这种设计能够有效地去除噪声信号,同时保留原始语音信号的关键信息。
通过合理选择滤波器的参数,可以实现对不同频率噪声的有针对性去除,提高语音信号的清晰度和准确性。
除了设计滤波器的参数外,巴特沃斯滤波器的阶数也是影响其去噪效果的重要因素。
阶数越高,滤波器的频率响应曲线越陡峭,对信号的滤波效果也更为显著。
然而,随着阶数的增加,滤波器的计算复杂度也会增加,需要在去除噪声效果和计算开销之间进行权衡。
在实际应用中,巴特沃斯滤波器往往与其他信号处理算法结合使用,以实现更加高效和准确的语音信号去噪。
通过对信号进行预处理、特征提取和后续处理等步骤,可以进一步提高语音信号处理的效果,为用户提供更为清晰和自然的声音体验。
总的来说,巴特沃斯滤波器作为一种常见的数字滤波器,在语音去噪领域具有重要的应用意义。
通过合理设计滤波器的参数和阶数,能够有效地去除不同频率下的噪声,提高语音信号的质量和清晰度,为用户带来更好的听觉体验。
在未来的研究和应用中,巴特沃斯滤波器将继续发挥重要作用,推动语音信号处理技术的不断发展和创新。
巴特沃斯滤波器的分析与实现
二阶巴特沃斯滤波器的实现二阶巴特沃斯滤波器的实现方法本文列举了2种2阶巴特沃斯滤波器的实现方法,并给出了滤波器是巴特沃斯滤波器的参数。
以下详述:方法1:RC压控电压源滤波器传递函数为:H(s)=11+s R1C1+R1C2+R2C2-A*R1C1+s R1R2C1C2(A为放大倍数)下面证明此滤波器在一定情况下可成为为二阶巴特沃斯滤波器:情况1:滤波器幅频传递函数为:|H jw|=|A1+jw R1C1+R1C2+R2C2−A∗R1C1−w2R1C1R2C2|=1+w4(R1R2C1C2)2+w2((R1C1+R1C2+R2C2−A∗R1C1)2−2R1R2C1C2)若滤波器是巴特沃斯滤波器,则((R1C1+R1C2+R2C2−A∗R1C1)2−2R1R2C1C2要为0 。
令A=(3-20.5)C1=C2 R1=R2则|H jw|=3−21+w4(RC)4符合巴特沃斯滤波器方程,但是有一个(3-20.5)的放大倍数。
参数计算:w c=2πf c=1RCWc和Fc分别是3Db截止角频率和截止频率情况2:上述令A = 1H(s)=11+s R1C2+R2C2+s2R1R2C1C2滤波器幅频传递函数为:|H jw|=|11+jw R1C2+R2C2−w2R1C1R2C2| =1令C1= 2C2,R1=R2可得:|H jw|=|122|=1+4w4(R1C2)4上式符合巴特沃斯滤波器特性,是巴特沃斯滤波器。
参数计算:w c=2πf c=2R1C2Wc和Fc分别是3Db截止角频率和截止频率方法2:RLC滤波器传递函数:H(s)=11+sRC+s2LC|H jw|=|12|=1+w4(LC)2+w2((RC)2−2LC)巴特沃斯滤波器成立的条件是:(RC)2−2LC=0即R=2LC时此滤波器为巴特沃斯滤波器。
参数计算:w c=2πf c=LCWc和Fc分别是3Db截止角频率和截止频率。
特定滤波器的设计实现——巴特沃斯&切比雪夫
巴特沃斯滤波器
对于巴特沃斯滤波器,其插入损耗
IL
=
10log
Pin PL
= −10 log
1−
Γin
2
= 10 log LF
= 10log{1 + a2Ω2N }
其中Ω 为归一化频率Ω = ω ,一般取 a=1,由插入损耗的公式可以得到:
ωc
当Ω =1,IL=10log2,也就是说,在截止频率点上的插入损耗为 3dB,下图是巴特沃斯滤 波器在不同阶数(N 值)情况下的插入损耗曲线:(曲线中可以看出通带内无纹波)
ω U=2π *(2.4+0.24GHz)=2π *2.64GHz=16.59*109
ω L=2π *(2.4-0.24GHz)=2π *2.16GHz=13.57*109 所以,
