向量基本定理a=λe1+μe2中的实数λ,μ
平面向量基本定理
平面向量基本定理音乐是人们在休闲时候的一种选择,不管是通俗的流行歌曲、动感的摇滚音乐,还是高雅的古典音乐,它们都给了人们不同的享受、不一样的感觉.事实上,音乐有基本音符:Do Re Mi Fa So La Si ,所有的乐谱都是这几个音符的巧妙组合,音乐的奇妙就在于此.在多样的向量中,我们能否找到它的“基本音符”呢? 1.平面向量基本定理定理条件e 1,e 2是同一平面内的两个__不共线__向量结论对于这一平面内的__任意__向量a ,__有且只有__一对实数λ1,λ2,使a =__λ1e 1+λ2e 2__基底 把__不共线__的向量e 1,e 2叫做表这一平面内所有向量的一组__基底__[知识点拨](1)由平面向量基本定理可知,在平面内任一向量都可以沿两个不共线的方向分解成两个向量的和,且这样的分解是唯一的,同一个非零向量在不同的基底下的分解式是不同的,而零向量的分解式是唯一的,即0=λ1e 1+λ2e 2,且λ1=λ2=0.(2)对于固定的e 1,e 2(向量e 1与e 2不共线)而言,平面内任一确定的向量的分解是唯一的,但平面内的基底却不唯一,只要平面内的两个向量不共线,就可以作为基底,它有无数组.(3)这个定理可推广为:平面内任意三个不共线的向量中,任何一个向量都可表示为其余两个向量的线性组合且形式唯一.2.两向量的夹角与垂直 定义已知两个非零向量a 和b ,作OA →=a ,OB →=b ,则__∠AOB __叫做向量a 与b 的夹角图示特殊情况θ=0° a 与b __同向__ θ=180° a 与b __反向__ θ=90° a 与b __垂直__,记作 a ⊥b[知识点拨](1)向量的夹角是针对非零向量定义的,零向量与任何向量都共线. (2)向量的夹角和直线的夹角范围是不同的,直线夹角的取值范围是[0°,90°],而向量夹角的取值范围是[0°,180°].(3)按照向量夹角的定义,只有两个向量的起点重合时,所对应的角才是两向量的夹角,如图,在△ABC 中,∠BAC 不是CA →与AB →的夹角,∠BAD 才是CA →与AB →的夹角.1.若a ,b 不共线,且λa +μb =0(λ,μ∈R ),则( B ) A .a =b ,b =0 B .λ=μ=0 C .λ=0,b =0D .a =0,μ=02.在正方形ABCD 中,AC →与CD →的夹角等于( D ) A .45° B .90° C .120°D .135°3.设O 是平行四边形ABCD 两对角线的交点,下列向量组:①AD →与AB →;②DA →与BC →;③CA →与DC →;④OD →与OB →,其中可作为表示这个平行四边形所在平面内所有向量的基底的是( B )A .①②B .①③C .①④D .③④[解析] ②中DA →与BC →和④中OD →与OB →为共线向量,不能做为基底. 4.如图所示,矩形ABCD 中,若BC →=5e 1,DC →=3e 2,则OC →等于( A )A .12(5e 1+3e 2)B .12(5e -3e 2)C .12(2e 2+5e 1)D .12(5e 2+3e 1)[解析] OC →=12AC →=12(BC →-BA →)=12(BC →+AB →)=12(5e 1+3e 2).命题方向1 ⇨对基底概念的理解典例1 如果e 1、e 2是平面α内两个不共线的向量,那么下列说法中不正确...的是( B ) ①a =λe 1+μe 2(λ、μ∈R )可以表示平面α内的所有向量;②对于平面α内任一向量a ,使a =λe 1+μe 2的实数对(λ,μ)有无穷多个; ③若向量λ1e 1+μ1e 2与λ2e 1+μ2e 2共线,则λ1λ2=μ1μ2.④若实数λ、μ使得λe 1+μe 2=0,则λ=μ=0. A .①② B .②③ C .③④D .②[思路分析] 应用平面向量基本定理解题时,要抓住基向量e 1与e 2不共线和平面内向量a 用基底e 1、e 2表示的唯一性求解.[解析] 由平面向量基本定理可知,①④是正确的.对于②,由平面向量基本定理可知,一旦一个平面的基底确定,那么任意一个向量在此基底下的实数对是唯一的.对于③,当λ1λ2=0或μ1μ2=0时不一定成立,应为λ1μ2-λ2μ1=0.故选B .『规律总结』 根据平面向量基底的定义知此类问题可转化为判断两个向量是否共线的问题.若不共线,则它们可作为一组基底;若共线,则它们不可能作为一组基底.〔跟踪练习1〕设e 1、e 2是不共线的两个向量,给出下列四组向量:①e 1与e 1+e 2;②e 1-2e 2与e 2-2e 1;③e 1-2e 2与4e 2-2e 1;④e 1+e 2与e 1-e 2.其中不.能作为平面内所有向量的一组基底的是__③__.(写出所有满足条件的序号)[解析] ①设e 1+e 2=λe 1,则⎩⎪⎨⎪⎧λ=1,1=0,无解,∴e 1+e 2与e 1不共线,即e 1与e 1+e 2可作为一组基底;②设e 1-2e 2=λ(e 2-2e 1),则(1+2λ)e 1-(2+λ)e 2=0,则⎩⎪⎨⎪⎧1+2λ=0,2+λ=0,无解,∴e 1-2e 2与e 2-2e 1不共线,即e 1-2e 2与e 2-2e 1可作为一组基底;③∵e 1-2e 2=-12(4e 2-2e 1),∴e 1-2e 2与4e 2-2e 1共线,即e 1-2e 2与4e 2-2e 1不可作为一组基底;④设e 1+e 2=λ(e 1-e 2),则(1-λ)e 1+(1+λ)e 2=0,∴⎩⎪⎨⎪⎧1-λ=0,1+λ=0,无解, ∴e 1+e 2与e 1-e 2不共线,即e 1+e 2与e 1-e 2可作为一组基底. 命题方向2 ⇨求两向量的夹角典例2 在△ABC 中,AB =3,BC =1,AC =2,D 是AC 的中点.求: (1)AD →与BD →的夹角大小; (2)DC →与BD →的夹角大小.[思路分析] 由勾股定理可知题中三角形为直角三角形,然后结合直角三角形相关知识和向量夹角知识解答本题.[解析] (1)如图所示,在△ABC 中,AB =3,BC =1,AC =2,∴AB 2+BC 2=(3)2+12=22=AC 2, ∴△ABC 为直角三角形.∵tan A =BC AB =13=33,∴A =30°.∵D 为AC 的中点,∴∠ABD =∠A =30°,AD →=DC →.在△ABD 中,∠BDA =180°-∠A -∠ABD =180°-30°-30°=120°. ∴AD →与BD →的夹角为120°. (2)∵AD →=DC →,∴DC →与BD →的夹角也为120°.『规律总结』 求两向量夹角时,一定要让两向量共起点,否则会出现错误. 〔跟踪练习2〕如图,已知△ABC 是等边三角形.(1)求向量AB →与向量BC →的夹角;(2)若E 为BC 的中点,求向量AE →与EC →的夹角. [解析] (1)∵△ABC 为等边三角形,∴∠ABC =60°. 如下图,延长AB 至点D ,使AB =BD ,则AB →=BD →,∴∠DBC 为向量AB →与BC →的夹角.∵∠DBC =120°,∴向量AB →与BC →的夹角为120°. (2)∵E 为BC 的中点,∴AE ⊥BC , ∴AE →与EC →的夹角为90°. 用基底表示平面向量用基底表示平面内任意向量的关键是,在进行运算时,一定要把所要表示的向量放在某一个三角形或平行四边形中,通过向量的加法或数乘运算将所求向量用基底表示出来.典例3 已知在梯形ABCD 中,AB ∥DC ,且AB =2CD ,E 、F 分别是DC ,AB 的中点,设AD →=a ,AB →=b ,试以a 、b 为基底表示DC →、BC →、EF →.[思路分析] 把要表示的向量放在三角形或平行四边形中,运用向量的加、减法及数乘向量求解.[解析] 如图,连接FD ,∵DC ∥AB ,AB =2CD ,E ,F 分别是DC ,AB 的中点, ∴DC 綊FB ,∴四边形DCBF 为平行四边形. ∴DC →=FB →=12AB →=12b ,BC →=FD →=AD →-AF →=AD →-12AB →=a -12b ,EF →=DF →-DE →=-FD →-DE →=-BC →-12DC →=-(a -12b )-12×12b =14b -a .〔跟踪练习3〕如图,在△OAB 中,P 为线段AB 上的一点,OP →=x OA →+y OB →,且BP →=2P A →,则( A )A .x =23,y =13B .x =13,y =23C .x =14,y =34D .x =34,y =14[解析] OP →=OA →+AP →=OA →+13AB →=OA →+13(OB →-OA →)=23OA →+13OB .∴x =23,y =13.忽略两个向量作为基底的条件典例4 已知e 1≠0,λ∈R ,a =e 1+λe 2,b =2e 1,则a 与b 共线的条件为( ) A .λ=0 B .e 2=0 C .e 1∥e 2 D .e 1∥e 2或λ=0[错解] A[错因分析] 在应用平面向量基本定理时,要注意a =λ1e 1+λ2e 2中,e 1,e 2不共线这个条件.若没有指明,则应对e 1,e 2共线的情况加以考虑.[思路分析] 当e 1∥e 2时,a ∥e 1,又因为b =2e 1,所以b ∥e 1.又e 1≠0,故a 与b 共线;当λ=0时,则a ∥e 1.又因为b =2e 1,所以b ∥e 1.又因为e 1≠0,故a 与b 共线.[正解] D[点评] 当条件不明确时要分类讨论.〔跟踪练习4〕已知向量e 1、e 2不共线,实数x 、y 满足(3x -4y )e 1+(2x -3y )e 2=6e 1+3e 2,则x -y 等于__3__.[解析] ∵e 1,e 2不共线,∴⎩⎪⎨⎪⎧ 3x -4y =62x -3y =3解得⎩⎪⎨⎪⎧x =6y =3, ∴x -y =3.1.向量的夹角θ的范围是( B ) A .0°≤θ<180° B .0°≤θ≤180° C .0°<θ<180°D .0°<θ≤180°2.设e 1、e 2是同一平面内的两个向量,则有( D ) A .e 1、e 2一定平行 B .e 1、e 2的模相等C .同一平面内的任一向量a ,都有a =λe 1+μe 2(λ,μ∈R )D .若e 1、e 2不共线,则同一平面内的任一向量a ,都有a =λe 1+μe 2(λ,μ∈R ) [解析] 由平面向量基本定理可知,选项D 正确.对于任意向量e 1,e 2,选项A 、B 不正确,而只有当e 1与e 2为不共线向量时,选项C 才正确.3.如图,设O 是▱ABCD 两对角线的交点,有下列向量组:①AD →与AB →;②DA →与BC →;③CA →与DC →;④OD →与OB →.其中可作为该平面内所有向量基底的是( B )A .①②B .①③C .①④D .③④[解析] AD →与AB →不共线,DA →∥BC →,CA →与DC →不共线,OD →∥OB →,则①③可以作为该平面内所有向量的基底.4.在锐角△ABC 中,关于向量夹角的说法,正确的是( B ) A .AB →与BC →的夹角是锐角 B .AC →与AB →的夹角是锐角 C .AC →与BC →的夹角是钝角D .AC →与CB →的夹角是锐角[解析] 由向量夹角的定义可知,AB →与AC →的夹角为∠A ,为锐角. 5.在▱ABCD 中,设AC →=a ,BD →=b ,试用基底{a 、b }表示AB →、BC →. [解析] 如图,设AC 、BD 相交于点O ,则有AO →=OC →=12a ,BO →=12BD →=12b ,∴AB →=AO →+OB →=AO →-BO →=12a -12b ,BC →=BO →+OC →=12a +12b .A 级 基础巩固一、选择题1.e 1、e 2是表示平面内所有向量的一组基底,下列四组向量中,不能作为一组基底的是( B )A .e 1+e 2和e 1-e 2B .3e 1-2e 2和4e 2-6e 1C .e 1+2e 2和e 2+2e 1D .e 2和e 1+e 2[解析] 3e 1-2e 2与4e 2-6e 1是共线向量,不能作为一组基底.2.若k 1a +k 2b =0,则k 1=k 2=0,那么下列对a 、b 的判断正确的是( B ) A .a 与b 一定共线 B .a 与b 一定不共线 C .a 与b 一定垂直D .a 与b 中至少一个为0[解析] 由平面向量基本定理知,当a ,b 不共线时,k 1=k 2=0.故选B .3.在△ABC 中,已知D 是AB 边上一点,若2AD →=DB →,CD →=23CA →+λCB →,则λ等于( A )A .13B .-13C .23D .-23[解析] 方法一 由平面向量的三角形法则可知CD →=CA →+AD →=CA →+13AB →=CA →+13(CB→-CA →)=23CA →+13CB →,所以λ=13.方法二 因为A ,B ,D 三点共线,CD →=23CA →+λCB →,所以23+λ=1,所以λ=13.4.(2018·湖南长沙市中学期末)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB →( A )A .34AB →-14AC →B .14AB →-34AC →C .34AB →+14AC →D .14AB →+34AC →[解析] EB →=AE →+AB →=-12AD →+AB →=-12×12(AB →+AC →)+AB →=34AB →-14AC →.5.已知|a |=1,|b |=2,c =a +b ,c ⊥a ,则a 与b 的夹角大小为( D ) A .π6B .56πC .π3D .23π[解析] 如图,∵c =a +b ,c ⊥a ,∴a 、b 、c 的模构成一个直角三角形,且θ=π6,所以可推知a 与b 的夹角为2π3.故选D .6.如果e 1、e 2是平面α内所有向量的一组基底,那么下列命题中正确的是( C ) A .已知实数λ1、λ2,则向量λ1e 1+λ2e 2不一定在平面α内B .对平面α内任一向量a ,使a =λ1e 1+λ2e 2的实数λ1,λ2可以不唯一C .若有实数λ1、λ2使λ1e 1=λ2e 2,则λ1=λ2=0D .对平面α内任一向量a ,使a =λ1e 1+λ2e 2的实数λ1、λ2不一定存在[解析] 选项A 中,由平面向量基本定理知λ1e 1+λ2e 2与e 1、e 2共面,所以A 项不正确;选项B 中,实数λ1、λ2有且仅有一对,所以B 项不正确;选项D 中,实数λ1、λ2一定存在,所以D 项不正确;很明显C 项正确.二、填空题7.如图,平行四边形ABCD 中,AB →=a ,AD →=b ,M 是DC 的中点,以a 、b 为基底表示向量AM →= b +12a .[解析] AM →=AD →+DM →=AD →+12DC →=AD →+12AB →=b +12a .8.已知向量e 1,e 2不共线,实数x ,y 满足(2x +y )e 1+(3x +2y )e 2=0,则x +y =__0__.[解析] ∵e 1,e 2不共线,∴⎩⎪⎨⎪⎧ 2x +y =03x +2y =0,解得⎩⎪⎨⎪⎧x =0y =0,∴x +y =0. 三、解答题9.如图所示,D 是BC 边的一个四等分点.试用基底AB →、AC →表示AD →.[解析] ∵D 是BC 边的四等分点, ∴BD →=14BC →=14(AC →-AB →),∴AD →=AB →+BD →=AB →+14(AC →-AB →)=34AB →+14AC →.10.如图所示,已知在平行四边形ABCD 中,E 、F 分别是BC 、DC 边上的中点.若AB →=a ,AD →=b ,试以a 、b 为基底表示DE →、BF →.[解析] ∵四边形ABCD 是平行四边形, E 、F 分别是BC 、DC 边上的中点, ∴AD →=BC →=2BE →,CD →=BA →=2CF →, ∴BE →=12AD →=12b ,CF →=12CD →=12BA →=-12AB →=-12a .∴DE →=DA →+AB →+BE →=-AD →+AB →+BE → =-b +a +12b =a -12b ,BF →=BC →+CF →=AD →+CF →=b -12a .B 级 素养提升一、选择题1.如果e 1,e 2是平面内所有向量的一组基底,那么( A ) A .若实数m 、n 使得m e 1+n e 2=0,则m =n =0B .空间任一向量a 可以表示为a =λ1e 1+λ2e 2,其中λ1,λ2为实数C .对于实数m 、n ,m e 1+n e 2不一定在此平面上D .对于平面内的某一向量a ,存在两对以上的实数,m ,n ,使a =m e 1+n e 2[解析] 选项B 中应为“平面内任一向量”,C 中m e 1+n e 2一定在此平面上,选项D 中,m ,n 应是唯一的,只有A 正确.2.设非零向量a 、b 、c 满足|a |=|b |=|c |,a +b =c ,则a 与b 的夹角为( B ) A .150° B .120° C .60°D .30°[解析] ∵|a |=|b |=|c |≠0,且a +b =c ,∴如图所示就是符合题设条件的向量,易知OACB 是菱形,△OBC 和△OAC 都是等边三角形.∴a 与b 的夹角为120°.3.设D 为△ABC 所在平面内一点,BC →=3CD →,则( A )A .AD →=-13AB →+43AC →B .AD →=13AB →-43AC →C .AD →=43AB →+13AC →D .AD →=43AB →-13AC →[解析] 由题意得AD →=AC →+CD →=AC →+13BC →=AC →+13AC →-13AB →=13AB →+43AC →,故选A .4.若OP 1→=a ,OP 2→=b ,P 1P →=λPP 2→,则OP →=( D ) A .a +λb B .λa +b C .λa +(1+λ)b D .a +λb 1+λ[解析] ∵P 1P →=λPP 2→, ∴OP →-OP 1→=λ(OP 2→-OP →),(1+λ)OP →=λOP 2→+OP 1→,∴OP →=λb +a 1+λ.二、填空题5.向量a 与b 的夹角为25°,则2a 与-32b 的夹角θ=__155°__. [解析] 作OA →=a ,OB →=b ,则∠AOB =25°,如图所示.延长OA 到C ,使OA =AC ,则OC →=2a .延长BO 到D ,使OD =32BO ,则OD →=-32b . 则θ=∠DOA ,又∠DOA +∠AOB =180°,则∠DOA =180°-25°=155°,则θ=155°.6.已知e 1、e 2是两个不共线的向量,a =2e 1-e 2,b =k e 1+e 2,若a 与b 是共线向量,则实数k =__-2__.[解析] ∵a ∥b ,则2e 1-e 2=λ(k e 1+e 2).又∵e 1、e 2不共线.∴⎩⎪⎨⎪⎧ 2=λk ,-1=λ.解得:⎩⎪⎨⎪⎧λ=-1,k =-2. 三、解答题7.已知e 1,e 2是平面内两个不共线的向量,a =3e 1-2e 2,b =-2e 1+e 2,c =2e 1-3e 2,,试用a ,b 表示c .[解析] 设c =x a +y b ,则2e 1-3e 2=x (3e 1-2e 2)+y (-2e 1+e 2),即(3x -2y )e 1+(y -2x )e 2=2e 1-3e 2.又e 1,e 2是平面内两个不共线的向量,所以⎩⎪⎨⎪⎧ 3x -2y =2,y -2x =-3,解得⎩⎪⎨⎪⎧x =4,y =5,所以c =4a +5b .8.在梯形ABCD 中,AB ∥CD ,M 、N 分别是DA →、BC →的中点,且DC AB=k (k ≠1).设AD →=e 1,AB →=e 2,选择基底{e 1,e 2},试写出下列向量在此基底下的分解式DC →、BC →、MN →.[解析] 如图所示,∵AB →=e 2,且DC AB=k ,∴DC →=kAB →=k e 2,又AB →+BC →+CD →+DA →=0,∴BC →=-AB →-CD →-DA →=-AB →+DC →+AD →=-e 2+k e 2+e 1=e 1+(k -1)e 2.而MN →+NB →+BA →+AM →=0,∴MN →=-NB →-BA →-AM →=BN →+AB →-AM → =12BC →+e 2-12AD → =12[e 1+(k -1)e 2]+e 2-12e 1=k +12e 2. C 级 能力拔高 如图,点L 、M 、M 分别为△ABC 的边BC 、CA 、AB 上的点,且BL BC =l ,CM CA =m ,AN AB=n ,若AL →+BM →+CN →=0.求证:l =m =n .[证明] 令AB →=a ,BC →=b ,CA →=c ,则由BL BC=l 得,BL →=lb ; 由CM CA =m 得CM →=m c ; 由AN AB=n 得AN →=n a . ∵AL →+BM →+CN →=0,∴(AB →+BL →)+(BC →+CM →)+(CA →+AN →)=0.即(a +l b )+(b +m c )+(c +n a )=0,∴(1+n )a +(1+l )b +(1+m )c =0.又∵a +b +c =0,∴a =-b -c ,∴(1+n )(-b -c )+(1+l )b +(1+m )c =0,即(l -n )b +(m -n )c =0.∵b 与c 不共线,∴l -n =0且m -n =0,∴l =n 且m =n ,即l=m=n.。
