高中物理模型组合讲解 水平方向上的碰撞+弹簧模型 专题辅导

合集下载

高中物理二轮专题——弹簧模型(解析版)

高中物理二轮专题——弹簧模型(解析版)

高中物理第二轮专题——弹簧模型高考分析:轻弹簧就就是一种理想化得物理模型,以轻质弹簧为载体,设置复杂得物理情景,考查力得概念,物体得平衡,牛顿定律得应用及能得转化与守恒,就就是高考命题得重点,此类命题几乎每年高考卷面均有所见、由于弹簧弹力就就是变力,学生往往对弹力大小与方向得变化过程缺乏清晰得认识,不能建立与之相关得物理模型并进行分类,导致解题思路不清、效率低下、错误率较高、在具体实际问题中,由于弹簧特性使得与其相连物体所组成系统得运动状态具有很强得综合性与隐蔽性,加之弹簧在伸缩过程中涉及力与加速度、功与能等多个物理概念与规律,所以弹簧类问题也就成为高考中得重、难、热点、我们应引起足够重视、弹簧类命题突破要点:1、弹簧得弹力就就是一种由形变而决定大小与方向得力、当题目中出现弹簧时,要注意弹力得大小与方向时刻要与当时得形变相对应、在题目中一般应从弹簧得形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化得几何关系,分析形变所对应得弹力大小、方向,以此来分析计算物体运动状态得可能变化、2、因弹簧(尤其就就是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变、因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧得弹力不突变、3、在求弹簧得弹力做功时,因该变力为线性变化,可以先求平均力,再用功得定义进行计算,也可据动能定理与功能关系:能量转化与守恒定律求解、同时要注意弹力做功得特点:W=-(kx22-kx12),弹力得功等于弹性势能增量得负值或弹力得功等于弹性势能得减少、弹性势k能得公式Ep=kx2,高考不作定量要求,该公式通常不能直接用来求弹簧得弹性势能,只可作定性讨论、因此,在求弹力得功或弹性势能得改变时,一般以能量得转化与守恒得角度来求解、一、“轻弹簧”类问题在中学阶段,凡涉及得弹簧都不考虑其质量,称之为“轻弹簧”,就就是一种常见得理想化物理模型、由于“轻弹簧”质量不计,选取任意小段弹簧,其两端所受张力一定平衡,否则,这小段弹簧得加速度会无限大、故簧轻弹簧中各部分间得张力处处相等,均等于弹簧两端得受力、弹一端受力为,另一端受力一定也为。

专题强化十一 碰撞中的三类拓展模型-2024届物理一轮复习讲义

专题强化十一 碰撞中的三类拓展模型-2024届物理一轮复习讲义

专题强化十一碰撞中的三类拓展模型学习目标会分析“滑块—弹簧”“滑块—斜(曲)面”“滑块—木板”与碰撞的相似性,并会用碰撞的相关知识解决实际问题。

模型一“滑块—弹簧”模型1.模型图示2.模型特点(1)两个或两个以上的物体与弹簧相互作用的过程中,若系统所受外力的矢量和为零,则系统动量守恒,类似弹性碰撞。

(2)在能量方面,由于弹簧形变会使弹性势能发生变化,系统的总动能将发生变化;若系统所受的外力和除弹簧弹力以外的内力不做功,系统机械能守恒。

(3)弹簧处于最长(最短)状态时两物体速度相等,弹性势能最大,系统动能通常最小(完全非弹性碰撞拓展模型)。

(4)弹簧恢复原长时,弹性势能为零,系统动能最大(完全弹性碰撞拓展模型,相当于碰撞结束时)。

例1(2023·辽宁沈阳市联考)如图1甲所示,物体A、B的质量分别是m1=4kg 和m2=4kg,用轻弹簧相连后放在光滑的水平面上,物体B左侧与竖直墙相接触但不粘连。

另有一个物体C从t=0时刻起,以一定的速度向左运动,在t=5s 时刻与物体A相碰,碰后立即与A粘在一起,此后A、C不再分开。

物体C在前15s内的v-t图像如图乙所示。

求:图1(1)物体C的质量m3;(2)B离开墙壁后所能获得的最大速度大小。

答案(1)2kg(2)2.4m/s解析(1)以水平向左的方向为正方向,A、C碰撞过程中动量守恒,则有m3v C=(m1+m3)v共1代入v-t图像中的数据解得m3=2kg。

(2)从B开始离开墙面到B速度最大的过程,相当于B与AC整体完成了一次弹性碰撞,以水平向右为正方向,则有(m1+m3)v共1′=(m1+m3)v共2+m2v21 2(m1+m3)v共1′2=12(m1+m3)v2共2+12m2v22由v-t图像可得v共1′大小为2m/s,方向水平向右解得B的最大速度为v2=2.4m/s。

跟踪训练1.(多选)如图2所示,光滑水平面上放置着总质量为2m、右端带有固定挡板的长木板。

高中物理二轮专题——弹簧模型(解析版)

高中物理二轮专题——弹簧模型(解析版)

高中物理第二轮专题——弹簧模型高考分析:轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见。

由于弹簧弹力是变力,学生往往对弹力大小和方向的变化过程缺乏清晰的认识,不能建立与之相关的物理模型并进行分类,导致解题思路不清、效率低下、错误率较高。

在具体实际问题中,由于弹簧特性使得与其相连物体所组成系统的运动状态具有很强的综合性和隐蔽性,加之弹簧在伸缩过程中涉及力和加速度、功和能等多个物理概念和规律,所以弹簧类问题也就成为高考中的重、难、热点.我们应引起足够重视。

弹簧类命题突破要点:1。

弹簧的弹力是一种由形变而决定大小和方向的力。

当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化.2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变.3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:W k=-(kx22-kx12),弹力的功等于弹性势能增量的负值或弹力的功等于弹性势能的减少。

弹性势能的公式E p=kx2,高考不作定量要求,该公式通常不能直接用来求弹簧的弹性势能,只可作定性讨论。

因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解。

一、“轻弹簧”类问题在中学阶段,凡涉及的弹簧都不考虑其质量,称之为“轻弹簧”,是一种常见的理想化物理模型。

由于“轻弹簧”质量不计,选取任意小段弹簧,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大。

高考物理弹簧模型知识点

高考物理弹簧模型知识点

2019高考物理弹簧模型学问点2019高考物理弹簧模型学问点弹簧模型是以轻质弹簧为载体,与详细实际问题相结合,考查运动学、动力学、能量守恒、动量守恒、振动问题、功能关系、物体的平衡等相关问题。

有关弹簧的学问,是高考考查的重点,同时也是高考的难点,几乎每年的高考都会考查该内容,所以备考时要引起足够的重视.轻弹簧是一种志向化的物理模型,分析问题时不须要考虑弹簧本身的质量和重力.处理弹簧模型时,须要驾驭以下学问点:1.弹簧弹力的计算弹簧弹力的大小可以由胡克定律来计算,即弹簧发生形变时,在弹性限度内,弹力的大小与弹簧伸长(或缩短)的长度成正比,数学表达式为,其中是一个比例系数,叫弹簧的劲度系数.弹簧的弹力不是一个恒定的力,而是一个变力,其大小随着弹簧形变量的变更而变更,同时还与弹簧的劲度系数有关。

