谐波干扰问题分析与谐波治理方法建议

合集下载

电力系统中谐波分析与治理

电力系统中谐波分析与治理

电力系统中谐波分析与治理在当今高度依赖电力的社会中,电力系统的稳定和高效运行至关重要。

然而,谐波问题却成为了影响电力系统质量的一个不容忽视的因素。

谐波不仅会导致电力设备的损坏,还会增加电能损耗,降低电力系统的可靠性。

因此,对电力系统中的谐波进行深入分析,并采取有效的治理措施,具有十分重要的意义。

一、谐波的产生要理解谐波,首先需要了解它的产生原因。

谐波主要来源于电力系统中的非线性负载。

常见的非线性负载包括各种电力电子设备,如变频器、整流器、逆变器等,以及电弧炉、荧光灯等。

以变频器为例,它通过对电源进行快速的通断控制来实现对电机转速的调节。

在这个过程中,电流和电压的波形不再是标准的正弦波,而是包含了各种频率的谐波成分。

整流器在将交流电转换为直流电的过程中,由于其工作特性,也会产生谐波。

同样,电弧炉在工作时,电弧的不稳定燃烧会导致电流的剧烈变化,从而产生谐波。

二、谐波的危害谐波的存在给电力系统带来了诸多危害。

对电力设备而言,谐波会使变压器、电动机等设备产生额外的损耗,导致设备发热增加,缩短使用寿命。

对于电容器来说,谐波电流可能会使其过载甚至损坏。

在电能质量方面,谐波会导致电压和电流波形的畸变,使电能质量下降,影响用电设备的正常运行。

例如,对于计算机等精密电子设备,谐波可能会引起数据丢失、误操作等问题。

此外,谐波还会增加电力系统的无功功率,降低功率因数,从而增加线路损耗和电能浪费。

三、谐波的分析方法为了有效地治理谐波,首先需要对其进行准确的分析。

目前,常用的谐波分析方法主要有傅里叶变换、小波变换和瞬时无功功率理论等。

傅里叶变换是谐波分析中最常用的方法之一。

它可以将一个复杂的周期性信号分解为不同频率的正弦波分量,从而得到各次谐波的幅值和相位信息。

然而,傅里叶变换在处理非平稳信号时存在一定的局限性。

小波变换则能够很好地处理非平稳信号,它通过对信号进行多尺度分析,可以更准确地捕捉到信号在不同时间和频率上的特征。

谐波治理措施

谐波治理措施

谐波治理措施
谐波治理措施是指为了控制或减轻电能系统中的谐波干扰和谐波问题,采取的一系列技术手段和措施。

下面列举几种常见的谐波治理措施:
1. 谐波滤波器:谐波滤波器是用于滤除电能系统中谐波成分的装置。

它们可以通过选择合适的滤波器参数,将谐波电流从系统中滤去,从而降低谐波干扰。

常见的谐波滤波器包括无源滤波器(谐波消除器)、有源滤波器、谐波滤波器组等。

2. 谐波控制变压器:谐波控制变压器是一种专门设计用于抑制谐波的变压器。

它的设计可以消除或减小电力系统中的谐波干扰,并保证电力质量。

3. 谐波抑制器:谐波抑制器是一种用于控制谐波干扰的装置。

它可以通过改变阻抗、相移、补偿等方式,来削弱或消除电力系统中谐波的影响。

4. 谐波限制器:谐波限制器是一种用于限制谐波电流流入电力系统的装置。

它可以通过控制谐波电流的大小和频率,来避免谐波电流对电力系统的损害。

5. 谐波控制技术:谐波控制技术是一种综合运用以上措施的技术手段。

它通过结合各种谐波治理措施,对电力系统中的谐波进行综合治理,以确保电力系统的正常运行和电力质量。

总之,谐波治理措施旨在降低谐波干扰,保证电力系统的正常
运行和电力质量。

在实际应用中,应根据具体情况选择合适的治理措施,并综合考虑成本、效果、可行性等因素,以达到最佳的谐波治理效果。

电力系统中谐波问题如何治理

电力系统中谐波问题如何治理

电力系统中谐波问题如何治理在当今的电力系统中,谐波问题日益凸显,给电力设备的正常运行和电力质量带来了诸多挑战。

那么,究竟什么是谐波?它又是如何产生的?更重要的是,我们应该如何有效地治理它呢?首先,让我们来了解一下谐波的概念。

简单来说,谐波是指在电力系统中,电流或电压的频率不是基波频率(通常为 50Hz 或 60Hz)整数倍的分量。

这些谐波分量会导致电力系统中的电流和电压波形发生畸变,从而影响电力设备的性能和使用寿命。

谐波的产生原因是多种多样的。

其中,电力电子设备的广泛应用是主要原因之一。

例如,变频器、整流器、逆变器等在工作时会产生大量的谐波电流注入到电力系统中。

此外,电弧炉、电焊机等非线性负载也会产生谐波。

那么,谐波问题会给电力系统带来哪些危害呢?一方面,它会增加电力设备的损耗,导致设备发热、效率降低,缩短设备的使用寿命。

例如,变压器在谐波的作用下,铁芯损耗会显著增加,容易出现过热现象。

另一方面,谐波会影响电力系统的稳定性,可能导致继电保护装置误动作,影响电力系统的安全可靠运行。

同时,谐波还会对通信系统产生干扰,影响通信质量。

既然谐波问题如此严重,我们应该如何治理呢?目前,主要的治理方法可以分为无源滤波和有源滤波两大类。

无源滤波是一种传统的谐波治理方法,它通过电感、电容等无源元件组成滤波器,对特定频率的谐波进行滤波。

无源滤波器结构简单、成本较低,但存在一些局限性。

例如,它的滤波效果容易受到系统参数变化的影响,而且只能对固定频率的谐波进行有效滤波。

有源滤波则是一种较为先进的谐波治理技术。

它通过实时检测电力系统中的谐波电流,并产生与之大小相等、方向相反的补偿电流注入到系统中,从而实现谐波的动态补偿。

有源滤波器具有响应速度快、滤波效果好、能够适应系统参数变化等优点,但成本相对较高。

除了滤波技术,改善电力系统的设计和运行管理也是治理谐波的重要措施。

在电力系统规划和设计阶段,应合理选择电力设备,尽量减少非线性负载的接入。

变频器谐波问题干扰范围及处理方法

变频器谐波问题干扰范围及处理方法

变频器常见谐波问题以及解决方法变频器常见谐波问题以及解决方法在现代化港口、矿井、运输港的建设中,变频软启动渐渐替代机械软启动,如常规液力耦合器,CST液力软启动,成为市场主流,其主要原因为可控性高,精度强。

