最新《应用统计学》第9章:方差分析
spss第九章方差分析PPT课件
多重比较方法
LSD法:实际上就是t检验的变形,只是在变异 和自由度的计算上利用了整个样本信息,因此仍 然存在放大一类错误的问题
Scheffe法:当各水平个案数不相等,或者想进 行复杂的比较时,用此法较为稳妥。但它相对比 较保守
S-N-K法:是运用最广泛的一种两两比较方法。 它采用Student Range 分布进行所有各组均值 间的配对比较。该方法保证在H0真正成立时总 的α 水准等于实际设定值,即控制了一类错误。
2
二,分析目的
方差分析是从数据间的差异入手,分析哪些因素 是影响数据差异的众多因素中的主要因素.
例如: 影响某农作物亩产量的因素(品种、施肥量、气候
等) 影响推销某种商品的推销额(不同的推销策略、价
格、包装方式、推销人员的形象等)
3
三,涉及的概念 (1)观察因素: 观测变量 (2)影响因素:
上述统计量一般十分相近 Pillai最保守,也较稳健,常用
50
应用举例
不同类型地区的居民收入和教育差异分析 பைடு நூலகம்多元单因素方差分析 •总体有差异,单个无差异 •通过Options进行直观比较
51
52
53
54
2020/1/11
55
43
SPSS调用程序: Analyze - General Linear Model -
Univariate
44
Part Seven 3 协方差分析
(1)目的:将无法或很难控制的因素作为协 变量,在排除协变量影响的条件下更精确 地分析控制变量对观察变量的影响.
45
(2)基本思路:
Sum of Squares
df
概率论与数理统计第九章 方差分析
第九章方差分析在生产过程和科学实验中,我们经常遇到这样的问题:影响产品产量、质量的因素很多.例如,在化工生产中,影响结果的因素有:配方、设备、温度、压力、催化剂、操作人员等.我们需要通过观察或试验来判断哪些因素对产品的产量、质量有显著的影响.方差分析(Analysis of variance)就是用来解决这类问题的一种有效方法.它是在20世纪20年代由英国统计学家费舍尔首先使用到农业试验上去的.后来发现这种方法的应用范围十分广阔,可以成功地应用在试验工作的很多方面.第一节单因素试验的方差分析在试验中,我们将要考察的指标称为试验指标,影响试验指标的条件称为因素.因素可分为两类,一类是人们可以控制的;一类是人们不能控制的.例如,原料成分、反应温度、溶液浓度等是可以控制的,而测量误差、气象条件等一般是难以控制的.以下我们所说的因素都是可控因素,因素所处的状态称为该因素的水平.如果在一项试验中只有一个因素在改变,这样的试验称为单因素试验,如果多于一个因素在改变,就称为多因素试验.本节通过实例来讨论单因素试验.1.数学模型例9.1某试验室对钢锭模进行选材试验.其方法是将试件加热到700℃后,投入到20℃的水中急冷,这样反复进行到试件断裂为止,试验次数越多,试件质量越好.试验结果如表9-1.表9-1试验的目的是确定4种生铁试件的抗热疲劳性能是否有显著差异.这里,试验的指标是钢锭模的热疲劳值,钢锭模的材质是因素,4种不同的材质表示钢锭模的4个水平,这项试验叫做4水平单因素试验.例9.2考察一种人造纤维在不同温度的水中浸泡后的缩水率,在40℃,50℃, (90)的水中分别进行4次试验.得到该种纤维在每次试验中的缩水率如表92.试问浸泡水的温度对缩水率有无显著的影响?表9-2 (%)单因素试验的一般数学模型为:因素A 有s 个水平A 1,A 2,…,A s ,在水平A j (j =1,2,…,s )下进行n j (n j ≥2)次独立试验,得到如表9-3的结果:表9-3x 11 x 12 … x 1s x 21 x 22 … x 2s … … … … 11n x 22n x … s n s xT ·1 T ·2 … T ·s1x • 2x • … s x •μ1 μ2 … μs假定:各水平A j (j =1,2,…,s )下的样本x ij ~N (j ,),i =1,2,…,n j ,j =1,2,…,s ,且相互独立. 故x ij -μj 可看成随机误差,它们是试验中无法控制的各种因素所引起的,记x ij -μj =εij ,则⎪⎩⎪⎨⎧==+=.,),0(~,,,2,1;,,2,1,2相互独立各ij ij j ij j ij N s j n i x εσεεμ (9.1) 其中μj 与σ2均为未知参数.(9.1)式称为单因素试验方差分析的数学模型.方差分析的任务是对于模型(9.1),检验s 个总体N (μ1,σ2),…,N (μs ,σ2)的均值是否相等, 即检验假设012112:;:,,,s s H H μμμσσσ===⎧⎨⎩不全相等. (9.2) 为将问题(9.2)写成便于讨论的形式,采用记号μ=11sj j j n n μ=∑,其中n =1sjj n=∑,μ表示μ1,μ2,…,μs 的加权平均,μ称为总平均.δj =μj -μ, j =1,2,…,s ,δj 表示水平Aj 下的总体平均值与总平均的差异.习惯上将δj 称为水平A j 的效应.利用这些记号,模型(9.1)可改写成:x ij =μ+δj +εij ,x ij 可分解成总平均、水平A j 的效应及随机误差三部分之和120,~(0,),.1,2,,;1,2,,.sj j j ijij j n N i n j s δεσε=⎧=⎪⎨⎪==⎩∑各相互独立 (9.1)′假设(9.2)等价于假设012112:0;:,,,s s H H δδδδδδ====⎧⎨⎩不全零.(9.2)′ 2.平方和分解我们寻找适当的统计量,对参数作假设检验.下面从平方和的分解着手,导出假设检验(9.2)′的检验统计量.记S T =211()jn sijj i xx ==-∑∑, (9.3)这里111jns ij j i x x n ===∑∑,S T 能反应全部试验数据之间的差异.又称为总变差.A j 下的样本均值 11jn j iji jx xn •==∑. (9.4)注意到2222()()()()2()()ij ij j j ij j j ij j j x x x x x x x x x x x x x x ••••••-=-+-=-+-+--,而 1111()()()()jj n n ssij j j j ij j j i j i x x x x x x x x ••••====⎡⎤--=--⎢⎥⎣⎦∑∑∑∑=11()0.j n sj ij j j j i x x x n x ••==⎛⎫--= ⎪ ⎪⎝⎭∑∑记 S E =211()jn sijj j i xx •==-∑∑, (9.5)S E 称为误差平方和;记 S A =22111()()jn ssjj j j i j xx n x x ••===-=-∑∑∑, (9.6)S A 称为因素A 的效应平方和.