离散数学课件--第十七章 平面图及图的着色
离散数学ppt课件
02
集合论基础
集合的基本概念
总结词
集合是离散数学中的基本概念, 是研究离散对象的重要工具。
详细描述
集合是由一组确定的、互不相同 的、可区分的对象组成的整体。 这些对象称为集合的元素。例如 ,自然数集、平面上的点集等。
集合的运算和性质
总结词
集合的运算和性质是离散数学中的重要内容,包括集合的交、并、差、补等基本运算,以及集合的确定性、互异 性、无序性等性质。
生,1表示事件一定会发生。
离散概率论的运算和性质
概率的加法性质
如果两个事件A和B是互斥的,那么P(A或B)等于P(A)加上 P(B)。
概率的乘法性质
如果事件A和B是独立的,那么P(A和B)等于P(A)乘以P(B) 。
全概率公式
对于任意的事件A,存在一个完备事件组{E1, E2, ..., En}, 使得P(Ai)>0 (i=1,2,...,n),且E1∪E2∪...∪En=S,那么 P(A)=∑[i=1 to n] P(Ai)P(A|Ei)。
工程学科
离散数学在工程学科中也有着重要的 应用,如计算机通信网络、控制系统 、电子工程等领域。
离散数学的重要性
基础性
离散数学是数学的一个重要分支 ,是学习其他数学课程的基础。
应用性
离散数学在各个领域都有着广泛的 应用,掌握离散数学的知识和方法 对于解决实际问题具有重要的意义 。
培养逻辑思维
学习离散数学可以培养人的逻辑思 维能力和问题解决能力,对于个人 的思维发展和职业发展都有很大的 帮助。
详细描述
邻接矩阵是一种常用的表示图的方法,它是 一个二维矩阵,其中行和列对应于图中的节 点,如果两个节点之间存在一条边,则矩阵 中相应的元素为1,否则为0。邻接表是一 种更有效的表示图的方法,它使用链表来存 储与每个节点相邻的节点。
离散数学中的图论着色算法-教案
离散数学中的图论着色算法-教案一、引言1.1图论的发展历程1.1.118世纪欧拉解决哥尼斯堡七桥问题,奠定图论基础。
1.1.219世纪图论在数学和物理学领域得到发展。
1.1.320世纪图论在计算机科学中扮演重要角色。
1.1.4当前图论研究涉及网络科学、社会网络等多个领域。
1.2图论的基本概念1.2.1图由节点和边组成,用于表示物件与物件之间的关系。
1.2.2节点代表研究对象,边代表节点间的联系。
1.2.3图分为有向图和无向图,反映关系的方向性。
1.2.4图的度、路径、环等是图论中的基本术语。
1.3图论在现实中的应用1.3.1社交网络分析,如Facebook的社交图谱。
1.3.2电信网络设计,如电话网络的布局。
1.3.3交通运输规划,如航班路线的优化。
1.3.4计算机网络设计,如互联网的结构优化。
二、知识点讲解2.1图的着色问题2.1.1图的着色是将图中的节点用颜色进行标记,满足相邻节点颜色不同。
2.1.2着色问题分为正常着色和特定着色,如双色着色、列表着色等。
2.1.3着色问题在图论中具有重要地位,与图的性质紧密相关。
2.1.4着色问题广泛应用于地图着色、排课表、寄存器分配等领域。
2.2图的着色算法2.2.1Welsh-Powell算法,基于节点度进行着色。
2.2.2DSATUR算法,优先着色度数大且邻接节点着色多的节点。
2.2.3RLF算法,考虑节点邻接矩阵的行、列和节点度。
2.2.4图的着色算法不断发展,如启发式算法、遗传算法等。
2.3图的着色算法的应用2.3.1地图着色,确保相邻区域颜色不同。
2.3.2课程表安排,避免时间冲突。
2.3.3计算机寄存器分配,优化资源利用。
2.3.4光纤通信网络设计,减少信号干扰。
三、教学内容3.1图的着色问题的引入3.1.1通过地图着色实例引入图的着色问题。
3.1.2讲解正常着色和特定着色问题的区别。
3.1.3分析着色问题在现实中的应用场景。
3.1.4引导学生思考着色问题的数学模型。
离散数学——图论PPT课件
• 完全图:一个(n,m)图G,其n个结点中每个结点均与其它n-1个结点相邻接,记为Kn。 • 无向完全图:m=n(n-1)/2 • 有向完全图:m=n(n-1) • 举例说明以上几种图。