2017-2018学年高中数学四教材用书:第二章平面向量2.3.1 平面向量基本定理含答案
2.3平面向量的基本定理及坐标表示2.3.1 平面向量基本定理平面向量基本定理[问题1:在物理中,我们学习了力的分解,即一个力可以分解为两个不同方向的力,试想:平面内的任一向量是否可以分解为其他两个向量的和?提示:可以.问题2:如果e1,e2是两个不共线的确定向量,那么与e1,e2在同一平面内的任一向量a能否用e1,e2表示?根据是什么?提示:可以.根据是数乘向量和平行四边形法则.问题3:如果e1,e2是共线向量,那么向量a能否用e1,e2表示?为什么?提示:不一定.当a与e1共线时可以表示,否则不能表示.[导入新知]平面向量基本定理条件e1,e2是同一平面内的两个不共线向量结论这一平面内的任意向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2基底不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底[化解疑难]理解平面向量基本定理应关注的三点(1)只要是同一平面内两个不共线的向量都可作为一组基底,所以基底的选取不唯一.(2)零向量与任一向量都共线,因此零向量不能作为基底.(3)λ1,λ2是唯一的。
两向量的夹角[提出问题]问题1:平面中的任意两个向量都可以平移至公共起点,它们存在夹角吗?提示:存在.问题2:若上题中的结论为存在夹角,向量的夹角与直线的夹角一样吗?提示:不一样.[导入新知]向量的夹角条件两个非零向量a和b产生过程作向量OA=a,OB=b,则∠AOB叫做向量a与b的夹角范围[0,π]特殊情况θ=0°a与b同向θ=90°a与b垂直,记作a⊥b θ=180°a与b反向[正确理解向量的夹角(1)向量夹角的几何表示:依据向量夹角的定义,两非零向量的夹角是将两个向量的起点移到同一点,这样它们所成的角才是两向量的夹角.如图①②③④⑤,已知两向量a,b,作OA=a,OB=b,则∠AOB为a与b的夹角.(2)注意事项:①向量的夹角是针对非零向量定义的.②向量的夹角和直线的夹角范围是不同的,它们分别是[0,π]和错误!.用基底表示向量[例1] 如图,梯形ABCD中,AB∥CD,且AB=2CD,M,N分别是DC,AB的中点,若AB=a,AD=b,试用a,b表示DC,BC,MN。
人教B数学必修第二册练习:6.21 向量基本定理 6.22 直线上向量的坐标及其运算 含解析
[A 基础达标]1.若e 1,e 2 是平面内的一组基底,则下列四组向量能作为平面向量的基底的是( ) A .e 1-e 2,e 2-e 1 B .2e 1-e 2,e 1-12e 2C .2e 2-3e 1,6e 1-4e 2D .e 1+e 2,e 1-e 2解析:选D.e 1+e 2 与e 1-e 2 不共线,可以作为平面向量的基底,另外三组向量都共线,不能作为基底.2.已知数轴上两点M ,N ,且|MN |=4.若x M =-3,则x N 等于( ) A .1 B .2 C .-7D .1或-7解析:选D.|MN |=|x N -(-3)|=4, 所以x N -(-3)=±4,即x N =1或-7. 3.如图,向量a -b 等于( )A .-4e 1-2e 2B .-2e 1-4e 2C .e 1-3e 2D .3e 1-e 2解析:选C.不妨令a =CA →,b =CB →,则a -b =CA →-CB →=BA →, 由平行四边形法则可知 BA →=e 1-3e 2.4.已知O 是△ABC 所在平面内一点,D 为边BC 的中点,且2OA →+OB →+OC →=0,则( ) A.AO →=OD → B.AO →=2OD → C.AO →=3OD →D.2AO →=OD →解析:选A.因为在△ABC 中,D 为边BC 的中点,所以OB →+OC →=2OD →,所以2(OA →+OD →)=0,即OA →+OD →=0,从而AO →=OD →.5.在△ABC 中,点P 是AB 上一点,且CP →=23CA →+13CB →,又AP →=tAB →,则t 的值为( )A.13B.23C.12D.53解析:选A.因为AP →=tAB →,所以CP →-CA →=t (CB →-CA →), CP →=(1-t )CA →+tCB →.又CP →=23CA →+13CB →且CA →与CB →不共线,所以t =13.6.如图,在平行四边形ABCD 中,点O 为AC 的中点,点N 为OB 的中点,设AB →=a ,AD →=b ,若用a ,b 表示向量AN →,则AN →=________.解析:以AB →=a ,AD →=b 作为以A 点为公共起点的一组基底,则AN →=AD →+DN →=AD →+34DB →=AD →+34(AB →-AD →)=14AD →+34AB →=34a +14b . 答案:34a +14b7.若向量a =4e 1+2e 2 与b =k e 1+e 2 共线,其中e 1,e 2 是同一平面内两个不共线的向量,则k 的值为________.解析:因为向量a 与b 共线, 所以存在实数λ,使得b =λa , 即k e 1+e 2=λ(4e 1+2e 2)=4λe 1+2λe 2.因为e 1,e 2 是同一平面内两个不共线的向量,所以⎩⎪⎨⎪⎧k =4λ,1=2λ,所以k =2.答案:28.设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC ,若DE →=λ1AB →+λ2AC→(λ1,λ2 为实数),则λ1+λ2 的值为________.解析:如图,由题意知,D 为AB 的中点,BE →=23BC →,所以DE →=DB →+BE →=12AB →+23BC → =12AB →+23(AC →-AB →)=-16AB →+23AC →,所以λ1=-16,λ2=23, 所以λ1+λ2=-16+23=12.答案:129.如图,平行四边形ABCD 中,AB →=a ,AD →=b ,H ,M 分别是AD ,DC 的中点,BF =13BC ,以a ,b 为基底表示向量AM →与HF →.解:在平行四边形ABCD 中,AB →=a ,AD →=b ,H ,M 分别是AD ,DC 的中点,BF =13BC ,所以AM →=AD →+DM →=AD →+12DC →=AD →+12AB →=b +12a ,HF →=AF →-AH →=AB →+BF →-12AD →=a +13b -12b =a -16b .10.如图,在矩形OACB 中,E 和F 分别是边AC 和BC 上的点,满足AC =3AE ,BC =3BF ,若OC →=λOE →+μOF →,其中λ,μ∈R ,求λ,μ的值.解:在矩形OACB 中,OC →=OA →+OB →, 又OC →=λOE →+μOF → =λ(OA →+AE →)+μ(OB →+BF →)=λ⎝⎛⎭⎫OA →+13OB →+μ⎝⎛⎭⎫OB →+13OA → =3λ+μ3OA →+3μ+λ3OB →,所以3λ+μ3=1,3μ+λ3=1,所以λ=μ=34.[B 能力提升]11.如果e 1,e 2是同一平面α内的两个不共线的向量,那么下列说法中不正确的是( ) ①λe 1+μe 2(λ,μ∈R )可以表示平面α内的所有向量;②对于平面α内的任一向量a ,使a =λe 1+μe 2的实数λ,μ有无穷多对;③若向量λ1e 1+μ1e 2与λ2e 1+μ2e 2共线,则有且只有一个实数λ,使得λ1e 1+μ1e 2=λ(λ2e 1+μ2e 2);④{e 1,e 1+e 2}可以作为该平面的一组基底. A .①② B .②③ C .③④D .②④解析:选B.由平面向量基本定理可知①是正确的.对于②,由平面向量基本定理可知,如果一个平面的基底确定,那么平面内任意一个向量在此基底下的分解式是唯一的,故②不正确.对于③,当λ1e 1+μ1e 2与λ2e 1+μ2e 2均为零向量,即λ1=λ2=μ1=μ2=0时,符合题意的λ有无数个,故③不正确.对于④,假设e 1+e 2=λe 1,则e 2=(λ-1)e 1.又e 1,e 2不共线,故假设不成立,即e 1+e 2与e 1不共线,即{e 1,e 1+e 2}可以作为该平面的一组基底,④正确.12.已知O 是平面上一定点,A ,B ,C 是平面上不共线的三个点,动点P 满足OP →=OA →+λ⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|(λ∈[0,+∞)),则点P 的轨迹一定通过△ABC 的( ) A .外心 B .内心 C .重心D .垂心解析:选B.AB →|AB →|为AB →上的单位向量,AC →|AC →|为AC →上的单位向量,则AB →|AB →|+AC →|AC →|的方向为∠BAC 的角平分线AD →的方向.又λ∈[0,+∞),所以λ⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|的方向与AB →|AB →|+AC →|AC →|的方向相同. 而OP →=OA →+λ⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|, 所以点P 在AD →上移动,所以点P 的轨迹一定通过△ABC 的内心.13.如图,在平面内有三个向量OA →,OB →,OC →,|OA →|=|OB →|=1,直线OA 与OB 所成钝角为120°,直线OC 与OA 的夹角为30°,|OC →|=53,设OC →=mOA →+nOB →(m ,n ∈R ),则m +n =________.解析:作以OC 为一条对角线的平行四边形OPCQ ,如图, 则∠COQ =∠OCP =90°,在Rt △QOC 中,2OQ =QC ,|OC →|=5 3.则|OQ →|=5,|QC →|=10,所以|OP →|=10,又|OA →|=|OB →|=1,所以OP →=10OA →,OQ →=5OB →,所以OC →=OP →+OQ →=10OA →+5OB →,所以m +n =10+5=15.答案:1514.设e 1,e 2 是不共线的非零向量,且a =e 1-2e 2,b =e 1+3e 2. (1)证明:a ,b 可以作为一组基底;(2)以a ,b 为基底,求向量c =3e 1-e 2 的分解式.解:(1)证明:若a ,b 共线,则存在λ∈R ,使a =λb ,则e 1-2e 2=λ(e 1+3e 2).由e 1,e 2 不共线,得⎩⎪⎨⎪⎧λ=1,3λ=-2⇒⎩⎪⎨⎪⎧λ=1,λ=-23,所以λ不存在,故a 与b 不共线,可以作为一组基底.(2)设c =m a +n b (m ,n ∈R ), 则3e 1-e 2=m (e 1-2e 2)+n (e 1+3e 2) =(m +n )e 1+(-2m +3n )e 2,所以⎩⎪⎨⎪⎧m +n =3,-2m +3n =-1⇒⎩⎪⎨⎪⎧m =2,n =1,所以c =2a +b .[C 拓展探究]15.若点M 是△ABC 所在平面内一点,且满足AM →=34AB →+14AC →.(1)求△ABM 与△ABC 的面积之比.(2)若N 为AB 中点,AM 与CN 相交于点O ,设BO →=xBM →+yBN →,求x ,y 的值. 解:(1)如图,由AM →=34AB →+14AC →可知M ,B ,C 三点共线,令BM →=λBC → ⇒AM →=AB →+BM →=AB →+λBC →=AB →+λ(AC →-AB →)=(1-λ)· AB →+λAC →⇒λ=14,所以S △ABM S △ABC =14,即△ABM 与△ABC 的面积之比为1∶4.(2)由BO →=xBM →+yBN →⇒BO →=xBM →+y 2BA →,BO →=x 4BC →+yBN →,由O ,M ,A 三点共线及O ,N ,C 三点共线⇒⎩⎨⎧x +y 2=1,x 4+y =1⇒⎩⎨⎧x =47,y =67.。
高中数学 必修2(北师大)2.4.1平面向量基本定理
而B→A=B→C+C→A=2e1+2e2,由平面向量基本定理,得λ2+λ+2μμ= =22, , 解
得λμ==2323,.
∴A→P=23A→M,B→P=23B→N, ∴AP PM=2,BP PN=2. ∴AP PM=BP PN.
方法归纳
用向量解决平面几何问题的一般步骤 (1)选取不共线的两个平面向量作为基. (2)将相关的向量用基向量表示,将几何问题转化为向量问题. (3)利用向量知识进行向量运算,得向量问题的解. (4)再将向量问题的解转化为平面几何问题的解.
4.1 平面向量基本定理
[教材要点]
要点 平面向量基本定理 1.定理:如果 e1,e2(如图①所示)是同一平面内的两个不共线向 量,那么对于这一平面内的任一向量 a,存在唯一一对实数 λ1,λ2,使 a=λ1e1+λ2e2(如图②所示),其中不共线的向量 e1,e2 叫作表示这一平 面内所有向量的一组____基__________,记为____{_e_1_,__e2_}____.
1-λ=0, 则1+λ=0, 无解,∴e1+e2 与 e1-e2 不共线,即 e1+e2 与 e1-e2 能作为一组基.
方法归纳
对基的理解 (1)两个向量能否作为一组基,关键是看这两个向量是否共线.若 共线,则不能作基,反之,则可作基. (2)一个平面的基一旦确定,那么平面上任意一个向量都可以由这 组基唯一线性表示出来.设向量 a 与 b 是平面内两个不共线的向量, 若 x1a+y1b=x2a+y2b,则x1=x2, y1=y2. 提醒:一个平面的基不是唯一的,同一个向量用不同的基表示, 表达式不一样.
A.12(a-b) B.2b-a C.12(b-a) D.2b+a 解析:如图,AD 是△ABC 的中线,则 D 为线段 BC 的中点,从而A→D =21(A→B+A→C),则A→C=2A→D-A→B=2b-a.
高中数学人教B版选修2-1第三章《3.1.2 空间向量的基本定理》优质课公开课教案教师资格证面试试讲教案
高中数学人教B版选修2-1第三章《3.1.2 空间向量的基本定理》优质课公开课教案教师资格证面试试讲教案
1教学目标
1.知识与技能
通过本节学习理解向量共线的条件,共面向量定理和空间向量基本定理.
能够判定空间向量是否共面.
了解基向量、基底的概念、空间任意三个不共面的向量都可构成空间的一个基底.
2.过程与方法
通过对空间向量基本定理的学习,让学生体验数学定理的产生、形成过程,体验定理所蕴含的数学思想.
3.情感态度与价值观
事物之间可以相互转化,渗透由特殊到一般的思想,通过对空间向量基本定理的运用,增强学生的应用意识.
2学情分析
立体几何的学习主要在于培养空间抽象能力的基础上,发展学生的逻辑思维能力和空间想象能力。
立体几何是中学数学的一个难点,学生普遍反映“几何比代数难学”。
但很多学好这部分的同学,又觉得这部分很简单。
立体几何中抓住向量这个重要工具
如点到直线的距离,抓住直线的方向向量;找二面角的平面角而不是二面角,二面角的平面角等于二面角的大小.具体你可以,比如先求平面的法向量,那么两个平面的法向量的夹角的大小就是二面角的大小。
求角先定平面角、三角形去解决,正余弦定理、三角定义常用,若是余弦值为负值,异面、线面取锐角。
对距离可归纳为:距离多是垂线段,放到三角形中去计算,经常用正余弦定理、勾股定理,若是垂线难做出,用等积等高来转换。
不断总结,才能不断高。
3重点难点
重点:共线向量定理、共面向量定理和空间向量分解定理.
难点:空间向量分解定理.。
高中数学必修二 6 3 1 平面向量的基本定理(无答案)
6.3.1平面向量的基本定理导学案编写:廖云波 初审:孙锐 终审:孙锐 廖云波【学习目标】1.理解平面向量基本定理的内容,了解向量的一组基底的含义.2.在平面内,当一组基底选定后,会用这组基底来表示其他向量.3.会应用平面向量基本定理解决有关平面向量的综合问题.【自主学习】知识点1 平面向量基本定理(1)定理:如果e 1,e 2是同一平面内的两个 向量,那么对于这一平面内的 向量a , 实数λ1,λ2,使a =λ1e 1+λ2e 2. (2)基底:把 的向量e 1,e 2叫做表示这一平面内 向量的一组基底.知识点2 两向量的夹角与垂直(1)夹角:已知两个 向量a 和b ,如图,作OA →=a ,OB →=b , 则 =θ (0°≤θ≤180°)叫做向量a 与b 的夹角.①范围:向量a 与b 的夹角的范围是[0°,180°].②当θ=0°时,a 与b .③当θ=180°时,a与b.(2)垂直:如果a与b的夹角是90°,则称a与b垂直,记作a⊥b.【合作探究】探究一 基底的概念【例1】下面说法中,正确的是( )①一个平面内只有一对不共线向量可作为表示该平面内所有向量的基底; ②一个平面内有无数多对不共线向量可作为表示该平面内所有向量的基底; ③零向量不可作为基底中的向量;④对于平面内的任一向量a 和一组基底e 1,e 2,使a =λe 1+μe 2成立的实数对一定是唯一的. A .②④ B .②③④ C .①③ D .①③④归纳总结:【练习1】设{e 1,e 2}是平面内所有向量的一个基底,则下列四组向量中,不能作为基底的是( )A .e 1+e 2和e 1-e 2B .3e 1-4e 2和6e 1-8e 2C .e 1+2e 2和2e 1+e 2D .e 1和e 1+e 2探究二 用基底表示向量【例2】如图所示,在△OAB 中,OA →=a ,OB →=b ,M 、N 分别是边OA 、OB 上的点,且OM→=13a ,ON →=12b ,设AN →与BM →交于点P ,用向量a 、b 表示OP →.归纳总结:【练习2】如图所示,已知在平行四边形ABCD 中,E 、F 分别是BC 、DC 边上的中点,若AB →=a ,AD →=b ,试以{a ,b }为基底表示DE →、BF →.探究三 平面向量基本定理的应用【例3】如图所示,在△ABC 中,AB =2,BC =3,∠ABC =60°,AD 为BC 边上的高,M 为AD 的中点,若AM →=λAB →+μBC →,则λ+μ的值为( )A.53B.-12C.12D.23归纳总结:【练习3】如图,在△ABC 中,点M 是BC 的中点,点N 在AC 上,且AN =2NC ,AM 与BN 相交于点P ,求AP : PM 与BP : PN 的值.课后作业A 组 基础题一、选择题1.等边△ABC 中,AB →与BC →的夹角是( ) A .30° B .45° C .60° D .120°2.若e 1,e 2是平面内的一组基底,则下列四组向量能作为平面向量的基底的是( ) A .e 1-e 2,e 2-e 1 B .2e 1+e 2,e 1+12e 2C .2e 2-3e 1,6e 1-4e 2D .e 1+e 2,e 1-e 23.下面三种说法中,正确的是( )①一个平面内只有一对不共线向量可作为表示该平面所有向量的基底;②一个平面内有无数多对不共线向量可作为该平面所有向量的基底;③零向量不可作为基底中的向量. A .①② B .②③ C .①③ D .①②③4.若a 、b 不共线,且λa +μb =0(λ,μ∈R ),则( ) A .a =0,b =0 B .λ=μ=0 C .λ=0,b =0 D .a =0,μ=05.如图所示,平面内的两条直线OP 1和OP 2将平面分割成四个部分Ⅰ,Ⅱ,Ⅲ,Ⅳ(不包括边界),若OP →=aOP 1→+bOP 2→,且点P 落在第Ⅰ部分,则实数a ,b 满足( )A .a >0,b >0B .a >0,b <0C .a <0,b >0D .a <0,b <06.