于是S T =S E +S A . (9.7)利用εij 可更清楚地看到S E ,S A 的含义,记111jns ij j i n εε===∑∑为随机误差的总平均,11jn j iji jn εε•==∑, j =1,2,…,s .于是S E =221111()()jjn n ssijj ij j j i j i xx εε••====-=-∑∑∑∑; (9.8)S A =2211()()ssj jj j j j j n xx n δεε••==-=+-∑∑. (9.9)平方和的分解公式(9.7)说明.总平方和分解成误差平方和与因素A 的效应平方和.(9.8)式说明S E 完全是由随机波动引起的.而(9.9)式说明S A 除随机误差外还含有各水平的效应δj ,当δj 不全为零时,S A 主要反映了这些效应的差异.若H 0成立,各水平的效应为零,S A 中也只含随机误差,因而S A 与S E 相比较相对于某一显著性水平来说不应太大.方差分析的目的是研究S A 相对于S E 有多大,若S A 比S E 显著地大,这表明各水平对指标的影响有显著差异.故需研究与S A /S E 有关的统计量.3.假设检验问题当H 0成立时,设x ij ~N (μ,σ2)(i =1,2,…,n j ;j =1,2,…,s )且相互独立,利用抽样分布的有关定理,我们有22~(1)AS s χσ-, (9.10) 22~()ES n s χσ-, (9.11)F =()(1)AEn s S s S -- ~F (s -1,n -s ). (9.12)于是,对于给定的显著性水平α(0<α<1),由于P {F ≥F α(s -1,n -s )}=α, (9.13)由此得检验问题(9.2)′的拒绝域为F ≥F α(s -1,n -s ).(9.14)由样本值计算F 的值,若F ≥F α,则拒绝H 0,即认为水平的改变对指标有显著性的影响;若F <F α,则接受原假设H 0,即认为水平的改变对指标无显著影响. 上面的分析结果可排成表9-4的形式,称为方差分析表.当F ≥F 0.05(s -1,n -s )时,称为显著, 当F ≥F 0.01(s -1,n -s )时,称为高度显著.在实际中,我们可以按以下较简便的公式来计算S T ,S A 和S E .记T ·j =1jn iji x=∑, j =1,2,…,s ,T ··=11jn sijj i x==∑∑,即有22221111222211,,.j jn n s s T ij ij j i j i s s j A j j j j j E T AT S x nx x n T T S n x nx n n S S S ••====••••==⎧=-=-⎪⎪⎪⎪=-=-⎨⎪⎪=-⎪⎪⎩∑∑∑∑∑∑ (9.15) 例9.3 如上所述,在例9.1中需检验假设H 0:μ1=μ2=μ3=μ4;H 1:μ1,μ2,μ3,μ4不全相等.给定α=0.05,完成这一假设检验.解 s =4,n 1=7,n 2=5,n 3=8,n 4=6,n =26.S T =22211(4257)69895926jn sij j i T x n ••==-=-∑∑=1957.12, S A =2221(4257)697445.4926sj j j T T n n •••=-=-∑=443.61, S E =S T -S A =1513.51.得方差分析表9-5.表9-5因 F (3,22)=2.15<F 0.05(3,22)=3.05. 则接受H 0,即认为4种生铁试样的热疲劳性无显著差异.例9.4 如上所述,在例9.2中需检验假设H 0:μ1=μ2=…=μ6; H 1:μ1,μ2,…,μ6不全相等.试取α=0.05,α=0.01,完成这一假设检验.解 s =6, n 1=n 2=…=n 6=4,n =24.S T =2211jn sij j i T x n ••==-∑∑=112.27,S A =221sj j j T T n n•••=-∑=56,S E=S T-S A=56.27.得方差分析表9-6.0.050.01由于 4.25=F0.01(5,18)>F A=3.583>F0.05(5,18)=2.77,故浸泡水的温度对缩水率有显著影响,但不能说有高度显著的影响.本节的方差分析是在这两项假设下,检验各个正态总体均值是否相等.一是正态性假设,假定数据服从正态分布;二是等方差性假设,假定各正态总体方差相等.由大数定律及中心极限定理,以及多年来的方差分析应用,知正态性和等方差性这两项假设是合理的.第二节双因素试验的方差分析进行某一项试验,当影响指标的因素不是一个而是多个时,要分析各因素的作用是否显著,就要用到多因素的方差分析.本节就两个因素的方差分析作一简介.当有两个因素时,除每个因素的影响之外,还有这两个因素的搭配问题.如表9-7中的两组试验结果,都有两个因素A和B,每个因素取两个水平.表9-7(b)表9-7(a)中,无论B在什么水平(B1还是B2),水平A2下的结果总比A1下的高20;同样地,无论A是什么水平,B2下的结果总比B1下的高40.这说明A和B单独地各自影响结果,互相之间没有作用.表9-7(b)中,当B为B1时,A2下的结果比A1的高,而且当B为B2时,A1下的结果比A2的高;类似地,当A为A1时,B2下的结果比B1的高70,而A为A2时,B2下的结果比B1的高30.这表明A的作用与B所取的水平有关,而B的作用也与A所取的水平有关.即A 和B不仅各自对结果有影响,而且它们的搭配方式也有影响.我们把这种影响称作因素A和B的交互作用,记作A×B.在双因素试验的方差分析中,我们不仅要检验水平A和B的作用,还要检验它们的交互作用.1.双因素等重复试验的方差分析设有两个因素A,B作用于试验的指标,因素A有r个水平A1,A2,…,Ar,因素B有s个水平B1,B2,…,B s,现对因素A,B的水平的每对组合(A i,B j),i=1,2,…,r;j=1,2,…,s都作t(t≥2)次试验(称为等重复试验),得到如表9-8的结果:表9-8设x ijk ~N (ij ,), i =1,2,…,r ; j =1,2,…,s ; k =1,2,…,t ,各x ijk 独立.这里ij ,均为未知参数.或写为⎪⎩⎪⎨⎧===+=.,,,2,1),,0(~,,,2,1;,,2,1,2相互独立各ijkijk ijk ij ijk t k N s j r j x εσεεμ (9.16) 记μ=111,r s ij i j rs μ==∑∑, 11si ij j s μμ•==∑, i =1,2,…,r ,11rj ij i r μμ•==∑, j =1,2,…,s ,,i i αμμ•=-, i =1,2,…,r , j j βμμ•=-, j =1,2,…,s ,ij ij i j γμμμμ••=--+.