第20页/共93页
定义补图
• 设图G=<V,E> , G’=<V,E’> ,若G’’=<V,E∪E’> 是完全图,且E∩E’= 空集,则称G’是G的补图。 • 事实上,G与G’互为补图。
正则图
• 所有结点均有相同次数d的图称为d次正则图。 • 如4阶的完全图是3次正则图,是对角线相连的四边形。 • 试画出两个2次正则图。
第27页/共93页
两图同构需满足的条件
• 若两个图同构,必须满足下列条件: (1)结点个数相同 (2)边数相同 (3)次数相同的结点个数相同
• 例子
第28页/共93页
• 图是人们日常生活中常见的一种信息载体,其突出的特点是直观、形象。图论,顾 名思义是运用数学手段研究图的性质的理论,但这里的图不是平面坐标系中的函数, 而是由一些点和连接这些点的线组成的结构 。
第8页/共93页
• 在图形中,只关心点与点之间是否有连线,而不关心点具体代表哪些对象,也不关 心连线的长短曲直,这就是图的概念。
定义图的子图
• 子图:设G=<V,E> , G’=<V’,E’> ,若V’是V的子集, E’是E的子集,则 G’是G的子图。 • 真子图:若V’是V的子集,E’是E的真子集。 • 生成子图:V’=V,E’是E的子集。 • 举例说明一个图的子图。
第18页/共93页
定义(n,m)图
• (n,m)图:由n个结点,m条边组成的图。 • 零图:m=0。即(n,0)图,有n个孤立点。 • 平凡图:n=1,m=0。即只有一个孤立点。
平面图
17.4 平面图的对偶图
实线边图为平面图,虚线边图为其对偶图。
17.4 平面图的对偶图
从定义不难看出G的对偶图G*有以下性质: G*是平面图,而且是平面嵌入。 G*是连通图。 若边 e 为 G中的环,则 G*与 e对应的边 e* 为桥,若 e 为桥, 则G*中与e对应的边e*为环。 在多数情况下,G*为多重图(含平行边的图)。
i 1 i 1 k k
(17.1)
由于每个Gi 有一个外部面,而G只有一个外部面,所以G的面数 k r ri k 1
i 1
于是,对(17.1)的两边同时求和得
2k (ni mi ri ) ni mi ri n m r k 1
17.3 平面图的判断
例17.1 证明彼得松图不是平面图。
证 明
将彼得松图顶点标顺序,见图 (1)所示。 在图中将边(a,f), (b,g), (c,h), (d,i), (e,j)收缩,
所得图为图 (2)所示,它是K5,
由定理17.1彼得松图,令 G'=G-{(j,g),(c,d)} G‘如图 (3)所示,易知它与K3,3同胚, 由定理17.15可知,G为非平面图。
17.4 平面图的对偶图
一、对偶图的定义 定义17.6 设G是某平面图的某个平面嵌入,构造G的对偶图 G*如下: 在G的面Ri中放置G*的顶点vi* 。
设e为G的任意一条边,
若 e 在 G 的面 Ri 与 Rj 的公共边界上,做 G* 的边 e* 与 e 相交, 且e*关联G*的位于Ri与Rj中的顶点vi*与vj*,即e*=(vi*,vj*) ,e*不与其它任何边相交。 若e为G中的桥且在面Ri的边界上,则e*是以Ri中G*的顶点 vi*为端点的环,即e*=(vi*,vi*)。
离散数学-图论
图论
补图
• 给定一个图G=〈V,E〉,构造另一个图, 它的结点集合与G相同,而边的集合则为 相同完全图中边集合与E的差集,称该图 为原图G相对于完全图的补图,记作~G。
图论
子图
• 设G=〈V,E〉是一个图,如果有另一个 图G‘=〈V’,E‘〉,使得V’是V的子集, E‘是E的子集,则称G‘是G的子图。 • 如果G的子图G‘包含G的所有结点,则称 该子图为G的生成子图。
图论
可达性矩阵
• 设G=〈V,E〉是图,V={v1, v2,…, vn}, 建立n阶方阵P(G)=(aij),使得 aij =1, 从vi到vj至少存在一条路; aij =0,否则, 则称P(G)为图G的可达性矩阵。 比较:可达性矩阵与邻接矩阵的区别
图论
思考
• 邻接矩阵与可达矩阵之间有什么联系? • 如何从邻接矩阵计算出可达矩阵?