下列说法中,正确说法的个数是( ) ①在△ABC 中,{AB →,AC →}可以作为基底; ②能够表示一个平面内所有向量的基底是唯一的; ③零向量不能作为基底. A .0 B .1 C .2 D .37.如图,设O 是▱ABCD 两对角线的交点,有下列向量组: ①AD →与AB →; ②DA →与BC →; ③CA →与DC →; ④OD →与OB →.其中可作为该平面内所有向量基底的是( ) A .①② B .①③ C .①④ D .③④8.M 为△ABC 的重心,点D ,E ,F 分别为三边BC ,AB ,AC 的中点,则MA →+MB →+MC →等于( )A .6ME →B .-6MF →C .0D .6MD →二、填空题9.设e 1、e 2是不共线的两个向量,给出下列四组向量:①e 1与e 1+e 2;②e 1-2e 2与e 2-2e 1;③e 1-2e 2与4e 2-2e 1;④e 1+e 2与e 1-e 2.其中能作为平面内所有向量的一组基底的序号是______.(写出所有满足条件的序号)10.如图,已知AB →=a ,AC →=b ,BD →=3DC →,用a ,b 表示AD →,则AD →=________.11.设向量m =2a -3b ,n =4a -2b ,p =3a +2b ,若用m ,n 表示p ,则p =________.12.在△ABC 中,AB →=c ,AC →=b .若点D 满足BD →=2DC →,则AD →=____________.(用b 、c 表示)13.已知向量e 1、e 2不共线,实数x 、y 满足(3x -4y )e 1+(2x -3y )e 2=6e 1+3e 2,则x -y =3.14.如图,平面内有三个向量OA →、OB →、OC →.其中OA →与OB →的夹角为120°,OA →与OC →的夹角为30°,且|OA →|=|OB →|=1,|OC →|=23,若OC →=λOA →+μOB →(λ,μ∈R ),则λ+μ的值为________.15.设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC ,若DE →=λ1AB →+λ2AC→(λ1,λ2为实数),则λ1+λ2的值为________.三、解答题16.如图所示,在△ABC 中,点M 为AB 的中点,且AN =12NC ,BN 与CM 相交于点E ,设AB→=a ,AC →=b ,试以a ,b 为基底表示AE →.17.如图所示,在△ABC 中,点M 是BC 的中点,点N 在边AC 上,且AN =2NC ,AM 与BN 相交于点P ,求证:AP ∶PM =4∶1.18.在平行四边形ABCD 中,AB →=a ,AD →=b ,(1)如图1,如果E ,F 分别是BC ,DC 的中点,试用a ,b 分别表示BF →,DE →. (2)如图2,如果O 是AC 与BD 的交点,G 是DO 的中点,试用a ,b 表示AG →.B 组 能力提升一、选择题1.如图,在梯形ABCD 中,AB //CD ,AB ⊥AD ,AB =2AD =2DC ,E 是BC 的中点,F 是AE 上一点,AF =2FE ,则BF =( )A .1123AB AD -B .1132AB AD -C .1123AB AD -+ D .1132AB AD -+2.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F ,若AC a =,BD b =,则AF =( )A .1142a b + B .2133a b + C .1124a b + D .1233a b +3.ABC 中,M 、N 分别是BC 、AC 上的点,且2BM MC =,2AN NC =,AM 与BN 交于点P ,则下列式子正确的是( )A .3142AP AB AC =+ B .1324AP AB AC =+ C .1124AP AB AC =+ D .1142AP AB AC =+ 4.如图,在直角梯形ABCD 中,AB =2AD =2DC ,E 为BC 边上一点,BC ⃗⃗⃗⃗⃗⃗ =3 EC ⃗⃗⃗⃗⃗⃗ ,F 为AE 的中点,则BF ⃗⃗⃗⃗⃗⃗ =( )A .13AB ⃗⃗⃗⃗⃗⃗ −23AD ⃗⃗⃗⃗⃗⃗ B .−23AB ⃗⃗⃗⃗⃗⃗ +13AD ⃗⃗⃗⃗⃗⃗ C .−13AB ⃗⃗⃗⃗⃗⃗ +23AD ⃗⃗⃗⃗⃗⃗ D .23AB ⃗⃗⃗⃗⃗⃗ −13AD ⃗⃗⃗⃗⃗⃗5.如图,正方形ABCD 中,M 是BC 的中点,若AC AM BD λμ=+,则λμ+=( )A .43B .53C .158D .26.如图四边形ABCD 为平行四边形,11,22AE AB DF FC ==,若AF AC DE λμ=+,则λμ-的值为( )A .12B .23C .13D .17.如图,在平行四边形ABCD 中,E 为BC 的中点,F 为DE 的中点,若34AF xAB AD =+,则x ( )A.34B.23C.12D.14二、填空题8.如图,在ABC 中,13B BCD →→=,点E 在线段AD 上移动(不含端点),若AE AB AC λμ→→→=+,则12λμ+的取值范围是_____.9.在ABC 中,D 为线段AB 上一点,且3BD AD =,若CD CA CB λμ→→→=+,则λμ= .10.在ABC 中,E 为AC 上一点,3AC AE =,P 为BE 上任一点,若(0,0)AP mAB nAC m n =+>>,则31m n+的最小值是 .三、解答题11.如图,△ABC 中,AD 为三角形BC 边上的中线且AE =2EC ,BE 交AD 于G ,求AG GD 及BGGE 的值.。
2022届高考一轮复习第5章平面向量第2节平面向量基本定理及坐标表示课时跟踪检测理含解
第五章 平面向量第二节 平面向量基本定理及坐标表示A 级·基础过关 |固根基|1.如果e 1,e 2是平面α内两个不共线的向量,那么下列说法中不正确的是( ) ①a =λe 1+μe 2(λ,μ∈R)可以表示平面α内的所有向量;②对于平面α内任一向量a ,使a =λe 1+μe 2的实数对(λ,μ)有无穷多个; ③若向量λ1e 1+μ1e 2与λ2e 1+μ2e 2共线,则λ1λ2=μ1μ2;④若实数λ,μ使得λe 1+μe 2=0,则λ=μ=0. A .①② B .②③ C .③④D .②④解析:选B 由平面向量基本定理可知,①④是正确的.对于②,由平面向量基本定理可知,一旦一个平面的基底确定,那么任意一个向量在此基底下的实数对是唯一的;对于③,当λ1λ2=0或μ1μ2=0时不一定成立,应为λ1μ2-λ2μ1=0.故选B .2.设向量a =(1,-3),b =(-2,4),若表示向量4a ,3b -2a ,c 的有向线段首尾相接能构成三角形,则向量c 为( )A .(1,-1)B .(-1,1)C .(-4,6)D .(4,-6)解析:选D 4a =(4,-12),3b -2a =(-6,12)-(2,-6)=(-8,18),由题意得,4a +(3b -2a)+c =0,所以c =(4,-6),故选D .3.设a =(x ,-4),b =(1,-x).若a 与b 同向,则x 等于( ) A .-2 B .2 C .±2D .0解析:选B 由题意得-x 2=-4, 所以x =±2.又因为a 与b 同向,若x =-2,则a =(-2,-4),b =(1,2),a 与b 反向,故舍去,所以x =2.故选B .4.在平面直角坐标系中,已知向量a =(1,2),a -12b =(3,1),c =(x ,3),若(2a +b)∥c,则x等于( )A .-2B .-4C .-3D .-1解析:选D 因为a -12b =(3,1),a =(1,2),所以b =(-4,2).所以2a +b =2(1,2)+(-4,2)=(-2,6). 又(2a +b)∥c,所以-6=6x ,解得x =-1.故选D .5.已知点M 是△ABC 的边BC 的中点,点E 在边AC 上,且EC →=2AE →,则EM →等于( ) A .12AC →+13AB → B .12AC →+16AB →C .16AC →+12AB → D .16AC →+32AB → 解析:选C 如图,因为EC →=2AE →,点M 是BC 的中点, 所以EC →=23AC →,CM →=12CB →,所以EM →=EC →+CM →=23AC →+12CB → =23AC →+12(AB →-AC →) =12AB →+16AC →.故选C . 6.(2019届河南洛阳模拟)在正方形ABCD 中,M ,N 分别是BC ,CD 的中点,若AC →=λAM →+μBN →(λ,μ∈R),则λ+μ的值为( )A .85B .58C .1D .-1解析:选A 设正方形的边长为2,以点A 为坐标原点,AB ,AD 分别为x 轴,y 轴建立平面直角坐标系(图略),则A(0,0),B(2,0),C(2,2),M(2,1),N(1,2),所以AC →=(2,2),AM →=(2,1),BN →=(-1,2).因为AC →=λAM →+μBN →,即(2,2)=λ(2,1)+μ(-1,2),所以⎩⎪⎨⎪⎧2λ-μ=2,λ+2μ=2,解得λ=65,μ=25,所以λ+μ=85,故选A .7.已知向量AB →与向量a =(1,-2)反向共线,|AB →|=25,点A 的坐标为(3,-4),则点B 的坐标为( )A .(1,0)B .(0,1)C .(5,-8)D .(-8,5)解析:选A 依题意,设AB →=λa,其中λ<0,则有|AB →|=|λa|=-λ|a|,即25=-5λ,∴λ=-2,∴AB →=-2a =(-2,4).又点A 的坐标为(3,-4),∴点B 的坐标是(-2,4)+(3,-4)=(1,0).故选A .8.(2019届南昌二模)已知在平面直角坐标系xOy 中,P 1(3,1),P 2(-1,3),P 1,P 2,P 3三点共线且向量OP 3→与向量a =(1,-1)共线,若OP 3→=λOP 1→+(1-λ)OP 2→(λ∈R),则λ等于( )A .-3B .3C .1D .-1解析:选D 设OP 3→=(x ,y),则由OP 3→∥a ,得x +y =0,于是OP 3→=(x ,-x).若OP 3→=λOP 1→+(1-λ)OP 2→,则有(x ,-x)=λ(3,1)+(1-λ)(-1,3)=(4λ-1,3-2λ),即⎩⎪⎨⎪⎧4λ-1=x ,3-2λ=-x ,所以4λ-1+3-2λ=0, 解得λ=-1,故选D .9.已知向量OA →=(1,-3),OB →=(2,-1),OC →=(k +1,k -2),若A ,B ,C 三点能构成三角形,则实数k 应满足的条件是________.解析:若点A ,B ,C 能构成三角形,则向量AB →,AC →不共线. 因为AB →=OB →-OA →=(2,-1)-(1,-3)=(1,2), AC →=OC →-OA →=(k +1,k -2)-(1,-3)=(k ,k +1), 所以1×(k+1)-2k≠0,解得k≠1. 答案:k≠110.(2019届河北联盟二模)已知点A(1,0),B(1,3),点C 在第二象限,且∠AOC=150°,OC →=-4OA →+λOB →,则λ=________.解析:因为点A(1,0),B(1,3),OC →=-4OA →+λOB →,所以C(λ-4,3λ). 因为点C 在第二象限,∠AOC=150°, 所以tan 150°=3λλ-4=-33,解得λ=1.答案:111.已知A(-2,4),B(3,-1),C(-3,-4).设AB →=a ,BC →=b ,CA →=c ,且CM →=3c ,CN →=-2b.(1)求3a +b -3c ;(2)求满足a =mb +nc 的实数m ,n ; (3)求M ,N 的坐标及向量MN →的坐标.解:由已知得a =(5,-5),b =(-6,-3),c =(1,8).(1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8)=(15-6-3,-15-3-24)=(6,-42).(2)因为mb +nc =(-6m +n ,-3m +8n)=a =(5,-5),所以⎩⎪⎨⎪⎧-6m +n =5,-3m +8n =-5,解得⎩⎪⎨⎪⎧m =-1,n =-1.(3)设O 为坐标原点,因为CM →=OM →-OC →=3c , 所以OM →=3c +OC →=(3,24)+(-3,-4)=(0,20). 所以M(0,20). 又CN →=ON →-OC →=-2b ,所以ON →=-2b +OC →=(12,6)+(-3,-4)=(9,2), 所以N(9,2).所以MN →=(9,-18).B 级·素养提升 |练能力|12.在平面直角坐标系xOy 中,已知点A(1,0),B(0,1),C 为坐标平面内第一象限内一点且∠AOC =π4,且|OC|=2,若OC →=λOA →+μOB →,则λ+μ=( ) A .2 2 B . 2 C .2D .4 2解析:选A 因为|OC|=2,∠AOC=π4,所以C(2,2).又OC →=λOA →+μOB →,所以(2,2)=λ(1,0)+μ(0,1)=(λ,μ),所以λ=2,μ=2,所以λ+μ=2 2.13.(2019届枣庄模拟)在平面直角坐标系中,O 为坐标原点,且满足OC →=23OA →+13OB →,则|AC →||AB →|的值为( )A .12B .13C .14D .25解析:选B 由已知得,3OC →=2OA →+OB →,即OC →-OB →=2(OA →-OC →),即BC →=2CA →,如图所示,故C 为BA 的靠近A 点的三等分点, 因而|AC →||AB →|=13.故选B .14.(2019届石家庄模拟)A ,B ,C 是圆O 上不同的三点,线段CO 与线段AB 交于点D(点O 与点D 不重合),若OC →=λOA →+μOB →(λ,μ∈R),则λ+μ的取值范围是( )A .(0,1)B .(1,+∞)C .(1, 2 ]D .(-1,0)解析:选B 由题意可设OC →=mOD →,则m>1.因为OC →=λOA →+μOB →,所以mOD →=λOA →+μOB →,即OD →=λm OA→+μm OB →.又知A ,B ,D 三点共线,所以λm +μm=1,即λ+μ=m ,所以λ+μ>1,故选B . 15.(2019届长沙一模)在矩形ABCD 中,AB =3,AD =2,P 为矩形内部一点,且AP =1,若AP →=xAB →+yAD →,则3x +2y 的取值范围是________.解析:设点P 在AB 上的射影为Q ,∠PAQ=θ, 则AP →=AQ →+QP →,且|AQ →|=cos θ,|QP →|=sin θ. 又AQ →与AB →共线,QP →与AD →共线, 故AQ →=cos θ3AB →,QP →=sin θ2AD →,从而AP →=cos θ3AB →+sin θ2AD →.又AP →=xAB →+yAD →,故x =cos θ3,y =sin θ2,因此3x +2y =cos θ+sin θ=2sin ⎝⎛⎭⎪⎫θ+π4.又θ∈⎝ ⎛⎭⎪⎫0,π2,θ+π4∈⎝ ⎛⎭⎪⎫π4,3π4,故3x +2y 的取值范围是(1,2].答案:(1,2]16.在△OAB 中,OA →=3OC →,OB →=2OD →,AD 与BC 的交点为M ,过M 作动直线l 交线段AC ,BD 于E ,F 两点,若OE →=λOA →,OF →=μOB →(λ,μ>0),则λ+μ的最小值为________.解析:由A ,M ,D 三点共线,可得存在实数t ,使得OM →=tOA →+(1-t)OD →=tOA →+12(1-t)OB →.同理,由C ,M ,B 三点共线,可得存在实数m ,使得OM →=mOB →+(1-m)OC →=mOB →+13(1-m)OA →.∴⎩⎪⎨⎪⎧t =13(1-m ),12(1-t )=m ,解得⎩⎪⎨⎪⎧m =25,t =15,∴OM →=25OB →+15OA →.由E ,M ,F 三点共线,可设OM →=xOE →+(1-x)OF →.又OE →=λOA →,OF =μOB →,∴OM →=xλOA →+(1-x)μOB →,∴⎩⎪⎨⎪⎧x λ=15,(1-x )μ=25,可得1λ+2μ=5.∴λ+μ=15(λ+μ)⎝ ⎛⎭⎪⎫1λ+2μ=15⎝ ⎛⎭⎪⎫1+2+μλ+2λμ≥3+225,当且仅当μλ=2λμ时取等号,∴λ+μ的最小值为3+225.答案:3+225。
向量基本定理证明
向量基本定理证明一、向量基本定理内容1. 平面向量基本定理- 如果e_1,e_2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ_1,λ_2,使a = λ_1e_1+λ_2e_2。
其中{e_1,e_2}叫做表示这一平面内所有向量的一个基底。
2. 空间向量基本定理- 如果三个向量a,b,c不共面,那么对空间任一向量p,存在一个唯一的有序实数组x,y,z,使p = xa+yb + zc。
{a,b,c}叫做空间的一个基底。
二、平面向量基本定理的证明1. 存在性证明- 设e_1,e_2是同一平面内的两个不共线向量,a是这一平面内的任一向量。
- 过向量a的起点O作平行于e_1,e_2的直线,与e_1,e_2所在的直线分别交于A,B两点。
- 因为e_1≠0,设→OA=λ_1e_1,同理设→OB=λ_2e_2。
- 根据向量加法的平行四边形法则,a=→OA+→OB=λ_1e_1+λ_2e_2。
2. 唯一性证明- 假设a=λ_1e_1+λ_2e_2=μ_1e_1+μ_2e_2,其中λ_1,λ_2,μ_1,μ_2∈ R。
- 则(λ_1 - μ_1)e_1+(λ_2-μ_2)e_2 = 0。
- 因为e_1,e_2不共线,所以λ_1-μ_1 = 0且λ_2-μ_2 = 0,即λ_1=μ_1,λ_2=μ_2。
三、空间向量基本定理的证明1. 存在性证明- 设a,b,c是不共面的三个向量,p是空间任一向量。
- 把向量a,b,c,p的起点都移到同一点O。
- 过点P作直线PP_1平行于c,且与平面OAB交于点P_1。
- 在平面OAB内,过点P_1作直线P_1P_2平行于b,交OA于点P_2。
- 过点P_2作直线P_2P_3平行于a,交OB于点P_3。
- 设→OP_3=x a,→P_3P_2=y b,→P_2P_1=z c。
- 由向量加法的三角形法则可得p=→OP=→OP_3+→P_3P_2+→P_2P_1=xa + yb+zc。
第一章§1.2第1课时 空间向量基本定理课件(人教版)
1234
2.已知 O,A,B,C 为空间不共面的四点,且向量 a=O→A+O→B+O→C,向
量 b=O→A+O→B-O→C,则与 a,b 不能构成空间基底的是
→ A.OA
√C.O→C
→ B.OB D.O→A或O→B
解析 ∵O→C=12(a-b), ∴O→C与 a,b 共面,
∴a,b,O→C不能构成空间基底.
个基底,则A,B,M,N四点共面 D.若a,b是两个不共线的向量,而c=λa+μb(λ,μ∈R且λμ≠0),则{a,
b,c}构成空间的一个基底
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
解析 A中,假设d与a,b共面,则存在实数λ,μ,使得d=λa+μb,∵d 与c共线,c≠0,∴存在实数k,使得d=kc,∵d≠0,∴k≠0,从而c= kλa+μkb,∴c与a,b共面,与已知条件矛盾,∴d与a,b不共面,即A是真 命题;
内容索引
一、空间向量基本定理 二、空间向量的正交分解 三、用基底表示空间向量
随堂演练
课时对点练
一、空间向量基本定理
问题1 如图,设i,j,k是空间中三个两两垂直的向量,且表示它们的有 向线段有公共起点O,对于任意一个空间向量p=O→P ,p 能否用i,j,k表 示呢?
提示 如图,设O→Q为O→P在 i,j 所确定的平面上的 投影向量,则O→P=O→Q+Q→P. 又向量Q→P,k 共线,因此存在唯一的实数 z,使得Q→P=zk,从而O→P=O→Q+zk. 在 i,j 确定的平面上,由平面向量基本定理可知,存在唯一的有序实数对 (x,y),使得O→Q=xi+yj.
可知向量x,y,z也不共面,同理b,c,z和x,y,a+b+c也不共面.