2.弹簧弹力的特点(1)弹簧弹力的大小与弹簧的形变量有关,当弹簧的劲度系数保持不变时,弹簧的形变量,弹簧的形变量发生变更,弹簧的弹力相应地发生变更;形变量不变,弹力也力也就保持不变,由于弹簧的形变不能发生突变,故弹簧的弹力也不能瞬间发生变更,这与绳子的受力状况不同.(2)当轻弹簧受到外力的作用时,无论弹簧是处于平衡状态还是处于加速运动状态,弹簧各个部分所受的力的大小是相同的.(3)弹簧弹力的方向与弹簧的形变有关,在拉伸和压缩两种状况下,弹力的方向相反.在分析弹簧弹力的方向时,肯定要全面考虑,假如题目没有说明是哪种形变,那么就须要考虑两种状况.(4)依据胡克定律可知,弹力的大小与形变量成正比,方向与形变的方向相反,可以将胡克定律的表达式写成F=kx,即弹簧弹力是一个线性回复力,故在弹力的作用下,物体会做简谐运动.3.弹性势能与弹力的功弹簧能够存储弹性势能,其大小为Ep=kx2/2,在中学阶段不须要驾驭该公式,但要知道形变量越大,弹性势能就越大,在形变量相同的状况下,弹性势能是相等的;一般状况下,通常利用能量守恒定律来求弹簧的弹性势能,由于弹簧弹力是一个变力,弹力的功就是变力的功,可以用平均力来求功,也可以通过功能关系和能量守恒定律来求解.4.常见的弹簧类问题(l)弹簧的平衡与非平衡问题;(2)弹簧的瞬时性问题;(3)弹簧的碰撞问题;(4)弹簧的简谐运动问题;(5)弹簧的功能关系问题;(6)弹簧的临界问题;(7)弹簧的极值问题;(8)弹簧的动量守恒和能量守恒问题;(9)弹簧的综合性问题.5.处理弹簧模型的策略(l)推断弹簧与连接体的位置,分析物体的受力状况;(2)推断弹簧原长的位置,现长的位置,以确定弹簧是哪种形变以及形变量的大小;(3)分析弹簧弹力的变更状况,弹箦弹力不能发生突变,以此来分析计算物体的运动状态;(4)依据相应的物理规律列方程求解,例如,物体处于平衡时,运用平衡条件和胡克定律求解.模型1 考查弹簧的瞬时性问题弹簧弹力的大小与弹簧形变有关,而弹簧的形变在瞬间是不能突变的,即弹簧形变的变更须要肯定的时间,所以弹簧弹力在瞬间不能够突变,这与绳模型是有区分的,不要混淆两者的区分,否则就会出错.模型2 考查弹簧中的碰撞问题弹簧中的碰撞问题是一类综合性很强的题目,一般综合了动量守恒、机械能守恒、功能关系和能量转化等.假如弹簧作为系统内的一个物体时,弹簧的弹力对系统内物体做不做功都不影响系统的机械能,能量相互转化.在运动过程中,动能与势能相互转化。

专题16 类碰撞模型(解析版)

专题16 类碰撞模型(解析版)

2023年高三物理二轮常见模型与方法强化专训专练专题16 类碰撞模型一、与弹簧有关的类碰撞模型1.如图所示,两光滑且平行的固定水平杆位于同一竖直平面内,两静止小球m 1、m 2分别穿在两杆上,两球间连接一个保持原长的竖直轻弹簧,现给小球m 2一个水平向右的初速度v 0.如果两杆足够长,则在此后的运动过程中( )A .m 1、m 2组成的系统动量守恒B .m 1、m 2组成的系统机械能守恒C .弹簧最长时,其弹性势能为12m 2v 02 D .当m 1速度达到最大时,m 2速度最小 【答案】A【详解】由于两球竖直方向上受力平衡,水平方向所受的弹力的弹力大小相等,方向相反,所以两球组成的系统所受的合外力为零,系统的动量守恒,A 正确;对于弹簧、12m m 、组成的系统,只有弹力做功,系统的机械能守恒,由于弹性势能是变化的,所以12m m 、组成的系统机械能不守恒,B 错误;当两球的速度相等时,弹簧最长,弹簧的弹性势能最大,以向右为正方向,由动量守恒定律得()2012m v m m v =+,解得2012m v v m m =+,由系统的机械能守恒得()2220121122P m v m m v E =++,解得()2120122Pm m v E m m =+,C 错误;若12m m >,当弹簧伸长时,1m 一直在加速,当弹簧再次恢复原长时1m 速度达到最大.弹簧伸长时2m 先减速后,速度减至零向左加速,最小速度为零.所以1m 速度达到最大时,2m 速度不是最小,D 错误. 2.如图所示,A 、B 、C 三个半径相同的小球穿在两根平行且光滑的足够长的水平杆上,三个球的质量分别为ma =1kg ,mb =3kg ,mc =1kg , 初始状态三个球均静止,B 、C 球之间连着一根轻质弹簧,弹簧处于原长状态。

现给A 一个向左的初速度v 0= 10m/s ,之后A 与B 发生弹性碰撞。

球A 和B 碰后,下列说法正确的是( )A .球A 的速度变为向右的5m/sB .弹簧恢复原长时球C 的速度为5m/s C .球B 的最小速度为2. 5m/sD .弹簧的最大弹性势能为9. 375J【答案】ACD【详解】A .A 与B 发生弹性碰撞,动量守恒得012A A B m v m v m v =+机械能守恒得222012111222A AB m v m v m v =+ 解得15m/s v =−;25m/s v =,A 正确;D .碰后B 向左运动,因为弹簧弹力的作用,B 向左减速,C 向右加速,当B 、C 速度相等时弹簧最长,弹簧的弹性势能最大,由23()B B C m m m =+v v ;22p 2311()22B BC E m m m =−+v v 解得p 9.375J E =,D 正确;BC .接下来B 继续减速,C 继续加速,C 的速度大于B 的速度,弹簧开始缩短,当弹簧恢复原长时球B 的速度最小,由245B B C m m m =+v v v ;222245111222B BC m m m =+v v v 解得4 2.5m/s =v ;57.5m/s =v ,B 错误C 正确。

2020高三物理模型组合讲解——水平方向上的碰撞+弹簧模型

2020高三物理模型组合讲解——水平方向上的碰撞+弹簧模型

2020高三物理模型组合讲解——水平方向上的碰撞+弹簧模型车晓红[模型概述]在应用动量守恒、机械能守恒、功能关系和能量转化等规律考查学生的综合应用能力时,常有一类模型,确实是有弹簧参与,因弹力做功的过程中弹力是个变力,并与动量、能量联系,因此分析解决这类咨询题时,要细致分析弹簧的动态过程,利用动能定理和功能关系等知识解题。

[模型讲解]一、光滑水平面上的碰撞咨询题例1. 在光滑水平地面上有两个相同的弹性小球A 、B ,质量都为m ,现B 球静止,A 球向B 球运动,发生正碰。

碰撞过程中总机械能守恒,两球压缩最紧时的弹性势能为E P ,那么碰前A 球的速度等于〔 〕A.mE PB.mE P2 C. mE P2D. mE P22解析:设碰前A 球的速度为v 0,两球压缩最紧时的速度为v ,依照动量守恒定律得出mv mv 20=,由能量守恒定律得220)2(2121v m E mv P +=,联立解得m E v P 20=,因此正确选项为C 。

二、光滑水平面上有阻挡板参与的碰撞咨询题例2. 在原子核物理中,研究核子与核子关联的最有效途径是〝双电荷交换反应〞。

这类反应的前半部分过程和下述力学模型类似,两个小球A 和B 用轻质弹簧相连,在光滑的水平直轨道上处于静止状态,在它们左边有一垂直于轨道的固定挡板P ,右边有一小球C 沿轨道以速度v 0射向B 球,如图1所示,C 与B 发生碰撞并赶忙结成一个整体D ,在它们连续向左运动的过程中,当弹簧长度变到最短时,长度突然被锁定,不再改变,然后,A 球与挡板P 发生碰撞,碰后A 、D 都静止不动,A 与P 接触而不粘连,过一段时刻,突然解除锁定〔锁定及解除锁定均无机械能缺失〕,A 、B 、C 三球的质量均为m 。

图1〔1〕求弹簧长度刚被锁定后A 球的速度。

〔2〕求在A 球离开挡板P 之后的运动过程中,弹簧的最大弹性势能。

解析:〔1〕设C 球与B 球粘结成D 时,D 的速度为v 1,由动量守恒得10)(v m m mv +=当弹簧压至最短时,D 与A 的速度相等,设此速度为v 2,由动量守恒得2132mv mv =,由以上两式求得A 的速度0231v v =。

经典高三物理模型水平方向上的碰撞及弹簧模型 知识点分析

经典高三物理模型水平方向上的碰撞及弹簧模型 知识点分析

水平方向上的碰撞及弹簧模型[模型概述]在应用动量守恒、机械能守恒、功能关系和能量转化等规律考查学生的综合应用能力时,常有一类模型,就是有弹簧参与,因弹力做功的过程中弹力是个变力,并与动量、能量联系,所以分析解决这类问题时,要细致分析弹簧的动态过程,利用动能定理和功能关系等知识解题。

[模型讲解]一、光滑水平面上的碰撞问题例1. 在光滑水平地面上有两个相同的弹性小球A、B,质量都为m,现B球静止,A球向B球运动,发生正碰。

已知碰撞过程中总机械能守恒,两球压缩最紧时的弹性势能为EP,则碰前A球的速度等于()A.B.C.D.解析:设碰前A球的速度为v0,两球压缩最紧时的速度为v,根据动量守恒定律得出,由能量守恒定律得,联立解得,所以正确选项为C。