于是 μij =μ+αi +βj +γij . (9.17)称μ为总平均,αi 为水平A i 的效应,βj 为水平B j 的效应,γij 为水平A i 和水平B j 的交互效应,这是由A i ,B j 搭配起来联合作用而引起的.易知1rii α=∑=0,1sjj β=∑=0,1riji γ=∑=0, j =1,2,…,s ,1sijj γ=∑=0, i =1,2,…,r ,这样(9.16)式可写成⎪⎪⎪⎩⎪⎪⎪⎨⎧=======++++=∑∑∑∑====.,,,2,1;,,2,1;,,2,1),,0(~,0,0,0,0,21111相互独立各ijkijk s j ij r i ij s j j r i i ijk ij j i ijk t k s j r i N x εσεγγβαεγβαμ (9.18) 其中μ,αi ,βj ,γij 及σ2都为未知参数.(9.18)式就是我们所要研究的双因素试验方差分析的数学模型.我们要检验因素A ,B 及交互作用A ×B 是否显著.要检验以下3个假设:⎩⎨⎧=====.,,:,0:21112101不全为零r r H H αααααα ⎩⎨⎧=====.,,:,0:21122102不全为零s s H H ββββββ ⎩⎨⎧=====.,,:,0:121113121103不全为零rs rs H H γγγγγγ 类似于单因素情况,对这些问题的检验方法也是建立在平方和分解上的.记1111r s tijk i j k x x rst ====∑∑∑, 11tij ijk k x x t •==∑, i =1,2,…,r ; j =1,2,…,s ,111s ti ijk j k x x st ••===∑∑, i =1,2,…,r , 111r tj ijk i k x x rt ••===∑∑, j =1,2,…,s , S T =2111()rstijk i j k x x ===-∑∑∑. 不难验证,,,i j ij x x x x •••••分别是μ,μi ·,μ·j ,μij 的无偏估计.由 ()()()()ijk ijk ij i j ij i j x x x x x x x x x x x x ••••••••••-=-+-+-+--+,1≤i ≤r ,1≤j ≤s ,1≤k ≤t得平方和的分解式:S T =S E +S A +S B +S A ×B , (9.19)其中S E =2111()rstijkij i j k xx •===-∑∑∑,S A =1()2ri i stxx ••=-∑,S B =21()sj j rtxx ••=-∑,S A ×B =211()rsij i j i j txx x x •••••==--+∑∑.S E 称为误差平方和,S A ,S B 分别称为因素A ,B 的效应平方和,SA ×B 称为A ,B 交互效应平方和.当H 01:α1=α2=…=αr =0为真时,F A =[](1)(1)A ES S r rs t -- ~F (r -1,rs (t -1));当假设H 02为真时,F B =[](1)(1)BES S s rs t --~F (s -1,rs (t -1));当假设H 03为真时,F A ×B =[](1)(1)(1)A BES S r s rs t ⨯--- ~F ((r -1)(s -1),rs (t -1)).当给定显著性水平α后,假设H 01,H 02,H 03的拒绝域分别为:(1,(1));(1,(1));(1)(1),(1)).A B A BF F r rs t F F s rs t F F r s rs t ααα⨯≥--⎧⎪≥--⎨⎪≥---⎩ (9.20) 经过上面的分析和计算,可得出双因素试验的方差分析表9-9.在实际中,与单因素方差分析类似可按以下较简便的公式来计算S T ,S A ,S B ,S A ×B ,S E . 记 T ···=111r s tijki j k x===∑∑∑,T ij ·=1tijkk x=∑, i =1,2,…,r ; j =1,2,…,s ,T i ··=11stijkj k x==∑∑, i =1,2,…,r ,T ·j ·=11r tijki k x==∑∑, j =1,2,…,s ,即有221112212212211,1,1,1,.r s tT ijk i j k r A i i s B j j r s A B ij A B i j E T A B A B T S x rst T S T st rst T S T rt rst T S T S S t rst S S S S S •••===•••••=•••••=•••⨯•==⨯⎧=-⎪⎪⎪=-⎪⎪⎪⎨=-⎪⎪⎪=---⎪⎪⎪=---⎩∑∑∑∑∑∑∑ (9.21) 例9.5 用不同的生产方法(不同的硫化时间和不同的加速剂)制造的硬橡胶的抗牵拉强度(以kg ·cm -2为单位)的观察数据如表9-10所示.试在显著水平0.10下分析不同的硫化时间(A ),加速剂(B )以及它们的交互作用(A ×B )对抗牵拉强度有无显著影响.表9-10010203r =s =3, t =2, T ···,T ij ·,T i ··,T ·j ·的计算如表9-11.表9-11S T =22111,r s tijki j k T xrst•••===-∑∑∑=178.44, S A =2211r i i T T st rst•••••=-∑=15.44,S B =2211s j j T T rt rst •••••=-∑=30.11,S A ×B =22111r s ij A B i j T T S S t rst••••==---∑∑ =2.89,S E =S T -S A -S B -S A ×B =130,得方差分析表9-12.由于F 0.10(2,9)=3.01>F A ,F 0.10(2,9)>F B ,F 0.10(4,9)=2.69>F A ×B ,因而接受假设H 01,H 02,H 03,即硫化时间、加速剂以及它们的交互作用对硬橡胶的抗牵拉强度的影响不显著.2.双因素无重复试验的方差分析在双因素试验中,如果对每一对水平的组合(A i ,B j )只做一次试验,即不重复试验,所得结果如表9-13.这时ij x •=x ijk ,S E =0,S E 的自由度为0,故不能利用双因素等重复试验中的公式进行方差分析.但是,如果我们认为A ,B 两因素无交互作用,或已知交互作用对试验指标影响很小,则可将S A ×B 取作S E ,仍可利用等重复的双因素试验对因素A ,B 进行方差分析.