数学苏教版必修4学案:第2章 2.3 2.3.1 平面向量基本定理
向量的坐标表示2.3.1平面向量基本定理[对应学生用书P42]预习课本P74~76,思考并完成下列问题1.平面向量基本定理的内容是什么?2.平面向量基本定理与向量共线定理,在内容和表述形式上有什么区别和联系?3.如何定义平面向量的基底?[新知初探]1.平面向量基本定理如果e1,e2是同一平面内两个不共线的向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2.2.基底不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底.[点睛]对平面向量基本定理的理解应注意以下三点:①e1,e2是同一平面内的两个不共线向量;②该平面内任意向量a都可以用e1,e2线性表示,且这种表示是惟一的;③基底不惟一,只要是同一平面内的两个不共线向量都可作为基底.3.正交分解一个平面向量用一组基底e1,e2表示成a=λ1e1+λ2e2的形式,我们称它为向量的分解.当e1,e2所在直线互相垂直时,这种分解也称为向量a的正交分解.[小试身手]1.在矩形ABCD 中,O 是对角线的交点,若BC =e 1,DC =e 2,则OC =________. ★答案★:12(e 1+e 2)2.已知ABCDEF 是正六边形,且AB =a ,AE =b ,则BC =________. 解析:AD =AE +ED =AE +AB =b +a , 又AD =2BC ,∴BC =12(a +b ).★答案★:12(a +b )3.若e 1,e 2是平面内的一组基底,则下列四组向量能作为平面向量的基底的是________. ①e 1-e 2,e 2-e 1;②2e 1+e 2,e 1+2e 2;③2e 2-3e 1,6e 1-4e 2;④e 1+e 2,e 1-e 2. ★答案★:②④4.设e 1,e 2是两个不共线的向量,若向量a =2e 1-e 2与向量b =e 1+λe 2(λ∈R)共线,则λ=________.★答案★:-12对基底概念的理解[典例] 如果e 1,e 2是平面α内两个不共线的向量,那么下列说法中不正确的是________.①a =λe 1+μe 2(λ,μ∈R)可以表示平面α内的所有向量;②对于平面α内任一向量a ,使a =λe 1+μe 2的实数对(λ,μ)有无穷多个; ③若向量λ1e 1+μ1e 2与λ2e 1+μ2e 2共线,则λ1μ2=λ2μ1; ④若实数λ,μ使得λe 1+μe 2=0,则λ=μ=0.[解析] 由平面向量基本定理可知,①③④是正确的.对于②,由平面向量基本定理可知,一旦一个平面的基底确定,那么任意一个向量在此基底下的实数对是惟一的.[★答案★] ②基底具备两个主要特征: (1)基底是两个不共线向量;(2)基底的选择是不惟一的.e 1,e 2是表示平面内所有向量的一组基底,则下列各组向量中,不能作为一组基底的序号是________.①e 1+e 2,e 1-e 2;②3e 1-2e 2,4e 2-6e 1;③e 1+2e 2,e 2+2e 1;④e 2,e 1+e 2;⑤2e 1-15e 2,e 1-110e 2.解析:由题意,知e 1,e 2不共线,易知②中,4e 2-6e 1=-2(3e 1-2e 2),即3e 1-2e 2与4e 2-6e 1共线,∴②不能作基底.⑤中,2e 1-15e 2=2⎝⎛⎭⎫e 1-110e 2, ∴2e 1-15e 2与e 1-110e 2共线不能作基底.★答案★:②⑤向量的分解[典例] 如图,已知▱ABCD 的对角线AC ,BD 交于O 点,设AB =l 1,AD =l 2,OA =l 3,OB =l 4.(1)试以l 1,l 2为基底表示AC ,BD ,DC ,BC ; (2)试以l 1,l 3为基底表示BC ,DA ; (3)试以l 3,l 4为基底表示AB ,BC .[解] (1)AC =l 1+l 2,BD =l 2-l 1,DC =l 1,BC =l 2. (2)BC =AC -AB =-2OA -AB =-l 1-2l 3,DA =CB =-BC =l 1+2l 3.(3)AB =l 4-l 3,BC =OC -OB =-OA -OB =-l 3-l 4.向量分解的方法(1)将两个不共线的向量作为基底,运用向量的线性运算法则对待求向量不断进行转化,直至用基底表示为止;(2)通过列向量方程或方程组的形式,利用基底表示向量的惟一性求解. 如图,在▱ABCD 中,AB =a ,AD =b ,E ,F 分别是AB ,BC 的中点,G 点使DG =13DC ,试以a ,b 为基底表示向量AF 与EG .解:AF =AB +BF =AB +12BC=AB +12AD =a +12b .EG =EA +AD +DG =-12AB +AD +13DC=-12a +b +13a =-16a +b .平面向量基本定理的应用[若AB =λAM +μAN ,则λ+μ=________.[解析] [法一 基向量法] 由AB =λAM +μAN ,得AB =λ·12(AD +AC )+μ·12(AC +AB ),则⎝⎛⎭⎫μ2-1AB +λ2AD +⎝⎛⎭⎫λ2+μ2AC =0, 得⎝⎛⎭⎫μ2-1AB +λ2AD +⎝⎛⎭⎫λ2+μ2⎝⎛⎭⎫AD +12 AB =0, 得⎝⎛⎭⎫14λ+34μ-1AB +⎝⎛⎭⎫λ+μ2AD =0. 又因为AB ,AD 不共线,所以由平面向量基本定理得⎩⎨⎧14λ+34μ-1=0,λ+μ2=0,解得⎩⎨⎧λ=-45,μ=85.所以λ+μ=45.[法二 待定系数法]连接MN 并延长交AB 的延长线于点T ,由已知易得AB =45AT ,所以,45AT =AB =λAM +μAN ,即AT =54λAM +54μAN ,因为T ,M ,N 三点共线. 所以54λ+54μ=1.所以λ+μ=45.[★答案★] 45当直接利用基底表示向量比较困难时,可设出目标向量并建立其与基底之间满足的二元关系式,然后利用已知条件及相关结论,从不同方向和角度表示出目标向量(一般需建立两个不同的向量表达式),再根据待定系数法确定系数,建立方程或方程组,解方程或方程组即得.已知向量e 1,e 2是平面α内所有向量的一组基底,且a =e 1+e 2,b =3e 1-2e 2,c =2e 1+3e 2,若c =λa +μb (λ,μ∈R),试求λ,μ的值.解:将a =e 1+e 2与b =3e 1-2e 2代入c =λa +μb 得 c =λ(e 1+e 2)+μ(3e 1-2e 2)=(λ+3μ)e 1+(λ-2μ)e 2.因为c =2e 1+3e 2,且向量e 1,e 2是平面α内所有向量的一组基底,根据平面向量基本定理中的惟一性可得方程组⎩⎪⎨⎪⎧λ+3μ=2,λ-2μ=3,解得⎩⎨⎧λ=135,μ=-15.层级一 学业水平达标1.设e 1,e 2是平面的一组基底,且a =e 1+2e 2,b =-e 1+e 2,则e 1+e 2=________a +________b .解析:由方程组:⎩⎪⎨⎪⎧a =e 1+2e 2,b =-e 1+e 2,解得⎩⎨⎧e 1=13a -23b ,e 2=13a +13b ,所以e 1+e 2=⎝⎛⎭⎫13a -23b +⎝⎛⎭⎫13a +13b =23a +⎝⎛⎭⎫-13b . ★答案★:23 -132.设点O 是▱ABCD 两对角线的交点,下列的向量组中可作为这个平行四边形所在平面上表示其他所有向量的基底的是________.①AD 与AB ;②DA 与BC ;③CA 与DC ;④OD 与OB .解析:寻找不共线的向量组即可,在▱ABCD 中,AD 与AB 不共线,CA 与DC 不共线;而DA ∥BC ,OD ∥OB ,故①③可作为基底.★答案★:①③3.AD 与BE 分别为△ABC 的边BC ,AC 上的中线,且AD =a ,BE =b ,则BC =________.解析:设AD 与BE 交点为F ,则FD =13a ,BF =23b .所以BD =BF +FD =23b +13a ,所以BC =2BD =23a +43b .★答案★:23a +43b4.在▱ABCD 中,AB =a ,AD =b ,AM =4MC ,P 为AD 的中点,则MP =______. 解析:如图,MP =AP -AM =12AD -45AC =12AD -45(AB +BC )=12b -45(a +b )=-45a -310b . ★答案★:-45a -310b5.在平面直角坐标系中,O 为坐标原点,A ,B ,C 三点满足OC =23OA +13OB ,则|AC ||AB |=________. 解析:因为OC =23OA +13OB ,所以OC -OA =-13OA +13OB =13(OB -OA ),所以AC =13AB ,所以|AC ||AB |=13.★答案★:136.如图,在△ABC 中,AN =13NC ,P 是BN 上的一点,若AP =m AB +211AC ,则实数m 的值为________.解析:因为AP =AB +BP =AB +k BN =AB +k (AN -AB )=AB +k ⎝⎛⎭⎫14 AC -AB =(1-k )AB +k 4AC ,且AP =m AB +211AC ,所以1-k =m ,k 4=211,解得k =811,m =311.★答案★:3117.下面三种说法中,正确的是________.①一个平面内只有一对不共线向量可作为表示该平面所有向量的基底; ②一个平面内有无数多对不共线向量可作为该平面所有向量的基底; ③零向量不可作为基底中的向量.解析:同一平面内两个不共线的向量都可以作为基底. ★答案★:②③8.已知△ABC 中,点D 在BC 边上,且CD =2DB ,CD =r AB +s AC ,则r +s =________.解析:如图,因为CD =AD -AC ,DB =AB -AD .所以CD =AB -DB -AC =AB -12CD -AC .所以32CD =AB -AC ,所以CD =23AB -23AC .又CD =r AB +s AC ,所以r =23,s =-23,所以r +s =0.★答案★:09.已知▱ABCD 的两条对角线相交于点M ,设AB =a ,AD =b ,以a ,b 为基底表示MA ,MB ,MC 和MD .解:AC =AB +AD =a +b ,DB =AB -AD =a -b ,MA =-12AC =-12(a +b )=-12a -12b , MB =12DB =12(a -b )=12a -12b . MC =12AC =12a +12b ,MD =-12DB =-12a +12b .10.设e 1,e 2是不共线的非零向量,且a =e 1-2e 2,b =e 1+3e 2. (1)证明:a ,b 可以作为一组基底;(2)以a ,b 为基底,求向量c =3e 1-e 2的分解式; (3)若4e 1-3e 2=λa +μb ,求λ,μ的值.解:(1)证明:若a ,b 共线,则存在λ∈R ,使a =λb , 则e 1-2e 2=λ(e 1+3e 2).由e 1,e 2不共线,得⎩⎪⎨⎪⎧λ=1,3λ=-2⇒⎩⎪⎨⎪⎧λ=1,λ=-23.所以λ不存在,故a 与b 不共线,可以作为一组基底. (2)设c =ma +nb (m ,n ∈R),则3e 1-e 2=m (e 1-2e 2)+n (e 1+3e 2)=(m +n )e 1+(-2m +3n )e 2.所以⎩⎪⎨⎪⎧ m +n =3,-2m +3n =-1⇒⎩⎪⎨⎪⎧m =2,n =1.所以c =2a +b .(3)由4e 1-3e 2=λa +μb ,得4e 1-3e 2=λ(e 1-2e 2)+μ(e 1+3e 2)=(λ+μ)e 1+(-2λ+3μ)e 2.所以⎩⎪⎨⎪⎧λ+μ=4,-2λ+3μ=-3⇒⎩⎪⎨⎪⎧λ=3,μ=1.故所求λ,μ的值分别为3和1.层级二 应试能力达标1.设e 1与e 2是两个不共线向量,a =3e 1+4e 2,b =-2e 1+5e 2,若实数λ,μ满足λa +μb =5e 1-e 2,则λ,μ的值分别为_________________.解析:由题设λa +μb =(3λe 1+4λe 2)+(-2μe 1+5μe 2)=(3λ-2μ)e 1+(4λ+5μ)e 2.又λa +μb=5e 1-e 2.由平面向量基本定理,知⎩⎪⎨⎪⎧3λ-2μ=5,4λ+5μ=-1.解之,得λ=1,μ=-1.★答案★:1,-12.在△ABC 中,已知D 是AB 边上一点,若AD =2DB ,CD =13CA +λCB ,则λ=________.解析:∵AD =2DB ,∴CD =CA +AD =CA +23AB =CA +23(CB -CA )=13CA +23CB .又∵CD =13CA +λCB ,∴λ=23.★答案★:233.已知向量a ,b 是一组基底,实数x ,y 满足(3x -4y )a +(2x -3y )b =6a +3b ,则x -y 的值为______.解析:∵a ,b 是一组基底,∴a 与b 不共线, ∵(3x -4y )a +(2x -3y )b =6a +3b ,∴⎩⎪⎨⎪⎧ 3x -4y =6,2x -3y =3,解得⎩⎪⎨⎪⎧x =6,y =3,∴x -y =3. ★答案★:34.已知非零向量OA ,OB 不共线,且2OP =x OA +y OB ,若PA =λAB (λ∈R),则x ,y 满足的关系是________.解析:由PA =λAB ,得OA -OP =λ(OB -OA ), 即OP =(1+λ)OA -λOB .又2OP =x OA +y OB ,∴⎩⎪⎨⎪⎧x =2+2λ,y =-2λ,消去λ得x +y =2. ★答案★:x +y -2=05.如图,在正方形ABCD 中,设AB =a ,AD =b ,BD =c ,则在以a ,b 为基底时,AC 可表示为______,在以a ,c 为基底时,AC 可表示为______.解析:以a ,c 为基底时,将BD 平移,使B 与A 重合,再由三角形法则或平行四边形法则即得.★答案★:a +b 2a +c6.如图,平面内有三个向量OA ,OB ,OC ,其中OA 与OB 的夹角为120°,OA 与OC 的夹角为30°,且|OA |=|OB |=1,|OC |=2 3.若OC =λOA +μOB (λ,μ∈R),则λ+μ的值为________.解析:以OC 为对角线,OA ,OB 方向为边作平行四边形ODCE ,由已知∠COD =30°,∠COE =∠OCD =90°.在Rt △OCD 中,因为|OC |=23,所以|OD |=|OC |cos 30°=4,在Rt △OCE 中,|OE |=|OC |·tan 30°=2,所以OD =4OA ,OE =2OB ,又OC =OD +OE=4OA +2OB ,故λ=4,μ=2,所以λ+μ=6.★答案★:67. 如图所示,在△ABC 中,点M 是BC 的中点,点N 在边AC 上,且AN =2NC ,AM 与BN 相交于点P ,求证:AP ∶PM =4∶1.证明:设AB =b ,AC =c , 则AM =12b +12c ,AN =23AC ,BN =BA +AN =23c -b .因为AP ∥AM ,BP ∥BN ,所以存在λ,μ∈R ,使得AP =λAM ,BP =μBN , 又因为AP +PB =AB ,所以λAM -μBN =AB , 所以由λ⎝⎛⎭⎫12b +12c -μ⎝⎛⎭⎫23c -b =b 得⎝⎛⎭⎫12λ+μb +⎝⎛⎭⎫12λ-23μc =b . 又因为b 与c 不共线.所以⎩⎨⎧12λ+μ=1,12λ-23μ=0.解得⎩⎨⎧λ=45,μ=35.故AP =45AM ,即AP ∶PM =4∶1.8.在△OAB 中,OC =14OA ,OD =12OB ,AD 与BC 交于点M ,设OA =a ,OB =b ,以a ,b 为基底表示OM .解:设OM =ma +nb (m ,n ∈R), 则AM =OM -OA =(m -1)a +nb ,AD =OD -OA =12b -a .因为A ,M ,D 三点共线,所以m -1-1=n12,即m +2n =1. 又CM =OM -OC =⎝⎛⎭⎫m -14a +nb ,CB =OB -OC =-14a +b ,因为C ,M ,B 三点共线,所以m -14-14=n 1, 即4m +n =1,由⎩⎪⎨⎪⎧ m +2n =1,4m +n =1,解得⎩⎨⎧ m =17,n =37,所以OM =17a +37b .。
平行向量基本定理题型练习-高一下学期数学人教A版(2019)必修第二册
第六章 6.3.1 平行向量基本定理【基础篇】题型1 平面向量基本定理的理解1.已知{e 1,e 2}是平面内所有向量的一个基底,则下列四组向量中,不能..作为基底的一组是( )A .2e 1-e 2和2e 2-4e 1B .e 1+e 2和e 1-2e 2C .e 1-2e 2和e 1D .e 1+e 2和2e 2+e 12.(多选)如果e 1,e 2是平面α内两个不共线的向量,那么在下列叙述中正确的有( ) A .λe 1+μe 2(λ,μ∈R )可以表示平面α内的所有向量B .对于平面α内的任一向量a ,使a =λe 1+μe 2的实数λ,μ有无数多对C .若向量λ1e 1+μ1e 2与λ2e 1+μ2e 2共线,则有且只有一个实数λ,使λ1e 1+μ1e 2=λ(λ2e 1+μ2e 2)D .若存在实数λ,μ使λe 1+μe 2=0,则λ=μ=03.如图所示,平面内的两条相交直线OP 1和OP 2将该平面分割成四个部分Ⅰ,Ⅰ,Ⅰ,Ⅰ(不包括边界).若OP →=aOP 1→+bOP 2→,且点P 落在第Ⅰ部分,则实数a ,b 满足( )A .a >0,b >0B .a >0,b <0C .a <0,b >0D .a <0,b <0题型2 向量相等4. 如图所示,平行四边形ABCD 的对角线相交于点O ,E 为AO 的中点.若DE →=λ2AB →+2μAD→(λ,μ∈R ),则λ+μ等于( )A .1B .-1C .14D .185.设E 为△ABC 的边AC 的中点,BE →=mAB →+nAC →,则m +n =________.题型3 平面向量的分解6.如图所示,在正六边形ABCDEF 中,设AB →=a ,AF →=b ,则AC →=( )A .a +2bB .2a +3bC .2a +bD .32a +b7.如图,在△ABC 中,点D 是线段AB 上靠近A 的三等分点,点E 是线段CD 的中点,则( )A .AE →=16AB →+12AC →B.AE →=13AB →+12AC →C.AE →=16AB →-12AC →D.AE →=13AB →-12AC →8.已知e 1,e 2是平面内两个不共线的向量,a =3e 1-2e 2,b =-2e 1+e 2,c =7e 1-4e 2,用向量a 和b 表示c ,则c =________.9.在平行四边形ABCD 中,E ,F 分别是AD ,DC 边的中点,BE ,BF 分别与AC 交于R ,T 两点,ET →=xAB →+yAD →(x ,y ∈R ),则x +y =( ) A .16B .13C .23D .56【提升篇】1.如果{a ,b }是一个基底,那么下列不能作为基底的是( ) A .a +b 与a -bB .a +2b 与2a +bC .a +b 与-a -bD .a 与-b2.在△ABC 中,点D 在边AB 上,CD 平分∠ACB .若CB →=a ,CA →=b ,|a |=1,|b |=2,则CD →=( ) A .13a +23b B .23a +13b C .35a +45bD .45a +35b3.(多选)[浙江宁波九校2022高一期末]在梯形ABCD 中,AB ∥CD ,AB =2CD ,E ,F 分别是AB ,CD 的中点,AC 与BD 交于M .设AB →=a ,AD →=b ,则下列结论正确的有( ) A .AC →=12a +bB .BC →=-12a +bC .BM →=-13a +23bD .EF →=-14a +b4.如图,在△ABC 中,D ,E 分别在边BC ,AC 上,且BC →=3BD →,EC →=λAE →,F 是AD ,BE 的交点.若AF →=35AD →,则λ=( )A .2B .3C .6D .75.某中学八角形校徽由两个正方形叠加组合而成,体现“方方正正做人”之意,又体现南开人“面向四面八方,胸怀博大,广纳新知,锐意进取”之精神.如图的多边形,由一个正方形与以该正方形中心为中心逆时针旋转45°后的正方形组合而成.已知向量n ,k ,则向量a =( )A .3k +2nB .3k +(2+2)nC .(2+2)k +(2+2)nD .(2+2)k +(1+2)n6.(多选)[湖北孝感2022高一期末]已知△ABC 中,O 是BC 边上靠近B 的三等分点,过点O 的直线分别交直线AB ,AC 于不同的两点M ,N .设AB →=mAM →,AC →=nAN →,其中m >0,n >0,则下列结论正确的是( ) A .AO →=23AB →+13AC →B.AO →=13AB →+23AC →C .2m +n =3D .m +2n =37.在等腰梯形ABCD 中,DC →=2AB →,E 为BC 的中点,F 为DE 的中点,记DA →=a ,DC →=b .若用a ,b 表示DF →,则DF →=________.8.在△ABC 中,AD →=12AB →,BE →=23BC →.若DE →=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2=________.9.如图,在△ABC 中,D 是BC 的中点,E ,F 是AD 的两个三等分点,BA →·CA →=4,BF →·CF →=-1,则BE →·CE →的值是________.10.如图,在正△ABC 中,点G 为边BC 的中点,边AB ,AC 上的动点D ,E 分别满足AD →=λAB →,AE →=(1-2λ)AC →,λ∈R .设DE 的中点为F ,记|FG →||BC →|=R(λ),则R(λ)的取值范围为________.11.如图,在平行四边形ABCD 中,E 是AB 的中点,F ,G 分别是AD ,BC 的四等分点⎝⎛⎭⎫AF =14AD ,BG =14BC .设AB →=a ,AD →=b . (1)用a ,b 表示EF →,EG →.(2)如果|b |=2|a |,EF ,EG 有什么位置关系?用向量的方法证明你的结论.12.如图所示,在△OAB 中,OC →=14OA →,OD →=12OB →,AD 与BC 交于点M .过点M 的直线l与OA ,OB 分别交于点E ,F . (1)试用OA →,OB →表示向量OM →;(2)设OE →=λOA →,OF →=μOB →,求证:1λ+3μ是定值.13.如图,在直角梯形OABC 中,OA ∥CB ,OA ⊥OC ,OA =2BC =2OC ,M 为AB 上靠近B的三等分点,OM 交AC 于点D ,P 为线段BC 上的动点. (1)用OA →和OC →表示OM →; (2)求OD DM;(3)设OB →=λCA →+μOP →,求λμ的取值范围.答案及解析【详解】对于A 选项,因为2e 2-4e 1=-2(2e 1-e 2),所以2e 1-e 2和2e 2-4e 1共线,A 选项不满足条件;对于B 选项,设e 1+e 2=λ(e 1-2e 2)=λe 1-2λe 2,则⎩⎪⎨⎪⎧λ=1,-2λ=1,无解,故e 1+e 2和e 1-2e 2不共线,B 选项能作为基底;同理可知e 1-2e 2和e 1不共线,e 1+e 2和2e 2+e 1也不共线,C ,D 选项均能作为基底.故选A.2.【答案】AD【详解】由平面向量基本定理可知,A ,D 正确.对于B ,由平面向量基本定理可知,一旦一个平面的基底确定,那么任意一个向量在此基底下的实数对是唯一的.对于C ,当两向量的系数均为零,即λ1=λ2=μ1=μ2=0时,λ有无数个.故选AD.3.【答案】B【详解】取第Ⅰ部分内一点画图易得a >0,b <0.4.