变频器在使用过程中也会相应的出现自己的问题,重点介绍下在现场安装中变频器谐波问题以及处理办法。

就矿井使用的变频器而言,非下运皮带大都使用二象限的,因不需要对电网进行电能反馈,下运皮带在运行以后对电网进行电能反馈,既逆向输送电力,而非使用电力,四象限变频器就是除了正反转外还能控制,实现能量反馈回电网的变频器。

2象限指的就是普通的控制速度的变频器。

内部除了控制方式不同外,硬件方面主要就是4个象限变频器整流和逆变电路都使用可双向导通的半导体元件,一般是IGBT。

而2象限的整流部分一般是晶闸管或二极管。

而就谐波问题而言,问题重点出现在四象限变频器,因产生的奇数次谐波较强,且干扰问题严重,频器正常工作中,由于变频器高次谐波的影响引发控制电路发生串联谐振,造成系统电源故障,就功率等级而言,75KW以上四象限变频器因考虑进行谐波治理,而二象限变频功率在100KW以下可以进行常规处理即可。

在变频器使用过程中,经常出现误指示、乱码等情况;变频器停止工作时系统完全恢复正常。

很明显这是由于变频器高次谐波分量对电源的干扰造成的,通常,对此最为行之有效的办法就是对控制电路的供电电源加装电源滤波器。

在加装市售的通用电源滤波器后,系统恢复了正常,但是随之又有新的问题出现了,控制电路中的熔断器频繁熔断。

停电后对电路进行检查,经现场详细观察发现,在系统逐渐升速过程中,变频器运行输出在某个频段之间时频繁发生短路故障。

而且,将变频器的负载(电动机)断开后,该故障现象仍频繁出现,在去掉电源滤波器后该故障消失。

因此,首先对该滤波器进行了检查,拆开后发现滤波器采用的是常见的π型滤波。

检查发现电源滤波器本身没有任何故障,进一步分析变频器的工作原理可知,在交-直-交型变频器中,电网通过三相整流桥给变频器供电,供电电流利用傅立叶级数可以分解为包含基波和6K±1次谐波(K=1,2,3…)分量等一系列谐波分量,谐波含量随进线电抗和和直流滤波电抗的电感量增加而减少。