对这种情况下的数学模型及统计分析表示如下:由(9.18)式,112,0,0,~(0,),1,2,,;1,2,,,.ij i j ij r si j i j ij ijk x N i r j s μαβεαβεσε===+++⎧⎪⎪==⎪⎨⎪==⎪⎪⎩∑∑各相互独立 (9.22)要检验的假设有以下两个:⎩⎨⎧=====.,,:,0:21112101不全为零r r H H αααααα ⎩⎨⎧=====.,,:,0:21122102不全为零s s H H ββββββ 记 1111111,,,r s s rij i ij j ij i j j i x x x x x x rs s r ••=======∑∑∑∑平方和分解公式为:S T =S A +S B +S E , (9.23)其中 22111(),(),rssT ijA i i j j S xx S s x x •====-=-∑∑∑22111(),(),srsB j E ij i j j i j S r x x S x x x x •••====-=--+∑∑∑分别为总平方和、因素A ,B 的效应平方和和误差平方和.取显著性水平为α,当H 01成立时,F A =(1)AEs S S - ~F ((r -1),(r -1)(s -1)), H 01拒绝域为F A ≥F α((r -1),(r -1)(s -1)). (9.24)当H 02成立时,F B =(1)BEr S S - ~F ((s -1),(r -1)(s -1)), H 02拒绝域为F B ≥F α((s -1),(r -1)(s -1)). (9.25)得方差分析表9-14.例9.6 测试某种钢不同含铜量在各种温度下的冲击值(单位:kg ·m ·cm ),表9-15列出了试验的数据(冲击值),问试验温度、含铜量对钢的冲击值的影响是否显著?(α=0.01)解 由已知,r =4,s =3,需检验假设H 01,H 02,经计算得方差分析表9-16.0.01A 01F 0.01(2,6)=10.92<F B ,拒绝H 02.检验结果表明,试验温度、含铜量对钢冲击值的影响是显著的.第三节 正交试验设计及其方差分析在工农业生产和科学实验中,为改革旧工艺,寻求最优生产条件等,经常要做许多试验,而影响这些试验结果的因素很多,我们把含有两个以上因素的试验称为多因素试验.前两节讨论的单因素试验和双因素试验均属于全面试验(即每一个因素的各种水平的相互搭配都要进行试验),多因素试验由于要考虑的因素较多,当每个因素的水平数较大时,若进行全面试验,则试验次数将会更大.因此,对于多因素试验,存在一个如何安排好试验的问题.正交试验设计是研究和处理多因素试验的一种科学方法,它利用一套现存规格化的表——正交表,来安排试验,通过少量的试验,获得满意的试验结果.1.正交试验设计的基本方法正交试验设计包含两个内容:(1)怎样安排试验方案;(2)如何分析试验结果.先介绍正交表.正交表是预先编制好的一种表格.比如表9-17即为正交表L4(23),其中字母L表示正交,它的3个数字有3种不同的含义:(1) L4(23)表的结构:有4行、3列,表中出现2个反映水平的数码1,2.列数↓L4 (23)↑↑行数水平数(2)L4(23)表的用法:做4次试验,最多可安排2水平的因素3个.最多能安排的因素数↓L4(23)↑↑试验次数水平数(3) L4(23)表的效率:3个2水平的因素.它的全面试验数为23=8次,使用正交表只需从8次试验中选出4次来做试验,效率是高的.L4(23)↑↑实际试验数理论上的试验数正交表的特点:(1)表中任一列,不同数字出现的次数相同.如正交表L4(23)中,数字1,2在每列中均出现2次.(2)表中任两列,其横向形成的有序数对出现的次数相同.如表L4(23)中任意两列,数字1,2间的搭配是均衡的.凡满足上述两性质的表都称为正交表(Orthogonal table).常用的正交表有L9(34),L8(27),L16(45)等,见附表.用正交表来安排试验的方法,就叫正交试验设计.一般正交表L p(n m)中,p=m(n-1)+1.下面通过实例来说明如何用正交表来安排试验.例9.7 提高某化工产品转化率的试验.某种化工产品的转化率可能与反应温度A,反应时间B,某两种原料之配比C和真空度D有关.为了寻找最优的生产条件,因此考虑对A,B,C,D这4个因素进行试验.根据以往的经验,确定各个因素的3个不同水平,如表9-18所示.表9-18分析各因素对产品的转化率是否产生显著影响,并指出最好生产条件.解本题是4因素3水平,选用正交表L9(34).将各因素的诸水平所表示的实际状态或条件代入正交表中,得到9个试验方案,如表9-20所示.表9-20从表9-20看出,第一行是1号试验,其试验条件是:反应温度为60℃,反应时间为2.5小时,原料配比为1.1∶1,真空度为500毫米汞柱,记作A1B1C1D1.依此类推,第9号试验条件是A3B3C2D1.由此可见,因素和水平可以任意排,但一经排定,试验条件也就完全确定.按正交试验表9-20安排试验,试验的结果依次记于试验方案右侧,见表9-21.2.试验结果的直观分析正交试验设计的直观分析就是要通过计算,将各因素、水平对试验结果指标的影响大小,通过极差分析,综合比较,以确定最优化试验方案的方法.有时也称为极差分析法.例9.7中试验结果转化率列在表9-21中,在9次试验中,以第9次试验的指标86为最高,其生产条件是A 3B 3C 2D 1.由于全面搭配试验有81种,现只做了9次.9次试验中最好的结果是否一定是全面搭配试验中最好的结果呢?还需进一步分析. (1) 极差计算在代表因素A 的表9-21的第1列中,将与水平“1”相对应的第1,2,3号3个试验结果相加,记作T 11,求得T 11=151.同样,将第1列中与水平“2”对应的第4,5,6号试验结果相加,记作T 21,求得T 21=183.一般地,定义T ij 为表9-21的第j 列中,与水平i 对应的各次试验结果之和(i =1,2,3; j =1,2,3,4).记T 为9次试验结果的总和,R j 为第j 列的3个T ij 中最大值与最小值之差,称为极差.显然T =31iji T=∑,j =1,2,3,4.此处T 11大致反映了A 1对试验结果的影响,T 21大致反映了A 2对试验结果的影响, T 31大致反映了A 3对试验结果的影响,T 12,T 22和T 32分别反映了B 1,B 2,B 3对试验结果的影响, T 13,T 23和T 33分别反映了C 1,C 2,C 3对试验结果的影响, T 14,T 24和T 34分别反映了D 1,D 2,D 3对试验结果的影响.R j 反映了第j 列因素的水平改变对试验结果的影响大小,R j 越大反映第j 列因素影响越大.上述结果列表9-22.(2) 极差分析(Analysis of range)由极差大小顺序排出因素的主次顺序:主→次 B ;A 、D ;C这里,R j 值相近的两因素间用“、”号隔开,而R j 值相差较大的两因素间用“;”号隔开.由此看出,特别要求在生产过程中控制好因素B ,即反应时间.