图论
邻接边
• 关联于同一结点的两条不同的边则称为 邻接边。 • 关联于同一结点的两条相同的边则称为 自回路或环。环既可以是有向的,也可以 是无向的。
图论
有向图的度
• 设〈vi, vj〉是有向图G=〈V,E〉中的任 意一条有向边, vi是该边的起始结点, vj是终止结点。 • 在有向图G=〈V,E〉中,以一结点为起 始结点的边的个数称为该结点的出度; 以一结点为终止结点的边的个数称为该 结点的入度。 • 一结点的出度和入度之和称为该结点的 度数,记作deg(v)。
图论
思考
• 结点的连通性是结点集V上的一个等价关 系! • 连通性所划分的等价类是什么?
图论
点割集
• 设无向图G〈V,E〉为连通图,若有点 集V1是V的真子集,使得图G在删除了V1 中所有结点后,所得的子图是不连通的, 而在删除了V1的任意真子集后,所得的 子图仍然是连通的,则称V1是G的一个点 割集; • 如点割集中仅有一个结点则称此结点为 割点。
离散数学平面图
又因为任取K3,3中三个结点,至少有两个点不邻接, 所以不能组成一个面,即K3,3中任何 一个面至少由四条边围成,即:所有面 的次数之和deg(r) >=4r=20 又由定理1知:deg(r)=2|E|=18 即18>=20矛盾不。论怎所么以画,K总3,有3不交是叉点平面图。
❖ 平面图基本性质
设G是一个有v个结点e条边的连通简单平面图,若v3, 则:e<=3v-6。等价于: 若不满足e<=3v-6,则G不是连通平面图。
例题:证明k5图不是平面图。
K5图中,v=5,e=10,10 3*v-6=35-6=9
但定理的条件只是必要条件。
如K3,3中v= 6,e =9, e<3v-6=12 满足条件,但K3,3不是平面图。
离散数学
❖ 图论
1 图的基本概念 2 路与回路 3 图的矩阵表示 4 欧拉图与汉密尔顿图 5 平面图 6 对偶图与着色 7 树与生成树
❖ 平面图基本概念
定义1:设G=<V,E>是一个无向图,如果能把G的所有结点和
边画在平面上,且使得任何两条边除了端点外没有其他的交点, 就称G是一个平面图。
(1)
G为k条边,再添加一条边,只有下述两种情况:
面数不变 点树加1 边数加1
点数不变 面数加1 边数加1
(Vk+1)-(ek+1)+rk=2成立
(Vk)-(ek+1)+(rk+1)=2成立
通过上述归纳法证明欧拉公式v-e+r=2成立。
❖ 平面图基本性质
例1:证明K3,3不是平面图
证:假设K3,3是平面图,
离散数学的ppt课件
科学中的许多问题。
03
例如,利用图论中的最短路径算法和最小生成树算法
等,可以优化网络通信和数据存储等问题。
运筹学中的应用
01
运筹学是一门应用数学学科, 主要研究如何在有限资源下做 出最优决策,离散数学在运筹 学中有着广泛的应用。
02
利用离散数学中的线性规划、 整数规划和非线性规划等理论 ,可以解决运筹学中的许多问 题。
并集是将两个集合中的所有元素合 并在一起,形成一个新的集合。
详细描述
例如,{1, 2, 3}和{2, 3, 4}的并集是 {1, 2, 3, 4}。
总结词
补集是取一个集合中除了某个子集 以外的所有元素组成的集合。
详细描述
例如,对于集合{1, 2, 3},{1, 2}的 补集是{3}。
集合的基数
总结词
)的数学分支。
离散数学的学科特点
03
离散数学主要研究对象的结构、性质和关系,强调推
理和证明的方法。
离散数学的应用领域
计算机科学
01
离散数学是计重要的工具和方法。
通信工程
02
离散数学在通信工程中广泛应用于编码理论、密码学、信道容
量估计等领域。
集合的基数是指集合中元素的数量。
详细描述
例如,集合{1, 2, 3}的基数是3,即它包含三个元素。
03 图论
图的基本概念
顶点
图中的点称为顶点或节点。
边
连接两个顶点的线段称为边。
无向图
边没有方向,即连接两个顶点的线段可以是双向 的。
有向图
边有方向,即连接两个顶点的线段只能是从一个顶 点指向另一个顶点。
研究模态算子(如necessity、possibility)的语义和语法。
离散数学课件17平面图共48页
本章的主要内容
