第11章 期权定价模型

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第11章 布莱克-舒尔茨-默顿期权定价模型

一、基本思路

1. 基本思路

我们为了给股票期权定价,必须先了解股票本身的走势。因为股票期权是其标的资产(即股票)的衍生工具,在已知执行价格、期权有效期、无风险利率和标的资产收益的情况下,期权价格变化的唯一来源就是股票价格的变化,股票价格是影响期权价格的最根本因素。 用几何布朗运动表示股票价格的变化过程,具体形式如下:

dS dt dz S

μσ=+ 或者表示为dS Sdt Sdz μσ=+

伊藤引理表明,当股票价格服从上述随机过程时,作为衍生品的期权价格f 将服从

22221()2f f f f df S S dt Sdz S t S

S μσσ∂∂∂∂=+++∂∂∂∂ 两式表明:股票价格及其衍生品——期权价格都只受到同一种不确定性的影响,只是两者对随机因素变化的反应程度不同而已。

从数学上看,将两式联立,解方程组可消掉随机项。其金融含义可看作:买入股票、卖空期权构造一个短期内没有不确定性的投资组合。在一个无套利市场中,该投资组合必然只能获得无风险利率收益。由此可得到一个期权价格满足的微分方程,此即为BSM 期权定价模型的微分形式,具体为

2222

12f f f rS S rf t S S σ∂∂∂++=∂∂∂ 由于该公式中不包含反映投资者风险偏好的参数——预期收益,因此可以在风险中性世界里求解该微分方程。求解该方程可得到期权定价公式。无股利欧式看涨期权的价格为 ()12()()r T t c SN d Xe N d --=-

其中,

21221d d d =

==- 根据无股利欧式看涨期权和看跌期权平价公式

()21()()r T t p Xe N d SN d --=--- 可求出无股利欧式看跌期权定价公式

()21()()r T t p Xe N d SN d --=---

无收益美式看涨期权是不会提前执行的,因此无收益美式看涨期权定价公式和欧式看涨期权定价公式相同,

()12()()r T t C SN d Xe N d --=-

对于有收益欧式期权,需要在股票价格中抛去收益的现值,对有收益的美式看涨期权,需要考虑其提前执行的情况,由于不存在美式期权之间的平价公式,因此无法给出美式看跌期权

的确切公式。二、标准布朗运动

相关文档
最新文档