其次是要考虑因素A 和D ,即要控制好反应温度和真空度.至于原料配比就不那么重要了.选择较好的因素水平搭配与所要求的指标有关.若要求指标越大越好,则应选取指标大的水平.反之,若希望指标越小越好,应选取指标小的水平.例9.7中,希望转化率越高越好,所以应在第1列选最大的T 31=185;即取水平A 3,同理可选B 3C 1D 3.故例9.7中较好的因素水平搭配是A 3B 3C 1D 3.例9.8 某试验被考察的因素有5个:A ,B ,C ,D ,E .每个因素有两个水平.选用正交表L 8(27),现分别把A ,B ,C ,D ,E 安排在表L 8(27)的第1,2,4,5,7列上,空出第3,6列仿例9.7做法,按方案试验.记下试验结果,进行极差计算,得表9-23.试验目的要找出试验结果最小的工艺条件及因素影响的主次顺序.从表9-23的极差R j的大小顺序排出因素的主次顺序为主 → 次 A 、B ;D ;C 、E最优工艺条件为A 2B 1C 1D 2E 1.表9-23中因没有安排因素而空出了第3,6列.从理论上说,这两列的极差R j 应为0,但因存有随机误差,这两个空列的极差值实际上是相当小的.3.方差分析正交试验设计的极差分析简便易行,计算量小,也较直观,但极差分析精度较差,判断因素的作用时缺乏一个定量的标准.这些问题要用方差分析解决.设有一试验,使用正交表L p (n m ),试验的p 个结果为y 1,y 2,…,y p ,记T =1pi i y =∑, y =11p i i Ty p p ==∑,S T =21()pii yy =-∑为试验的p 个结果的总变差;S j =222111nn ij ij i i T T T r T r p r p ==⎛⎫-=- ⎪⎝⎭∑∑ 为第j 列上安排因素的变差平方和,其中r =p/n .可证明S T =1mij S=∑即总变差为各列变差平方和之和,且S T 的自由度为p -1,S j 的自由度为n -1.当正交表的所有列没被排满因素时,即有空列时,所有空列的S j 之和就是误差的变差平方和S e ,这时S e 的自由度f e 也为这些空列自由度之和.当正交表的所有列都排有因素时,即无空列时,取S j 中的最小值作为误差的变差平方和S e .从以上分析知,在使用正交表L p (n m )的正交试验方差分析中,对正交表所安排的因素选用的统计量为:F =1jeeS S n f -.当因素作用不显著时,F ~F (n -1,f e ),其中第j 列安排的是被检因素.在实际应用时,先求出各列的S j /(n -1)及S e /f e ,若某个S j /(n -1)比S e /f e 还小时,则这第j 列就可当作误差列并入S e 中去,这样使误差S e 的自由度增大,在作F 检验时会更灵敏,将所有可当作误差列的S j 全并入S e 后得新的误差变差平方和,记为S e Δ,其相应的自由度为f e Δ,这时选用统计量F =1je eS S n f - ~F (n -1,f e Δ).例9.9 对例9.8的表9-23作方差分析.解 由表9-23的最后一行的极差值R j ,利用公式S j =2211n ij i T T r p=-∑,得表9-24.表9-24表9-24中第3,6列为空列,因此S e =S 3+S 6=1.250,其中f e =1+1=2,所以S e /f e =0.625,而第7列的S 7=0.125,S 7/f 7=0.1251=0.125比S e /f e 小,故将它并入误差. S e Δ=S e +S 7=1.375,f e Δ=3.整理成方差分析表9-25.eeS fC 3.125 1 3.125 6.818D 6.125 1 6.125 13.364E Δ 0.125 1 0.125 e 1.1250 2 0.625 e Δ 1.37530.458由于F 0.05(1,3)=10.13, F 0.01(1,3)=34.12,故因素A ,B 作用高度显著,因素C 作用不显著,因素D 作用显著,这与前面极差分析的结果是一致的.F 检验法要求选取S e ,且希望f e 要大,故在安排试验时,适当留出些空列会有好处的.前面的方差分析中,讨论因素A 和B 的交互作用A ×B .这类交互作用在正交试验设计中同样有表现,即一个因素A 的水平对试验结果指标的影响同另一个因素B 的水平选取有关.当试验考虑交互作用时,也可用前面讲的基本方法来处理.本章就不再介绍了.小 结本章介绍了数理统计的基本方法之一:方差分析.在生产实践中,试验结果往往要受到一种或多种因素的影响.方差分析就是通过对试验数据进行分析,检验方差相同的多个正态总体的均值是否相等,用以判断各因素对试验结果的影响是否显著.方差分析按影响试验结果的因素的个数分为单因素方差分析、双因素方差分析和多因素方差分析.1. 单因素方差分析的情况.试验数据总是参差不齐,我们用总偏差平方和S T =211()jn sijj i xx ==-∑∑来度量数据间的离散程度.将S T 分解为试验随机误差的平方和(S E )与因素A 的偏差平方和(S A )之和.若S A 比S E 大得较多,则有理由认为因素的各个水平对应的试验结果有显著差异,从而拒绝因素各水平对应的正态总体的均值相等这一原假设.这就是单因素方差分析法的基本思想.2. 双因素方差分析的基本思想类似于单因素方差分析.但双因素试验的方差分析中,我们不仅要检验因素A 和B 各自的作用,还要检验它们之间的交互作用.3. 正交试验设计及其方差分析.根据因素的个数及各个因素的水平个数,选取适当的正交表并按表进行试验.我们通过对这少数的试验数据进行分析,推断出各因素对试验结果影响的大小.对正交试验结果的分析,通常采用两种方法,一种是直观分析法(极差分析法),它通过对各因素极差R j 的排序来确定各因素对试验结果影响的大小.一种是方差分析法,它的基本思想类似于双因素的方差分析. 重要术语及主题单因素试验方差分析的数学模型 S T =S E +S A单因素方差分析表 双因素方差分析表 正交试验表极 差分析表习题九1.灯泡厂用4种不同的材料制成灯丝,检验灯线材料这一因素对灯泡寿命的影响.若灯泡寿命服从正态分布,不同材料的灯丝制成的灯泡寿命的方差相同,试根据表中试验结果记录,在显著性水平0.05下检验灯泡寿命是否因灯丝材料不同而有显著差异?2.一个年级有三个小班,他们进行了一次数学考试,现从各个班级随机地抽取了一些学生,试在显著性水平0.05下检验各班级的平均分数有无显著差异.设各个总体服从正态分布,且方差相等.4.为了解3种不同配比的饲料对仔猪生长影响的差异,对3种不同品种的猪各选3头进行试验,分别测得其3个月间体重增加量如下表所示,取显著性水平α=0.05,试分析不同饲料与不同品种对猪的生长有无显著影响?假定其体重增长量服从正态分布,且各种配比的方5.研究氯乙醇胶在各种硫化系统下的性能(油体膨胀绝对值越小越好)需要考察补强剂(A)、防老剂(B)、硫化系统(C)3个因素(各取3个水平),根据专业理论经验,交互4(2) 给定α=0.05,作方差分析与(1)比较.6.某农科站进行早稻品种试验(产量越高越好),需考察品种(A),施氮肥量(B),氮、磷、钾肥比例(C),插植规格(D)4个因素,根据专业理论和经验,交互作用全忽略,早(1) 试作出最优生产条件的直观分析,并对4因素排出主次关系.(2) 给定α=0.05,作方差分析,与(1)比较.。