–平面图的基本概念 –欧拉公式 –平面图的判断 –平面图的对偶图
本章所涉及到的图均指无向图。
17.1 平面图的基本概念
17.2 欧拉公式
17.3 平面图的判断
17.4 平面图的对偶图
本章小结
习题
作业
17.1 平面图的基本概念
一、关于平面图的一些基本概念 1、 平面图的定义 定义17.1 G可嵌入曲面S——如果图G能以这样的方式画在曲面S上,
类似地,v2与v4也必相邻,且边(v2,v4)也必在Ri外部,于是必 产生(v1,v3)与(v2,v4)相交于Ri的外部,这又矛盾于G是平面图, 所以必有s=3,即G中不存在次数大于或等于4的面,所以G的
每个面为3条边所围,也就是各面次数均为3。
只有右边的图为极大平面图。 因为只有该图每个面的次数都为3。
K5和K3,3都不是平面图。 定理17.1 设GG,若G为平面图,则G也是平面图。
设GG,若G为非平面图,则G也是非平面图。
由定理可知, Kn(n5)和K3,n(n3)都是非平面图。
定理17.2 若G为平面图,则在G中加平行边或环所得图还是 平面图。 即平行边和环不影响图的平面性。
二、平面图的面与次数(针对平面图的平面嵌入) 1、 定义 定义17.2 设G是平面图, G的面——由G的边将G所在的平面划分成的每一个区域。 无限面(外部面)——面积无限的面,记作R0。 有限面(内部面)——面积有限的面 ,记作R1, R2, …, Rk。 面Ri的边界——包围面Ri的所有边组成的回路组。 面Ri的次数——Ri边界的长度,记作deg(Ri)。
2、极大平面图的主要性质
定理17.4 极大平面图是连通的,并且n(n3)阶极大平面图 中不可能有割点和桥。
离散数学耿素云PPT第版
通路与回路(续)
在两种意义下计算圈的个数 ① 定义意义下 在无向图中, 一个长度为l(l3)的圈看作2l个不同的 圈. 如v0v1v2v0 , v1v2v0v1 , v2v0v1v2, v0v2v1v0 , v1v0v2v1 , v2v1v0v2看作6个不同的圈. 在有向图中, 一个长度为l(l3)的圈看作l个不同的 圈. ② 同构意义下 所有长度相同的圈都是同构的, 因而是1个圈.
(2) 若通路(回路)中所有顶点(对于回路, 除v0=vl)各异,则称为 初级通路(初级回路).初级通路又称作路径, 初级回路又称 作圈.
(3) 若通路(回路)中所有边各异, 则称为简单通路(简单回路), 否则称为复杂通路(复杂回路).
1
通路与回路实例
2
通路与回路(续)
说明: 表示方法
① 用顶点和边的交替序列(定义), 如=v0e1v1e2…elvl ② 用边的序列, 如=e1e2…el ③ 简单图中, 用顶点的序列, 如=v0v1…vl ④ 非简单图中,可用混合表示法,如=v0v1e2v2e5v3v4v5 环是长度为1的圈, 两条平行边构成长度为2的圈. 在无向简单图中, 所有圈的长度3; 在有向简单图 中, 所有圈的长度2.
4
通路与回路(续)
定理 在n阶图G中,若从顶点u到v(uv)存在通 路,则从u到v存在长度小于等于n1的通路. 推论 在n阶图G中,若从顶点u到v(uv)存在通 路,则从u到v存在长度小于等于n1的初级通路.
定理 在一个n阶图G中,若存在v到自身的回路,则 一定存在v到自身长度小于等于n的回路. 推论 在一个n阶图G中,若存在v到自身的简单回 路,则存在v到自身长度小于等于n的初级回路.
6
点割集
记 Gv: 从G中删除v及关联的边 GV : 从G中删除V 中所有的顶点及关联的边 Ge : 从G中删除e GE: 从G中删除E中所有边
《离散数学课件图论》PPT课件
,m3n6为真. 否则G中含圈,每个面至少由l(l3)条边围成
,又
l 1 2
l 2 l 2
在l=3达到最大值,由定理17.11可知m3n6.
定理17.13 设G为n(n3)阶m条边的极大平面图,则m=3n6. 证明:由定理17.4, 欧拉公式及定理17.7所证。
定理17.14 设G 为简单平面图,则 (G)5. 证明: 阶数 n6,结论为真。 当n7 时,用反证法。否则会 推出2m6n m3n,这与定理17.12矛盾.