二、光滑水平面上有阻挡板参与的碰撞问题例2. 在原子核物理中,研究核子与核子关联的最有效途径是“双电荷交换反应”。

这类反应的前半部分过程和下述力学模型类似,两个小球A和B用轻质弹簧相连,在光滑的水平直轨道上处于静止状态,在它们左边有一垂直于轨道的固定挡板P,右边有一小球C沿轨道以速度v0射向B球,如图1所示,C与B发生碰撞并立即结成一个整体D,在它们继续向左运动的过程中,当弹簧长度变到最短时,长度突然被锁定,不再改变,然后,A球与挡板P 发生碰撞,碰后A、D都静止不动,A与P接触而不粘连,过一段时间,突然解除锁定(锁定及解除锁定均无机械能损失),已知A、B、C三球的质量均为m。

图1(1)求弹簧长度刚被锁定后A球的速度。

(2)求在A球离开挡板P之后的运动过程中,弹簧的最大弹性势能。

解析:(1)设C球与B球粘结成D时,D的速度为v1,由动量守恒得当弹簧压至最短时,D与A的速度相等,设此速度为v2,由动量守恒得,由以上两式求得A的速度。

(2)设弹簧长度被锁定后,贮存在弹簧中的势能为EP,由能量守恒,有撞击P后,A与D的动能都为零,解除锁定后,当弹簧刚恢复到自然长度时,势能全部转弯成D的动能,设D的速度为v3,则有以后弹簧伸长,A球离开挡板P,并获得速度,当A、D的速度相等时,弹簧伸至最长,设此时的速度为v4,由动量守恒得当弹簧伸到最长时,其势能最大,设此势能为EP”,由能量守恒,有解以上各式得。

专题10 碰撞与类碰撞模型-2024届新课标高中物理模型与方法(解析版)

专题10 碰撞与类碰撞模型-2024届新课标高中物理模型与方法(解析版)

2024版新课标高中物理模型与方法专题10碰撞与类碰撞模型目录【模型一】弹性碰撞模型....................................................................................................................................1【模型二】非弹性碰撞、完全非弹性碰撞模型..............................................................................................15【模型三】碰撞模型三原则..............................................................................................................................23【模型四】小球—曲面模型............................................................................................................................27【模型五】小球—弹簧模型............................................................................................................................37【模型六】子弹打木块模型............................................................................................................................48【模型七】滑块木板模型.. (57)m +m =m +m 联立()、()解得:v 1ˊ=,=.特殊情况:若m 1=m 2,v 1ˊ=v 2,v 2ˊ=v 12.“动静相碰型”弹性碰撞的结论两球发生弹性碰撞时应满足动量守恒和机械能守恒。

高考物理学霸复习讲义动量-第五部分 弹簧模型

高考物理学霸复习讲义动量-第五部分  弹簧模型

1.注意弹簧弹力特点及运动过程,弹簧弹力不能瞬间变化。

2.弹簧连接两种形式:连接或不连接。

连接:可以表现为拉力和压力,从被压缩状态到恢复到原长时物体和弹簧不分离,弹簧的弹力从压力变为拉力。

不连接:只表现为压力,弹簧恢复到原长后物体和弹簧分离,物体不再受弹簧的弹力作用。

3.动量和能量问题:动量守恒、机械能守恒,动能和弹性势能之间转化,等效于弹性碰撞。

弹簧被压缩到最短或被拉伸到最长时,与弹簧相连的物体共速,此时弹簧具有最大的弹性势能,系统的总动能最小;弹簧恢复到原长时,弹簧的弹性势能为零,系统具有最大动能。

弹簧直接连接的两物体间的作用【典例1】质量分别为3m和m的两个物体,用一根细线相连,中间夹着一个被压缩的轻质弹簧,整个系统原来在光滑水平地面上以速度v0向右匀速运动,如图所示。

后来细线断裂,质量为m的物体离开弹簧时的速度变为2v0。

求:(1)质量为3m的物体最终的速度;(2)弹簧在这个过程中做的总功。

【答案】(1)32v(2)232mv【解析】(1)设3m的物体离开弹簧时的速度为v1,由动量守恒定律得:()1323vmvmvmm⋅+⨯=+所以132vv=(2)由能量守恒定律得:()()222p100111323222E m v m v m m v=⋅⨯+⋅-⋅+所以弹性势能:2p023E mv=多过程、多物体问题【典例2】质量为M和0m的滑块用轻弹簧连接,以恒定的速度v沿光滑水平面运动,与位于正对面的质量为m的静止滑块发生碰撞,如图所示,碰撞时间极短,在此过程中,下列情况可能发生的是第五部分弹簧模型A .M 、0m 、m 速度均发生变化,分别为123v v v 、、,而且满足()01023+M m v Mv m v mv =++B .0m 的速度不变,M 和m 的速度变为1v 和2v ,而且满足12Mv Mv mv =+C .0m 的速度不变,M 和m 的速度都变为'v ,且满足()+'Mv M m v =D .M 、0m 、m 速度均发生变化,M 、0m 速度都变为1v ,m 的速度变为2v ,且满足()()012++M m v M m v mv =+【答案】BC【解析】碰撞的瞬间M 和m 组成的系统动量守恒,0m 的速度在瞬间不变,以M 的初速度方向为正方向,若碰后M 和m 的速度变1v 和2v ,由动量守恒定律得:12Mv Mv mv =+;若碰后M 和m 速度相同,由动量守恒定律得:()Mv M m v =+',故BC 正确。

高中物理重要方法典型模型突破14-模型专题(6)-弹簧模型

高中物理重要方法典型模型突破14-模型专题(6)-弹簧模型

专题十四 模型专题(6) 弹簧模型【重点模型解读】弹簧问题是高考命题的热点,历年全国以及各地的高考命题中以弹簧为情景的选择题、计算题等经常出现,很好的考查了学生对静力学问题、动力学问题、能量守恒问题、功能关系问题等知识点的理解,考查了对于一些重要方法和思想的运用。

1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应。

在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化.2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变.3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:W k =-(21kx 22-21kx 12),弹力的功等于弹性势能增量的负值.弹性势能的公式E p =21kx 2,高考不作定量要求,可作定性讨论.因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解.4.典型实例:图示或释义 规律或方法与弹簧相关的平衡问题弹簧类平衡问题常常以单一问题出现,涉及的知识主要是胡克定律、物体的平衡条件,求解时要注意弹力的大小与方向总是与弹簧的形变相对应,因此审题时应从弹簧的形变分析入手,找出形变量x 与物体空间位置变化的对应关系,分析形变所对应的弹力大小、方向,结合物体受其他力的情况来列式求解与弹簧相关的动力学问题 (1)弹簧(或橡皮筋)恢复形变需要时间,在瞬时问题中,其弹力的大小往往可以看成不变,即弹力不能突变。

而细线(或接触面)是一种不发生明显形变就能产生弹力的物体,若剪断(或脱离)后,其中弹力立即消失,即弹力可突变,一般题目中所给细线和接触面在没有特殊说明时,均可按此模型处理(2)对于连接体的加速问题往往先使用整体法求得其加速度,再用隔离法求得受力少的物体的加速度,并利用加速度的关系求解相应量与弹簧相关的功能问题弹簧连接体是考查功能关系问题的经典模型,求解这类问题的关键是认真分析系统的物理过程和功能转化情况,再由动能定理、机械能守恒定律或功能关系列式,同时注意以下两点:①弹簧的弹性势能与弹簧的规格和形变程度有关,对同一根弹簧而言,无论是处于伸长状态还是压缩状态,只要形变量相同,则其储存的弹性势能就相同;②弹性势能公式E p =12kx 2在高考中不作要求(除非题中给出该公式),与弹簧相关的功能问题一般利用动能定理或能量守恒定律求解 【典例讲练突破】【例1】如图所示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( )A.m1g/k1B.m2g/k2C.m1g/k2D.m2g/k2【拓展】此题若求m l移动的距离又当如何求解?【练1】如图所示,A、B两物体静止在粗糙水平面上,其间用一根轻弹簧相连,弹簧的长度大于原长。