【答案】D【详解】因为E 为AO 的中点,所以AE →=14AC →=14(AB →+AD →),所以DE →=AE →-AD →=14(AB →+AD →)-AD →=14AB →-34AD →.又因为DE →=λ2AB →+2μAD →,所以⎩⎨⎧λ2=14,2μ=-34,解得⎩⎨⎧λ=12,μ=-38,所以λ+μ=18,故选D.5.【答案】-12【详解】因为BE →=BA →+AE →=-AB →+12AC →=mAB →+nAC →,所以m =-1,n =12,所以m +n =-12.6.【答案】C【详解】在正六边形ABCDEF 中,连接FC ,则FC ∥AB ,FC =2AB ,所以AC →=AF →+FC →=AF →+2AB →=2a +b .故选C.【详解】由题图知AE →=12AD →+12AC →=16AB →+12AC →.故选A.8.【答案】a -2b【详解】因为a ,b 不共线,设c =xa +yb (x ,y ∈R),则xa +yb =x (3e 1-2e 2)+y (-2e 1+e 2)=(3x -2y )e 1+(-2x +y )e 2=7e 1-4e 2.又因为e 1,e 2不共线,所以⎩⎪⎨⎪⎧3x -2y =7,-2x +y =-4,解得⎩⎪⎨⎪⎧x =1,y =-2,所以c =a -2b .9.【答案】D 【详解】如图所示,设CT →=μCA →=2μCF →+μCB →(μ∈R).因为F ,T ,B 共线,所以3μ=1,解得μ=13.所以AT →=23AC →,所以ET →=AT →-AE →=23AC →-AE →=23AB →+16AD →.又ET →=xAB →+yAD →,所以x =23,y =16,所以x +y =56.故选D.【详解】由题意知,a 与b 不共线,根据平行四边形法则,可知A ,B ,D 选项中的两个向量都可以作为基底,而a +b 与-a -b 共线,不能作为基底.2.【答案】B【详解】∵CD 平分∠ACB ,∴|CA →||CB →|=|AD →||DB →|=2.∴AD →=2DB →=23AB →=23(CB →-CA →)=23(a -b ).∴CD→=CA →+AD →=b +23(a -b )=23a +13b .3.【答案】ABD【详解】由题意得,AC →=AD →+DC →=b +12a ,故A 正确;BC →=BA →+AC →=-a +b +12a =b -12a ,故B 正确;由△CMD ∽△AMB ,且CD =12AB 得AM →=23AC →,则BM →=BA →+AM →=-a +23AC →=-a +23b +13a =23b -23a ,故C 错误;EF →=EA →+AD →+DF →=-12a +b +14a =b -14a ,故D 正确.故选ABD.4.【答案】A【详解】由题意得AD →=AB →+BD →=AB →+13BC →=AB →+13(AC →-AB →)=23AB →+13AC →.因为B ,E ,F 三点共线,所以AF →=kAB →+(1-k )AE →=kAB →+1-k λ+1AC →.因为AF →=35AD →,所以kAB →+1-k λ+1AC →=35⎝⎛⎭⎫23AB →+13AC →,则⎩⎨⎧k =25,1-k λ+1=15.解得λ=2,故选A.5.【答案】D【详解】根据题意可得|n |=|k |,已知该图形是由以正方形中心为中心逆时针旋转45°后的正方形与原正方形组合而成,如图,由对称性可得|AB |=|BC |=|CD |=|DE |=|EQ |=|QF |,|CE |=|EF |=|FG |=2|AB |=2|n |. 由图可知点B ,C ,E ,Q 共线,点Q ,F ,G 共线,所以BQ →=BC →+CE →+EQ →=(2+2)k , QG →=QF →+FG →=(1+2)n ,所以a =BG →=BQ →+QG →=(2+2)k +(1+2)n .故选D.6.【答案】AC【详解】AO →=AB →+BO →=AB →+13BC →=AB →+13(AC →-AB →)=23AB →+13AC →,A 正确,B 错误.因为AB →=mAM →,AC →=nAN →,所以AO →=23AB →+13AC →=2m 3AM →+n 3AN →.又因为M ,O ,N 三点共线,所以2m 3+n3=1,故2m +n =3,C 正确,D 错误.故选AC.7.【答案】14a +38b【详解】DE →=12DB →+12DC →=12(DA →+AB →)+12DC →=34DC →+12DA →,∴DF →=12DE →=38DC →+14DA →,即DF →=14a +38b .8.【答案】12【详解】DE →=DB →+BE →=12AB →+23BC →=12AB →+23(AC →-AB →)=-16AB →+23AC →,又DE →=λ1AB →+λ2AC →,所以λ1+λ2=12.9.【答案】78【详解】∵E ,F 是AD 的两个三等分点,D 是BC 的中点,∴BF →=BD →+DF →,CF →=CD →+DF →=DF →-BD →,BA →=BD →+DA →=BD →+3DF →,CA →=CD →+DA →=3DF →-BD →.∴BA →·CA →=9|DF →|2-|BD →|2=4, BF →·CF →=|DF →|2-|BD →|2=-1, 解得|DF →|2=58,|BD →|2=138.又∵BE →=BD →+DE →=BD →+2DF →,CE →=CD +DE →=2DF →-BD →,∴BE →·CE →=4|DF →|2-|BD →|2=208-138=78.10.【答案】⎣⎡⎦⎤12,74 【解析】设正△ABC 的边长为2,则AB →·AC →=2×2×cos π3=2,|BC →|=2. FG →=AG →-AF →=12(AB →+AC →)-12(AD →+AE →)=12(1-λ)AB →+λAC →,所以|FG →|= (1-λ)2+4λ2+2λ(1-λ)=3λ2+1.又0≤1-2λ≤1,0≤λ≤1,所以0≤λ≤12,因此|FG →|=3λ2+1∈⎣⎡⎦⎤1,72,R(λ)=3λ2+12∈⎣⎡⎦⎤12,74.11.【答案】(1)由已知,得AE →=EB →=12a ,AF →=BG →=14b , 所以EF →=EA →+AF →=14b -12a , EG →=EB →+BG →=14b +12a . (2)EF 与EG 互相垂直.证明如下:EF →·EG →=⎝⎛⎭⎫14b +12a ·(14b -12a )=116b 2-14a 2, 因为|b |=2|a |,所以EF →·EG →=0,即EF ⊥EG ,所以EF 与EG 互相垂直.12.【答案】(1)【解】由A ,M ,D 三点共线可得存在实数m ,使得OM →=mOA →+(1-m )OD →,又OD →=12OB →,故OM →=mOA →+1-m 2OB →. 由C ,M ,B 三点共线可得存在实数n ,使得OM →=nOC →+(1-n )OB →,又OC →=14OA →,故OM →=n 4OA →+(1-n )OB →. 由题意知OA →,OB →不共线,则⎩⎨⎧m =14n ,1-m 2=1-n ,解得⎩⎨⎧m =17,n =47,故OM →=17OA →+37OB →. (2)【证明】由E ,M ,F 三点共线,可设OM →=kOE →+(1-k )OF →(k ∈R),由OE →=λOA →,OF →=μOB →,得OM →=kλOA →+(1-k )μOB →.由(1)知OM →=17OA →+37OB →, 则⎩⎨⎧kλ=17,(1-k )μ=37,即⎩⎨⎧λ=17k ,3μ=7-7k ,所以1λ+3μ=7,故1λ+3μ是定值. 13.【答案】(1)依题意CB →=12OA →,AM →=23AB →, ∴AM →=23(OB →-OA →)=23(OC →+CB →)-23OA →=23OC →-13OA →, ∴OM →=OA →+AM →=OA →+⎝⎛⎭⎫23OC →-13OA →=23OA →+23OC →.(2)设OD →=tOM →(t ∈R).由(1)可知OD →=23tOA →+23tOC →. 又A ,C ,D 三点共线,∴23t +23t =1,解得t =34,故OD DM =3. (3)由题意得OB →=OC →+CB →=OC →+12OA →, 已知P 是线段BC 上的动点,设CP →=xOA →⎝⎛⎭⎫0≤x ≤12. ∵OB →=λCA →+μOP →=λ(OA →-OC →)+μ(OC →+CP →)=(λ+μx )OA →+(μ-λ)OC →,又OC →,OA →不共线,∴⎩⎪⎨⎪⎧μ-λ=1,λ+μx =12,解得⎩⎪⎨⎪⎧λ=μ-1,μ=32+2x. 又0≤x ≤12,∴1≤x +1≤32,∴1≤μ≤32. 可知λμ=μ(μ-1)=⎝⎛⎭⎫μ-122-14在区间⎣⎡⎦⎤1,32上单调递增, 当μ=1时,(λμ)min =0,当μ=32时,(λμ)max =34, 故λμ的取值范围是⎣⎡⎦⎤0,34.。
5.2 平面向量的基本定理及坐标表示
5.2 平面向量的基本定理及坐标表示1.平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使_______________________________.我们把不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组__________.2.向量的夹角(1)已知两个________向量a 和b ,作OA →=a , OB →=b ,则∠AOB =θ叫做向量a 与b 的夹角(如图).(2)向量夹角θ的范围是_______________.a 与b 同向时,夹角θ=________;a 与b 反向时,夹角θ=____________.(3)如果向量a 与b 的夹角是____________,我们就说a 与b 垂直,记作____________.3.平面向量的正交分解及坐标表示 (1)平面向量的正交分解把一个向量分解为两个____________的向量,叫做向量的正交分解.(2)在平面直角坐标系内,分别取与x 轴、y 轴方向相同的两个单位向量i ,j 作为基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x ,y ,使得a =x i +y j .则实数对__________叫做向量a 的(直角)坐标,记作a =__________,其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标,该式叫做向量的坐标表示.与a 相等的向量的坐标也为________.显然,i =__________, j =__________,0=__________.4.平面向量的坐标运算(1)已知a =(x 1,y 1),b =(x 2,y 2),则a ±b =___________________________________________.(2)如果A (x 1,y 1),B (x 2,y 2),则AB →=___________________________________________.(3)若a =(x ,y ),则λa =____________.(4)如果a =(x 1,y 1),b =(x 2,y 2)(b ≠0),则a ∥b的充要条件是____________________.自查自纠: 1.a =λ1e 1+λ2e 2 基底2.(1)非零 (2)0°≤θ≤180° 0° 180° (3)90° a ⊥b3.(1)互相垂直 (2)(x ,y ) (x ,y ) (x ,y ) (1,0) (0,1) (0,0)4.(1)(x 1±x 2,y 1±y 2) (2)(x 2-x 1,y 2-y 1) (3)(λx ,λy ) (4)x 1y 2-x 2y 1=0在△ABC 中,已知A (2,1),B (0,2),BC →=(1,-2),则向量AC →= ( )A .(0,0)B .(2,2)C .(-1,-1)D .(-3,-3) 解:因为A (2,1),B (0,2),所以AB →=(-2,1).又因为BC →=(1,-2),所以AC →=AB →+BC →=(-2,1)+(1,-2)=(-1,-1).故选C .(2017·杭州模拟)已知e 1,e 2是表示平面内所有向量的一组基底,则下列四组向量中,不能作为一组基底的是 ( )A .e 1+e 2和e 1-e 2B .3e 1-2e 2和4e 2-6e 1C .e 1+2e 2和e 2+2e 1D .e 2和e 1+e 2解:因为4e 2-6e 1=-2(3e 1-2e 2),所以3e 1-2e 2与4e 2-6e 1共线,又作为一组基底的两个向量一定不共线,所以它们不能作为一组基底.故选B .(2018·北京朝阳高三一模)已知平面向量 a =(x ,1),b =(2,x -1)且a ∥b ,则实数x 的值是( )A .-1B .1C .2D .-1或2 解:由a =(x ,1),b =(2,x -1)且a ∥b ,可以得到x (x -1)=2,即(x -2)(x +1)=0,所以x =-1或x =2.故选D .(2017·全国卷Ⅲ)已知向量a =(-2,3), b =(3,m ),且a ⊥b ,则m =________.解:由题意可得,-2×3+3m =0,所以m =2.故填2.在正方形ABCD 中,M ,N 分别是BC ,CD的中点,若AC →=λAM →+μBN →,则实数λ+μ=________.解法一:因为AC →=AB →+BC →,AM →=AB →+BM →=AB →+12BC →,BN →=BC →+CN →=BC →-12AB →,所以由AC →=λAM →+μBN →有⎩⎨⎧1=λ-12μ,1=12λ+μ,解得⎩⎨⎧λ=65,μ=25,所以λ+μ=85. 解法二:不妨设正方形边长为2,以A 为坐标原点,AB →方向为x 轴正方向,AD →方向为y 轴正方向建立平面直角坐标系,则AC →=(2,2),AM →=(2,1),BN →=(-1,2).由AC →=λAM →+μBN →有⎩⎪⎨⎪⎧2λ-μ=2,λ+2μ=2,解得λ=65,μ=25,λ+μ=85.故填85.类型一 向量共线充要条件的坐标表示(1)(2018·全国卷Ⅲ)已知向量a =(1,2),b =(2,-2),c =(1,λ),若c ∥(2a +b ),则λ=________.解:由题可得2a +b =(4,2),因为c ∥(2a +b ),c =(1,λ),所以4λ-2=0,即λ=12.故填12.(2)已知平面向量a =(2m +1,3),b =(2,m ),且a 与b 反向,则|b |等于( )A .1027B .2 2C .52D .52或2 2解:根据题意a ∥b 知m (2m +1)-3×2=0,解得m =-2或m =32.当m =32时,a =(4,3),b =⎝⎛⎭⎫2,32,则a =2b ,此时两向量同向,与已知不符,故m =-2,此时b =(2,-2),故|b |=22.故选B .点 拨:两平面向量共线的充要条件有两种形式:①若a =(x 1,y 1),b =(x 2,y 2),则a ∥b (b ≠0)的充要条件是x 1y 2-x 2y 1=0;②a ∥b (a ≠0),当且仅当唯一一个实数λ,使b =λa .向量共线的坐标表示既可以判定两向量平行,也可以由平行求参数.当两向量的坐标均非零时,也可以利用坐标对应成比例来求解.(1) (2017·郑州月考)已知向量a = (1-sin θ,1),b =⎝⎛⎭⎫12,1+sin θ,若a ∥b ,则锐角 θ=________.解:由a ∥b ,得(1-sin θ)(1+sin θ)=12,所以cos 2θ=12,所以cos θ=22或cos θ=-22,又θ为锐角,所以θ=45°.故填45°.(2)已知向量OA →=(1,-3),OB →=(2,-1), OC →=(k +1,k -2),若A ,B ,C 三点能构成三角形,则实数k 的取值范围是________.解:若点A ,B ,C 能构成三角形,则向量AB →,AC →不共线.因为AB →=OB →-OA →=(2,-1)-(1,-3)=(1,2),AC →=OC →-OA →=(k +1,k -2)-(1,-3)=(k ,k +1),所以1×(k +1)-2k ≠0,解得k ≠1. 故填{k |k ∈R ,且k ≠1}.类型二 平面向量基本定理及其应用(1)如图,已知平面内有三个向量OA →,OB →,OC →,其中OA →与OB →的夹角为120°,OA →与OC →的夹角为30°,且|OA →|=|OB →|=1,|OC →|=23,若 OC →=λOA →+μOB →(λ,μ∈R ),则λ+μ的值为________.解法一:以λOA →和μOB →为邻边作平行四边形OB 1CA 1,如图,则OC →=OB 1→+OA 1→.因为OA →与OB →的夹角为120°, OA →与OC →的夹角为30°,所以∠B 1OC =90°,在Rt △OB 1C 中,|OC →|=23,所以|OB 1→|=2,|B 1C →|=4,所以|OA 1→|=|B 1C →|=4, 所以OC →=4OA →+2OB →,即λ+μ=6. 解法二:以O 为原点,建立如图所示的平面直角坐标系,则A (1,0),C (23cos30°,23sin30°),B (cos120°,sin120°).即A (1,0),C (3,3),B ⎝⎛⎭⎫-12,32.由OC →=λOA →+μOB →=λ(1,0)+μ⎝⎛⎭⎫-12,32=⎝⎛⎭⎫λ-12μ,32μ,即⎝⎛⎭⎫λ-12μ,32μ=(3,3),得⎩⎨⎧λ-12μ=3,32μ=3,所以⎩⎪⎨⎪⎧μ=2,λ=4, 即λ+μ=6.故填6.(2)已知向量AC →,AD →和AB →在正方形网格中的位置如图所示,若AC →=λAB →+μAD →,则λμ=________.解:建立如图所示的平面直角坐标系xAy ,则 AC →=(2,-2),AB →=(1,2),AD →=(1,0).由题意可知(2,-2)=λ(1,2)+μ(1,0),即⎩⎪⎨⎪⎧2=λ+μ,-2=2λ, 解得⎩⎪⎨⎪⎧λ=-1,μ=3,所以λμ=-3.故填 -3.点 拨:应用平面向量基本定理应注意:①平面向量基本定理中的基底必须是两个不共线的向量;②选定基底后,通过向量的加、减、数乘以及向量平行的充要条件,把相关向量用这一组基底表示出来;③强调几何性质在向量运算中的作用,用基底表示未知向量,常借助图形的几何性质,如平行、相似等;④在基底未给出的情况下,合理地选取基底会给解题带来方便.(1)设向量a ,b 不平行,向量λa +b与a +2b 平行,则实数λ=________.解:由于λa +b 与a +2b 平行,且a +2b ≠0,所以存在唯一的实数μ∈R ,使得λa +b =μ(a +2b ),即(λ-μ)a +(1-2μ)b =0.因为a ,b 不平行,所以⎩⎪⎨⎪⎧λ-μ=0,1-2μ=0, 解得λ=μ=12.故填12.(2)向量a ,b ,c 在正方形网格中的位置如图所示.若c =λa +μb (λ,μ∈R ),则λμ=________.解:设i ,j 分别为水平向右和竖直向上的单位向量,则a =-i +j ,b =6i +2j ,c =-i -3j ,所以-i -3j =λ(-i +j )+μ(6i +2j ),即-i -3j =(-λ+6μ)i +(λ+2μ)j ,根据平面向量基本定理得⎩⎪⎨⎪⎧-1=-λ+6μ,-3=λ+2μ, 解得⎩⎪⎨⎪⎧λ=-2,μ=-12.所以λμ=4.故填4.类型三 求向量的坐标已知梯形ABCD ,其中AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________.解:因为在梯形ABCD 中,DC =2AB ,AB ∥CD ,所以DC →=2AB →.设点D 的坐标为(x ,y ),则DC →=(4,2)-(x ,y )=(4-x ,2-y ), AB →=(2,1)-(1,2)=(1,-1),所以(4-x ,2-y )=2(1,-1),即(4-x ,2-y )=(2,-2),所以⎩⎪⎨⎪⎧4-x =2,2-y =-2, 解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4).故填(2,4).点 拨:平面向量坐标运算的技巧:①向量的坐标运算常建立在向量的线性运算的基础之上,若已知有向线段两端点的坐标,则应考虑坐标运算;②解题过程中,常利用“向量相等,则其坐标相同”这一原则,通过列方程(组)进行求解.已知三点A (a ,0),B (0,b ),C (2,2),其中a >0,b >0.(1)若O 是坐标原点,且四边形OACB 是平行四边形,试求a ,b 的值;(2)若A ,B ,C 三点共线,试求1a +1b 的值.解:(1)因为四边形OACB 是平行四边形,所以OA →=BC →,即(a ,0)=(2,2-b ),⎩⎪⎨⎪⎧a =2,2-b =0, 解得⎩⎪⎨⎪⎧a =2,b =2. 故a =2,b =2.(2)因为AB →=(-a ,b ),BC →=(2,2-b ), 由A ,B ,C 三点共线,得AB →∥BC →, 所以-a (2-b )-2b =0,即2(a +b )=ab , 因为a >0,b >0, 所以1a +1b =12.类型四 向量坐标的应用(2018·天津)如图,在平面四边形ABCD 中,AB ⊥BC ,AD ⊥CD ,∠BAD =120°,AB =AD =1.若点E 为边CD 上的动点,则AE →·BE →的最小值为 ( )A .2116B .32C .2516D .3解法一:以点A 为原点,以AB 所在的直线为x 轴,建立如图(1)所示的平面直角坐标系,依题意得,A (0,0),B (1,0).因为AD =1,∠BAD =120°,所以D ⎝⎛⎭⎫-12,32,且直线CD 的倾斜角为30°,所以直线CD 的方程为y -32=33⎝⎛⎭⎫x +12,即y =33(x +2).由⎩⎪⎨⎪⎧y =33(x +2),x =1,得⎩⎨⎧x =1,y =3,所以点C 的坐标为(1,3).因为点E 为边CD 上的动点,故可设E ⎝⎛⎭⎫t ,33(t +2),-12≤t ≤1,所以AE →=⎝⎛⎭⎫t ,33(t +2),BE →=⎝⎛⎭⎫t -1,33(t +2),所以AE →·BE →=t (t -1)+⎣⎡⎦⎤33(t +2)2=43⎝⎛⎭⎫t +182+2116,所以当t =-18时,AE →·BE →取最小值,为2116.图(1) 图(2)解法二:易知DC =3,∠CAD =60°,设DE =x (0≤x ≤3),则AE →·BE →=(AD →+DE →)·(BA →+AD →+DE →)=1×1×cos60°+12+0+x ×1×cos150°+0+x 2=⎝⎛⎭⎫x -342+2116≥2116.解法三:如图(2),取AB 的中点F ,连接EF ,则AE →·BE →=EA →·EB →=(EF →+F A →)·(EF →-F A →)=EF →2- F A →2=EF →2-14.可知当且仅当|EF →|最小时AE →·BE →取最小值,分别过F ,B 作CD 的垂线,垂足分别为H ,G ,当点E 与H 重合时,EF 取到最小值,易知EF 为梯形DABG 的中位线,由已知得|BG |=32,|AD |=1,则|HF |=|EF |=12(|BG |+|AD |)=54.故AE →·BE →的最小值为2116.故选A .点 拨:向量的坐标运算,往往能降低推理的难度,与向量相关的最值、范围问题,可优先考虑坐标运算.用向量法解决平面几何相关问题的步骤是:①建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;②通过向量运算,研究几何元素之间的关系,如长度、距离、夹角等问题;③把运算结果“翻译”成几何关系,从而解决问题.