谐波电流与电磁干扰基本原理与其解决方案

谐波电流与电磁干扰基本原理与其解决方案

谐波电流与电磁干扰基本原理与其解决方案一、谐波电流的基本原理谐波电流是指在交流电路中,频率为整数倍于基波频率的电流,它是由非线性负载产生的。

在工业生产中,大量使用非线性负载设备,如变频器、UPS、照明灯具等,这些设备会导致谐波电流的产生。

谐波电流不仅会影响设备的正常运行,还会对供电系统造成严重的电磁干扰。

二、谐波电流对设备的影响1. 降低设备效率:谐波电流会导致设备内部温度升高,使得设备效率降低。

2. 缩短设备寿命:谐波电流会使得设备内部元件受到过度损伤,从而缩短设备寿命。

3. 产生噪声:谐波电流会使得设备发出噪声,影响工作环境和人员健康。

4. 影响其他设备:谐波电流会通过供电系统传播到其他设备中,从而影响其正常运行。

三、谐波电流解决方案1. 使用滤波器:滤波器是一种常用的解决谐波电流的方法。

它可以通过滤除谐波电流,从而减少对设备的影响。

2. 采用谐波抑制技术:谐波抑制技术是一种较为先进的解决方案。

通过使用谐波抑制器,可以有效地减少谐波电流的产生,并降低对设备的影响。

3. 选择合适的负载设备:在选购设备时,应尽可能选择具有较低谐波电流产生率的设备,从而减少对供电系统和其他设备的影响。

4. 加强维护管理:定期检查和维护设备,保持其良好运行状态,可以有效地减少谐波电流对设备的影响。

5. 加强供电系统规划设计:在供电系统规划设计中应考虑到非线性负载设备的特点,采取相应措施来减少其对供电系统和其他设备的影响。

四、电磁干扰解决方案1. 使用屏蔽材料:屏蔽材料是一种常用的解决方法。

通过使用屏蔽材料来遮挡或隔离干扰源,从而减少干扰信号的传播。

2. 采用滤波器:滤波器也可以用来解决电磁干扰问题。

通过使用滤波器来过滤掉干扰信号,从而减少对设备的影响。

3. 加强接地措施:加强设备和供电系统的接地措施,可以有效地减少电磁干扰的产生。

4. 选择合适的设备:在选购设备时,应尽可能选择具有较低电磁辐射和敏感度的设备,从而减少对电磁干扰的敏感度。

谐波危害及抑制谐波的方法

谐波危害及抑制谐波的方法

谐波危害及抑制谐波的方法谐波是指频率高于基波的电磁波,它们会频繁出现在我们的电力系统和其他电力设备中。

虽然谐波在一些应用中可产生有益效果,但在大多数情况下,它们都是一种电力质量问题,会给电力系统和其他设备带来一系列危害。

1.设备损坏:谐波会增加设备内的电流和电压,导致设备发热加剧,并可能引起设备元件过热、熔断或焚毁。

此外,频繁的谐波还会引起设备的机械振动,造成设备损坏。

2.电力系统不稳定:谐波引起系统的电流和电压的波形失真,导致电力系统不稳定。

此外,谐波会导致电力系统中的谐振现象,这些谐振可以引起电力系统中的电流和电压急剧增加,可能破坏设备。

3.通信干扰:谐波会产生大量的高频干扰信号,这些信号可能干扰无线通信和其他电磁波设备的正常运行。

在高度电子化的社会中,这种通信干扰可能会带来严重的问题。

为了抑制谐波带来的危害,可以采取以下方法:1.装置谐波滤波器:谐波滤波器用于减小电力系统中的谐波。

滤波器通常会将谐波通过处理电路转化成其他形式,或者将它们绕过电力系统,以防止它们对设备和系统产生影响。

2.使用变压器:变压器可以用来减小谐波的影响。

通过在电力系统中安装特定的谐波抑制变压器,可以将谐波电流限制在合理的范围内,从而降低谐波的危害。

3.电源滤波器:为敏感设备提供干净的电力供应也是一种有效的抑制谐波的方法。

电源滤波器可以滤除电力供应中的谐波元素,从而降低谐波对设备的危害。

4.合理的电源设计:在电力系统设计阶段,可以采取一些措施来减小谐波的生成。

例如,选择适当的线路,减小高谐波的产生,或者选择低谐波的电力设备。

5.故障检测和维护:及时发现和处理设备和系统中的谐波问题至关重要。

定期进行电力设备的检查和维护,可以发现并消除谐波带来的潜在危害。

总而言之,谐波在电力系统和其他电力设备中的存在可能带来很多危害。

为了抑制这些危害,我们可以采取各种措施,包括使用谐波滤波器、变压器、电源滤波器、合理的电源设计以及进行定期的检查和维护。

变频器谐波干扰及治理措施

变频器谐波干扰及治理措施

变频器谐波干扰及治理措施变频器谐波是指由于正弦电压加压于非线性负载变频器,基波电流发生畸变而产生的谐波。

对于一台变频器来讲,它的输入端和输出端都会产生高次谐波,输入端的谐波还会通过输入电源线对公用电网产生影响。

变频器本身输入侧是一个非线性整流电路,对电源的波形将有影响,变频器输出侧电压、电流、非正弦或非完全正弦波含有丰富的谐波。

一般来讲,变频器对容量大的电力系统影响不是十分明显,但是对于系统容量小的系统,谐波产生的干扰就不可忽略,它对公用电网是一种污染,客观的存在对公用电网和其它系统的危害大致有:(1)变频器谐波使公用电网的元件产生了附加的谐波损耗,降低了发电、输电及用电设备的使用率,大量的三次谐波流过中线时会使线路过热甚至发生火灾。

(2)变频器谐波影响各种电气元件的正常工作。

谐波对电机的影响除引起附加损耗外,还会产生机械振动、噪音和过电流,使电容器、电缆等设备过热,绝缘老化、寿命缩短以至损坏。

(3)变频器谐波会引起公用电网局部的并联谐振和串联谐振,从而使谐波放大,这就使上述的危害大大的增加,甚至引起严重事故。

(4)变频器谐波会对临近的通讯系统产生干扰,导致通讯质量降低,甚至信息的丢失,使通讯系统无法正常工作。

治理变频器谐波问题,抑制辐射干扰和供电系统干扰,可采取屏蔽、隔离、接地等技术手段。

1、安装适当的电抗器在变频器输入侧与输出侧串接合适的电抗器,吸收谐波和增大电源或负载的阻抗,到达抑制谐波的目的,以减少传输过程中的电磁辐射。

通过抑制谐波电流,将功率因数由原来的(0.5-0.6)提高至(0.75-0.85);2、电源隔离或安装隔离变压器将变频系统的供电电源与其他设备的供电电源相互独立,或在变频器和其他用电设备的输入侧安装隔离变压器,切断谐波电流;3、防止干扰辐射电动机和变频器之间电缆应穿钢管敷设或用铠装电缆,并与其他弱电信号在不同的电缆沟分别敷设,防止辐射干扰;4、变频器正确的接地正确的接地既可以使系统有效地抑制外来干扰,又能降低设备本身对外界的干扰。