专题强化八 碰撞类的四类模型

专题强化八 碰撞类的四类模型

专题强化八碰撞类的四类模型【专题解读 1.本专题主要研究碰撞过程的特点和满足的物理规律,并对碰撞模型进行拓展分析。

2.会分析物体的正碰模型、“滑块—弹簧”、“滑块—斜面”、“滑块—木板”碰撞模型的特点,并会应用相应规律解决问题。

3.用到的知识、规律和方法有:牛顿运动定律和匀变速直线运动规律,动量守恒定律,动能定理和能量守恒定律。

模型一“物体与物体”正碰模型1.碰撞问题遵守的三条原则(1)动量守恒:p1+p2=p1′+p2′。

(2)动能不增加:E k1+E k2≥E k1′+E k2′。

(3)速度要符合实际情况①碰前两物体同向运动,若要发生碰撞,则应有v后>v前,碰后原来在前的物体速度一定增大,若碰后两物体同向运动,则应有v前′≥v后′。

②碰前两物体相向运动,碰后两物体的运动方向不可能都不改变。

2.弹性碰撞的结论(1)m1v1+m2v2=m1v1′+m2v2′12m1v 21+12m2v22=12m1v1′2+12m2v2′2v1′=(m1-m2)v1+2m2v2m1+m2v2′=(m2-m1)v2+2m1v1m1+m2(2)若v2=0时,v1′=m1-m2m1+m2v1v2′=2m1m1+m2v1讨论:①若m1=m2,则v1′=0,v2′=v1(速度交换);②若m1>m2,则v1′>0,v2′>0(碰后,两物体沿同一方向运动);③若m1≫m2,则v1′≈v1,v2′≈2v1;④若m1<m2,则v1′<0,v2′>0(碰后,两物体沿相反方向运动);⑤若m1≪m2,则v1′≈-v1,v2′≈0。

3.非弹性碰撞碰撞结束后,动能有部分损失。

m1v1+m2v2=m1v1′+m2v2′12m1v 21+12m2v22=12m1v1′2+12m2v2′2+ΔE k损4.完全非弹性碰撞碰撞结束后,两物体合二为一,以同一速度运动,动能损失最大。

m1v1+m2v2=(m1+m2)v12m1v 21+12m2v22=12(m1+m2)v2+ΔE k损max【真题示例1(2020·全国Ⅲ卷,15)甲、乙两个物块在光滑水平桌面上沿同一直线运动,甲追上乙,并与乙发生碰撞,碰撞前后甲、乙的速度随时间的变化如图1中实线所示。

高考物理复习----碰撞模型的拓展题型分析PPT课件

高考物理复习----碰撞模型的拓展题型分析PPT课件

(2)若小球从弧形槽B上滑下后还能追上弧形槽A,求M、m间所满足的 关系.
答案 M>3m
解析 小球冲上弧形槽B后,上滑到最高点后再返回分离,设分离时小 球速度反向,大小为v3,弧形槽B的速度为v4,整个过程二者水平方向动 量守恒, 则有mv1=-mv3+Mv4, 二者的机械能守恒,则有
12mv12=12mv32+12Mv42, 联立解得 v3=MM- +mmv1 小球还能追上A,则有v3>v2 解得M>3m.
例3 如图4所示,一轻质弹簧的一端固定在滑块B上,另一端与滑块C接 触但未连接,该整体静止放在离地面高为H=5 m的光滑水平桌面上.现有 一滑块A从光滑曲面上离桌面h=1.8 m高处由静止开始滑下,与滑块B发 生碰撞并粘在一起压缩弹簧推动滑块C向前运动,经一段时间,滑块C脱 离弹簧,继续在水平桌面上匀速运动一段后从桌面边缘飞出.已知mA=1 kg, mB=2 kg,mC=3 kg,取g=10 m/s2.求: (1)滑块A与滑块B碰撞结 束瞬间的速度大小;
mh
A.h
B.m+M
mh C. M
√ Mh
D.m+M
34
图7
解析 斜面固定时,根据动能定理可得-mgh=0-12mv02,解得 v0= 2gh, 斜面不固定时,由水平方向动量守恒得 mv0=(M+m)v,由能量守恒得 12mv02=12(M+m)v2+mgh1,解得 h1=M+M mh,D 项正确.
例2 (多选)如图3所示,水平光滑轨道宽度和轻弹簧自然长度均为d,两
小球质量分别为m1、m2,m1>m2,m2的左边有一固定挡板.由图示位置静 止释放m1、m2,当m1与m2相距最近时m1的速度为v1,则在以后的运动过 程中
A.m1 的最小速度是 0

高中物理二轮专题——弹簧模型(解析版)

高中物理二轮专题——弹簧模型(解析版)

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载高中物理二轮专题——弹簧模型(解析版)地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容高中物理第二轮专题——弹簧模型高考分析:轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见.由于弹簧弹力是变力,学生往往对弹力大小和方向的变化过程缺乏清晰的认识,不能建立与之相关的物理模型并进行分类,导致解题思路不清、效率低下、错误率较高.在具体实际问题中,由于弹簧特性使得与其相连物体所组成系统的运动状态具有很强的综合性和隐蔽性,加之弹簧在伸缩过程中涉及力和加速度、功和能等多个物理概念和规律,所以弹簧类问题也就成为高考中的重、难、热点.我们应引起足够重视.弹簧类命题突破要点:1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化.2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变.3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:Wk=-(kx22-kx12),弹力的功等于弹性势能增量的负值或弹力的功等于弹性势能的减少.弹性势能的公式Ep=kx2,高考不作定量要求,该公式通常不能直接用来求弹簧的弹性势能,只可作定性讨论.因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解.一、“轻弹簧”类问题在中学阶段,凡涉及的弹簧都不考虑其质量,称之为“轻弹簧”,是一种常见的理想化物理模型.由于“轻弹簧”质量不计,选取任意小段弹簧,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大.故簧轻弹簧中各部分间的张力处处相等,均等于弹簧两端的受力.弹一端受力为,另一端受力一定也为。