如上面的例子。
18
精选PPT
平面图与对偶图之间的关系
定理17.17 设G*是连通平面图G的对偶图,n*, m*, r*和n, m, r分别为G*和G的顶点数、边数和面数,则 (1) n*= r (2) m*=m (3) r*=n (4) 设G*的顶点v*i位于G的面Ri中,则d(v*i)=deg(Ri) 证明: (1)、(2)平凡 (3) 应用欧拉公式 (4) 的证明中注意,桥只能在某个面的边界中,非桥边在两
20
精选PPT
自对偶图
定义:设G*是平面图G的对偶图,若G*G,则称G为自 对偶图. 概念: n阶轮图( Wn )、奇阶轮图、偶阶轮图 轮图都是自对偶图。 画出W6和W7的对偶图,并说明它们都是自对偶图。
21
精选PPT
第十七章 小结
❖ 主要内容 ▪ 平面图的基本概念 ▪ 欧拉公式 ▪ 平面图的判断 ▪ 平面图的对偶图
22
精选PPT
练习1
1. 设G是连通的简单的平面图,面数r<12,(G)3. (1) 证明G中存在次数4的面 (2) 举例说明当r=12时,(1) 中结论不真.
解 设G的阶数、边数、面数分别为n, m, r.
图论离散数学离散数学第四版清华出版社PPT课件
12/19/2020
28
b
e1
e4
a
e2
d
e5
e3
c
e5, e1, e2, e3, e4是简单通路,不是基本通路, 因为c, a, b, c, d, b中b, c均出现了两次。但c,
d, b, c是基本通路,也是基本回路。
12/19/2020
29
[定理] 在一个n阶图中,若从顶点u到v (uv)
❖ 起始状态是“人狼羊菜”,结束状态是“空”。
❖ 问题的解:找到一条从起始状态到结束状态的 尽可能短的通路。
12/19/2020
26
“巧渡河”问题的解
❖ 注意:在“人狼羊菜”的16种组合中允 许出现的只有10种。
人羊狼菜 人狼菜 人羊狼 人羊菜 人羊
狼菜
狼
12/19/2020
菜
羊
空(成功)
27
[定义] 简单通路(Simple Path)
在无向图G中,若e=(a, b)∈E,则称a与 b彼此相邻(adjacent),或边e关联 (incident) 或联结(connect) a, b。a, b称为边e的端点或 结束顶点(endpoint)。
在有向图D中,若e=<a, b>∈E,即箭头 由a到b,称a邻接到b,或a关联或联结b。a 称为e的始点(initial vertex),b称为e的终点 (terminal/end vertex)。
12/19/2020
30
[定义] 连通性(connectivity)
设G=<V,E>,若从vi到vj存在一条通 路,则称vi到vj连通(connective)或可达。
说明:对无向图而言,若vi到vj可达,则 vj到vi也可达。对有向图而言则未必。
离散数学PPT【共34张PPT】
18.4 点着色
定义17.9 (1) 图G的一种点着色——给图G的每个顶点涂上一种颜色,
使相邻顶点具有不同颜色 (2) 对G进行k着色(G是k-可着色的)——能用k种颜色给G
的顶点着色 (3) G的色数(G)=k——G是k-可着色的,但不是(k1)-可着色
的.
16
关于顶点着色的几个简单结果
定理17.19 (G)=1当且仅当G为零图 定理17.20 (Kn)=n 定理17.21 若G为奇圈或奇阶轮图,则(G)=3,若G为偶阶轮 图,则(G)=4. 定理17.22 若G的边集非空,则(G)=2当且仅当G为二部图.
路径 (7) M的交错圈——由M与EM中的边交替出现构成的G中圈
上图中,只有第一个图存在完美匹配
8
可增广路径及交错圈
(1)
(2)
(3)
设红色边在匹配M中,绿色边不在M中,则图(1)中的两条路 径均为可增广的交错路径;(2)中的全不是可增广的交错路 径;(3)中是一个交错圈. 不难看出,可增广交错路径中,不在M中的边比在M中的边 多一条. 交错圈一定为偶圈.
立集 (3) 最大点独立集——元素最多的点独立集 (4) 点独立数——最大点独立集中的元素个数,记为0
(1)
(2)
在图中,点独立数依次为2, 2, 3.
(3)
2
极大独立集与极小支配集
定理18.1 设G=<V,E>中无孤立点,则G的极大点独立集都是 极小支配集. 证明线索: (1) 设V*为G的极大点独立集,证明它也是支配集.