《方差分析ANOVA》课件
使用统计方法进行假设检验,确定因素对 均值的影响是否显著。
方差分析的应用领域
1 医学研究
2 市场调查
3 生物统计学
方差分析可用于比较 不同治疗方法的疗效, 评估药物的效果。
方差分析可帮助分析 不同广告策略的效果, 确定最佳市场推广方 案。
方差分析可应用于遗 传学研究、环境影响 评估等领域,探究不 同因素对生物现象的 影响。
方差分析中使用假设检验来确定样本均值之 间是否存在显著差异,从而判断因素的影响 程度。
统计软件的应用
方差分析通常使用统计软件进行计算和分析, 如SPSS、R、Python等工具。
单因素方差分析的步骤与示例
1
确定假设
设定原假设和备择假设,明确需要
收集数据
2
比较的样本组与因素。
采集各个样本组的数据,确保样本
方差分析的局限性与注意事项
局限性
方差分析假设样本来自正态分布总体,对离群 值敏感,样本不平衡可能导致结果不准确。
注意事项
在进行方差分析时,需要注意样本的选择、数 据的收集和处理,以及分析结果的有效解释。
总结与要点
1 方差分析
2Байду номын сангаас单因素与多因素
方差分析是一种统计 方法,用于比较多个 样本之间的均值差异。
方差分析的定义
方差分析是一种统计方法,用于比较三个或三个以上样本之间的均值差异。
方差分析的背景
方差分析起源于20世纪初的农学研究,用于比较不同农作物种植方法的效果。
方差分析的基本原理
方差分析基本原理
方差分析基于样本数据的方差和均值之间的 关系,通过计算方差的比值来判断均值是否 存在显著差异。
假设检验
数理统计课件-方差分析(zijiyong)
计算各水平样本均值: ①假定从第i个总体中抽取一个容量为ni的简单随机样本, 第i个总体的样本均值为该样本的全部观察值总和除 以观察值的个数 ni ②计算公式为
x
xi
j 1
ij
ni
(i 1,2,, k )
式中: ni为第 i 个总体的样本观察值个数 xij 为第 i 个总体的第 j 个观察值
通过对数据 误差来源的 分析来判断 不同总体的 均值是否相 等
四、方差分析的基本思想和原理
(一)两类误差 1. 组内误差 组内误差:在因素的同一水平(同一个总体)下,样本的各
2.
观察值之间的差异 比如,同一种颜色的饮料在不同超市上的销售量是不同的 不同超市销售量的差异可以看成是随机因素的影响,或者 说是由于抽样的随机性所造成的,称为随机误差 组间误差 组间误差:在因素的不同水平(不同总体)下,各观察值之 间的差异 比如,同一家超市,不同颜色饮料的销售量也是不同的 这种差异可能是由于抽样的随机性所造成的,也可能是由 于颜色本身所造成的,后者所形成的误差是由系统性因素 造成的,称为系统误差
然后加以比较进行统 计判断,得出结论。
ANOVA 由英国统 计学家R.A.Fisher首 创,为纪念Fisher, 以F命名,故方差分析 又称 F 检验 (F test)。
注:方差分析(Analysis of Variance,简称ANOVA),又称 “变异数分析”或“F检验”.
学习目标:
本章的主要学习目标是要求学生在理解方差分 析基本思想的基础上,掌握单因素和双因素方差分 析的应用原理;重点是要学会方差分析的操作与应 用。
SST=SSE+SSA
实例
超市 (j)
1 2 3 4 5 合计
方差分析的应用范文
方差分析的应用范文方差分析(Analysis of Variance,ANOVA)是一种统计分析方法,用于比较两个或多个样本均值之间的差异是否显著。
它适用于分析一个或多个因素对一个或多个连续型变量的影响,常用于实验设计、医学研究、社会科学等领域。
下面将介绍方差分析的几个常见应用。
1.实验设计与比较:方差分析可用于检验不同处理条件下的实验结果是否存在显著差异。
例如,在农业领域中,可以通过方差分析比较不同施肥方法对作物产量的影响。
在医学研究中,可以通过方差分析比较不同治疗方法对疾病恢复的影响。
方差分析可以帮助科学家确定最佳的处理方法或药物配方。
2.因素分析与交互作用研究:当有多个因素(例如不同药物、不同剂量和不同性别)对一个变量(例如血压)产生影响时,方差分析可以帮助确定每个因素的独立影响和交互作用。
通过方差分析,可以确定哪些因素对变量有显著影响,以及不同因素之间是否存在交互作用。
3.品质控制与质量改进:在生产过程中,方差分析常用于评估不同因素对产品质量的影响。
例如,在制造业中,可以使用方差分析比较不同生产线对产品尺寸的影响,以便确定最佳的生产参数。
通过方差分析,企业可以识别引起产品不一致性的主要因素,并采取相应的措施进行质量改进。
4.效应分析与调查研究:方差分析可用于探索不同变量对其中一种效应或变量的影响程度。
例如,在市场调研中,可以使用方差分析比较不同广告媒介对消费者购买决策的影响。
通过方差分析,可以确定哪种广告媒介对消费者的购买意向产生更大的影响,从而指导市场策略的制定。
5.群体间差异研究:方差分析可用于比较不同群体之间的差异。
例如,在教育研究中,可以使用方差分析比较不同年级学生的平均分数是否存在显著差异。
通过方差分析,可以确定不同群体之间存在的差异,从而帮助制定个性化的教育方案。
需要注意的是,方差分析只能确定样本均值之间是否存在显著差异,而不能推断原因和因果关系。
此外,在运用方差分析时,还需要满足一些假设条件,如正态性、方差齐性和独立性等。
应用统计学(第九章 协方差分析)
从而求得相应的均方; 两个变量的总乘积和与自由度也可按变异来源进行剖分
而获得相应的均积; 把两个变量的总乘积和与自由度按变异来源进行剖分并
获得获得相应均积的方法称为协方差分析。
在随机模型的方差分析中,根据均方MS和期望均方的关 系,可以得到不同变异来源的方差组分的估计值;
b* SP / SP
e
ex
回归关系的显著性可用F检验或t检验,这时误差项目回
归自由度dfeU=1,回归平方和:
U SS b*SP SP2 / SP
e
ey
e
e
ex
误差项离回归平方和:
Q SS U SS SP2 / SS
e
ey
Байду номын сангаасey
ey
e
ex
离回归自由度:
df df df k(n 1) 1
矫正平均数的计算
yi.(xx..) yi . by / x ( xi . x..)