物理模型——“子弹打木块模型”“碰撞模型”“弹簧模型” 讲义

物理模型——“子弹打木块模型”“碰撞模型”“弹簧模型” 讲义

物理模型——“子弹打木块模型”“碰撞模型”“弹簧模型”动量守恒定律在高中物理占有非常重要的位置,也是多年来选修3-5考查的热点.2017年选修3-5列为必考内容后,对于力学三大观点的问题就得到了解决.模型的核心是对动量定理和动量守恒定律的应用,可对力学知识综合考查.一、“子弹打木块模型”[范例1] (18分)一质量为M 的木块放在光滑的水平面上,一质量为m 的子弹以初速度v 0水平飞来打进木块并留在其中,设相互作用力为F f .试求从木块开始运动到子弹与木块相对静止的过程中:(1)子弹、木块相对静止时的速度v ;(2)子弹、木块发生的位移s 1、s 2以及子弹打进木块的深度l 相分别为多少? (3)系统损失的机械能、系统增加的内能分别为多少?[解析] (1)由动量守恒得mv 0=(M +m )v (2分) 子弹与木块的共同速度v =mM +m v 0.(2分)(2)对子弹利用动能定理得 -F f s 1=12mv 2-12mv 20(2分)所以s 1=Mm (M +2m )v 202F f (M +m )2.(2分)同理对木块有:F f s 2=12Mv 2(2分) 故木块发生的位移为s 2=Mm 2v 202F f (M +m )2(2分) 子弹打进木块的深度为:l 相=s 1-s 2=Mmv 202F f (M +m ).(2分)(3)系统损失的机械能ΔE k =12mv 20-12(M +m )v 2=Mmv 202(M +m )(2分) 系统增加的内能:Q =ΔE k =Mmv 202(M +m ).(2分)[答案] (1)mM +m v 0(2)Mm (M +2m )v 202F f (M +m )2 Mm 2v 202F f (M +m )2 Mmv 202F f (M +m ) (3)Mmv 202(M +m ) Mmv 202(M +m )“子弹打木块模型”是碰撞中常见模型,其突出特征是在子弹打击木块的过程中有机械能损失,此类问题的一般解法可归纳如下:(1)分析子弹打击木块的过程,弄清楚子弹是停留在木块中和木块一起运动还是穿透木块和木块各自运动;(2)子弹在打击木块的过程中,由于时间较短,内力远远大于外力,故在打击的过程中动量守恒;(3)子弹在打击木块过程中产生的机械能损失,一般有两种求解方法:一是通过计算打击前系统的机械能与打击后系统的机械能的差值得出机械能的损失;二是通过计算在子弹打击木块的过程中,子弹克服阻力做的功与阻力对木块做的功的差值进行求解. 二、“碰撞模型”[范例2] (18分)如图所示,打桩机锤头质量为M ,从距桩顶h 高处自由下落,打在质量为m 的木桩上,且在极短时间内便随桩一起向下运动,使得木桩深入泥土的距离为s ,试求在木桩下陷过程中泥土对木桩的平均阻力是多少?[解析] 设锤头刚与木桩接触时的速度大小为v 0,则由运动学规律可得:v 20=2gh .由于锤头与木桩碰撞时,作用时间极短,系统的内力远远大于外力,动量守恒.设两者碰撞后的共同速度大小为v ,则由动量守恒定律可得:Mv 0=(M +m )v(6分)设在木桩下陷过程中泥土对木桩的平均阻力大小为F f ,则由动能定理可得: (M +m )gs -F f s =0-12(M +m )v 2(6分)以上各式联立求解得:F f =(M +m )g +M 2gh(M +m )s.(6分)[答案] 见解析抓住“三个原则、三个定律”速解碰撞问题(1)判断两物体碰撞瞬间的情况:当两物体相碰时,首先要判断碰撞时间是否极短、碰撞时的相互作用(内力)是否远远大于外力.(2)碰撞的“三个原则”:①动量守恒原则,即碰撞前后两物体组成的系统满足动量守恒定律;②能量不增加原则,即碰撞后系统的总能量不大于碰撞前系统的总能量;③物理情境可行性原则,即两物体碰撞前后的物理情境应与实际相一致.(3)根据两物体碰撞时遵循的物理规律,列出相对应的物理方程:如果物体间发生的是弹性碰撞,则一般是列出动量守恒方程和机械能守恒方程进行求解;如果物体间发生的不是弹性碰撞,则一般应用动量守恒定律和能量守恒定律(功能关系)进行求解.三、“弹簧模型”[范例3] (18分)(2017·肇庆质检)如图所示,质量M =4 kg 的滑板B 静止放在光滑水平面上,滑板右端固定一根轻质弹簧,弹簧的自由端C 到滑板左端的距离L =0.5 m ,可视为质点的小木块A 质量m =1 kg ,原来静止于滑板的左端,滑板与木块A 之间的动摩擦因数μ=0.2.当滑板B 受水平向左恒力F =14 N 作用时间t 后,撤去F ,这时木块A 恰好到达弹簧自由端C 处,此后运动过程中弹簧的最大压缩量为x =5 cm.g 取10 m/s 2,求:(1)水平恒力F 的作用时间t ;(2)木块A 压缩弹簧过程中弹簧的最大弹性势能;(3)当小木块A 脱离弹簧且系统达到稳定后,整个运动过程中系统所产生的热量. [解析] (1)木块A 和滑板B 均向左做匀加速直线运动,由牛顿第二定律可得:a A =μmgm ,a B =F -μmg M根据题意有: s B -s A =L(2分)即:12a B t 2-12a A t 2=L将数据代入并联立解得:t =1s .(2分)(2)1 s 末木块A 和滑板B 的速度分别为: v A =a A t ,v B =a B t当木块A 和滑板B 的速度相同时,弹簧压缩量最大,具有最大弹性势能. 根据动量守恒定律有:mv A +Mv B =(m +M )v(2分)由能的转化与守恒得:12mv 2A +12Mv 2B =12(m +M )v 2+E p +μmgx (2分) 代入数据求得最大弹性势能E p =0.3 J .(2分)(3)二者同速之后,设木块相对滑板向左运动离开弹簧后系统又能达到共同速度v ′,相对滑板向左滑动距离为s ,有:mv A +Mv B =(m +M )v ′解得:v ′=v(2分)由能的转化与守恒定律可得:E p =μmgs 解得:s =0.15 m(2分)由于x +L >s 且s >x ,故假设成立整个过程系统产生的热量为:Q =μmg (L +s +x ) (2分) 解得:Q =1.4 J .(2分)[答案] (1)1 s (2)0.3 J (3)1.4 J利用弹簧进行相互作用的碰撞模型,一般情况下均满足动量守恒定律和机械能守恒定律,此类试题的一般解法是:(1)首先判断弹簧的初始状态是处于原长、伸长还是压缩状态;(2)分析碰撞前后弹簧和物体的运动状态,依据动量守恒定律和机械能守恒定律列出方程;(3)判断解出的结果是否满足“实际情境可行性原则”,如果不满足,则要舍掉该结果. 注意:(1)由于弹簧的弹力是变力,所以弹簧的弹性势能通常利用机械能守恒或能量守恒求解;(2)要特别注意弹簧的三个状态:原长(此时弹簧的弹性势能为零)、压缩到最短或伸长到最长的状态(此时弹簧连接的两个物体具有共同的速度,弹簧具有最大的弹性势能),这往往是解决此类问题的突破点.[预测押题]1.如图所示,在固定的足够长的光滑水平杆上,套有一个质量为m =0.5 kg 的光滑金属圆环,轻绳一端拴在环上,另一端系着一个质量为M =1.98 kg 的木块,现有一质量为m 0=20 g 的子弹以v 0=100 m/s 的水平速度射入木块并留在木块中 (不计空气阻力和子弹与木块作用的时间,g =10 m/s 2),求:(1)圆环、木块和子弹这个系统损失的机械能; (2)木块所能达到的最大高度.解析:(1)子弹射入木块过程,动量守恒,有 m 0v 0=(m 0+M )v在该过程中机械能有损失,损失的机械能为 ΔE =12m 0v 20-12(m 0+M )v 2解得:ΔE =99 J.(2)木块(含子弹)在向上摆动过程中,木块(含子弹)和圆环在水平方向动量守恒,有 (m 0+M )v =(m 0+M +m )v ′又木块(含子弹)在向上摆动过程中,机械能守恒,有 (m 0+M )gh =12(m 0+M )v 2-12(m 0+M +m )v ′2联立解得:h =0.01 m.答案:见解析2.(2017·湖北八校联考)如图所示,质量为m3=2 kg 的滑道静止在光滑的水平面上,滑道的AB 部分是半径为R =0.3 m 的四分之一圆弧,圆弧底部与滑道水平部分相切,滑道水平部分右端固定一个轻弹簧.滑道CD 部分粗糙,其他部分均光滑.质量为m 2=3 kg 的物体2(可视为质点)放在滑道的B 点,现让质量为m 1=1 kg 的物体1(可视为质点)自A 点由静止释放.两物体在滑道上的C 点相碰后粘在一起(g =10 m/s 2).(1)求物体1从释放到与物体2相碰的过程中,滑道向左运动的距离.(2)若CD =0.2 m ,两物体与滑道的CD 部分的动摩擦因数都为μ=0.15,求在整个运动过程中,弹簧具有的最大弹性势能.(3)在(2)的条件下,物体1、2最终停在何处?解析:(1)物体1从释放到与物体2碰撞的过程中,物体1和滑道组成的系统在水平方向上动量守恒,设物体1水平位移大小为s 1,滑道的水平位移大小为s 3,有0=m 1s 1-m 3s 3,s 1=R解得s 3=m 1s 1m 3=0.15 m.(2)设物体1、物体2刚要相碰时物体1的速度大小为v 1,滑道的速度大小为v 3,由机械能守恒定律有m 1gR =12m 1v 21+12m 3v 23由动量守恒定律有0=m 1v 1-m 3v 3物体1和物体2相碰后的共同速度大小设为v 2,由动量守恒定律有 m 1v 1=(m 1+m 2)v 2弹簧第一次压缩至最短时由动量守恒定律可知物体1、2和滑道速度为零,此时弹性势能最大,设为E pm .从物体1、2碰撞后到弹簧第一次压缩至最短的过程中,由能量守恒定律有12(m 1+m 2)v 22+12m 3v 23-μ(m 1+m 2)g ·CD =E pm 联立以上方程,代入数据解得E pm =0.3 J.(3)分析可知物体1、2和滑道最终将静止,设物体1、2相对滑道CD 部分运动的路程为s ,由能量守恒定律有12(m 1+m 2)v 22+12m 3v 23=μ(m 1+m 2)gs 代入数据可得s =0.25 m所以物体1、物体2最终停在C 点和D 点之间与D 点间的距离为0.05 m 处. 答案:见解析。

专题三 弹簧、碰撞类问题

专题三   弹簧、碰撞类问题

专题三 弹簧、碰撞类问题1.弹簧最短或最长时速度相同的分析应用 物体间的相互作用,以弹簧弹力的形式出现,是物体间相互作用的又一种非常重要的形式,在这种作用的过程中,最典型的问题是物体的动能与弹簧的势能相互转化,当弹簧的弹性势能最大时,弹簧一定是被拉伸到最长或被压缩到最短,此时作用于弹簧上的物体的速度相同。