电力系统中电流谐波的分析与治理

电力系统中电流谐波的分析与治理

电力系统中电流谐波的分析与治理在当今的电力系统中,电流谐波问题日益凸显,对电力设备的正常运行、电能质量以及整个电力系统的稳定性都产生了不可忽视的影响。

因此,深入分析电流谐波的产生原因、特性,并采取有效的治理措施显得尤为重要。

一、电流谐波的产生电流谐波的产生源头较为多样。

电力电子设备的广泛应用是其中的主要因素之一。

例如,变频器、整流器、逆变器等在工作时,会将交流电源转换为直流电源或对交流电源进行变频控制,由于其开关动作的非线性特性,导致电流发生畸变,从而产生谐波。

非线性负载也是谐波的重要来源。

像电弧炉、电焊机等设备,其工作电流随时间变化呈现出非线性特征,使得输入的正弦电流发生扭曲,进而产生谐波电流。

此外,变压器的铁芯饱和也会引起电流谐波。

当变压器铁芯中的磁通密度超过饱和点时,励磁电流会出现明显的非线性增长,产生谐波分量。

二、电流谐波的特性电流谐波具有一些显著的特性。

首先是频率特性,谐波的频率通常是基波频率的整数倍。

例如,5 次谐波的频率是基波频率的 5 倍。

其次是幅值特性。

不同次数的谐波幅值大小不尽相同,一般来说,低次谐波的幅值相对较大,对电力系统的影响也更为显著。

电流谐波还具有相位特性。

各次谐波的相位关系较为复杂,会对电力系统中的功率传输和电能质量产生影响。

三、电流谐波的危害电流谐波给电力系统带来了诸多危害。

它会增加电力设备的损耗,如变压器、电动机等,导致设备发热加剧,降低其使用寿命。

对输电线路来说,谐波电流会引起线路的额外损耗,降低输电效率,同时可能引发谐振,导致过电压,威胁线路的安全运行。

在电能质量方面,谐波会导致电压波形畸变,影响供电的稳定性和可靠性,可能引起电气设备误动作,影响精密仪器和电子设备的正常工作。

四、电流谐波的分析方法为了有效地治理电流谐波,首先需要对其进行准确的分析。

常见的分析方法包括傅里叶变换、快速傅里叶变换(FFT)等。

傅里叶变换能够将时域中的电流信号转换为频域信号,从而清晰地展示出各次谐波的频率和幅值。

谐波的危害与治理

谐波的危害与治理

谐波的危害与治理谐波是指工业、农业及其他领域电器设备产生的不同频率的电流或电压的干扰信号。

谐波的产生对人类的健康和设备的正常运行产生了相当大的危害。

在以下的几个方面,我们将详细介绍谐波的危害性以及相应的治理方法。

首先,谐波对人类的健康造成了威胁。

在人体组织中,脑、肌肉、神经等都是通过电信号进行传递和控制的。

而谐波的存在会使得这些电信号被扭曲、失真甚至干扰,从而导致血液循环、神经传导、肌肉运动等功能受到影响。

长期暴露在谐波环境下,人们可能会出现头痛、疲劳、失眠、注意力不集中、神经衰弱等症状。

其次,谐波对电力系统的稳定性和设备的正常运行产生了影响。

谐波信号会加大电网中的负荷,降低系统的功率因数,导致电网负荷不均衡、频率偏移等问题。

同时,谐波还会增加电力设备的损耗,缩短使用寿命,引发电力设备故障和事故。

特别是对于高精度的仪器设备和敏感的电子设备来说,谐波的存在会严重影响其正常运行和测量结果的准确性。

另外,谐波还会影响到公共环境和通信系统。

在城市中,电网中的谐波信号可能会通过建筑物和地下管道传播到附近的电子设备或通信系统中,导致通信信号的干扰和传输中断。

在无线通信领域,谐波会引起频谱污染,减少频谱资源的利用效率。

针对谐波的治理,有以下几个主要方法:1.滤波器:通过引入滤波器来削弱或消除谐波信号。

滤波器可以根据谐波的频率特性进行设计,将谐波信号从电力系统中分离出来,保证电力系统的正常运行。

2.接地:正确接地可以有效降低谐波信号的存在。

接地系统的设计和维护需要严格按照相关标准进行,确保接地电阻的有效连接和在线监测,减少谐波的传播。

3.变压器改进:采用带低谐波的高效变压器,可以有效削弱变压器内部的谐波产生和传播。

例如,采用三脉动焊接变压器可以避免谐波的产生和增强Transformer(SVPWM)技术等。

4.现代电气设备:使用具有谐波抑制功能的现代电气设备,可以降低谐波产生和传播的风险。

例如,使用高效节能的电子节能灯、电力电容器、有源滤波器等。

谐波产生的根本原因及治理对策

谐波产生的根本原因及治理对策

谐波产生的根本原因及治理对策谐波是指在电力系统中产生的频率为基波频率的整数倍的波动。

它是电力系统中普遍存在的一种现象,但过多的谐波会对电力系统的正常运行和设备的安全性产生很大影响,因此需要采取相应的治理对策来解决这个问题。

1.非线性负载:当电力系统中存在非线性负载时,如电弧炉、电焊机、电子设备等,其工作特性会产生谐波。

这是谐波产生的主要原因之一2.电力电子装置:现代电力系统中广泛使用的各种电力电子装置,如变频器、整流装置等,也会引入大量谐波。

3.潮流分布不均匀:当电力系统中的潮流分布不均匀时,也会导致谐波的生成和传播。

针对谐波的治理对策主要有以下几方面:1.使用滤波器:在电力系统中安装滤波器可以消除或降低谐波对系统的影响。

滤波器的选择要根据谐波的频率和大小来确定。

2.设计合理的系统:在电力系统的设计阶段,应考虑到非线性负载和电力电子装置可能带来的谐波问题,采取相应的额外措施来减少谐波的产生。

3.提高设备的抗谐波能力:针对电力系统中的关键设备,如变压器、电容器等,可以采用提高抗谐波能力的设计和制造技术,使其能够更好地耐受谐波的影响。

4.加强监测和控制:定期对电力系统进行谐波监测,及时发现和解决问题。

对于频繁发生谐波问题的系统,可以采用自动生成谐波的设备进行实时控制,以减小谐波的影响。

5.加强人员培训和管理:加强对电力系统人员的培训,提高其对谐波问题的认识和处理能力。

同时,建立健全的管理体系,制定相应的管理规范和操作程序,以确保谐波问题得到科学有效的控制。

总之,谐波问题存在于电力系统中,会对系统的正常运行和设备的安全性产生不利影响。

通过采取相应的治理对策,如使用滤波器、设计合理的系统、提高设备的抗谐波能力等,可以有效地解决谐波问题,确保电力系统的稳定和可靠运行。

同时,需要加强人员培训和管理,提高人员的谐波处理能力,确保谐波问题得到及时有效的解决。

电力系统中谐波分析与治理

电力系统中谐波分析与治理

电力系统中谐波分析与治理在当今高度依赖电力的社会中,电力系统的稳定和高效运行至关重要。

然而,谐波问题却成为了影响电力系统性能的一个重要因素。

谐波的存在不仅会降低电能质量,还可能对电力设备造成损害,增加能耗,甚至影响整个电力系统的安全稳定运行。

因此,对电力系统中的谐波进行深入分析,并采取有效的治理措施,具有极其重要的意义。

一、谐波的产生谐波是指频率为基波频率整数倍的正弦波分量。

在电力系统中,谐波的产生主要源于以下几个方面:1、非线性负载电力系统中的许多负载,如电力电子设备(如变频器、整流器、逆变器等)、电弧炉、荧光灯等,其电流与电压之间不是线性关系,从而导致电流发生畸变,产生谐波。

2、电力变压器变压器的铁芯饱和特性会导致磁化电流出现尖顶波形,进而产生谐波。

3、发电机由于发电机的三相绕组在制作上很难做到绝对对称,以及铁芯的不均匀等因素,也会产生少量的谐波。

二、谐波的危害谐波对电力系统的危害是多方面的,主要包括以下几点:1、增加电能损耗谐波电流在电力线路中流动时,会增加线路的电阻损耗和涡流损耗,导致电能的浪费。

2、影响电力设备的正常运行谐波会使电机产生额外的转矩脉动和发热,降低电机的效率和使用寿命;对电容器来说,谐波可能导致其过电流和过电压,甚至损坏;对于变压器,谐波会增加铁芯损耗和绕组的发热。

3、干扰通信系统谐波会产生电磁干扰,影响通信设备的正常工作,导致信号失真、误码率增加等问题。

4、降低电能质量谐波会使电压和电流波形发生畸变,导致电压波动、闪变等问题,影响供电的可靠性和稳定性。

三、谐波的分析方法为了有效地治理谐波,首先需要对其进行准确的分析和测量。

常见的谐波分析方法主要有以下几种:1、傅里叶变换这是谐波分析中最常用的方法之一。

通过对周期性信号进行傅里叶级数展开,可以得到各次谐波的幅值和相位。

2、快速傅里叶变换(FFT)FFT 是一种快速计算傅里叶变换的算法,大大提高了计算效率,适用于对大量数据的实时分析。

治理谐波的方法

治理谐波的方法

治理谐波的方法
以下是 9 条关于治理谐波的方法:
1. 采用滤波器呀!就像给电流戴上了一个精致的“口罩”,把谐波这个“捣蛋鬼”给过滤掉。

比如说在工厂的电力系统里装上滤波器,就能有效减少谐波的影响啦。

2. 改善电力系统的设计嘞,这可是从根源上解决问题呀!就如同建房子要先打好牢固的地基一样。

你想想,如果一开始设计就很合理,那谐波出现的几率不就大大降低了嘛!
3. 对谐波源进行隔离呀!好比把捣乱的孩子单独隔离开,不让它去影响其他小伙伴。

像一些容易产生大量谐波的设备,单独给它们安排个小空间,不就好多了吗?
4. 利用无功补偿装置哟!这就像是给电力系统吃了一颗“补品”,让它更有活力去对抗谐波。

比如在变电站里用上无功补偿装置,对治理谐波超有用的。

5. 动态无功补偿技术了解一下嘛!它就像一个灵活的“小卫士”,能随时根据谐波的情况进行调整呢。

我们小区的配电室不就用了这技术,效果那叫一个棒啊!
6. 加强监测和管理呀,要时刻盯着谐波这个家伙!这就跟家长看着孩子写作业一样,只要盯着,它就不敢乱来。

工厂里安排专人监测,一有异常立马处理。

7. 优化用电设备的运行方式呗!就像是让运动员调整跑步的姿势,能发挥出更好的效果。

某些设备合理安排运行时间和方式,谐波可能就不会那么猖狂啦!
8. 采用谐波抑制电抗器呀,它可是谐波的“克星”呢!变电站里那些电抗器就是专门对付它的呀,效果超明显的。