矫正平均数的多重比较
LSD0.05=0.8769, LSD0.01 =1.1718 食欲添加剂配方1、2、3号与对照比较, 其矫正50 日 龄平均重间均存在极显著的差异,配方1、2、3号的矫正50 日龄平均重均极显著高于对照。
回归关系的显著性检验:
变异来源 df 误 差回 归 1 误差离回归 43 误 差 总 和 44
SS 47.49 37.59 85.08
MS 47.49 0.87
F 54.32**
F0.01 7.255
F检验表明,误差项回归关系极显著,表明哺乳仔猪 50 日龄重与初生重间存在极显著的线性回归关系
人大《统计学》第九章 方差分析
(4)计算组间均方和组内均方及检验统计量的样本值
SSA MSA r 1 SSE MSE nr MSA F MSE
24
§2.2 分析步骤
4.设定检验的显著性水平 并确定临界值 根据事先设定的显著性水平 ,在F分布表中查找分子自 由度为 df1 r 1 、分母自由度为 df 2 n r 所对应的临界值 F r 1 n r 。 , 5.比较理论值(临界值)与实际值大小,进行决策
i 1 j 1
17
§2.2 分析步骤
下式可以用于验证计算的正确性: 自由度
SST SSA SSE
SST的自由度为n-1; SSA的自由度为r-1; SSE的自由度为n-r。
n=rm为总观测值个数 r 为因素水平数 m为每个水平下的观测值个数
18
§2.2 分析步骤
组间均方MSA计算公式
22分析步骤分析步骤4计算组间均方和组内均方及检验统计量的样本值ssamsar?ssemsenr?msafmse根据事先设定的显著性水平在f分布表中查找分子自由度为005分母自由度为3所对应的临界值在?之间显然因此拒绝原假设即?不成立表明该新药在各个不同年龄段水平下的药效存在显著差异即年龄是影响该新药药效的一个显著因素
29
H0 : 1 2 3 4
§2.2 分析步骤
(2)计算所有因素水平下全部样本的总均值
1 r 1 x xi 49.6 40.5 40 34.6 41.175 r i 1 4
(3)计算误差平方和
SST xij x 1311.775
组间平方和 SSA MSA 自由度 r 1
组内均方MSE计算公式
MSE 组内平方和 SSE 自由度 nr
方差分析表
方差分析表第一篇:方差分析表介绍1.1方差的概念方差是描述一组数据的离散程度的统计学指标,是指各个观测值与均值之间差异的平方和除以观测值总数的结果。
方差越大,表示数据更加分散或离散;方差越小,表示数据更加集中。
1.2方差分析方差分析(ANOVA)是一种统计方法,用于确定两个或多个总体是否存在差异。
它基于数据中不同因素对总体差异的贡献程度。
1.3方差分析表的构成方差分析表是方差分析的主要输出结果,它包含以下几部分:①来源:指方差来源,包括因素(如处理因素)、误差(如随机误差)等。
②自由度:指该来源的自由度,表示该来源可自由变动的程度。
③平方和:指该来源的平方和,即各数据与平均数之差平方和。
④均方:指该来源的均方,即平方和与自由度的商。
⑤F值:指该来源的F值,F值是ANOVA分析中最重要的统计量之一,它用于检验各组间差异是否显著。
⑥P值:指该来源的显著性水平,即F检验的P值。
第二篇:方差分析表的应用2.1单因素方差分析表单因素方差分析表适用于只考虑一个因素对数据变化的影响。
其构成如下:①来源:只有一个因素(例如处理因素)。
②自由度:总自由度、因素自由度、误差自由度等。
③平方和:总平方和(SS_T)、因素平方和(SS_F)和误差平方和(SS_E)等。
④均方:因素均方(MS_F),误差均方(MS_E)、总均方(MS_T)等。
⑤F值:F值等于因素均方除以误差均方。
⑥P值:显著性水平,反映差异的显著性。
在单因素方差分析中,P值越小,则差异越显著。
2.2多因素方差分析表多因素方差分析适用于考虑两个或两个以上因素对数据变化的影响。
其构成如下:①来源:包括两个或两个以上的因素,以及交互项等。
②自由度:总自由度、因素自由度、交互自由度、误差自由度等。
③平方和:总平方和(SS_T)、因素平方和(SS_F)、交互平方和(SS_I)、误差平方和(SS_E)等。
④均方:因素均方(MS_F)、交互均方(MS_I)、误差均方(MS_E)、总均方(MS_T)等。
应用统计学方差分析课件
06
方差分析案例分析
案例一:不同品种水稻产量影响因素分析
总结词
通过对方差分析方法的应用,确定不同 品种水稻产量影响因素,为优化水稻种 植提供参考。
VS
详细描述
首先,收集不同品种水稻的产量数据,并 记录相关影响因素,如种植环境、施肥量 、灌溉方式等;然后,利用方差分析对这 些影响因素进行显著性检验,以确定对水 稻产量的主要影响因素及其影响程度;最 后,根据分析结果,提出优化水稻种植的 措施建议。
解读结果
整理并检查数据,确保 数据质量。
确定要比较的组别和要 检验的假设。
包括组别、样本数量、 平均值和方差等。
利用方差分析表中的数 据,计算F值并确定P值 。
根据P值和显著性水平, 判断是否拒绝原假设。
02
方差分析的数学模型与理论
数学模型
01
02
03
线性模型
方差分析基于线性模型, 将数据分为组间和组内两 部分,并假设这两部分是 独立且来自同一总体。
它是一种非常有用的工具,在科学、工程、商业等领域中,可以用于研究不同分组之间的差异,以及 确定这些差异是否显著。
方差分析的假设条件
01 每个样本都来自正态分布的总体。 02 每个总体方差都是相等的。 03 每个样本是随机独立抽取的。
方差分析的步骤
准备数据
建立假设
计算单因素方差分 析表
进行方差分析
案例三:不同品牌汽车油耗对比分析
总结词
通过应用方差分析方法,对比分析不同品牌 汽车的油耗性能,为消费者购车提供参考。
详细描述
收集市场上不同品牌汽车的油耗数据,并记 录相关车型信息,如排量、车重、风阻等; 利用方差分析对不同品牌汽车的油耗进行显 著性检验,分析各品牌汽车油耗性能的差异 程度;根据分析结果,为消费者提供购车参 考和建议。
数理统计第九章方差分析
令
Xi
1 s
s j1
Xij,
i 1, 2,,r,
Xj
1 r
r i1
Xij,
i 1, 2,,s
1s r