[例1]如图所示,轻弹簧的两端连着质量分别为1m 和2m 的两物体,kg m 11=,kg m 22=,将1m 、2m 放在光滑的水平面上,弹簧自然伸长时,1m 静止在A 点,2m 靠墙,现用水平力F 推1m ,使弹簧压缩一段距离后静止,此过程中F 做功为4.5J ,当撤去F 后,求:(1)1m 越过A 点后,运动过程中弹簧伸长到最大时的弹性势能 (2)2m 的速度最大时,1m 的速度(3)1m 越过A 点后,运动过程中弹簧压缩到最短时的弹性势能2.碰撞问题碰撞问题是高考中出现频率较多的一类常规题型,碰撞是物体间相互作用的一种特殊形式,具有突发性强、持续时间短、相互作用力大等特征.在碰撞的过程中,外力作用通常远小于物体之间的相互作用,可以忽略,从而认为动量守恒.但在碰撞过程中由于物体间的相互作用发生后,动能有可能转化为其他形式的能,因此,碰撞中可能存在动能的损失.碰撞问题中典型的物理模型如下: 设光滑水平面上两个小球,质量为1m、2m ,碰前速度分别为1v 和2v ,碰后的速度分别为'1v 和'2v ,则动量变化满足:'22'112211v m v m v m v m +=+ (1) 或21P P ∆-=∆ 动能变化满足:22221122221121212121v m v m v m v m '+'≥+(2)(1)、(2)两式是解决碰撞问题的主要依据,但是许多实际问题的解决,还必须对动量变化和动能变化进行具体分析和判断,对问题的物理实际情景进行认真细致的分析,对(1)、(2)两式的数学关系进行必要的推理判断,才能找到正确和比较简捷的解决途径.【例2】(2004年天津理综卷)如图所示,光滑水平面上有大小相同的A 、B 两球在同一直线上运动。

第七章 微专题48 碰撞及碰撞模型的拓展

第七章 微专题48 碰撞及碰撞模型的拓展

微专题48碰撞及碰撞模型的拓展1.碰撞的特点:系统动量守恒,碰后系统的动能不增加,碰撞前后的速度要符合实际.2.“弹簧-滑块”模型:(1)系统动量守恒,机械能守恒,但系统的总动能会与弹性势能发生转化;(2)弹簧处于最长(最短)状态时两物体速度相等,相当于完全非弹性碰撞,此时动能最小、弹性势能最大;(3)弹簧恢复原长时相当于完全弹性碰撞,此时系统的总动能等于初态总动能.3.“小球-斜面”模型:系统只在水平方向动量守恒,当小球滑至斜面最大高度时两物体具有共同速度,此时相当于完全非弹性碰撞,系统损失的动能转化为小球增加的势能.小球从冲上斜面又滑离斜面的全过程,相当于弹性碰撞,全过程系统机械能守恒.1.(多选)如图甲所示,两小球a 、b 在足够长的光滑水平面上发生正碰.小球a 、b 质量分别为m 1和m 2,且m 1=200g .取水平向右为正方向,两小球碰撞前后位移随时间变化的x -t 图像如图乙所示.下列说法正确的是()A .碰撞前球a 做匀速运动,球b 静止B .碰撞后球a 做减速运动,球b 做加速运动C .碰撞前后两小球的机械能总量减小D .碰撞前后两小球的机械能总量不变答案AD解析由题图可知,碰前b 球的位移不随时间变化,处于静止状态,碰前a 球的速度为v 1=Δx 1Δt 1=82m/s =4m/s ,做匀速运动,故A 正确;碰后b 球和a 球均做匀速运动,其速度分别为v 2′=2m/s ,v 1′=-2m/s ,故B 错误;根据动量守恒定律得m 1v 1=m 2v 2′+m 1v 1′,代入解得m 2=0.6kg ,碰撞过程中系统损失的机械能为ΔE =121v 12-12m 1v 1′2-12m 2v 2′2,代入解得ΔE =0,所以碰撞过程机械能守恒,故C 错误,D 正确.2.(2023·湖北十堰市调研)如图所示,足够长的光滑水平直轨道AB 与光滑圆弧轨道BC 平滑连接,B 为圆弧轨道的最低点.一质量为1kg 的小球a 从直轨道上的A 点以大小为4m/s 的初速度向右运动,一段时间后小球a 与静止在B 点的小球b 发生弹性正碰,碰撞后小球b 沿圆弧轨道上升的最大高度为0.2m(未脱离轨道).取重力加速度大小g =10m/s 2,两球均视为质点,不计空气阻力.下列说法正确的是()A .碰撞后瞬间,小球b 的速度大小为1m/sB .碰撞后瞬间,小球a 的速度大小为3m/sC .小球b 的质量为3kgD .两球会发生第二次碰撞答案C解析对小球b ,由机械能守恒定律有m b gh =12m b v B 2,可得碰后小球b 的速度大小为v B =2m/s ,故A 错误;由动量守恒定律可得m a v 0=m a v 1+m b v B ,由机械能守恒定律可得12m a v 02=12m a v 12+12m b v B 2,联立解得m b =3kg ,v 1=-2m/s ,碰撞后瞬间,小球a 的速度大小为2m/s ,故B 错误,C 正确;由上述分析知,碰后a 球立刻向左运动,b 球先向右运动到最高点,再向左返回到平面上运动,最后两球速度大小相等,所以两球不会发生第二次碰撞,故D 错误.3.甲、乙两个物块在光滑水平桌面上沿同一直线运动,甲追上乙,并与乙发生碰撞,碰撞前后甲、乙的速度随时间的变化如图中实线所示.已知甲的质量为1kg ,则碰撞过程两物块损失的机械能为()A .3JB .4JC .5JD .6J答案A解析根据题图图像,碰撞前甲、乙的速度分别为v 甲=5.0m/s ,v 乙=1.0m/s ,碰撞后甲、乙的速度分别为v 甲′=-1.0m/s ,v 乙′=2.0m/s ,碰撞过程由动量守恒定律得m 甲v 甲+m 乙v 乙=m 甲v 甲′+m 乙v 乙′,解得m 乙=6kg ,碰撞过程损失的机械能ΔE =12m 甲v 甲2+12m 乙v 乙2-12m 甲v 甲′2-12m 乙v 乙′2,解得ΔE =3J ,故选A.4.(多选)如图甲所示,一轻弹簧的两端与质量分别为m 1、m 2(已知m 2=0.5kg)的两物块A 、B 相连接,处于原长并静止在光滑水平面上.现使B 获得水平向右、大小为6m/s 的瞬时速度,并从此刻开始计时,两物块的速度随时间变化的规律如图乙所示,从图像提供的信息可得()A .在t 1时刻,两物块达到共同速度2m/s ,且弹簧处于伸长状态B .从t 3到t 4,弹簧由原长变化为压缩状态C .t 3时刻弹簧的弹性势能为6JD .在t 3和t 4时刻,弹簧均处于原长状态答案AC解析从0到t 1时间内B 做减速运动,A 做加速运动,B 的速度大于A 的速度,弹簧被拉伸,t 1时刻两物块达到共同速度2m/s ,此时弹簧处于伸长状态,故A 正确;从t 3到t 4时间内A 做加速度减小的减速运动,B 做加速度减小的加速运动,弹簧由压缩状态恢复到原长,即t 3时刻弹簧处于压缩状态,t 4时刻弹簧处于原长状态,故B 、D 错误;t 3时刻两物块的速度相同,都是2m/s ,A 、B 组成的系统动量守恒,m 2v =(m 1+m 2)v 3,解得m 1=1kg ,A 、B 和弹簧组成的系统机械能守恒,由机械能守恒定律得12m 2v 2=12(m 1+m 2)v 32+E p ,解得E p =6J ,故C 正确.5.(2023·广东茂名市第一中学模拟)如图所示,在足够大的光滑水平面上停放着装有光滑弧形槽的小车,弧形槽的底端切线水平,一小球以大小为v 0的水平速度从小车弧形槽的底端沿弧形槽上滑,恰好不从弧形槽的顶端离开.小车与小球的质量分别为2m 、m ,以弧形槽底端所在的水平面为参考平面.小球的最大重力势能为()A.13m v 02 B.14m v 02C.15m v 02 D.16m v 02答案A解析小球到达弧形槽顶端时,小球与小车的速度相同(设共同速度大小为v ),在小球沿小车弧形槽上滑的过程中,小球与小车组成的系统水平方向动量守恒,有m v 0=3m v ,根据机械能守恒定律有12m v 02=12×3m v 2+E p ,解得E p =13m v 02,故选A.6.(多选)(2023·安徽省A10联盟联考)如图,质量和半径都相同的四分之一光滑圆弧体A 、B静止在光滑的水平面上,圆弧面的最低点和水平面相切,圆弧的半径为R .圆弧体B 锁定,一个小球从A 圆弧体的最高点由静止释放,小球在圆弧体B 上升的最大高度为R2.已知重力加速度大小为g ,则()A .小球与圆弧体的质量之比为1∶1B .小球与圆弧体的质量之比为1∶2C .若圆弧体B 没有锁定,则圆弧体B 最终获得的速度大小为gRD .若圆弧体B 没有锁定,则圆弧体B 最终获得的速度大小为122gR 答案AC解析设小球质量为m ,圆弧体质量为M ,小球从圆弧体A 上滚下时,A 的速度大小为v 1,小球的速度大小为v 2,由题意可知M v 1=m v 2,mgR =12M v 12+12m v 22,小球上升的过程有12mgR=12m v 22,解得M =m ,v 1=v 2=gR ,故A 正确,B 错误;若圆弧体B 没有锁定,则小球与圆弧体B 作用过程类似于弹性碰撞,交换速度,因此圆弧体B 最终获得的速度大小为gR ,故C 正确,D 错误.7.如图所示,质量为4m 的光滑物块a 静止在光滑水平地面上,物块a 左侧面为圆弧面且与水平地面相切,质量为m 的滑块b 以初速度v 0向右运动滑上a ,沿a 左侧面上滑一段距离后又返回,最后滑离a ,滑块b 从滑上a 到滑离a 的过程中,重力加速度为g ,下列说法正确的是()A .滑块b 沿a 上升的最大高度为v 025gB .物块a 运动的最大速度为2v 05C .滑块b 沿a 上升的最大高度为v 022gD .物块a 运动的最大速度为v 05答案B解析b 沿a 上升到最大高度时,两者速度相同,取向右为正方向,水平方向由动量守恒定律得m v 0=(m +4m )v ,由机械能守恒定律得12m v 02=12(m +4m )v 2+mgh ,解得h =2v 025g ,A 、C错误;滑块b 滑离a 后,物块a 运动的速度最大.系统在水平方向动量守恒,对整个过程,以向右为正方向,由动量守恒定律得m v 0=m v b +4m v a ,由机械能守恒定律得12m v 02=12m v b 2+12×4m v a 2,解得v a =25v 0,v b =-35v 0,B 正确,D 错误.8.如图所示,质量分别为m 和2m 的物体A 、B 静止在光滑水平地面上,B 左端有一轻弹簧且处于静止状态.现A 以速度v 向右运动,则A 、B 相互作用的整个过程中()A .A 的动量最小值为m v 3B .A 的动量变化量为2m v3C .弹簧弹性势能的最大值为m v 26D .B 的动能最大值为4m v 29答案D解析设弹簧恢复原长时A 、B 的速度大小分别为v A 、v B ,以向右为正方向,由动量守恒定律得m v =m v A +2m v B ,由机械能守恒定律得12m v 2=12m v A 2+12×2m v B 2,解得v A =-v 3,v B =2v 3,负号表示速度方向向左,从A 撞上弹簧到A 、B 分离过程,A 先向右做减速运动直到速度减为零,然后向左做加速运动,整个过程B 一直做加速运动,由此可知,A 的最小速度为零,A 的动量最小值为0,则A 、B 相互作用的整个过程中,以向右为正方向,A 的动量变化量为Δp A =-m ·v 3-m v =-43m v ,负号表示动量变化量方向向左,故A 、B 错误;当弹簧被压缩最短时,A 、B 速度相同,设为v ′,以向右为正方向,由动量守恒定律得m v =(m +2m )v ′,解得v ′=v 3,此时弹簧的弹性势能最大,系统的动能最小,根据系统的机械能守恒得E p =12m v 2-12(m +2m )v ′2=13m v 2,故C 错误;当A 、B 分离时,B 的速度有最大值,且为v B =2v 3,此时的动能为E k B =12×2m v B 2=49m v 2,故D 正确.9.如图所示,小球C 在光滑的水平直轨道上处于静止状态.在它左边有一垂直于轨道的固定挡板P ,右边有两个小球A 和B 用轻质弹簧相连,A 、B 以相同的速度v 0向C 运动,C 与B 发生碰撞并立即结成一个整体D .在A 和D 继续向左运动的过程中,当弹簧长度变到最短时,长度突然被锁定,不再改变.然后D 与挡板P 发生碰撞,碰后A 、D 都静止不动,D 与P 接触而不粘连.过一段时间,突然解除锁定(锁定及解除锁定均无机械能损失).已知A 、B 、C 三球的质量均为m .求:(1)弹簧长度刚被锁定时A 的速度大小;(2)在D 离开挡板P 之后的运动过程中,弹簧的最大弹性势能.答案(1)23v 0(2)118m v 02解析(1)设C 球与B 球发生碰撞并立即结成一个整体D 时,D 的速度为v 1,B 、C 碰撞过程系统动量守恒,以向左为正方向,由动量守恒定律得:m v 0=(m +m )v 1当弹簧压缩至最短时,D 、A 的速度相同,设此速度为v 2,A 、D 系统动量守恒,以向左为正方向,由动量守恒定律得:m v 0+2m v 1=(m +2m )v 2解得此时A 的速度v 2=23v 0(2)设弹簧长度被锁定后,贮存在弹簧中的势能为E p1.由能量守恒定律得:12×2m v 12+12m v 02=12×3m v 22+E p1解得E p1=112m v 02然后,D 与挡板P 发生碰撞,碰后A 、D 都静止不动,D 与P 接触而不粘连,突然解除锁定E p1=12m v A 2之后运动过程中,当弹簧被压缩至最短时,A 、D 的速度相同,系统动量守恒有m v A =3m v AD 弹簧的最大弹性势能E p2=12m v A 2-12·3m v AD 2=118m v 02.。