定理17.28 偶圈边色数为2,奇圈边色数为3. 定理17.29 (Wn) = n1, n4. 定理17.30 二部图的边色数等于最大度. 定理17.31 n为奇数(n1)时,(Kn)=n;
图论中的图的着色与染色问题
图论中的图的着色与染色问题图是图论中的基本概念之一,是由顶点和边构成的数学结构。
在图的理论中,图的着色与染色问题是一个非常重要且有趣的研究领域。
本文将介绍图的着色与染色问题的基本概念、定理和算法,希望能够为读者深入了解图论领域提供一些帮助。
一、基本概念在图的理论中,图的着色与染色问题是指将图的顶点或边用不同颜色标记的过程。
着色是指给图的顶点或边分配颜色,使得相邻的顶点或边颜色不相同;而染色是指给图的顶点或边分配颜色,使得相邻的顶点或边颜色可以相同。
定理1:图的顶点着色问题对于一个简单图,顶点着色问题是指如何用最少的颜色将图的所有顶点着色,使得相邻的顶点颜色不同。
根据四色定理,任何一个平面图都可以只用四种颜色进行顶点着色。
定理2:图的边着色问题对于一个简单图,边着色问题是指如何用最少的颜色将图的所有边着色,使得任意两条依附于同一顶点的边颜色不同。
根据维茨定理,任何简单无向图都可以用最大度数加一种颜色进行边着色。
二、算法与实践在解决图的着色与染色问题时,常用的算法包括贪心算法、回溯算法、图染色算法等。
其中,Welsh-Powell算法是用来解决无向图的顶点着色问题的一种有效算法,其基本思想是优先考虑度数最大的顶点进行着色。
而在解决边着色问题时,常用的算法包括Vizing定理、边染色算法等。
三、应用与拓展图的着色与染色问题在实际生活中有着广泛的应用,如地图着色、时间表着色、调度问题等。
同时,在拓展领域中,图的着色与染色问题也与其他数学领域有着密切的联系,如组合数学、离散数学等,在各个领域都有着深入的研究与应用。
总结:图的着色与染色问题是图论领域中的一个重要研究方向,具有丰富的理论内涵和实际应用。
通过本文对图的着色与染色问题的介绍,希望读者能够对该领域有一个初步的了解,进一步深入研究与探讨。
愿本文能够为读者在图论领域的学习与研究提供一些帮助与启发。
离散数学图的概念与表
本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢!
16.1 图的根本概念
什么是图?可用一句话概括,即:图是用点 和线来刻划离散事物集合中的每对事物间以某 种方式相联系的数学模型。
(1) 如果V2 V1和E2 E1,那么称G2为G1的子 图,记为G2 G1。
(2) 如果V2 V1,E2 E1且E2≠E1,那么称G2 为G1的真子图,记为G2 G1。
(3) 如果V2=V1,E2 E1,那么称G2为G1的生
成子图,记为G2
G1。
v2 v1
定义16.1.9 设图G2=<V2,E2>是图G1=<V1, E1> 的 子 图 。 假 设 对 任 意 结 点 u 和 v , 如 果 〔u , v〕 ∈E1,有〔u,v〕∈E2,那么G2由V2唯一地确定, 并 称 G2 是结 点 集 合 V2 的 诱导子 图 , 记作 <V2>或 G 〔V2〕;如果G2无孤立结点,且由E2所唯一确定,那 么称G2是边集E2的诱导子图,记为<E2>或G〔E2〕。
如果把图G中的弧或边总看作联结两个结点,那么 图G可简记为G=<V,E>,其中V是非空结点集,E是 联结结点的边集或弧集。
定义16.1.2 在图G=<V,E>中,如果每条边都 是弧,该图称为有向图;假设每条边都是无向边,该图 G称为无向图;如果有些边是有向边,另一些边是无向 边,图G称为混合图。
定义16.1.3 在图G=<V,E>中,如果任何两结 点间不多于一条边(对于有向图中,任何两结点间不多 于一条同向弧),并且任何结点无环,那么图G称为简单 图;假设两结点间多于一条边(对于有向图中,两结点 间多于一条同向弧)图G称为多重图,并把联结两结点之 间的多条边或弧,称为平行边或弧,平行边或弧的条数 称为重数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7
二、平面图的面与次数(针对平面图的平面嵌入) 1、 定义 定义17.2 设G是平面图, G的面——由G的边将G所在的平面划分成的每一个区域。
证明