(2017·安徽联考)在边长为1的正△ABC 中,D ,E 是边BC 的两个三等分点(D 靠近点B ),则AD →·AE →等于 ( )A .16B .29C .1318D .13解法一:建立如图所示的直角坐标系,则A ⎝⎛⎭⎫0,32,D ⎝⎛⎭⎫-16,0,E ⎝⎛⎭⎫16,0,所以AD →=⎝⎛⎭⎫-16,-32,AE →=⎝⎛⎭⎫16,-32,AD →·AE →=-16×16+⎝⎛⎭⎫-32×⎝⎛⎭⎫-32=1318.解法二:取BC 中点O ,则AD →·AE →=(AO →+OD →)·(AO →+OE →)=AO →2-OE →2=34-136=1318.解法三:如图,|AB →|=|AC →|=1,〈AB →,AC →〉=60°.因为D ,E 是边BC 的两个三等分点,所以AD →·AE →=⎝⎛⎭⎫AB →+13BC →·⎝⎛⎭⎫AC →+13CB →=AB →·AC →-13AB →·BC →+13BC →·AC →-19BC →2=1×1×cos60°-13×1×1×cos120°+13×1×1×cos60°-19=12+16+16-19=1318.故选C .1.对平面向量基本定理的理解(1)平面向量基本定理实际上是向量的分解定理,并且是平面向量正交分解的理论依据,也是向量坐标表示的基础.(2)平面向量的一组基底是两个不共线向量,平面向量基底可以有无穷多组.(3)用平面向量基本定理可将平面中任一向量分解成形如a =λ1e 1+λ2e 2(λ1,λ2∈R ,e 1,e 2为同一平面内不共线的两个向量)的形式,它是向量线性运算知识的延伸.(4)如果e 1,e 2是同一平面内的一组基底,且λ1e 1+λ2e 2=0(λ1,λ2∈R ),那么λ1=λ2=0.2.对两向量夹角的理解两向量的夹角是指当两向量的起点相同时,表示两向量的有向线段所形成的角.若起点不同,则应通过平移,使其起点相同.3.向量的坐标表示向量用坐标表示后,向量的计算和证明都归结为数的运算,这使问题大大简化.一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标,当且仅当向量的起点为原点时,向量的坐标才等于其终点的坐标.两个向量相等,当且仅当其坐标相同.4.向量坐标的应用向量具有代数和几何的双重特征,如向量运算的平行四边形法则、三角形法则、平面向量基本定理等都可以认为是从几何的角度来研究向量的特征;而引入坐标后,就可以通过代数运算来研究向量,凸显出了向量的代数特征,为用代数的方法研究向量问题奠定了基础.在处理很多与向量有关的问题时,坐标化是一种常见的思路,利用坐标可以使许多问题的解决变得更加简捷.1.下列向量组中,能作为表示它们所在平面内所有向量的一组基底的是 ( )A .a =(1,2),b =(0,0)B .a =(1,-2),b =(3,5)C .a =(3,2),b =(9,6)D .a =⎝⎛⎭⎫-34,12, b =(3,-2) 解:在平面内,根据向量基底的定义知,两个向量不共线即可作为基底.故选B .2.设向量a =(2,4)与向量b =(x ,6)共线,则实数x = ( )A .2B .3C .4D .6 解:因为a ∥b ,所以2×6-4x =0,解得x =3.故选B .3.(2017·抚州模拟)若向量a =(1,1),b =(-1,1),c =(4,2),则c = ( )A .3a +bB .3a -bC .-a +3bD .a +3b解法一:设c =m a +n b ,则(4,2)=(m -n ,m +n ),所以⎩⎪⎨⎪⎧m -n =4,m +n =2, 所以⎩⎪⎨⎪⎧m =3,n =-1, 所以c =3a -b .解法二:代入验证法.对于A ,3a +b =3(1,1)+(-1,1)=(2,4)≠c ,故A 不正确;同理选项C 、D 也不正确;对于B ,3a -b =(4,2)=c ,故B 正确.故选B .4.已知M (3,-2),N (-5,-1),且MP →=12MN →,则P 点的坐标为 ( )A .(-8,1)B .⎝⎛⎭⎫-1,-32 C .⎝⎛⎭⎫1,32 D .(8,-1) 解:设P (x ,y ),则MP →=(x -3,y +2), 而12MN →=12(-8,1)=⎝⎛⎭⎫-4,12, 所以⎩⎪⎨⎪⎧x -3=-4,y +2=12, 解得⎩⎪⎨⎪⎧x =-1,y =-32.所以P 点坐标为⎝⎛⎭⎫-1,-32.故选B . 5.如图,e 1,e 2为互相垂直的单位向量,向量a ,b 如图,则向量a -b 可表示为 ( )A .3e 2-e 1B .-2e 1-4e 2C .e 1-3e 2D .3e 1-e 2解:由图易知a -b =-3e 2+e 1=e 1-3e 2.故选C .6.(2018·浙江)已知a ,b ,e 是平面向量,e 是单位向量,若非零向量a 与e 的夹角为π3,向量b满足b 2-4e ·b +3=0,则|a -b |的最小值是( )A .3-1B .3+1C .2D .2- 3解:不妨设e =(1,0),b =(x ,y ),则由b 2-4e ·b +3=0⇒(x -2)2+y 2=1,再由a 与e 的夹角为π3可知,所求为如图两条射线上的点到圆上的点距离的最小值,即为2sin60°-1=3-1.故选A . 7.已知向量e 1,e 2是两个不共线的向量,若a =2e 1-e 2与b =e 1+λe 2共线,则λ=________. 解:若a =2e 1-e 2与b =e 1+λe 2共线,则 2e 1-e 2=k (e 1+λe 2)=k e 1+λk e 2,得⎩⎪⎨⎪⎧k =2,λk =-1, 解得λ=-12.故填-12.8.(2018·山东菏泽高三一模)已知在△ABC 中,D 为边BC 上的点,且BD =3DC ,点E 为AD 的中点,BE →=mAB →+nAC →,则m +n =________.解:BE →=BD →+DE →=BD →-12AD →=BD →-12(AB →+BD →)=12BD →-12AB →=12×34BC →-12AB →=38BC →-12AB →=38(AC →-AB →)-12AB →=-78AB →+38AC →.又BE →=mAB →+nAC →,所以mAB →+nAC →=-78AB→+38AC →.又因为AB →与AC →不共线,所以m =-78,n =38,所以m +n =-12.故填-12. 9.已知a =(1,0),b =(2,1).求:(1)|a +3b |;(2)当k 为何实数时,k a -b 与a +3b 平行,平行时它们是同向还是反向?解:(1)因为a =(1,0),b =(2,1), 所以a +3b =(7,3),故|a +3b |=72+32=58.(2)k a -b =(k -2,-1),a +3b =(7,3), 因为k a -b 与a +3b 平行, 所以3(k -2)+7=0,即k =-13.此时k a -b =(k -2,-1)=⎝⎛⎭⎫-73,-1, a +3b =(7,3),则a +3b =-3(k a -b ),即此时向量a +3b 与k a -b 方向相反.10.已知点O (0,0),A (1,2),B (4,5)及OP →=OA →+tAB →,试问: (1)当t 为何值时,P 在x 轴上?P 在y 轴上?P在第三象限内?(2)四边形OABP 能否成为平行四边形?若能,求出t 的值;若不能,请说明理由. 解:(1)依题意,得AB →=(3,3),所以OP →=OA →+tAB →=(1+3t ,2+3t ),即P (1+3t ,2+3t ).若P 在x 轴上,则2+3t =0,所以t =-23;若P 在y 轴上,则1+3t =0,所以t =-13;若P 在第三象限内,则⎩⎪⎨⎪⎧1+3t <0,2+3t <0, 所以t <-23. (2)因为OA →=(1,2),PB →=(3-3t ,3-3t ),若OABP 是平行四边形,则OA →=PB →,所以⎩⎪⎨⎪⎧3-3t =1,3-3t =2. 此方程无解.故四边形OABP 不可能成为平行四边形. 11.已知平行四边形三个顶点的坐标分别为(-1,0),(3,0),(1,-5),求第四个顶点的坐标.解:如图所示,令A (-1,0),B (3,0),C (1,-5),D (x ,y ).(1)若四边形ABCD 1为平行四边形, 则AD 1→=BC →,且AD 1→=(x +1,y ),BC →=(-2,-5).所以⎩⎪⎨⎪⎧x +1=-2,y =-5,解得⎩⎪⎨⎪⎧x =-3,y =-5. 所以D 1(-3,-5).(2)若四边形ACD 2B 为平行四边形,则AB →=CD 2→,且AB →=(4,0),CD 2→=(x -1,y +5).所以⎩⎪⎨⎪⎧x -1=4,y +5=0, 解得⎩⎪⎨⎪⎧x =5,y =-5. 所以D 2(5,-5).(3)若四边形ACBD 3为平行四边形,则AD 3→=CB →,且AD 3→=(x +1,y ),CB →=(2,5),所以⎩⎪⎨⎪⎧x +1=2,y =5, 解得⎩⎪⎨⎪⎧x =1,y =5. 所以D 3(1,5).综上所述,平行四边形第四个顶点的坐标为(-3,-5)或(5,-5)或(1,5).如图所示,在△ABC 中,点M 是AB的中点,且AN →=12NC →,BN 与CM 相交于点E ,设AB →=a ,AC →=b ,用基底a ,b 表示向量AE →=________.解:易得AN →=13AC →=13b ,AM →=12AB →=12a ,由N ,E ,B 三点共线知,存在实数m ,满足AE →=mAN →+ (1-m )AB →=13m b +(1-m )a .由C ,E ,M 三点共线知存在实数n ,满足AE →=nAM →+(1-n )AC →=12n a +(1-n )b .所以13m b +(1-m )a =12n a +(1-n )b .由于a ,b为基底,所以⎩⎨⎧1-m =12n ,13m =1-n ,解得⎩⎨⎧m =35,n =45. 所以AE →=25a +15b .故填25a +15b .5.2 平面向量的基本定理及坐标表示1.平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使_______________________________.我们把不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组__________.2.向量的夹角(1)已知两个________向量a 和b ,作OA →=a , OB →=b ,则∠AOB =θ叫做向量a 与b 的夹角(如图).(2)向量夹角θ的范围是_______________.a 与b 同向时,夹角θ=________;a 与b 反向时,夹角θ=____________.(3)如果向量a 与b 的夹角是____________,我们就说a 与b 垂直,记作____________.3.平面向量的正交分解及坐标表示 (1)平面向量的正交分解把一个向量分解为两个____________的向量,叫做向量的正交分解.(2)在平面直角坐标系内,分别取与x 轴、y 轴方向相同的两个单位向量i ,j 作为基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x ,y ,使得a =x i +y j .则实数对__________叫做向量a 的(直角)坐标,记作a =__________,其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标,该式叫做向量的坐标表示.与a 相等的向量的坐标也为________.显然,i =__________, j =__________,0=__________.4.平面向量的坐标运算(1)已知a =(x 1,y 1),b =(x 2,y 2),则a ±b =___________________________________________.(2)如果A (x 1,y 1),B (x 2,y 2),则AB →=___________________________________________.(3)若a =(x ,y ),则λa =____________.(4)如果a =(x 1,y 1),b =(x 2,y 2)(b ≠0),则a ∥b 的充要条件是____________________.自查自纠: 1.a =λ1e 1+λ2e 2 基底2.(1)非零 (2)0°≤θ≤180° 0° 180° (3)90° a ⊥b3.(1)互相垂直 (2)(x ,y ) (x ,y ) (x ,y ) (1,0) (0,1) (0,0)4.(1)(x 1±x 2,y 1±y 2) (2)(x 2-x 1,y 2-y 1) (3)(λx ,λy ) (4)x 1y 2-x 2y 1=0在△ABC 中,已知A (2,1),B (0,2),BC →=(1,-2),则向量AC →= ( )A .(0,0)B .(2,2)C .(-1,-1)D .(-3,-3) 解:因为A (2,1),B (0,2),所以AB →=(-2,1).又因为BC →=(1,-2),所以AC →=AB →+BC →=(-2,1)+(1,-2)=(-1,-1).故选C .(2017·杭州模拟)已知e 1,e 2是表示平面内所有向量的一组基底,则下列四组向量中,不能作为一组基底的是 ( )A .e 1+e 2和e 1-e 2B .3e 1-2e 2和4e 2-6e 1C .e 1+2e 2和e 2+2e 1D .e 2和e 1+e 2解:因为4e 2-6e 1=-2(3e 1-2e 2),所以3e 1-2e 2与4e 2-6e 1共线,又作为一组基底的两个向量一定不共线,所以它们不能作为一组基底.故选B .(2018·北京朝阳高三一模)已知平面向量 a =(x ,1),b =(2,x -1)且a ∥b ,则实数x 的值是( )A .-1B .1C .2D .-1或2 解:由a =(x ,1),b =(2,x -1)且a ∥b ,可以得到x (x -1)=2,即(x -2)(x +1)=0,所以x =-1或x =2.故选D .(2017·全国卷Ⅲ)已知向量a =(-2,3),b =(3,m ),且a ⊥b ,则m =________.解:由题意可得,-2×3+3m =0,所以m =2.故填2.在正方形ABCD 中,M ,N 分别是BC ,CD的中点,若AC →=λAM →+μBN →,则实数λ+μ=________.解法一:因为AC →=AB →+BC →,AM →=AB →+BM →=AB →+12BC →,BN →=BC →+CN →=BC →-12AB →,所以由AC →=λAM →+μBN →有⎩⎨⎧1=λ-12μ,1=12λ+μ,解得⎩⎨⎧λ=65,μ=25,所以λ+μ=85. 解法二:不妨设正方形边长为2,以A 为坐标原点,AB →方向为x 轴正方向,AD →方向为y 轴正方向建立平面直角坐标系,则AC →=(2,2),AM →=(2,1),BN →=(-1,2).由AC →=λAM →+μBN →有⎩⎪⎨⎪⎧2λ-μ=2,λ+2μ=2,解得λ=65,μ=25,λ+μ=85.故填85.类型一 向量共线充要条件的坐标表示(1)(2018·全国卷Ⅲ)已知向量a =(1,2),b =(2,-2),c =(1,λ),若c ∥(2a +b ),则λ=________.解:由题可得2a +b =(4,2),因为c ∥(2a +b ),c =(1,λ),所以4λ-2=0,即λ=12.故填12.(2)已知平面向量a =(2m +1,3),b =(2,m ),且a 与b 反向,则|b |等于( )A .1027B .2 2C .52D .52或2 2解:根据题意a ∥b 知m (2m +1)-3×2=0,解得m =-2或m =32.当m =32时,a =(4,3),b =⎝⎛⎭⎫2,32,则a =2b ,此时两向量同向,与已知不符,故m =-2,此时b =(2,-2),故|b |=22.故选B .点 拨:两平面向量共线的充要条件有两种形式:①若a =(x 1,y 1),b =(x 2,y 2),则a ∥b (b ≠0)的充要条件是x 1y 2-x 2y 1=0;②a ∥b (a ≠0),当且仅当唯一一个实数λ,使b =λa .向量共线的坐标表示既可以判定两向量平行,也可以由平行求参数.当两向量的坐标均非零时,也可以利用坐标对应成比例来求解.(1) (2017·郑州月考)已知向量a = (1-sin θ,1),b =⎝⎛⎭⎫12,1+sin θ,若a ∥b ,则锐角 θ=________.解:由a ∥b ,得(1-sin θ)(1+sin θ)=12,所以cos 2θ=12,所以cos θ=22或cos θ=-22,又θ为锐角,所以θ=45°.故填45°.(2)已知向量OA →=(1,-3),OB →=(2,-1), OC →=(k +1,k -2),若A ,B ,C 三点能构成三角形,则实数k 的取值范围是________.解:若点A ,B ,C 能构成三角形,则向量AB →,AC →不共线.因为AB →=OB →-OA →=(2,-1)-(1,-3)=(1,2),AC →=OC →-OA →=(k +1,k -2)-(1,-3)=(k ,k +1),所以1×(k +1)-2k ≠0,解得k ≠1. 故填{k |k ∈R ,且k ≠1}.类型二 平面向量基本定理及其应用(1)如图,已知平面内有三个向量OA →,OB →,OC →,其中OA →与OB →的夹角为120°,OA →与OC →的夹角为30°,且|OA →|=|OB →|=1,|OC →|=23,若 OC →=λOA →+μOB →(λ,μ∈R ),则λ+μ的值为________.解法一:以λOA →和μOB →为邻边作平行四边形OB 1CA 1,如图,则OC →=OB 1→+OA 1→.因为OA →与OB →的夹角为120°, OA →与OC →的夹角为30°,所以∠B 1OC =90°,在Rt △OB 1C 中,|OC →|=23,所以|OB 1→|=2,|B 1C →|=4,所以|OA 1→|=|B 1C →|=4, 所以OC →=4OA →+2OB →,即λ+μ=6. 解法二:以O 为原点,建立如图所示的平面直角坐标系,则A (1,0),C (23cos30°,23sin30°),B (cos120°,sin120°).即A (1,0),C (3,3),B ⎝⎛⎭⎫-12,32.由OC →=λOA →+μOB →=λ(1,0)+μ⎝⎛⎭⎫-12,32=⎝⎛⎭⎫λ-12μ,32μ,即⎝⎛⎭⎫λ-12μ,32μ=(3,3),得⎩⎨⎧λ-12μ=3,32μ=3,所以⎩⎪⎨⎪⎧μ=2,λ=4, 即λ+μ=6.故填6.(2)已知向量AC →,AD →和AB →在正方形网格中的位置如图所示,若AC →=λAB →+μAD →,则λμ=________.解:建立如图所示的平面直角坐标系xAy ,则 AC →=(2,-2),AB →=(1,2),AD →=(1,0).由题意可知(2,-2)=λ(1,2)+μ(1,0),即⎩⎪⎨⎪⎧2=λ+μ,-2=2λ, 解得⎩⎪⎨⎪⎧λ=-1,μ=3,所以λμ=-3.故填 -3.点 拨:应用平面向量基本定理应注意:①平面向量基本定理中的基底必须是两个不共线的向量;②选定基底后,通过向量的加、减、数乘以及向量平行的充要条件,把相关向量用这一组基底表示出来;③强调几何性质在向量运算中的作用,用基底表示未知向量,常借助图形的几何性质,如平行、相似等;④在基底未给出的情况下,合理地选取基底会给解题带来方便.(1)设向量a ,b 不平行,向量λa +b与a +2b 平行,则实数λ=________.解:由于λa +b 与a +2b 平行,且a +2b ≠0,所以存在唯一的实数μ∈R ,使得λa +b =μ(a +2b ),即(λ-μ)a +(1-2μ)b =0.因为a ,b 不平行,所以⎩⎪⎨⎪⎧λ-μ=0,1-2μ=0, 解得λ=μ=12.故填12.(2)向量a ,b ,c 在正方形网格中的位置如图所示.若c =λa +μb (λ,μ∈R ),则λμ=________.解:设i ,j 分别为水平向右和竖直向上的单位向量,则a =-i +j ,b =6i +2j ,c =-i -3j ,所以-i -3j =λ(-i +j )+μ(6i +2j ),即-i -3j =(-λ+6μ)i +(λ+2μ)j ,根据平面向量基本定理得⎩⎪⎨⎪⎧-1=-λ+6μ,-3=λ+2μ, 解得⎩⎪⎨⎪⎧λ=-2,μ=-12.所以λμ=4.故填4.类型三 求向量的坐标已知梯形ABCD ,其中AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________.解:因为在梯形ABCD 中,DC =2AB ,AB ∥CD ,所以DC →=2AB →.设点D 的坐标为(x ,y ),则DC →=(4,2)-(x ,y )=(4-x ,2-y ), AB →=(2,1)-(1,2)=(1,-1),所以(4-x ,2-y )=2(1,-1),即(4-x ,2-y )=(2,-2),所以⎩⎪⎨⎪⎧4-x =2,2-y =-2, 解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4).故填(2,4).点 拨:平面向量坐标运算的技巧:①向量的坐标运算常建立在向量的线性运算的基础之上,若已知有向线段两端点的坐标,则应考虑坐标运算;②解题过程中,常利用“向量相等,则其坐标相同”这一原则,通过列方程(组)进行求解.已知三点A (a ,0),B (0,b ),C (2,2),其中a >0,b >0.(1)若O 是坐标原点,且四边形OACB 是平行四边形,试求a ,b 的值;(2)若A ,B ,C 三点共线,试求1a +1b 的值.解:(1)因为四边形OACB 是平行四边形,所以OA →=BC →,即(a ,0)=(2,2-b ),⎩⎪⎨⎪⎧a =2,2-b =0, 解得⎩⎪⎨⎪⎧a =2,b =2. 故a =2,b =2.(2)因为AB →=(-a ,b ),BC →=(2,2-b ), 由A ,B ,C 三点共线,得AB →∥BC →, 所以-a (2-b )-2b =0,即2(a +b )=ab , 因为a >0,b >0, 所以1a +1b =12.类型四 向量坐标的应用(2018·天津)如图,在平面四边形ABCD 中,AB ⊥BC ,AD ⊥CD ,∠BAD =120°,AB =AD =1.若点E 为边CD 上的动点,则AE →·BE →的最小值为 ( )A .2116B .32C .2516D .3解法一:以点A 为原点,以AB 所在的直线为x 轴,建立如图(1)所示的平面直角坐标系,依题意得,A (0,0),B (1,0).因为AD =1,∠BAD =120°,所以D ⎝⎛⎭⎫-12,32,且直线CD 的倾斜角为30°,所以直线CD 的方程为y -32=33⎝⎛⎭⎫x +12,即y =33(x +2).由⎩⎪⎨⎪⎧y =33(x +2),x =1,得⎩⎨⎧x =1,y =3,所以点C 的坐标为(1,3).因为点E 为边CD 上的动点,故可设E ⎝⎛⎭⎫t ,33(t +2),-12≤t ≤1,所以AE →=⎝⎛⎭⎫t ,33(t +2),BE →=⎝⎛⎭⎫t -1,33(t +2),所以AE →·BE →=t (t -1)+⎣⎡⎦⎤33(t +2)2=43⎝⎛⎭⎫t +182+2116,所以当t =-18时,AE →·BE →取最小值,为2116.图(1) 图(2)解法二:易知DC =3,∠CAD =60°,设DE =x (0≤x ≤3),则AE →·BE →=(AD →+DE →)·(BA →+AD →+DE →)=1×1×cos60°+12+0+x ×1×cos150°+0+x 2=⎝⎛⎭⎫x -342+2116≥2116.解法三:如图(2),取AB 的中点F ,连接EF ,则AE →·BE →=EA →·EB →=(EF →+F A →)·(EF →-F A →)=EF →2- F A →2=EF →2-14.可知当且仅当|EF →|最小时AE →·BE →取最小值,分别过F ,B 作CD 的垂线,垂足分别为H ,G ,当点E 与H 重合时,EF 取到最小值,易知EF 为梯形DABG 的中位线,由已知得|BG |=32,|AD |=1,则|HF |=|EF |=12(|BG |+|AD |)=54.