高中物理模型组合讲解 水平方向上的碰撞+弹簧模型 专题辅导

高中物理模型组合讲解 水平方向上的碰撞+弹簧模型 专题辅导

高中物理模型组合讲解 水平方向上的碰撞+弹簧模型车晓红[模型概述]在应用动量守恒、机械能守恒、功能关系和能量转化等规律考查学生的综合应用能力时,常有一类模型,就是有弹簧参与,因弹力做功的过程中弹力是个变力,并与动量、能量联系,所以分析解决这类问题时,要细致分析弹簧的动态过程,利用动能定理和功能关系等知识解题。

[模型讲解]一、光滑水平面上的碰撞问题例1. 在光滑水平地面上有两个相同的弹性小球A 、B ,质量都为m ,现B 球静止,A 球向B 球运动,发生正碰。

已知碰撞过程中总机械能守恒,两球压缩最紧时的弹性势能为E P ,则碰前A 球的速度等于( ) A. m E P B. m E P 2 C. m E P 2 D. mE P 22 解析:设碰前A 球的速度为v 0,两球压缩最紧时的速度为v ,根据动量守恒定律得出mv mv 20=,由能量守恒定律得220)2(2121v m E mv P +=,联立解得mE v P 20=,所以正确选项为C 。

二、光滑水平面上有阻挡板参与的碰撞问题例2. 在原子核物理中,研究核子与核子关联的最有效途径是“双电荷交换反应”。

这类反应的前半部分过程和下述力学模型类似,两个小球A 和B 用轻质弹簧相连,在光滑的水平直轨道上处于静止状态,在它们左边有一垂直于轨道的固定挡板P ,右边有一小球C 沿轨道以速度v 0射向B 球,如图1所示,C 与B 发生碰撞并立即结成一个整体D ,在它们继续向左运动的过程中,当弹簧长度变到最短时,长度突然被锁定,不再改变,然后,A 球与挡板P 发生碰撞,碰后A 、D 都静止不动,A 与P 接触而不粘连,过一段时间,突然解除锁定(锁定及解除锁定均无机械能损失),已知A 、B 、C 三球的质量均为m 。

图1(1)求弹簧长度刚被锁定后A 球的速度。

(2)求在A 球离开挡板P 之后的运动过程中,弹簧的最大弹性势能。

解析:(1)设C 球与B 球粘结成D 时,D 的速度为v 1,由动量守恒得10)(v m m mv +=当弹簧压至最短时,D 与A 的速度相等,设此速度为v 2,由动量守恒得2132mv mv =,由以上两式求得A 的速度0231v v =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理模型组合讲解 水平方向上的碰撞+弹簧模型
车晓红
[模型概述]
在应用动量守恒、机械能守恒、功能关系和能量转化等规律考查学生的综合应用能力时,常有一类模型,就是有弹簧参与,因弹力做功的过程中弹力是个变力,并与动量、能量联系,所以分析解决这类问题时,要细致分析弹簧的动态过程,利用动能定理和功能关系等知识解题。