ω0 = ωUωL = 15 ∗ 109rad/s
由带通滤波器反归一化规则,可以得到
L1
=
L3
=
ωU
L1 −
ωL
=
55.5nH
了 3dB 纹波的切比雪夫滤波器损耗因数、插入损耗与归一化频率Ω ,阶数 N 的关系:
下图是 0.5dB 纹波切比雪夫滤波器的衰减特性:
对应于开头所提到的滤波器原型电路,相应元件的参数如下图所示:
切比雪夫滤波器在截止频率点上的衰减恰好等于其通带内的最大纹波;而对于巴特沃斯 滤波器而言,虽然其衰减变化平缓,但是其线性相移特别适用于调制和混频电路。
串联电感反归一化:(电感电容串联)
L L = ωU − ωL
C
=
ωU − ωL ω02 L
并联电容反归一化:(电感电容并联)
L
=
ωU − ωL ω02 C
巴特沃斯高通数字滤波器设计8页word文档
巴特沃斯高通数字滤波器设计要求:3dB 数字截止频率为rad c πω2.0=,阻带下边频πω05.0=s rad ,阻带衰减为dB A s 48≥。
一、课程设计目的:数字信号处理(Digital Signal Processing DSP )是20世纪60年代以来,随着信息学科和计算机学科的高速发展而迅速发展起来的一门新兴学科。
数字信号处理是利用计算机或其他专用处理设备,以数值计算的方法对信号进行采集、变换、滤波、压缩、传输、估值与识别等加工处理,借以达到提取信息和便于应用的目的的一种技术。
数字信号处理随着计算机技术信息技术的进步获得了飞速的发展。
数字信号处理已广泛应用于科学研究和工程技术的各个领域,是新一代IT 工程师必须掌握的信息处理技术。
它在越来越多的应用领域中迅速替代传统的模拟信号处理技术,并且开辟出许多新的领域。
数字信号处理有很多深奥的数学概念,理论也相对抽象,而且是一门理论与实践密切结合的课程。
我们通过课程设计深入掌握课程内容,深入理解与消化关于巴特沃斯滤波器的基本理论,锻炼我们独立解决问题的能力,培养我们的创新意识,加强我们的实践学习。
二、设计原理:1、数字滤波器所谓数字滤波器,是指输入输出均为数字信号,通过数字运算处理改变输入信号所含频率成分的相对比例,或者滤除某些频率成分的数字器件或程序。
正因为数字滤波通过数值运算实现滤波,所以数字滤波器处理精度高、稳定、体积小、重量轻、灵活、不存在阻抗匹配问题,可以实现模拟滤波器无法实现的特殊滤波功能。
按照不同的分类方式,数字滤波器可以有很多种类型,但总起来可以分为两大类:经典滤波器和现代滤波器。
经典滤波器的特点是其输入信号中有用的频率成分和希望滤除的成分分别占有不同的频带,通过一个合适的选频滤波器滤除干扰,得到纯净信号,达到滤波目的。
但是,如果信号和干扰的频谱相互重叠,则经典滤波器无法有效滤除干扰,最大限度恢复信号,这就需要现代滤波器。
现代滤波器是根据随机信号的一些统计特性,在某种最佳准则下,最大限度抑制干扰,同时最大限度恢复信号,达到最佳的滤波效果的目的。
巴特沃斯有源高通滤波器的设计
昆明理工大学课程设计说明书课题名称:巴特沃斯有源高通滤波器的设计专业名称:电子信息工程学生班级:09级电信三班学生姓名:周剑彪学生学号:200911513339指导老师:王庆平设计时间:2011年6月23日第一部分:题目分析及设计思路(一)、滤波器简介滤波器是一种对信号有处理作用的器件或电路。
主要作用是:让有用信号尽可能无衰减的通过,对无用信号尽可能大的衰减。
滤波器按照所处理的信号,可以分为:模拟滤波器和数字滤波器;按照信号的频段,可以分为:低通、高通、带通和带阻滤波器四种;按照所采用的原件,也可以分为:无源滤波器和有源滤波器。
用来说明滤波器性能的技术指标主要有:中心频率f0,即工作频带的中心;带宽BW;通带衰减,即通带内的最大衰减阻带衰减等。