1r
1s
Xrsj1i1Xijri1Xi sj1Xj
现在是25页\一共有51页\编辑于星期六
则总离差
rs
ST (XijX)2 i1 j1
rs
[(XijXi Xj X)(Xi X)(Xj X)]2 i1 j1
(XijXi)2
i1 j
组间离差平方和
r
SA ni(Xi X)2 i1
现在是9页\一共有51页\编辑于星期六
离差平方和
r ni
r ni
ST (XijX)2 (XijXiXiX)2
i1j1
i1j1
SeSA
(9.1)
四、H0的检验
令 X i j i i,j j 1 ,2 , ,n i,i 1 ,2 , ,r
概论
在生产及科研工作中,人们常常需要了解哪些因 素对试验结果有显著作用,哪些因素没有显著作用。
例如:施肥品种、施肥量、种子品种、下种量、土 质、水份等诸因素中哪些对小麦的产量有显著影响,哪 些又没有。
这类问题可通过方差分析的方法予以解决。
现在是1页\一共有51页\编辑于星期六
§9﹒1单因子方差分析
问不同的促进剂,不同份量的氧化锌 分别对定强有无显著性影响?
此例中有A、B二个因子,因子A有 三个水平A1,A2,A3;因子B有四个水平 B1,B2,B3,B4 ,在各种组合水平Ai Bj上 作一次试验获得一个观测值。问因子A、
B分别对试验结果有无显著性影响
现在是22页\一共有51页\编辑于星期六
方差分析_精品文档
2021/5/27
44
2.2 组内观测次数相等的方差分析 K组处理中,每一处理皆有n个观测值,其方
差分析方法同前。
表5. 组内观测次数相等的单因素方差分析
2021/5/27
45
例2.测定东北、内蒙古、河北、安徽、贵 州五个地区冬季针矛的长度,每个地区
随机抽取4个样本,测定结果如表示,试 比较各地区针毛长度差异显著性。
27
其中平均数差数标准误计算公式:
s x1x2
s12s22 n1 n2
se2(n11n12)
当n1=n2时,sx1x2
2se2 n
s e 2 为处理内误差方差,n为每一处理观察次数。
2021/5/27
28
例1. 表1. 氨氮含量(ppm)
2021/5/27
29
根据例1, s 2se2 2*9.112.13
2021/5/27
9
1.4.1 平方和的分解 总平方和=处理间平方和+处理内平方和
SSTSSt SSe
k
S S T 1
n(x x )2x 2 ( x )2x 2 T 2
1
k n
k n
令 C T 2 ,
kn
SST x2C
SSt =
Ti2 C n
SSe SSTSSt
2021/5/27
10
2021/5/27
39
例如,分析不同施肥量是否给农作物产
量带来显著影响,考察地区差异是否影 响妇女的生育率,研究学历对工资收入 的影响等。这些问题都可以通过单因素 方差分析得到答案。
2021/5/27
40
• 单因素方差分析的第一步是明确观测变 量和控制变量。例如,上述问题中的观
09统计学方差分析-38页精品文档
Sig.
Pቤተ መጻሕፍቲ ባይዱF>Fa)
Within Groups
(误差)
Total(总和)
SSE SST
n-p MSE=SSE/(n-p) n-1
这里n 为观测值数目p 为水平数,Fa 满足 P(F>Fa)=a.这是自由度为 p-1 和n-p 的 F-分布的概率
Test of Homogeneity of Variances (A robust test)
Levene Statistic df1 df2 Sig.
.024
3 15 .995
这是SPSS输出之一,明白即可,不用记住
F (3,15)分布密度图 F0.05(3,15) 面积=0.05
SPSS操作
Compare Means→One Way ANOVA: fodder(饲料) → Factor Weight(重量) → Dependent List Options:
分别有自由度为 p-1 和(p-1)(q-1) 及自由度 为q-1 和(p-1)(q-1)的F 分布.
• 用我们数据拟合这个模型,SPSS输出为
Tests of Between-Subjects Effects
Dependent Variable: SALES
Type III Sum
Sour coef S quares df Mean Squar e F
Mode l2146 9.667a
4 5367.417 257.224
Sig. .000
PROMOT 579.250
2 289.625 13.880
.000
SERV ICE532. 042
1 532.042 25.497
应用统计学方差分析 PPT课件
.046
*. The mean difference is significant at the .05 level.
95% Confidence Interval
Lower Bound Upper Bound
-54.3389
81.5639
14.5303
150.4330
-81.5639
54.3389
SST=SSA+SSE
– 分解自由度 – 比较组间和组内的方差大小,根据F分布界值做出统计结论
。
2019年9月2日星期一
重庆交通大学管理学院
07:40:18
方差分析入门
数学模型:
xij i ij
ai i xij ai ij
k
(i 1,2,...,k; j 1,2,...,r; ai 0) i 1
2019年9月2日星期一
重庆交通大学管理学院
07:40:18
均数两两比较方法
直接校正检验水准(相对粗糙) 专用的两两比较方法:
计划好的多重比较(Planned Comparisons) 非计划的多重比较(Post-Hoc Comparisons)
Contrasts按钮
Post Hoc按钮
2019年9月2日星期一
2019年9月2日星期一
重庆交通大学管理学院
07:40:18
单因素方差分析 (1) 方差齐性检验
结果分析
Test of Homogeneity of Variances
no
Levene Statistic 3.216
df1 2
df2 33
Sig. .053
Levene方法检验统计量为3.216,其P值为0.053,可 认为样本所来自的总体满足方差齐性的要求。