[模型讲解]
一、光滑水平面上的碰撞问题
例1. 在光滑水平地面上有两个相同的弹性小球A 、B ,质量都为m ,现B 球静止,A 球向B 球运动,发生正碰。

已知碰撞过程中总机械能守恒,两球压缩最紧时的弹性势能为E P ,则碰前A 球的速度等于( ) A. m E P B. m E P 2 C. m E P 2 D. m
E P 22 解析:设碰前A 球的速度为v 0,两球压缩最紧时的速度为v ,根据动量守恒定律得出
mv mv 20=,由能量守恒定律得220)2(2121v m E mv P +=,联立解得m
E v P 20=,所以正确选项为C 。

二、光滑水平面上有阻挡板参与的碰撞问题
例2. 在原子核物理中,研究核子与核子关联的最有效途径是“双电荷交换反应”。

这类反应的前半部分过程和下述力学模型类似,两个小球A 和B 用轻质弹簧相连,在光滑的水平直轨道上处于静止状态,在它们左边有一垂直于轨道的固定挡板P ,右边有一小球C 沿轨道以速度v 0射向B 球,如图1所示,C 与B 发生碰撞并立即结成一个整体D ,在它们继续向左运动的过程中,当弹簧长度变到最短时,长度突然被锁定,不再改变,然后,A 球与挡板P 发生碰撞,碰后A 、D 都静止不动,A 与P 接触而不粘连,过一段时间,突然解除锁定(锁定及解除锁定均无机械能损失),已知A 、B 、C 三球的质量均为m 。

图1
(1)求弹簧长度刚被锁定后A 球的速度。

(2)求在A 球离开挡板P 之后的运动过程中,弹簧的最大弹性势能。

解析:(1)设C 球与B 球粘结成D 时,D 的速度为v 1,由动量守恒得1
0)(v m m mv +=
当弹簧压至最短时,D 与A 的速度相等,设此速度为v 2,由动量守恒得2132mv mv =,由以上两式求得A 的速度023
1v v =。

(2)设弹簧长度被锁定后,贮存在弹簧中的势能为E P ,由能量守恒,有P E mv mv +⋅=⋅222132
1221撞击P 后,A 与D 的动能都为零,解除锁定后,当弹簧刚恢复到自然长度时,势能全部转弯成D 的动能,设D 的速度为v 3,则有23)2(2
1v m E P ⋅= 以后弹簧伸长,A 球离开挡板P ,并获得速度,当A 、D 的速度相等时,弹簧伸至最长,设此时的速度为v 4,由动量守恒得4332mv mv =
当弹簧伸到最长时,其势能最大,设此势能为E P ',由能量守恒,有'3212212423P E mv mv +⋅=⋅解以上各式得2036
1'mv E P =。

说明:对弹簧模型来说“系统具有共同速度之时,恰为系统弹性势能最多”。

三、粗糙水平面上有阻挡板参与的碰撞问题
例3. 图2中,轻弹簧的一端固定,另一端与滑块B 相连,B 静止在水平直导轨上,弹簧处在原长状态。

另一质量与B 相同滑块A ,从导轨上的P 点以某一初速度向B 滑行,当A 滑过距离l 1时,与B 相碰,碰撞时间极短,碰后A 、B 紧贴在一起运动,但互不粘连。

已知最后A 恰好返回出发点P 并停止,滑块A 和B 与导轨的滑动摩擦因数都为μ,运动过程中弹簧最大形变量为l 2,重力加速度为g ,求A 从P 出发时的初速度v 0。

图2
解析:令A 、B 质量皆为m ,A 刚接触B 时速度为v 1(碰前) 由功能关系,有121202
121mgl mv mv μ=- A 、B 碰撞过程中动量守恒,令碰后A 、B 共同运动的速度为v 2
有212mv mv =
碰后A 、B 先一起向左运动,接着A 、B 一起被弹回,在弹簧恢复到原长时,设A 、B 的共同速度为v 3,在这一过程中,弹簧势能始末状态都为零,利用功能关系,有
)2()2()2(2
1)2(2122322l g m v m v m μ=-
此后A 、B 开始分离,A 单独向右滑到P 点停下,由功能关系有
12321mgl mv μ= 由以上各式,解得)1610(210l l g v +=
μ
四、结论开放性问题 例4. 用轻弹簧相连的质量均为2kg 的A 、B 两物块都以s m v /6=的速度在光滑的水平地面上运动,弹簧处于原长,质量为4kg 的物体C 静止在前方,如图3所示,B 与C 碰撞后二者粘在一起运动。

求:在以后的运动中,
图3
(1)当弹簧的弹性势能最大时物体A 的速度多大?
(2)弹性势能的最大值是多大?
(3)A 的速度有可能向左吗?为什么?
解析:(1)当A 、B 、C 三者的速度相等时弹簧的弹性势能最大,由于A 、B 、C 三者组成的系统动量守恒,有
A C
B A B A v )m m m (v )m m (++=+
解得:s m v A /3=
(2)B 、C 碰撞时B 、C 组成的系统动量守恒,设碰后瞬间B 、C 两者速度为'v ,则 s m v v m m v m C B B /2'')(=+=,
设物块A 速度为v A 时弹簧的弹性势能最大为E P ,根据能量守恒
J v m m m v m v m m E A C B A A C B P 12)(2
121')(21222=++-++= (3)由系统动量守恒得
B C B A A B A v m m v m v m v m )(++=+
设A 的速度方向向左,0<A v ,则s m v B /4>
则作用后A 、B 、C 动能之和
J v m m v m E B C B A A k 48)(2
12122>++= 实际上系统的机械能
J v m m m E E A C B A P 48)(2
1'2=+++= 根据能量守恒定律,'E E k >是不可能的。

故A 不可能向左运动。

[模型要点]
系统动量守恒21p p =,如果弹簧被作为系统内的一个物体时,弹簧的弹力对系统内物体做不做功都不影响系统的机械能。

能量守恒P k E E ∆=∆,动能与势能相互转化。

弹簧两端均有物体:弹簧伸长到最长或压缩到最短时,相关联物体的速度一定相等,弹簧具有最大的弹性势能。

当弹簧恢复原长时,相互关联物体的速度相差最大,弹簧对关联物体的作用力为零。

若物体再受阻力时,弹力与阻力相等时,物体速度最大。

[模型演练]
(2006年江苏省前黄高级中学检测题)如图4所示,在光滑水平长直轨道上,A 、B 两小球之间有一处于原长的轻质弹簧,弹簧右端与B 球连接,左端与A 球接触但不粘连,已知m m m m B A 22==,,开始时A 、B 均静止。

在A 球的左边有一质量为m 2
1的小球C 以初速度0v 向右运动,与A 球碰撞后粘连在一起,成为一个复合球D ,碰撞时间极短,接着逐渐压缩弹簧并使B 球运动,经过一段时间后,D 球与弹簧分离(弹簧始终处于弹性限度内)。

图4
(1)上述过程中,弹簧的最大弹性势能是多少?
(2)当弹簧恢复原长时B 球速度是多大?
(3)若开始时在B 球右侧某位置固定一块挡板(图中未画出),在D 球与弹簧分离前使B 球与挡板发生碰撞,并在碰后立即将挡板撤走,设B 球与挡板碰撞时间极短,碰后B 球速度大小不变,但方向相反,试求出此后弹簧的弹性势能最大值的范围。

答案:(1)设C 与A 相碰后速度为v 1,三个球共同速度为v 2时,弹簧的弹性势能最大,由动量守恒,能量守恒有:
202221max 022*******
1321216
123212
1121m v m v m v E v v v m m v v v v m m v p =⋅-==><⋅==><⋅= (2)设弹簧恢复原长时,D 球速度为3v ,B 球速度为4v ><⋅+=>
<+=422
1212132242321431mv mv mv mv mv mv 则有3
32631
014013v v v v v v ==-=-=, (3)设B 球与挡板相碰前瞬间D 、B 两球速度65v v 、 ><+=5221650mv mv mv
与挡板碰后弹性势能最大,D 、B 两球速度相等,设为'v ><=-6'
3265mv mv mv 24
)4(836
)4(238'321)2(21'6
43223232'2
05202
05202
20050550565v v m m v v v m m v v m v m E v v v v v v v v v v P --=-⨯-=⨯⨯-⨯⨯=-=-=+-=-= 当405v v =时,'P E 最大8
'20max mv E P = 605v v -=时,'P E 最小,108
'20min mv E P = 所以8
'1082020mv E mv P ≤≤。

相关文档
最新文档