设G的连通分支分别为G1、G2、…、Gk,并设Gi的顶点数、 边数、面数分别为ni、mi、ri、i=1,2,…,k。
由欧拉公式可知: ni-mi+ri = 2,i=1,2,…,k 易知, m mi,n ni
i 1 i 1 k k
(17.1)
由于每个Gi 有一个外部面,而G只有一个外部面,所以G的面数 k r ri k 1
设边e在G中某个圈上,令G'=G-e,则G'仍连通且m'=m-1=k , n'=n,r'=r-1。
由假设有 n'-m'+r'=2。
17 于是 n-m+r=n'-(m'+1)-(r'+1)=n'-m'+r'=2
定理17.9 对于具有k(k≥2)个连通分支的平面图G,有 n-m+r = k+1 其中n,m,r分别为G的顶点数,边数和面数。
小节结束
17.2 欧拉公式
一、欧拉公式相关定理 1、 欧拉公式 定理17.8 对于任意的连通的平面图G,有 n-m+r=2 其中,n、m、r分别为G的顶点数、边数和面数。
证明
对边数m作归纳法。 (1) m=0时,由于G为连通图,所以G只能是由一个孤立顶 点组成的平凡图,即n=1,m=0,r=1,结论显然成立。 (2) m=1时,由于G为连通图,所以n=2,m=1,r=1,结论 显然成立。 16
i 1
于是,对(17.1)的两边同时求和得
2k (ni mi ri ) ni mi ri n m r k 1
i 1 i 1 i 1 i 1 k k k k
经整理得 n-m+r = k+1。
18
2、 与欧拉公式有关的定理 定理17.10 设G为连通的平面图,且每个面的次数至少为 l(l 3),则 G的边数与顶点数有如下关系:
24 小节结束
17.3 平面图的判断
一、为判断定理做准备 1、 插入2度顶点和消去2度顶点 定义17.5 设e=(u,v)为图G的一条边,在G中删除e,增加新的顶点w, 使u、v均与w相邻,称为在G中插入2度顶点w。 设w为G中一个2度顶点,w与u、v相邻,删除w,增加新边 (u,v),称为在G中消去2度顶点w。
由于n3, 又G必为简单平面图,可知,G每个面的次数均3。
因为G为平面图,又为极大平面图。可证G不可能存在次数>3
的面。
12
假设存在面Ri的次数deg(Ri)=s≥4, 如图所示。
s
S-1
在G中,若v1与v3不相邻,在Ri内加边(v1,v3)不破坏平面性,这 与G是极大平面图矛盾,因而v1与v3必相邻,由于Ri的存在, 边(v1,v3)必在Ri外。 类似地,v2与v4也必相邻,且边(v2,v4)也必在Ri外部,于是必 产生(v1,v3)与(v2,v4)相交于Ri的外部,这又矛盾于G是平面图, 所以必有s=3,即G中不存在次数大于或等于4的面,所以G的 13 每个面为3条边所围,也就是各面次数均为3。
G的平面嵌入——画出的无边相交的平面图。
非平面图——无平面嵌入的图。
5
(2)是(1)的平面嵌入,(4)是(3)的平面嵌入。
6
2、 几点说明及一些简单结论 一般所谈平面图不一定是指平面嵌入,但讨论某些性质时, 一定是指平面嵌入。 K5和K3,3都不是平面图。
定理17.1 设GG,若G为平面图,则G也是平面图。
第17章 平面图及图的着色
1
本章说明
本章的主要内容
–平面图的基本概念
–欧拉公式
–平面图的判断
–平面图的对偶图 –顶点着色及点色数 –地图的着色与平面图的点着色 –边着色及边色数
2
本章所涉及到的图均指无向图。
3
17.1 平面图的基本概念 17.2 欧拉公式 17.3 平面图的判断 17.4 平面图的对偶图
m l 2 (n k 1) (1 21 )(n k 1) 3(n 2) 3n 6 l 2 l 2
定理17.13 设G为n(n3)阶m条边的极大平面图,则m=3n6。
证明
由于极大平面图是连通图,由欧拉公式得:
r=2+m-n
(17.4)
又因为G是极大平面图,由定理17.7的必要性可知,G的每个 面的次数均为3,所以:
R1
R0 R2
R3
平面图有4个面,deg(R1)=1,9deg(R2)=3, deg(R3)=2, deg(R0)=8。
定理17.4 平面图G中所有面的次数之和等于边数m的两倍,即
deg( R ) 2m
证 明
i 1 i
r
其中r为G的面数
本定理中所说平面图是指平面嵌入。
e∈E(G),