9. 提高员工对谐波的认识和重视程度呀!这就好像给大家敲响警钟一样。

如果每个人都知道谐波的危害,那防治起来不就更有力量了嘛!
总之,治理谐波要多管齐下,各种方法综合运用,才能把这个“小麻烦”彻底解决掉呀!。

谐波治理方案7篇

谐波治理方案7篇

谐波治理方案7篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作计划、工作总结、实施方案、应急预案、活动方案、规章制度、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work plans, work summaries, implementation plans, emergency plans, activity plans, rules and regulations, document documents, teaching materials, essay compilations, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!谐波治理方案7篇谐波治理方案篇1谐波治理方案是指在城市建设和社会发展过程中,为了实现生态环境保护和可持续发展的目标,通过一系列的管理控制措施来减少谐波和噪音对环境和人民健康的负面影响。

电力系统谐波问题分析及防治措施

电力系统谐波问题分析及防治措施

电力系统谐波问题分析及防治措施摘要:电力谐波会增加电能损耗、降低设备寿命,威胁电力设备和用电设备安全可靠运行,并对周边的通讯等设施造成干扰。

分析电网谐波的产生和影响,并及时提出谐波的综合治理办法,对于防止谐波危害、提高电能质量是十分必要的。

本文概述了谐波及其产生、谐波的危害,以及谐波治理方法。

关键词:电力系统;谐波;来源;危害;治理方法谐波的定义与来源1、谐波的定义国际上对谐波公认的定义是:“谐波是一个周期电气量的正弦波分量,其频率为基波频率的整数倍”。

在电力系统中,谐波分为谐波电压和谐波电流,其对系统的影响通常用“谐波含有率”和“总谐波畸变率”两个参数来衡量。

具体定义如下:谐波含有率:第h次谐波分量方均根值与基波分量方均根值之比。

HRU(h次谐波电压含有率),HRI(h次谐波电流含有率);总谐波畸变率:除基波外的所有谐波分量在一个周期内的方均根值与基波分量方均根值之比。

U,I;THD(总谐波电压畸变率),THD(总谐波电流畸变率);谐波含有率仅反应单次谐波在总量中的比重,而总谐波畸变率则概括地反映了周期波形的非正弦畸变程度。

谐波按矢量相序又可分有正序谐波、负序谐波和零序谐波。

所谓正序是指,3个对称的非正弦周期相电流或电压在时间上依次滞后120°,而负序滞后240°,零序則是同相。

其特征如表1:表1 正序谐波=3h-2,负序谐波=3h-1,零序谐波=3h。

在平衡的三相系统中,由于对称关系,不会在供电电网中产生任何偶次谐波。

谐波的定义与来源具体来说谐波产生的原因有以下三个方面:(1) 发电源的质量不高而产生的谐波发电机的结构中,由于三相绕组在制作上无法做到绝对对称,铁心也很难做到绝对均匀一致,所以磁通密度沿空间的分布只能做到接近正弦分布,所以磁通中都有高次谐波,电势中也就有高次谐波,其中三次谐波占主要成分[2]。

(2) 输配电系统产生的谐波在输配电系统中则主要是变压器产生谐波,变压器饱和时的励磁电流只含有奇次谐波,以3次谐波最大,可达额定电流0.5%,对于三相变压器,3倍次谐波的磁通经由邮箱外壳构成闭合磁路,因而磁通中对应该次的谐波较小(单相铁芯的10%),绕组中有三角形接法时,零序性谐波电流在闭合的三角形接线中环流而不会注入电网。

电力系统中的功率谐波问题如何治理

电力系统中的功率谐波问题如何治理

电力系统中的功率谐波问题如何治理在当今高度依赖电力的社会中,电力系统的稳定和高效运行至关重要。

然而,功率谐波问题却成为了影响电力系统性能的一个不容忽视的因素。

功率谐波不仅会降低电力设备的效率和寿命,还可能引发电力系统故障,甚至对整个电网的安全稳定运行构成威胁。

因此,有效地治理电力系统中的功率谐波问题具有重要的现实意义。

一、功率谐波的产生要治理功率谐波问题,首先需要了解它的产生原因。

功率谐波主要源于电力系统中的非线性负载。

常见的非线性负载包括整流器、变频器、电弧炉、荧光灯等。

这些设备在工作时,其电流和电压的波形不再是标准的正弦波,而是包含了各种高次谐波成分。

以整流器为例,当交流电源通过整流器转换为直流电源时,由于二极管的单向导通特性,电流在导通期间会迅速上升,而在截止期间则几乎为零,从而导致电流波形发生严重畸变,产生大量谐波。

变频器在调节电机转速时,通过改变电源的频率和电压来实现。

但在这个过程中,由于电力电子器件的频繁开关动作,也会引入谐波成分。

电弧炉在炼钢过程中,由于电弧的不稳定燃烧,电流和电压的变化随机性很大,产生的谐波也非常复杂。

二、功率谐波的危害功率谐波对电力系统的危害是多方面的。

首先,它会增加电力设备的损耗。

谐波电流在电力线路和变压器中流动时,会产生额外的电阻损耗和涡流损耗,导致设备发热增加,降低其效率和使用寿命。

其次,谐波会影响电力测量的准确性。

电能表等测量设备通常是按照标准正弦波进行设计和校准的,如果电流和电压中存在谐波,将导致测量结果出现误差,影响电力计费的公正性。

再者,谐波还可能引发电力系统的谐振。

当谐波频率与电力系统中的固有频率相匹配时,会产生谐振现象,导致电压和电流急剧增大,可能损坏电力设备甚至引发停电事故。

此外,谐波还会对通信系统造成干扰,影响通信质量。

三、功率谐波的治理方法针对功率谐波问题,可以采取多种治理方法,以下是一些常见的措施:1、优化电力设备设计在电力设备的设计阶段,充分考虑谐波的影响,采用合适的电路结构和控制策略,减少谐波的产生。