故AE →·BE →的最小值为2116.故选A .点 拨:向量的坐标运算,往往能降低推理的难度,与向量相关的最值、范围问题,可优先考虑坐标运算.用向量法解决平面几何相关问题的步骤是:①建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;②通过向量运算,研究几何元素之间的关系,如长度、距离、夹角等问题;③把运算结果“翻译”成几何关系,从而解决问题.(2017·安徽联考)在边长为1的正△ABC 中,D ,E 是边BC 的两个三等分点(D 靠近点B ),则AD →·AE →等于 ( )A .16B .29C .1318D .13解法一:建立如图所示的直角坐标系,则A ⎝⎛⎭⎫0,32,D ⎝⎛⎭⎫-16,0,E ⎝⎛⎭⎫16,0,所以AD →=⎝⎛⎭⎫-16,-32,AE →=⎝⎛⎭⎫16,-32,AD →·AE →=-16×16+⎝⎛⎭⎫-32×⎝⎛⎭⎫-32=1318.解法二:取BC 中点O ,则AD →·AE →=(AO →+OD →)·(AO →+OE →)=AO →2-OE →2=34-136=1318.解法三:如图,|AB →|=|AC →|=1,〈AB →,AC →〉=60°.因为D ,E 是边BC 的两个三等分点,所以AD →·AE →=⎝⎛⎭⎫AB →+13BC →·⎝⎛⎭⎫AC →+13CB →=AB →·AC →-13AB →·BC →+13BC →·AC →-19BC →2=1×1×cos60°-13×1×1×cos120°+13×1×1×cos60°-19=12+16+16-19=1318.故选C .1.对平面向量基本定理的理解(1)平面向量基本定理实际上是向量的分解定理,并且是平面向量正交分解的理论依据,也是向量坐标表示的基础.(2)平面向量的一组基底是两个不共线向量,平面向量基底可以有无穷多组.(3)用平面向量基本定理可将平面中任一向量分解成形如a =λ1e 1+λ2e 2(λ1,λ2∈R ,e 1,e 2为同一平面内不共线的两个向量)的形式,它是向量线性运算知识的延伸.(4)如果e 1,e 2是同一平面内的一组基底,且λ1e 1+λ2e 2=0(λ1,λ2∈R ),那么λ1=λ2=0.2.对两向量夹角的理解两向量的夹角是指当两向量的起点相同时,表示两向量的有向线段所形成的角.若起点不同,则应通过平移,使其起点相同.3.向量的坐标表示向量用坐标表示后,向量的计算和证明都归结为数的运算,这使问题大大简化.一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标,当且仅当向量的起点为原点时,向量的坐标才等于其终点的坐标.两个向量相等,当且仅当其坐标相同.4.向量坐标的应用向量具有代数和几何的双重特征,如向量运算的平行四边形法则、三角形法则、平面向量基本定理等都可以认为是从几何的角度来研究向量的特征;而引入坐标后,就可以通过代数运算来研究向量,凸显出了向量的代数特征,为用代数的方法研究向量问题奠定了基础.在处理很多与向量有关的问题时,坐标化是一种常见的思路,利用坐标可以使许多问题的解决变得更加简捷.1.下列向量组中,能作为表示它们所在平面内所有向量的一组基底的是 ( )A .a =(1,2),b =(0,0)B .a =(1,-2),b =(3,5)C .a =(3,2),b =(9,6)D .a =⎝⎛⎭⎫-34,12, b =(3,-2) 解:在平面内,根据向量基底的定义知,两个向量不共线即可作为基底.故选B .2.设向量a =(2,4)与向量b =(x ,6)共线,则实数x = ( )A .2B .3C .4D .6 解:因为a ∥b ,所以2×6-4x =0,解得x =3.故选B .3.(2017·抚州模拟)若向量a =(1,1),b =(-1,1),c =(4,2),则c = ( )A .3a +bB .3a -bC .-a +3bD .a +3b解法一:设c =m a +n b ,则(4,2)=(m -n ,m +n ),所以⎩⎪⎨⎪⎧m -n =4,m +n =2, 所以⎩⎪⎨⎪⎧m =3,n =-1, 所以c =3a -b .解法二:代入验证法.对于A ,3a +b =3(1,1)+(-1,1)=(2,4)≠c ,故A 不正确;同理选项C 、D 也不正确;对于B ,3a -b =(4,2)=c ,故B 正确.故选B .4.已知M (3,-2),N (-5,-1),且MP →=12MN →,则P 点的坐标为 ( )A .(-8,1)B .⎝⎛⎭⎫-1,-32 C .⎝⎛⎭⎫1,32 D .(8,-1) 解:设P (x ,y ),则MP →=(x -3,y +2), 而12MN →=12(-8,1)=⎝⎛⎭⎫-4,12, 所以⎩⎪⎨⎪⎧x -3=-4,y +2=12, 解得⎩⎪⎨⎪⎧x =-1,y =-32.所以P 点坐标为⎝⎛⎭⎫-1,-32.故选B . 5.如图,e 1,e 2为互相垂直的单位向量,向量a ,b 如图,则向量a -b 可表示为 ( )A .3e 2-e 1B .-2e 1-4e 2C .e 1-3e 2D .3e 1-e 2解:由图易知a -b =-3e 2+e 1=e 1-3e 2.故选C .6.(2018·浙江)已知a ,b ,e 是平面向量,e 是单位向量,若非零向量a 与e 的夹角为π3,向量b满足b 2-4e ·b +3=0,则|a -b |的最小值是( )A .3-1B .3+1C .2D .2- 3解:不妨设e =(1,0),b =(x ,y ),则由b 2-4e ·b +3=0⇒(x -2)2+y 2=1,再由a 与e 的夹角为π3可知,所求为如图两条射线上的点到圆上的点距离的最小值,即为2sin60°-1=3-1.故选A . 7.已知向量e 1,e 2是两个不共线的向量,若a =2e 1-e 2与b =e 1+λe 2共线,则λ=________. 解:若a =2e 1-e 2与b =e 1+λe 2共线,则 2e 1-e 2=k (e 1+λe 2)=k e 1+λk e 2,得⎩⎪⎨⎪⎧k =2,λk =-1, 解得λ=-12.故填-12.8.(2018·山东菏泽高三一模)已知在△ABC 中,D 为边BC 上的点,且BD =3DC ,点E 为AD 的中点,BE →=mAB →+nAC →,则m +n =________.解:BE →=BD →+DE →=BD →-12AD →=BD →-12(AB →+BD →)=12BD →-12AB →=12×34BC →-12AB →=38BC →-12AB →=38(AC →-AB →)-12AB →=-78AB →+38AC →.又BE →=mAB →+nAC →,所以mAB →+nAC →=-78AB→+38AC →.又因为AB →与AC →不共线,所以m =-78,n =38,所以m +n =-12.故填-12. 9.已知a =(1,0),b =(2,1).求:(1)|a +3b |;(2)当k 为何实数时,k a -b 与a +3b 平行,平行时它们是同向还是反向?解:(1)因为a =(1,0),b =(2,1), 所以a +3b =(7,3),故|a +3b |=72+32=58.(2)k a -b =(k -2,-1),a +3b =(7,3), 因为k a -b 与a +3b 平行, 所以3(k -2)+7=0,即k =-13.此时k a -b =(k -2,-1)=⎝⎛⎭⎫-73,-1, a +3b =(7,3),则a +3b =-3(k a -b ),即此时向量a +3b 与k a -b 方向相反.10.已知点O (0,0),A (1,2),B (4,5)及OP →=OA →+tAB →,试问: (1)当t 为何值时,P 在x 轴上?P 在y 轴上?P在第三象限内?(2)四边形OABP 能否成为平行四边形?若能,求出t 的值;若不能,请说明理由. 解:(1)依题意,得AB →=(3,3),所以OP →=OA →+tAB →=(1+3t ,2+3t ),即P (1+3t ,2+3t ).若P 在x 轴上,则2+3t =0,所以t =-23;若P 在y 轴上,则1+3t =0,所以t =-13;若P 在第三象限内,则⎩⎪⎨⎪⎧1+3t <0,2+3t <0, 所以t <-23. (2)因为OA →=(1,2),PB →=(3-3t ,3-3t ),若OABP 是平行四边形,则OA →=PB →,所以⎩⎪⎨⎪⎧3-3t =1,3-3t =2. 此方程无解.故四边形OABP 不可能成为平行四边形. 11.已知平行四边形三个顶点的坐标分别为(-1,0),(3,0),(1,-5),求第四个顶点的坐标.解:如图所示,令A (-1,0),B (3,0),C (1,-5),D (x ,y ).(1)若四边形ABCD 1为平行四边形, 则AD 1→=BC →,且AD 1→=(x +1,y ),BC →=(-2,-5).所以⎩⎪⎨⎪⎧x +1=-2,y =-5,解得⎩⎪⎨⎪⎧x =-3,y =-5. 所以D 1(-3,-5).(2)若四边形ACD 2B 为平行四边形,则AB →=CD 2→,且AB →=(4,0),CD 2→=(x -1,y +5).所以⎩⎪⎨⎪⎧x -1=4,y +5=0, 解得⎩⎪⎨⎪⎧x =5,y =-5. 所以D 2(5,-5).(3)若四边形ACBD 3为平行四边形,则AD 3→=CB →,且AD 3→=(x +1,y ),CB →=(2,5),所以⎩⎪⎨⎪⎧x +1=2,y =5, 解得⎩⎪⎨⎪⎧x =1,y =5. 所以D 3(1,5).综上所述,平行四边形第四个顶点的坐标为(-3,-5)或(5,-5)或(1,5).如图所示,在△ABC 中,点M 是AB的中点,且AN →=12NC →,BN 与CM 相交于点E ,设AB →=a ,AC →=b ,用基底a ,b 表示向量AE →=________.解:易得AN →=13AC →=13b ,AM →=12AB →=12a ,由N ,E ,B 三点共线知,存在实数m ,满足AE →=mAN →+ (1-m )AB →=13m b +(1-m )a .由C ,E ,M 三点共线知存在实数n ,满足AE →=nAM →+(1-n )AC →=12n a +(1-n )b .所以13m b +(1-m )a =12n a +(1-n )b .由于a ,b为基底,所以⎩⎨⎧1-m =12n ,13m =1-n ,解得⎩⎨⎧m =35,n =45. 所以AE →=25a +15b .故填25a +15b .。
高考数学(文)人教A课件52平面向量基本定理及向量的坐标表示
-5-
知识梳理
双基自测
1
2
3
4
5
5.向量的夹角
已知两个 非零
向量a和b,作 =a,=b, 则
∠AOB=θ(0°≤θ≤180°)叫做向量a与b的夹角.如果向量a与b的夹角
a⊥b
是90°,那么我们说a与b垂直,记作
.
-6-
知识梳理
双基自测
1
2
3
4
5
1.下列结论正确的打“√”,错误的打“×”.
5.2 平面向量基本定理及
向量
的坐标表示
知识梳理
双基自测
1
2
3
4
5
1.平面向量基本定理
如果e1,e2是同一平面内的两个 不共线 向量,那么对于这一平
面内的任意向量a,有且只有一对实数λ1,λ2,使a= λ1e1+λ2e2
.其
中,不共线的向量e1,e2叫做表示这一平面内所有向量的一
组 基底 .把一个向量分解为两个 互相垂直 的向量,叫做把
(x1-x2,y1-y2)
a-b=
,λa= (λx1,λy1)
,
|a|= 12 + 12 ,|a+b|= (2 + 1 )2 + (2 + 1 )2 .
-4-
知识梳理
双基自测
1
2
3
4.平面向量共线的坐标表示
设a=(x1,y1),b=(x2,y2),则a∥b⇔
4
5
x1y2-x2y1=0 .
(2)||=||=1,| |=√2,
π
由 tan α=7,α∈[0,π]得 0<α<2 ,sin α>0,cos α>0,
平面向量基本定理
平面向量基本定理[学习目标] 1.理解平面向量基本定理的内容,了解向量一组基底的含义.2.在平面内,当一组基底选定后,会用这组基底来表示其他向量.3.会应用平面向量基本定理解决有关平面向量的综合问题.知识点一 平面向量基本定理(1)定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.(2)基底:把不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底.思考 如图所示,e 1,e 2是两个不共线的向量,试用e 1,e 2表示向量AB →,CD →,EF →,GH →,HG →,a .答案 通过观察,可得:AB →=2e 1+3e 2,CD →=-e 1+4e 2,EF →=4e 1-4e 2, GH →=-2e 1+5e 2,HG →=2e 1-5e 2,a =-2e 1. 知识点二 两向量的夹角与垂直(1)夹角:已知两个非零向量a 和b ,如图,作OA →=a ,OB →=b ,则∠AOB =θ (0°≤θ≤180°),叫做向量a 与b 的夹角.①范围:向量a 与b 的夹角的范围是[0°,180°].②当θ=0°时,a 与b 同向. ③当θ=180°时,a 与b 反向.(2)垂直:如果a 与b 的夹角是90°,则称a 与b 垂直,记作a ⊥b . 思考 在等边三角形ABC 中,试写出下面向量的夹角. ①AB →、AC →;②AB →、CA →;③BA →、CA →;④AB →、BA →. 答案 ①AB →与AC →的夹角为60°; ②AB →与CA →的夹角为120°; ③BA →与CA →的夹角为60°; ④AB →与BA →的夹角为180°.题型一 对向量的基底认识例1 如果e 1,e 2是平面α内两个不共线的向量,那么下列说法中不正确的是________. ①λe 1+μe 2(λ、μ∈R )可以表示平面α内的所有向量;②对于平面α内任一向量a ,使a =λe 1+μe 2的实数对(λ,μ)有无穷多个;③若向量λ1e 1+μ1e 2与λ2e 1+μ2e 2共线,则有且只有一个实数λ,使得λ1e 1+μ1e 2=λ(λ2e 1+μ2e 2); ④若存在实数λ,μ使得λe 1+μe 2=0,则λ=μ=0. 答案 ②③解析 由平面向量基本定理可知,①④是正确的.对于②,由平面向量基本定理可知,一旦一个平面的基底确定,那么任意一个向量在此基底下的实数对是惟一的.对于③,当两向量的系数均为零,即λ1=λ2=μ1=μ2=0时,这样的λ有无数个.跟踪训练1 设e 1、e 2是不共线的两个向量,给出下列四组向量:①e 1与e 1+e 2;②e 1-2e 2与e 2-2e 1;③e 1-2e 2与4e 2-2e 1;④e 1+e 2与e 1-e 2.其中能作为平面内所有向量的一组基底的序号是______.(写出所有满足条件的序号) 答案 ①②④解析 对于③4e 2-2e 1=-2e 1+4e 2 =-2(e 1-2e 2),∴e 1-2e 2与4e 2-2e 1共线,不能作为基底. 题型二 用基底表示向量例2 如图所示,已知▱ABCD 中,E 、F 分别是BC 、DC 边上的中点,若AB →=a ,AD →=b ,试以a 、b 为基底表示DE →、BF →.解 ∵四边形ABCD 是平行四边形,E 、F 分别是BC 、DC 边上的中点, ∴AD →=BC →=2BE →,BA →=CD →=2CF →, ∴BE →=12AD →=12b ,CF →=12BA →=-12AB →=-12a .∴DE →=DA →+AB →+BE →=-AD →+AB →+BE →=-b +a +12b =a -12b ,BF →=BC →+CF →=AD →+CF →=b -12a .跟踪训练2 如图,已知△ABC 中,D 为BC 的中点,E ,F 为BC 的三等分点,若AB →=a ,AC →=b ,用a 、b 表示AD →、AE →、AF →. 解 AD →=AB →+BD →=AB →+12BC →=a +12(b -a )=12a +12b ;AE →=AB →+BE →=AB →+13BC →=a +13(b -a )=23a +13b ;AF →=AB →+BF →=AB →+23BC →=a +23(b -a )=13a +23b .题型三 向量夹角问题例3 已知|a |=|b |=2,且a 与b 的夹角为60°,设a +b 与a 的夹角为α,a -b 与a 的夹角是β,求α+β.解 如图,作OA →=a ,OB →=b ,且∠AOB =60°, 以OA 、OB 为邻边作▱OACB , 则OC →=a +b ,BA →=OA →-OB →=a -b , BC →=OA →=a .因为|a |=|b |=2,所以△OAB 为正三角形, 所以∠OAB =60°=∠ABC , 即a -b 与a 的夹角β=60°.因为|a |=|b |,所以平行四边形OACB 为菱形, 所以OC ⊥AB ,所以∠COA =90°-60°=30°, 即a +b 与a 的夹角α=30°, 所以α+β=90°.跟踪训练3 若a ≠0,b ≠0,且|a |=|b |=|a -b |,求a 与a +b 的夹角.解 由向量运算的几何意义知a +b ,a -b 是以a 、b 为邻边的平行四边形两条对角线.如图,∵|a |=|b |=|a -b |, ∴∠BOA =60°.又∵OC →=a +b ,且在菱形OACB 中, 对角线OC 平分∠BOA , ∴a 与a +b 的夹角是30°. 题型四 平面向量基本定理的应用例4 如图所示,在△OAB 中,OA →=a ,OB →=b ,点M 是AB 上靠近B 的一个三等分点,点N 是OA 上靠近A 的一个四等分点.若OM 与BN 相交于点P ,求OP →. 解 OM →=OA →+AM →=OA →+23AB →=OA →+23(OB →-OA →)=13a +23b ,因为OP →与OM →共线,故可设OP →=tOM →=t3a +2t 3b .又NP →与NB →共线,可设NP →=sNB →,OP →=ON →+sNB →=34OA →+s (OB →-ON →)=34(1-s )a +s b , 所以⎩⎨⎧34(1-s )=t 3,s =23t ,解得⎩⎨⎧t =910,s =35.所以OP →=310a +35b .跟踪训练4 如图所示,在△ABC 中,点M 是AB 的中点,且AN →=12NC →,BN 与CM 相交于E ,设AB →=a ,AC →=b ,试用基底a ,b 表示向量AE →.解 易得AN →=13AC →=13b ,AM →=12AB →=12a ,由N ,E ,B 三点共线,设存在实数m ,满足AE →=mAN →+(1-m )AB →=13m b +(1-m )a .由C ,E ,M 三点共线,设存在实数n 满足:AE →=nAM →+(1-n )AC →=12n a +(1-n )b .所以13m b +(1-m )a =12n a +(1-n )b ,由于a ,b 为基底,所以⎩⎨⎧1-m =12n ,13m =1-n ,解得⎩⎨⎧m =35,n =45,所以AE →=25a +15b .向量夹角概念不清致误例5 已知OA →=2a ,OB →=2b ,OC →=-a +3b ,求向量BA →与BC →的夹角.错解 由已知得,BA →=OA →-OB →=2a -2b ,BC →=OC →-OB →=(-a +3b )-2b =-a +b ,显然BA →=-2BC →,可见BA →与BC →共线,故BA →与BC →的夹角为0°.错因分析 两个向量共线分为同向共线与反向共线两种情况,当两个向量同向共线时,其夹角为0°,当两个向量反向共线时,其夹角为180°.上面的解答没有注意到这个问题,导致出错.正解 由已知得,BA →=OA →-OB →=2a -2b ,BC →=OC →-OB →=(-a +3b )-2b =-a +b .显然BA →=-2BC →,可见BA →与BC →共线,且是反向共线,故BA →与BC →的夹角为180°.1.设e 1,e 2是平面内所有向量的一组基底,则下列四组向量中,不能作为基底的是( ) A .e 1+e 2和e 1-e 2 B .3e 1-4e 2和6e 1-8e 2 C .e 1+2e 2和2e 1+e 2D .e 1和e 1+e 22.如图,已知AB →=a ,AC →=b ,BD →=3DC →,用a ,b 表示AD →,则AD →等于( ) A .a +34b B.14a +34bC.14a +14bD.34a +14b 3.在直角三角形ABC 中,∠BAC =30°,则AC →与BA →的夹角等于( ) A .30° B .60° C .120° D .150°4.设向量m =2a -3b ,n =4a -2b ,p =3a +2b ,试用m ,n 表示p ,p =________.5.如图所示,已知梯形ABCD 中,AB ∥DC ,且AB =2CD ,E 、F 分别是DC 、AB 的中点,设AD →=a ,AB →=b ,试用a 、b 为基底表示DC →、BC →、EF →.一、选择题1.下列关于基底的说法正确的是( )①平面内不共线的任意两个向量都可作为一组基底; ②基底中的向量可以是零向量;③平面内的基底一旦确定,该平面内的向量关于基底的线性分解形式也是唯一确定的. A .① B .② C .①③ D .②③ 2.如图所示,矩形ABCD 中,BC →=5e 1,DC →=3e 2,则OC →等于( )A.12(5e 1+3e 2) B.12(5e 1-3e 2) C.12(3e 2-5e 1) D.12(5e 2-3e 1) 3.如图,已知E 、F 分别是矩形ABCD 的边BC 、CD 的中点,EF 与AC 交于点G ,若AB →=a ,AD →=b ,用a 、b 表示AG →等于( )A.14a +14bB.13a +13bC.34a -14b D.34a +34b 4.设向量e 1和e 2是某一平面内所有向量的一组基底,若3x e 1+(10-y )e 2=(4y -7)e 1+2x e 2,则实数y 的值为( )A .3B .4C .-14D .-345.若D 点在三角形ABC 的边BC 上,且CD →=4DB →=rAB →+sAC →,则3r +s 的值为( ) A.165 B.125 C.85 D.45二、填空题6.已知e 1、e 2不共线,a =e 1+2e 2,b =2e 1+λe 2,要使a 、b 能作为平面内的一组基底,则实数λ的取值范围为________.7.如图,在四边形ABCD 中,AC 和BD 相交于点O ,设AD →=a ,AB →=b ,若AB →=2DC →,则AO →=________(用a 和b 表示).8.若|a |=|b |=|a -b |=r (r >0),则a 与b 的夹角为________.9.如图,在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,若AC →=λAE →+μAF →,其中λ、μ∈R ,则λ+μ=________.10.设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC ,若DE →=λ1AB →+λ2AC→(λ1,λ2为实数),则λ1+λ2的值为________.三、解答题11.判断下列命题的正误,并说明理由:(1)若a e 1+b e 2=c e 1+d e 2(a 、b 、c 、d ∈R ),则a =c ,b =d ;(2)若e 1和e 2是表示平面内所有向量的一组基底,那么该平面内的任一向量可以用e 1+e 2、e 1-e 2表示出来.12.如图,平面内有三个向量OA →、OB →、OC →,其中OA →与OB →的夹角为120°,OA →与OC →的夹角为30°,且|OA →|=|OB →|=1,|OC →|=2 3.若OC →=λOA →+μOB →(λ、μ∈R ),求λ+μ的值.13.