当e为面Ri和Rj(i≠j)的公共边界上的边时,在计算Ri和Rj的次 数时,e各提供1。 当e只在某一个面的边界上出现时,则在计算该面的次数时 ,e提供2。
27
例17.1 证明彼得松图不是平面图。
证 明
将彼得松图顶点标顺序,见图 (1)所示。 在图中将边(a,f), (b,g), (c,h), (d,i), (e,j)收缩,
所得图为图 (2)所示,它是K5,
由定理17.16可知,彼得松图不是平面图。
还可以这样证明:
用G表示彼得松图,令 G'=G-{(j,g),(c,d)} G‘如图 (3)所示,易知它与K3,3同胚,
10≤(3/(3-2))(5-2) = 9
这是个矛盾,所以K5不是平面图。 若K3,3是平面图,由于K3,3中最短圈的长度为l≥4,于是边数9 应满足 9≤ (4/(4-2))(6-2) = 8
20 这又是矛盾的,所以K3,3也不是平面图。
定理17.11 设G是有k(k≥2)个连通分支的平面图,各面的次数 至少为l(l≥3),则边数m与顶点数n应有如下关系:
17.5 图中顶点的着色
17.6 地图的着色与平面图的点着色 17.7 边着色 本章小结 习 题
作
业
4
17.1 平面图的基本概念
一、关于平面图的一些基本概念 1、 平面图的定义 定义17.1 G可嵌入曲面S——如果图G能以这样的方式画在曲面S上 ,即除顶点处外无边相交。 G是可平面图或平面图——若G可嵌入平面。
由定理17.4可知,
2m= d (vi )=3r
i 1
n
(17.6)
又因为G是连通的,由欧拉公式可知
r 2mn 将(17.7)代入(17.6),经过整理得m=3n-6。 (17.7) (17.8)
若G不是极大平面图,则G中一定存在不相邻得顶点u,v,使得
G=G (u,v)还是简单平面图,而G的边数m=m+1,n=n。 由(17.8)可知, m3n-6,这与定理17.2矛盾。 所以,G为极大平面图。
29
例17.3 由K3,3加若干条边能生成多少个6阶连通的简单的非同构的 非平面图?
解答
对K3,3加1~6条边所得图都含K3,3为子图,由库拉图斯基定理可 知,它们都是非平面图。 在加2条、加3条、加4条边时又各产生两个非同构的非平面图, 连同K3,3本身共有10个满足要求的非平面图。其中,绿线边表示 后加的新边。
m
证明
l ( n 2) l2
由定理17.4(面的次数之和等于边数的2倍)及欧拉公式得
2m deg( Ri ) l r l (2 m n)
l ( n 2) 解得 m l2
i 1 r
19
推论 K5, K3,3不是平面图。
证明
若K5是平面图,由于K5中无环和平行边,所以每个面的次数 均大于或等于l≥3,由定理17.10可知边数10应满足
2m deg( Ri ) 3r
i 1 r
(17.5)
将(17.4)代入(17.5),整理后得 m = 3n-6。
22
二、一个意义重大的定理 定理17.14 设G为简单平面图,则G的最小度(G)5。
证明
若阶数 n6,结论显然成立。
若阶数n7时,用反证法。
假设(G) 6,由握手定理可知:
于是每条边在计算总次数时,都提供2,因而deg(Ri)=2m。 10
三、极大平面图 1、 定义 定义17.3 若在简单平面图G中的任意两个不相邻的顶点之 间加一条新边所得图为非平面图,则称G为极大平面图。
注意:若简单平面图G中已无不相邻顶点,G显然是极大平 面图,如K1(平凡图), K2, K3, K4都是极大平面图。
2、极大平面图的主要性质 定理17.5 极大平面图是连通的。 定理17.6 n(n3)阶极大平面图中不可能有割点和桥。
11
定理17.7 设G为n(n3) )阶简单连通的平面图,G为极大平面图 当且仅当G的每个面的次数均为3。
证 明 思 路
本节只证明必要性,即设G为n(n为3。
(3)设m=k(k≥1)时成立,当m=k+1时,对G进行如下讨论。 若G是树,则G是非平凡的,因而G中至少有两片树叶。 设v为树叶,令G'=G-v,则G'仍然是连通图,且G'的边数 m'=m-1=k,n'=n-1,r'=r。 由假设可知 n'-m'+r'=2,式中n',m',r'分别为G'的顶点数, 边数和面数。 于是n-m+r=(n'+1)-(m'+1)+r'=n'-m'+r'=2 若G不是树,则G中含圈。