谐波治理方法

谐波治理方法

谐波治理方法
谐波治理的方法主要有以下几种:
1. 降低谐波源的产生:这是谐波治理的主要任务。

通过合理选择电力设备,尽可能选择低谐波的设备,可以降低谐波源的产生。

此外,采用谐波滤波器、有源滤波器等谐波抑制装置,可以将谐波源产生的谐波电流减少。

2. 优化负载结构:减少非线性负载的使用,也可以减少谐波的产生。

3. 增加滤波器:在可能产生谐波的设备或系统中增加滤波器,可以有效地滤除谐波,提高电源的品质。

4. 改善供电环境:通过改善供电环境,可以降低谐波对电力系统的影响。

例如,尽可能避免在电力系统附近使用大功率的电子设备,或者对电力系统进行隔离,以减少谐波的干扰。

5. 引入无功补偿装置:无功补偿装置可以对系统进行无功补偿,提高系统的功率因数,从而降低谐波对系统的影响。

以上是谐波治理的一些方法,根据不同的应用场景和实际情况,可以采取不同的方法进行治理。

电力谐波系统分析对安全生产的干扰和危害及电力谐波消除治理方法

电力谐波系统分析对安全生产的干扰和危害及电力谐波消除治理方法

电力谐波系统分析对安全生产的干扰和危害及电力谐波消除治理方法:(一)、什么是谐波:电力系统中有非线性(时变或时不变)负载时,即使电源都以工频50HZ供电,当工频电压或电流作用于非线性负载时,就会产生不同于工频的其它频率的正弦电压或电流,这些不同于工频频率的正弦电压或电流,用富氏级数展开,就是人们称的电力谐波。

在电力系统方面,谐波是指多少倍于工频频率的波形,简称“次”,是指从2次到30次范围,如5次谐波电压(电流)的频率是250赫兹,7次谐波电压(电流)的频率是350赫兹;超过13次的谐波称高次谐波。

从图二看出电压波形有开口,电流波形是方波,与图一所示波形有很大的差别。

电力谐波对电力网(包括用户)危害是十分严重的,它是一种电力污染,随着经济发展,大功率可控硅的广泛应用,大量非线性负荷增加,特别是电子技术、节能技术和控制技术的进步,在化工、冶金、钢铁、煤矿和交通等部门大量使用各种整流设备、交直流换流设备和电子电压调整设备,电熔炼设备、电化学设备、矿井起重设备、露天采掘设备、电气机车等与日俱增,同时种类繁多的照明器具、娱乐设施和家用电器等普及使用,使得电力系统波形严重变形。

(二)电力谐波的主要危害有:(1)引起串联谐振及并联谐振,放大谐波,造成危险的过电压或过电流;(2)产生谐波损耗,使发、变电和用电设备效率降低;(3)加速电气设备及电力变压器绝缘老化,使其容易击穿,从而缩短它们的使用寿命;(4)使设备(如电机、继电保护、自动装置、测量仪表、电力电子器件、计算机系统、精密仪器等)运转不正常或不能正确操作;(5)干扰通讯系统,降低信号的传输质量,破坏信号的正确传递,甚至损坏通信设备。

(6)使开关(断路器)过载,造成经常性跳闸。

由于谐波电流在导体表面流动,引起导体发热,降低了开关的实际容量所致。

(7)使无功补偿设备部件损坏,无法进行无功补偿,加大线路损失,降低变压器额定容量。

(8)对变电所的继电保护产生干扰,易造成保护误动作,导致区域性停电事故。

电力系统中的谐波污染问题与解决方案

电力系统中的谐波污染问题与解决方案

电力系统中的谐波污染问题与解决方案随着电力系统的发展,电力设备越来越智能化,大量非线性负载的出现使得电网中的谐波问题日益突出。

谐波污染会对电网稳定性、设备可靠性、以及用户用电质量造成极大的影响,甚至可能导致事故的发生。

因此,保证电力系统的用电质量,控制谐波污染是一个迫切需要解决的问题。

电力系统中谐波污染的原因电力系统中主要的谐波源来自于非线性负载。

对于自然电阻、电感、电容等元件,其电流和电压之间的关系为线性关系,但是在非线性负载下,电流和电压之间的关系则会变成非线性关系,从而产生谐波。

大部分非线性负载中均含有半导体元器件,如变频器、熔接机、电子镇流器等,这些负载会将电网上的交流电转换成直流电,再用半导体开关对其进行控制,从而输出较高功率电子脉冲。