已知单位圆O 上的两点A 、B 及单位圆所在平面上的一点P ,OA →与OB →不共线.(1)在△OAB 中,点P 在AB 上,且AP →=2PB →,若AP →=rOB →+sOA →,求r +s 的值;(2)P 满足OP →=mOA →+OB →(m 为常数),若四边形OABP 为平行四边形,求m 的值.当堂检测答案1.答案 B解析 B 中,∵6e 1-8e 2=2(3e 1-4e 2),∴(6e 1-8e 2)∥(3e 1-4e 2),∴3e 1-4e 2和6e 1-8e 2不能作为基底.2.答案 B解析 AD →=AB →+BD →=AB →+34BC →=AB →+34(AC →-AB →)=14AB →+34AC →=14a +34b . 3.答案 D解析 由向量夹角定义知,AC →、BA →的夹角为150°.4.答案 -74m +138n 解析 设p =x m +y n ,则3a +2b =x (2a -3b )+y (4a -2b )=(2x +4y )a +(-3x -2y )b , 得⎩⎪⎨⎪⎧ 2x +4y =3,-3x -2y =2⇒⎩⎨⎧ x =-74,y =138.5.解 连接FD ,∵DC ∥AB ,AB =2CD ,E 、F 分别是DC 、AB 的中点,∴DC 綊FB .∴四边形DCBF 为平行四边形.依题意,DC →=FB →=12AB →=12b , BC →=FD →=AD →-AF →=AD →-12AB → =a -12b , EF →=DF →-DE →=-FD →-DE →=-BC →-12DC → =-(a -12b )-12×12b =14b -a .课时精练答案一、选择题1.答案 C解析 零向量与任意向量共线,故零向量不能作为基底中的向量,故②错,①③正确.2.答案 A解析 OC →=12AC →=12(BC →-BA →)=12(5e 1+3e 2).3.答案 D解析 易知CF →=12CD →,CE →=12CB →.设CG →=λCA →,则由平行四边形法则可得CG →=λ(CB →+CD →)=2λCE →+2λCF →,由于E ,G 、F 三点共线,则2λ+2λ=1,即λ=14,从而CG →=14CA →,从而AG →=34AC →=34(a +b ).4.答案 B解析 因为3x e 1+(10-y )e 2=(4y -7)e 1+2x e 2,所以(3x -4y +7)e 1+(10-y -2x )e 2=0,又因为e 1和e 2是某一平面内所有向量的一组基底,所以⎩⎪⎨⎪⎧ 3x -4y +7=0,10-y -2x =0,解得⎩⎪⎨⎪⎧x =3,y =4,故选B.5.答案 C解析 ∵CD →=4DB →=rAB →+sAC →,∴CD →=45CB →=45(AB →-AC →)=rAB →+sAC →,∴r =45,s =-45. ∴3r +s =125-45=85.二、填空题6.答案 (-∞,4)∪(4,+∞)解析 若能作为平面内的一组基底,则a 与b 不共线.a =e 1+2e 2,b =2e 1+λe 2,由a ≠k b 即得λ≠4.7.答案 23a +13b 解析 设AO →=λAC →,则AO →=λ(AD →+DC →)=λ(AD →+12AB →)=λAD →+12λAB →. 因为D ,O ,B 三点共线,所以λ+12λ=1,所以λ=23, 所以AO →=23AD →+13AB →=23a +13b . 8.答案 60°解析 作OA →=a ,OB →=b ,则BA →=a -b ,∠AOB 为a 与b 的夹角,由|a |=|b |=|a -b |知△AOB 为等边三角形,则∠AOB =60°.9.答案 43解析 设AB →=a ,AD →=b ,则AE →=12a +b ,AF →=a +12b , 又∵AC →=a +b ,∴AC →=23(AE →+AF →),即λ=μ=23,∴λ+μ=43. 10.答案 12解析 易知DE →=12AB →+23BC →=12AB →+23(AC →-AB →)=-16AB →+23AC →. 所以λ1+λ2=12.三、解答题11.解 (1)错,当e 1与e 2共线时,结论不一定成立.(2)正确,假设e 1+e 2与e 1-e 2共线,则存在实数λ,使e 1+e 2=λ(e 1-e 2),即(1-λ)e 1=-(1+λ)e 2.因为1-λ与1+λ不同时为0,所以e 1与e 2共线,这与e 1与e 2不共线矛盾. 所以e 1+e 2与e 1-e 2不共线,因而它们可以作为基底,该平面内的任一向量可以用e 1+e 2、e 1-e 2表示出来.12.解 如图,以OC 为对角线作▱OMCN ,使得M 在直线OA 上,N 在直线OB 上,则存在λ、μ,使OM →=λOA →,ON →=μOB →,即OC →=OM →+ON →=λOA →+μOB →.在Rt △COM 中,|OC →|=23,∠COM =30°,∠OCM =90°,∴|OM →|=4,∴OM →=4OA →.又|ON →|=|MC →|=2,∴ON →=2OB →, ∴OC →=4OA →+2OB →,即λ=4,μ=2. ∴λ+μ=6.13.解 (1)∵AP →=2PB →,∴AP →=23AB →, ∴AP →=23(OB →-OA →)=23OB →-23OA →, 又∵AP →=rOB →+sOA →,∴r =23,∴s =-23,∴r +s 的值为0. (2)∵四边形OABP 为平行四边形, ∴OB →=OP →+OA →,又∵OP →=mOA →+OB →,∴OB →=OB →+(m +1)OA →,依题意OA →、OB →是非零向量且不共线, ∴m +1=0,解得m =-1.。
平面向量基本定理
e2
A
e1 2.5e 1ຫໍສະໝຸດ 3e2· OB
b
已知两个非零向量 a , , b
作 OA = a,OB = b
A
0
q
O
当 θ= 0 时, a 与 b 同向; 0 当θ= 180 时, 与b 反向。 a 如果 a 与 b 的夹角是900,我们说 a 与 b 垂直 记作 a ⊥ b
2e 2 e1 ___; e 2 e1 A D __________ B D __________ _________ AF AB EF EF AD eBD 2 eFD e e 2 1e 2 2e e EA 2 e AF AD AB 2e e e 1 2 2 1 1 2 B A e 2 e1
3e1 + 2e2
e1 - 2e 2
e1
O
e2
平面向量的基本定理
如果 e1 , e 2 是同一平面内的两个
不共线的向量,那么对于这一平面内
的任意向量 a ,有且只有一对实数λ1
λ 、 2 ,使
a =λ e1 +λ e2 1 2
CE
1 1 a b. 2 2 ____
a
B
1 AB BC CA BD CE AF BM BC ,BC AC AB b a DF ,AF FB 2 1 FB 0 1 0 0 0 A BD DF AM AB BC a b a 2 2 c b 1 1 F E a b. 2 2
6.3.1 平面向量基本定理
对于②,rt= ,r(1-t)= ,解得r= ,t= ,既满足r≥1,也满足r(1-t)≥0,故②满足条件. 对于③,rt= ,r(1-t)= ,解得r= ,t= ,不满足r≥1,故③不满足条件. 对于④,rt= ,r(1-t)= ,解得r= ,t= ,不满足r≥1,故④不满足条件. 故满足条件的点为M1,M2. 答案 (1) ( + ) (2)M1,M2
本资料分享自千人教师QQ群323031380 期待你的加入与分享
第1讲 描述运第动六的章基本概平念面向量及其应用
平面向量基本定理 如果e1,e2是同一平面内的两个① 不共线 向量,那么对于这一平面内的任一 向量a,有且只有一对实数λ1,λ2,使a=② λ1e1+λ2e2 .若e1,e2不共线,我们把{e1,e2}叫做 表示这一平面内所有向量的一个③ 基底 .
第1讲 描述运第动六的章基本概平念面向量及其应用
平面向量基本定理的应用
1.已知e1,e2是不共线的向量,求λ1e1+λ2e2(λ1,λ2∈R). 其方法如下: (1)利用三角形法则; (2)利用平行四边形法则. 2.已知基底{a,b},用a,b表示向量c. 其一般方法如下: (1)线性运算法:利用三角形法则或平行四边形法则进行转化. (2)向量方程(组)法:设c=xa+yb,x,y∈R,用待定系数法求出x,y.
第1讲 描述运动的基本概念
高中数学 必修·第二册 人教A版
向量基本定理
二、平面向量基本定理及坐标表示1.平面向量基本定理如果e 1、e 2是同一平面内的两个________向量,那么对于这一平面内的任意向量a ,_______一对实数λ1、λ2, 使a =λ1e 1+λ2e 2.其中,不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组-__________.2.平面向量的坐标运算(1)向量加法、减法、数乘及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b =_____________,a -b =_____________, λa =_____________,|a |=_____________. (2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB →=_____________,|AB →|=_____________. 3.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.a 、b 共线⇔_____________. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)平面内的任何两个向量都可以作为一组基底.( )(2)若a ,b 不共线,且λ1a +μ1b =λ2a +μ2b ,则λ1=λ2,μ1=μ2.( ) (3)平面向量的基底不唯一,只要基底确定后,平面内的任何一个向量都可被这组基底唯一表示.( )(4)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件可表示成x 1x 2=y 1y 2.( )(5)当向量的起点在坐标原点时,向量的坐标就是向量终点的坐标.()1.设e 1,e 2是平面内一组基底,那么( ) A .若实数λ1,λ2使λ1e 1+λ2e 2=0,则λ1=λ2=0B .空间内任一向量a 可以表示为a =λ1e 1+λ2e 2(λ1,λ2为实数)C .对实数λ1,λ2,λ1e 1+λ2e 2不一定在该平面内D .对平面内任一向量a ,使a =λ1e 1+λ2e 2的实数λ1,λ2有无数对 2.已知向量a =(2,3),b =(-1,2),若m a +n b 与a -2b 共线,则mn =________.3.在▱ABCD 中,AC 为一条对角线,AB →=(2,4),AC →=(1,3),则向量BD →的坐标为__________.4.设0<θ<π2,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=________.5.(教材改编)已知▱ABCD 的顶点A (-1,-2),B (3,-1),C (5,6),则顶点D 的坐标为________. 答案(1,5)题型一 平面向量基本定理的应用例1 (1)在梯形ABCD 中,AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点,若AB →=λAM →+μAN →,则λ+μ等于( ) A.15 B.25 C.35 D.45(2)如图,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=m AB →+211AC →,则实数m 的值为________.思维升华 (1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.(1)在平行四边形ABCD 中,AB →=e 1,AC →=e 2,NC →=14AC →,BM →=12MC →,则MN →=________.(用e 1,e 2表示)(2)如图,已知AB →=a ,AC →=b ,BD →=3DC →,用a ,b 表示AD→,则AD→=___________________________________________________________.题型二 平面向量的坐标运算例2 (1)已知a =(5,-2),b =(-4,-3),若a -2b +3c =0,则c 等于( )A.⎝⎛⎭⎫1,83B.⎝⎛⎭⎫-133,83C.⎝⎛⎭⎫133,43 D.⎝⎛⎭⎫-133,-43 (2)已知点A (1,3),B (4,-1),则与向量A B →同方向的单位向量坐标为________.思维升华 向量的坐标运算主要是利用加、减、数乘运算法则进行计算.若已知有向线段两端点的坐标,则应先求出向量的坐标,解题过程中要注意方程思想的运用及正确使用运算法则.(1)已知点A (-1,5)和向量a =(2,3),若AB →=3a ,则点B 的坐标为( )A .(7,4)B .(7,14)C .(5,4)D .(5,14)(2)在△ABC 中,点P 在BC 上,且BP →=2PC →,点Q 是AC 的中点,若P A →=(4,3),PQ →=(1,5),则BC →等于( )A .(-2,7)B .(-6,21)C .(2,-7)D .(6,-21)题型三 向量共线的坐标表示命题点1 利用向量共线求向量或点的坐标例3 (1)已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b =________.(2)已知梯形ABCD ,其中AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________. 命题点2 利用向量共线求参数例4 若三点A (1,-5),B (a ,-2),C (-2,-1)共线,则实数a 的值为________. 命题点3 求交点坐标例5 已知点A (4,0),B (4,4),C (2,6),则AC 与OB 的交点P 的坐标为________.思维升华 平面向量共线的坐标表示问题的常见类型及解题策略 (1)利用两向量共线求参数.如果已知两向量共线,求某些参数的取值时,利用“若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2=x 2y 1”解题比较方便.(2)利用两向量共线的条件求向量坐标.一般地,在求与一个已知向量a 共线的向量时,可设所求向量为λa (λ∈R ),然后结合其他条件列出关于λ的方程,求出λ的值后代入λa 即可得到所求的向量. (3)三点共线问题.A ,B ,C 三点共线等价于AB →与AC →共线.设OA →=(-2,4),OB →=(-a,2),OC →=(b,0),a >0,b >0,O为坐标原点,若A ,B ,C 三点共线,则1a +1b 的最小值为________.11.解析法(坐标法)在向量中的应用典例 (12分)给定两个长度为1的平面向量OA →和OB →,它们的夹角为2π3.如图所示,点C 在以O 为圆心的AB 上运动.若OC →=xOA →+yOB →,其中x ,y ∈R ,求x +y 的最大值.[方法与技巧]1.平面向量基本定理的本质是运用向量加法的平行四边形法则,将向量进行分解.向量的坐标表示的本质是向量的代数表示,其中坐标运算法则是运算的关键.2.根据向量共线可以证明点共线;利用两向量共线也可以求点的坐标或参数值. [失误与防范]1.要区分点的坐标和向量的坐标,向量坐标中包含向量大小和方向两种信息;两个向量共线有方向相同、相反两种情况.2.若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件不能表示成x 1x 2=y 1y 2,因为x 2,y 2有可能等于0,所以应表示为x 1y 2-x 2y 1=0.A 组 专项基础训练(时间:35分钟)1.如图,设O 是平行四边形ABCD 两对角线的交点,给出下列向量组:①AD →与AB →;②DA →与BC →;③CA →与DC →;④OD →与OB →.其中可作为该平面内其他向量的基底的是( )A .①②B .①③C .①④D .③④2.已知平面向量a =(1,1),b =(1,-1),则向量12a -32b 等于( )A .(-2,-1)B .(-2,1)C .(-1,0)D .(-1,2)3.已知a =(1,1),b =(1,-1),c =(-1,2),则c 等于( ) A .-12a +32b B.12a -32b C .-32a -12bD .-32a +12b4.已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数,(a +λb )∥c ,则λ等于( ) A.14 B.12C .1D .2 5.已知|OA →|=1,|OB →|=3,OA →·OB →=0,点C 在∠AOB 内,且OC →与OA →的夹角为30°,设OC →=mOA →+nOB →(m ,n ∈R ),则m n 的值为( )A .2 B.52C .3D .46.已知A (7,1),B (1,4),直线y =12ax 与线段AB 交于点C ,且AC →=2CB →,则实数a =________.7.已知点A (-1,2),B (2,8),AC →=13AB →,DA →=-13BA →,则CD →的坐标为________.8.已知向量OA →=(3,-4),OB →=(0,-3),OC →=(5-m ,-3-m ),若点A ,B ,C 能构成三角形,则实数m 满足的条件是________. 9.已知A (1,1),B (3,-1),C (a ,b ). (1)若A ,B ,C 三点共线,求a ,b 的关系式; (2)若AC →=2AB →,求点C 的坐标.10.已知点O 为坐标原点,A (0,2),B (4,6),OM →=t 1OA →+t 2AB →. (1)求点M 在第二或第三象限的充要条件;(2)求证:当t 1=1时,不论t 2为何实数,A ,B ,M 三点共线.B 组 专项能力提升 (时间:15分钟)11.已知向量a =(2,3),b =(-1,2),若(m a +n b )∥(a -2b ),则mn 等于( )A .-2B .2C .-12 D.1212.已知两点A (1,0),B (1,1),O 为坐标原点,点C 在第二象限,且∠AOC =135°,设OC →=-OA →+λOB →(λ∈R ),则λ的值为________. 13.已知△ABC 和点M 满足MA →+MB →+MC →=0.若存在实数m ,使得AB →+AC →=mAM →成立,则m =________.14.如图所示,A ,B ,C 是圆O 上的三点,线段CO 的延长线与BA 的延长线交于圆O 外的一点D ,若OC →=mOA →+nOB →,则m +n 的取值范围是________.15.将等腰直角三角板ADC 与一个角为30°的直角三角板ABC 拼在一起组成如图所示的平面四边形ABCD ,其中∠DAC =45°,∠B =30°.若DB →=xDA →+yDC →,则xy的值是__________________.。
向量的运算基本定律
向量的运算基本定律1.实数与向量的积的运算律:设λ、μ为实数,那么:⑴结合律:λ(μa )=(λμ) a ;⑵第一分配律:(λ+μ) a =λa +μa ;⑶第二分配律:λ(a +b )=λa +λb .2.向量的数量积的运算律:⑴ a ·b= b ·a (交换律);⑵(λa )·b= λ(a ·b )=λa ·b = a ·(λb );⑶(a +b )·c= a ·c +b ·c.3.平面向量基本定理:如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e 1+λ2e 2.不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底.4.向量平行的坐标表示:设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a b(b ≠0)12210x y x y ⇔-=.5.a 与b 的数量积(或内积):a ·b =|a ||b |cos θ.55. a ·b 的几何意义:数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积.6.平面向量的坐标运算:⑴设a =11(,)x y ,b =22(,)x y ,则a +b =1212(,)x x y y ++.⑵设a =11(,)x y ,b =22(,)x y ,则a -b =1212(,)x x y y --.⑶设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--. ⑷设a =(,),x y R λ∈,则λa =(,)x y λλ.⑸设a =11(,)x y ,b =22(,)x y ,则a ·b =1212()x x y y +.7.两向量的夹角公式:cos θ=(a =11(,)x y ,b =22(,)x y ).8.平面两点间的距离公式:,A B d =||AB AB AB =⋅=11(,)x y ,B 22(,)x y ).9.向量的平行与垂直:设a =11(,)x y ,b =22(,)x y ,且b ≠0,则A ||b ⇔b =λa 12210x y x y ⇔-=.a ⊥b(a ≠0)⇔a ·b=012120x x y y ⇔+=.10.线段的定比分公式:设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12P P 的分点,λ是实数,且12PP PP λ=,则 121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩⇔121OP OP OP λλ+=+ ⇔12(1)OP tOP t OP =+-(11t λ=+). 11.三角形的重心坐标公式: △ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC 的重心的坐标是123123(,)33x x x y y y G ++++. 12.点的平移公式:''''x x h x x h y y k y y k⎧⎧=+=-⎪⎪⇔⎨⎨=+=-⎪⎪⎩⎩''OP OP PP ⇔=+ . 注:图形F 上的任意一点P(x ,y)在平移后图形'F 上的对应点为'''(,)P x y ,且'PP 的坐标为(,)h k .13.“按向量平移”的几个结论:⑴点(,)P x y 按向量a =(,)h k 平移后得到点'(,)P x h y k ++.⑵ 函数()y f x =的图象C 按向量a =(,)h k 平移后得到图象'C ,则'C 的函数解析式为()y f x h k =-+.⑶ 图象'C 按向量a =(,)h k 平移后得到图象C ,若C 的解析式()y f x =,则'C 的函数解析式为()y f x h k =+-.⑷曲线C :(,)0f x y =按向量a =(,)h k 平移后得到图象'C ,则'C 的方程为(,)0f x h y k --=.⑸ 向量m =(,)x y 按向量a =(,)h k 平移后得到的向量仍然为m =(,)x y .4.三角形五“心”向量形式的充要条件:设O 为ABC ∆所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则 ⑴O 为ABC ∆的外心222OA OB OC ⇔==.⑵O 为ABC ∆的重心0OA OB OC ⇔++=.⑶O 为ABC ∆的垂心OA OB OB OC OC OA ⇔⋅=⋅=⋅.⑷O 为ABC ∆的内心0aOA bOB cOC ⇔++=.⑸O 为ABC ∆的A ∠的旁心aOA bOB cOC ⇔=+.。