(二)巴特沃斯滤波器简介巴特沃斯滤波器是电子滤波器的一种。
巴特沃斯滤波器的特点是通频带的频率响应曲线最平滑。
这种滤波器最先由英国工程师斯替芬〃巴特沃斯(Stephen Butterworth)在1930 年发表在英国《无线电工程》期刊的一篇论文中提出的。
一级至五级巴特沃斯低通滤波器的响应如下图所示:巴特沃斯滤波器的特点是通频带内的频率响应曲线最大限度平坦,没有起伏,而在阻频带则逐渐下降为零。
在振幅的对数对角频率的波特图上,从某一边界角频率开始,振幅随着角频率的增加而逐步减少,趋向负无穷大。
(三)、巴特沃斯有源高通滤波器优化设计设计目的掌握滤波器的基本概念;掌握滤波器传递函数的描述方法;掌握巴特沃斯滤波器的设计方法;设计一个巴特沃斯滤波器,其技术指标为:(1)阻带截止频率: fc = 1kHz ;(2)通带放大倍数:Aup =2;(3)品质因素:Q = 1;(4)阻带最小衰减率:-25dB。
设计要求:(1)确定传递函数;(2)给出电路结构和元件参数;(运算放大器可以选择)(3)利用PSPICE 软件对电路进行仿真,得到滤波器的幅频响应,是否满足设计指标;第二部分:电路原理分析及基本电路图(一)确定传递参数:二阶高通滤波器的通带增益截止频率,它是二阶高通滤波器通带与阻带的界限频率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
昆明理工大学课程设计说明书
课题名称:巴特沃斯有源高通滤波器的设计专业名称:电子信息工程
学生班级:09级电信三班
学生姓名:周剑彪
学生学号:200911513339
指导老师:王庆平
设计时间:2011年6月23日
第一部分:题目分析及设计思路
(一)、滤波器简介
滤波器是一种对信号有处理作用的器件或电路。
主要作用是:让有用信号尽可能无衰减的通过,对无用信号尽可能大的衰减。
滤波器按照所处理的信号,可以分为:模拟滤波器和数字滤波器;按照信号的频段,可以分为:低通、高通、带通和带阻滤波器四种;按照所采用的原件,也可以分为:无源滤波器和有源滤波器。
用来说明滤波器性能的技术指标主要有:中心频率f0,即工作频带的中心;带宽BW;通带衰减,即通带内的最大衰减阻带衰减等。
(二)巴特沃斯滤波器简介
巴特沃斯滤波器是电子滤波器的一种。
巴特沃斯滤波器的特点是通频带的频率响应曲线最平滑。
这种滤波器最先由英国工程师斯替芬〃巴特沃斯(Stephen Butterworth)在1930 年发表在英国《无线电工程》期刊的一篇论文中提出的。
一级至五级巴特沃斯低通滤波器的响应如下图所示:
巴特沃斯滤波器的特点是通频带内的频率响应曲线最大限度平坦,没有起伏,而在阻频带则逐渐下降为零。
在振幅的对数对角频率的波特图上,从某一边界角频率开始,振幅随着角频率的增加而逐步减少,趋向负无穷大。
(三)、巴特沃斯有源高通滤波器优化设计
设计目的
掌握滤波器的基本概念;
掌握滤波器传递函数的描述方法;
掌握巴特沃斯滤波器的设计方法;
设计一个巴特沃斯滤波器,其技术指标为:
(1)阻带截止频率: fc = 1kHz ;
(2)通带放大倍数:Aup =2;
(3)品质因素:Q = 1;
(4)阻带最小衰减率:-25dB。
设计要求:
(1)确定传递函数;
(2)给出电路结构和元件参数;(运算放大器可以选择)
(3)利用PSPICE 软件对电路进行仿真,得到滤波器的幅频响应,是否满足设计指标;
第二部分:电路原理分析及基本电路图
(一)确定传递参数:
二阶高通滤波器的通带增益
截止频率,它是二阶高通滤波器通带与阻带的界限频率。
品质因数,它的大小影响高通滤波器在截止频率处幅频特性的形状。
(二)给出电路结构:
一般来说,滤波器的技术指标往往是幅频响应特性。