电力系统中谐波污染的影响谐波污染对电网的稳定性和安全性有着极大的影响。

电网中的谐波会导致电压、电流、频率等参数发生变化,甚至可能会引发设备故障,给电网带来安全隐患。

对于用户而言,谐波污染还会影响其使用电器的安全和可靠性。

例如,谐波会使得电器中的电容器过早老化,从而减短使用寿命。

电力系统中谐波污染的解决方案一、控制谐波源控制谐波源是最有效的解决方案。

通过使用低谐波负载,如交流电动机、照明负载等,可以有效降低谐波污染。

对于这些负载而言,电流和电压之间的关系比较简单,没有出现非线性关系。

同时,还可以采用减小负载容量、增加电感、电容等措施,使得谐波污染降低。

二、谐波滤波器谐波滤波器是一种常用的控制谐波的设备。

其主要作用是在电力系统中增加一个滤波电路,滤除谐波,保证用户用电的安全和稳定性。

谐波滤波器是通过电容、电感等元件构成的,它可以滤除制定的谐波,同时保留基波电压和基波电流,以达到保证电力质量的目的。

不过,谐波滤波器存在着能量消耗大、对于高次谐波的滤除效果较差等问题。

三、提高电力的质量增加电力的质量,特别是将非线性负载调整到正常负载可以缓解谐波污染的程度。

这方面可以下功夫增强电力设备的质量,同时进行科学规划和设计建立合理的电力系统。

电力系统中电流谐波分析与治理

电力系统中电流谐波分析与治理

电力系统中电流谐波分析与治理在当今的电力系统中,电流谐波问题日益凸显,对电力设备的正常运行和电力质量产生了不可忽视的影响。

为了确保电力系统的稳定、高效和可靠运行,深入研究电流谐波的分析方法与治理策略显得至关重要。

一、电流谐波的概念与产生原因电流谐波,简单来说,就是电流波形偏离了理想的正弦波形态。

这种偏离导致电流中出现了频率为基波整数倍的分量。

那么,电流谐波是如何产生的呢?主要有以下几个方面的原因。

首先,非线性负载是产生电流谐波的重要源头。

常见的非线性负载如电力电子设备,包括变频器、整流器、逆变器等。

这些设备在工作时,其电流电压特性并非线性关系,从而导致电流波形发生畸变,产生谐波。

其次,电力变压器的铁芯饱和也会引起电流谐波。

当变压器铁芯进入饱和区时,励磁电流会呈现非线性增长,从而引入谐波成分。

此外,电弧设备如电弧炉、电焊机等,由于其工作过程中的电弧不稳定,电流的通断不规律,也会产生谐波。

二、电流谐波的危害电流谐波的存在给电力系统带来了诸多危害。

对于电力设备来说,谐波电流会增加设备的损耗,导致发热加剧,缩短设备的使用寿命。

例如,电机在谐波环境下运行,会出现额外的铁损和铜损,效率降低,甚至可能出现故障。

对电力系统的稳定性也有不良影响。

谐波会导致电力系统的电压波动和闪变,影响供电质量,严重时可能引发系统故障,造成大面积停电。

同时,谐波还会干扰通信系统,使信号传输受到影响,降低通信质量。

三、电流谐波的分析方法为了有效地治理电流谐波,首先需要对其进行准确的分析和测量。

傅里叶变换是常用的谐波分析方法之一。

它可以将复杂的周期性信号分解为不同频率的正弦波分量,从而清晰地揭示出谐波的频率和幅值。

快速傅里叶变换(FFT)则是傅里叶变换的一种快速算法,大大提高了计算效率,使其能够在实际工程中广泛应用。

此外,还有小波变换等方法。

小波变换具有良好的时频局部化特性,能够更准确地捕捉到信号中的突变和瞬态成分,对于分析非平稳的谐波信号具有独特的优势。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

谐波干扰问题分析与谐波治理方法建议一、存在的谐波干扰问题介绍某科技发展有限公司主要从事先进陶瓷材料相关技术、产品和系统的研发,涉及生物医学材料、新能源材料、电子信息材料、化工陶瓷材料、以及多功能结构陶瓷材料等领域。

该公司目前新安装的300KW中频烧结炉,可控硅控制功率加热,出现功率因数低0.3-0.5,谐波大,造成共用的容量1250Kvar供电变压器配置的容量为600Kvar无功补偿电容装置产生过热保护无法正常投切运行等问题。

二、谐波干扰状况分析随着我国制造业的蓬勃发展和人民生活水平的不断提高,电力电子技术在电网设备中得到广泛应用,大量的非线性负荷广泛应用在工业、商业和民用电网中,给电网造成的污染问题越来越得到重视。

如在一般工业领域使用的中频炉、变频器、软启动器、电弧炉、轧机、电解槽、电镀槽等负荷,商业和民用领域如节能灯、气体灯具、变频空调、电脑、冰箱等,都产生大量的谐波,尤其是近几年在我国节能技术产业的发展过程中出现了各种类型的专用节电装置,这些节电装置采用的均是电力电子控制技术如变频控制和可控硅调压原理,属典型的谐波源,大量使用导致谐波的产生,轻者影响供电质量使制造工艺较为精细的产品质量受到影响,或者由于在节电过程中使用的节电器具产生的谐波导致谐振,而使无功得不到满意补偿甚至不补偿影响节电效果,重者导致电气设备长期发热,降低使用寿命甚至损坏、火灾,危害电网安全。

为了便于对北京某科技发展有限公司新安装使用的中频烧结炉产生谐波危害进行分析,特地借鉴下列两组关联数据用以推断可能产生谐波的含量。

借鉴测试数据一:2014年5月9日浙江某公司新安装使用的中频烧结炉的现场测试数据显示,该中频烧结炉运行时电源进线上基波电流在17-391A有功功率在7.8-118.5KW,谐波电压总畸变率5.7-6.3%,谐波电流总畸变率42-72.9%,功率因数在0.33-0.64范围内波动。

借鉴测试数据二:2014年6月22日领步公司应邀对某新型材料(江苏)有限公司生产线300KW中频烧结炉的谐波测试数据如下:运行电流在250A时谐波参数,谐波电压总畸变率4.4%,谐波电流总畸变率29.9%;运行电流在365A时谐波参数,谐波电压总畸变率6.7%,谐波电流总畸变率30.1%运行电流在250A时谐波参数运行电流在365A时谐波参数从上述两组借鉴测式数据推断,中频烧结炉运行时产生的总谐波电流应该在110-190A之间,这么高的谐波电流也是造成变压器母线电容补偿过热不能正常投切的主要原因,如此高谐波污染状态长期运行下去还将同一变压器系统内的其他相关负载设备产生更多的危害,非常需要对该台中频烧结炉进行针对性谐波治理,以期消除谐波引发的生产运行设备故障。

三、谐波治理方法对比1、谐波治理方式比较分析:目前对用户配电系统中的谐波治理主要有无源滤波和有源滤波两类方式,由于无源滤波装置,主要是基于谐波源容量较大,产生的谐波较集中的场合,如重工业、冶金、化工、矿山、电气化铁路等行业,通过安装无源滤波装置就地治理提高电网电能质量、补偿无功功率。

无源滤波装置因其工作原理简单,运行可靠,操作方便而得到广泛应用,尤其具备谐波治理兼无功补偿的特点而被各类需要滤波和补偿的企业广泛使用,但其滤波效果达不到特别高的标准而使其受到一定的限制。

而随着目前电网中谐波源的多样化、分散化、复杂化,如节能灯、气体灯具、变频空调,在一般工业领域使用的变频器、软启动以及各类节电装置的应用,虽然单个容量相比较小,但由于存在同时使用概率大而产生的谐波叠加效应,使电网中的谐波呈现特征谐波复杂、谐波含量变化大等特点,采用传统的无源滤波装置不能动态跟踪治理,因此近几年中出现了有源滤波装置APF,有源滤波装置本身作为一个谐波源,通过检测电网中的谐波,迅速产生与检测的谐波相反的谐波,以抵消电网中的谐波。

有源滤波装置动态跟踪电网中不断变化的谐波,实时发出相反的谐波,由于其只针对谐波,因此解决了无源滤波装置易与电网发生谐振的问题,同时不需要经过复杂的电网阻抗计算,只需估算谐波量,大大减少了设计工作量,因有源滤波装置为标准设备,可保证设计方案统一性。

2、有源滤波装置在设计和使用上的优势谐波治理随着谐波源的复杂化和电力电子技术的突飞猛进发展,不管是从谐波治理装置的设计还是实际应用,有源电力滤波装置必将取代无源滤波装置,成为未来谐波治理的主要滤波装置:1)从设计角度分析:有源滤波装置与无源滤波装置相比较,有源滤波装置只需估算谐波电流最大值,而无需考虑电网阻抗、特征谐波以及仿真验证等因素,绝不会产生类似无源滤波装置设计不当而发生谐振事故的可能。

设计简单,可实现标准化设计,使方案统一。

2)从安装角度分析:无源滤波装置只适用于在谐波源处就地治理安装,集中补偿将不能避免谐振发生,采用有源滤波装置既可以在谐波源处安装,也可以在变电所集中治理,以减少治理成本。

3)从治理效果分析:有源滤波装置专门检测谐波,治理谐波,而且可以同时针对多次谐波同时滤波,理论滤波率大于90%,而无源滤波装置由于必须考虑电网谐振,LC回路一般必须偏离谐振点,导致理论滤波率小于70%。

4)从经济角度分析:同一谐波含量的电网采用有源滤波装置比采用无源滤波装置更经济,主要体现在装置容量较小,滤波率高,如采用集中治理取代分散治理则装置容量与分散治理的无源滤波装置更小。

从经济角度来讲,有源滤波装置具有更高的性价比。

5)从治理方式分析:有源滤波装置可实现动态全自动实时治理,而无源滤波装置只能进行静态治理,而且必须要人工操作,根据谐波源工作状态决定投切。

6)从节能角度分析:有源滤波装置由于容量要远远小于无源滤波装置,因此损耗小于无源滤波装置,采用有源滤波装置更加节能。

3、本项目中谐波治理方式的选择确定本项目中谐波产生的危害主要是引起电容补偿柜过热保护而不能投切,发生这种故障的原因主要是系统内中频烧结炉运行时产生的大量谐波引起的,产生的谐波电流是沿着阻抗高低在在整个配电系统内“流窜”,而补偿柜内的电容器又是阻抗最低容易吸收聚集谐波电流并放大产生谐振的元器件,不仅自身容易损毁发生故障,还是放大系统内谐波电流加剧谐波干扰危害其他设备的重要因数,因为无源滤波方式仅能滤除60-70%的系统内特征谐波,还将剩余30-40%的谐波留存在配电系统内,而北京某科技发展有限公司新安装使用的中频烧结炉与其他多家用户共用一台1250Kvar主变,对其他用户使用的负载中很有可能存在对谐波比较敏感的设备,无论是理论上还是实践中,都不能定量确定这剩余的30-40%谐波就不再干扰电容补偿装置的运行,更不用说那些未知的其他设备了,另外该台中频烧结炉运行周期长负载变化幅度大,谐波含量和无功功率都跟着变化,从我们多个项目的实践经验来看,不同的设备对高次和低次谐波的敏感程度也有很明显的差异,无源滤波器是事先设定的特征谐波滤波支路,不能根据现场需要进行高次低次谐波的动态调节,而有源滤波器不仅可以自由设定滤除指定次谐波的次数和比例,还可以根据负载谐波的变化进行自动动态跟踪调节实现高比例精确滤波,确保用户特定治理效果的实现。

4、有源动态精确滤波参数设计建议根据前述借鉴参考的测评数据,该台中频烧结炉运行时产生的总谐波电流应该在110-190A之间,考虑到中频炉满载时谐波含量将会进一步增大,同时由于测试结果的局限性,系统实际谐波含量会有一定范围的波动,因此配置有源滤波器规格时需留有一定的余量来应对波动变化,据此分析在该台中频烧结炉的电源进线支路上设计安装有源滤波器的容量建议为150-200A,应对应选择领步公司的CAPF3L-400/150或200三相三线有源滤波器一台。

为了更高标准地隔离抑制中频烧结炉产生谐波的输出,建议配套安装两台XGB-300的高次谐波隔离保护电抗器,安装原理示意图如下:四、谐波专业测试提议无论是对系统内谐波进行彻底治理还是对关键设备进行谐波隔离净化,都需要了解掌握系统内谐波具体数据,如此才能精确地分析谐波治理设备精确成本价格,因此建议用户先行谐波测试,再确定具体实施方案是更合理的。

因为每个用户单位对谐波治理的决策机制不尽相同,存在谐波直接干扰生产线运行的单位对治理工作比较重视和迫切,正常是单位主要领导确定尽快进行治理,然后亲自或安排电力设备负责人来联系落实相关事宜,而有些用户单位存在的谐波干扰没有影响正常生产运行,只是存在一些偶然故障或潜在危害,尚未引起单位领导的足够重视,只是电力设备部门想进行一些了解尝试的想法,到底何时治理很难确定,因此对提供专业谐波治理服务的厂商来说也很难把握项目的进程,经常发生做了很多技术工作可是谐波治理项目就是没法推进,鉴于此,我们领步公司推出上门谐波测试收取测试成本费用的措施,如果后续项目治理由我们继续做,这个测试成本费可以从后续设备款中予以扣减,还是相当于给用户提供免费测试的技术支持,但真正想进行谐波治理的用户就会向单位领导报请垫付测试成本费用,领导如果批准了就会很快推进谐波治理工作,如果领导还没想做谐波治理,就不会同意,虽然我们仅收取500-600元的测试成本费用,但可以有效地过滤掉那些仅想让我们免费做前期测试设计工作而不着急进行治理的用户,2013年执行该制度来,受到了真正想合作进行谐波治理项目的用户理解和支持。

我们具备的专业电能质量测试分析仪器►Fluke434电能质量分析仪∙量测电压及电流之均方根值、峰值、奇次谐波及偶次谐波成份∙量测视在、有功、无功功率、功率因子、闪变及三平衡相不平衡∙显示电压、电流的波形及谐波频谱分布图∙瞬时电压可测至5uS以下,可达6kV∙画面更新率200Ms/per∙5组(R、S、T、N、GND)电压隔离信道、4组(R、S、T、N)电流隔离通道∙具谐波及偶次谐波量测功能∙具相位图可显示每相相位角度∙具自动记录数据功能∙具电力异常监测功能∙储存内存(50组Screen/10组data)∙内建镍氢电池,充电后可用7小时∙符合EN-50160、IEC-61000及4组自设值►Fluke41B(43)电能质量分析仪∙存储多达8个完整测量的数据∙绝缘串口可将数据发送到打印机或PC机∙表格报告自动打印∙电压、电流、功率的波形∙谱图直接显示直至31次的谐波电压、电流和功率∙光标读取各次谐波的有效值,百分比含量、频率和相位∙量测电压、电流有效值、频率、峰值、最大最小平均值、DC ∙量测视在功率和功率因数、谐波失真总量、峰值因数∙可供1000A电流探头选件以扩大量程∙FlukeviewTM软件(随附)可存储Fluke41B上的数据五、领步公司简介领步(北京)电能质量设备有限公司是一家以广大电力用户以及电力部门为服务对象的高新技术企业,兼为“电能质量研究所”,主要从事电能质量优化净化的研究开发和工程应用,是集科研、生产、销售和服务为一体的专业化高科技公司。

相关文档
最新文档