所有的技术指标基本上都可以通过滤波器的传递函数计算得到。
因此,从一定程度上讲,滤波器的设计就是寻找一个合适的传递函数,使其能够满足所要求的技术指标。
选取的电阻的标称值尽量接近计算结果,按图构成二阶高通滤波器或高通滤波节。
特别注意的是,增益k为靓电容的比值,所以应该把电容C1和C2的数值选成符合电容标称值的元件,否则就需要在电路中并联微调电容,这将增加调试难度。
在工程设计中,高通、带通和带阻滤波器的设计通常是利用低通滤波器的原型,经过频率变换得到。
这样就转变为一个低通滤波器的设计。
因此,根据低通原型滤波器的技术指标,确定阶次N,再确定巴特沃斯低通原型的传递函数,再通过频率变换获得一般滤波器的传递函数。
据题意可知为二阶高通有源滤波器,由RC网络,放大器和反馈网络等组成,初步电路图如上所示。
第三部分:电路参数确定
1电阻为参数K=1时的值,单位为K。
2.由表得f=1KHe时,取C=0.01uF;
3.由表可知当Av=2时电容C1=C=0.01uF;K=1时,电阻R1=15K,Rf=15K,R=15.915K 第四本分:电路的功能或性能验证
根据滤波器的基本特性所设计电路基本满足题目要求,基本没有太大的问题。
详细电路图及验证结果出现在第五部分。
注意问题:所选元件的标称值必须与计算结果非常接近,高阶高通滤波器要求元件比低阶要更精确些,若电路中全部电阻值乘以某一常数,同时全部电容都除以该常数,滤波器性能不会改变,这样可以微选取元件的标称值带来好处。
第五部分:设计成果
EWB建立在SPICE基础上,它具有以下突出的特点:
(1)采用直观的图形界面创建电路:在计算机屏幕上模仿真实实验室的工作台,绘制电路图需要的元器件、电路仿真需要的测试仪器均可直接从屏幕上选取;
(2)软件仪器的控制面板外形和操作方式都与实物相似,可以实时显示测量结果。
(3)EWB软件带有丰富的电路元件库,提供多种电路分析方法。
(4)作为设计工具,它可以同其它流行的电路分析、设计和制板软件交换数据。
(5)EWB还是一个优秀的电子技术训练工具,利用它提供的虚拟仪器可以用比实验室中更灵活的方式进行电路实验,仿真电路的实际运行情况,熟悉常用电子仪器测量方法。
设计电路图如下:
电路在EWB仿真软件下工作下的结果截图(波特图):
二阶高通滤波的幅度特性曲线
二阶高通滤波的相位特性曲线
第六部分:总结与体会
通过这次巴特沃斯滤波器优化设计,了解了滤波器的一些概念、功能和一些基本的类型,对模电知识有了进一步的了解,学习了低通原型滤波器及其传递参数、频率变换、滤波器的设计流程和巴特沃斯滤波器的设计,在对截止频率fc 和滤波器的阶数N求解时,运算由于太复杂。
本次课程设计由于是个人独立选定课题,所以在此过程的开始时基本上所有人都在自己独立思考,同时又由于设计所采用的仿真和制板软件和在此之前基本不是很熟悉,因此本次课程设计的前期多半是在摸索中前进,当然付出中会有收获,本次课程设计让我弄懂了很多以前感觉模糊的东西,同时也带给我成功的喜悦感,增加了我的自信心,当我看到由我自己设计的东西由想法变成实物时,我的心里充满了成功的喜悦感。
回想起此次课程设计过程中经历的种种困难,遇到不明白的问题时,与他人讨论,请教老师的过程,所有的努力都指向一个明确的目标----确保课程设计的成功,我真的很感动。
此次课程设计不仅使我学会了不少东西,更让我体会到人与人之间的沟通的乐趣,感谢此次课程设计过程中给予我们悉心指导的王庆平和丽芳老师,同时也感谢班级的其他同学,正式由于和他们一起的努力使我成功完成了本次课程设计。
第七部分:参考文献
[1]童诗白、华成英.模拟电子技术基础.4版.北京:高等教育出版社,2006.
[2] 彭介华.电子技术课程设计指导.北京:高等教育出版社,1997.。