数学建模实验报告线性规划.doc
数学建模实验报告-第三章-线性规划
实验名称:第三章线性规划一、实验内容与要求用linprog语句求解各种线性规划问题,对生产实际中的问题,进行预测。
二、实验软件MATLAB7.0三、实验内容:1、某鸡场有1000只鸡,用动物饲料和谷物混合喂养。
每天每只鸡平均食混合饲料0.5KG,其中动物饲料所占比例不能少于20%。
动物饲料每千克0.30元,谷物饲料每千克0.18元,饲料公司每周仅保证供应谷物饲料6000KG,问饲料怎样混合,才能使成本最低?程序:C=[150 90];A=[1 1];B=[12/7];Aeq=[0 1];beq=[0,8];vlb=[0.2 0];vub=[];[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub)实验结果:2、某工厂用A1、A2两台机床加工B1、B2、B3三种不同零件。
已知在一个生产周期内A1只能工作80机时;A2只能工作100机时。
一个生产周期内计划加工B1为70件、B2为50件、把为20件。
两台机床加工每个零件的时间和加工每个零件的成本,分别如下列各表所示:加工每个零件时间表(单位:机时/个)加工每个零件成本表(单位:元/个)问怎样安排两台机床一个周期的加工任务,才能使加工成本最低?程序:C=[2;3;5;3;3;6];A=[1 2 3 0 0 00 0 0 1 1 3-1 0 0 -1 0 00 -2 0 0 -1 00 0 -2 0 0 -3];B=[80;100;-70;-50;-20];Aeq=[];beq=[];vlb=[0;0;0;0;0;7];vub=[];[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub)实验结果:四、实验体会。
实验报告——线性规划建模与求解
exitflag =1
实验过程记录(含:基本步骤、主要程序清单及异常情况记录等)(接上页):
实验书中的实际问题求解:
解:设a 为0-1变量,表示第i根8M线材
设b 为0-1变量,表示第i根12M线材
X 表示第i根8M线材截得的第j种长度的线材数目
Y 表示第i根12M线材截得的第j种长度的线材数目
5.完成实验中的实际问题求解。
实验过程记录(含:基本步骤、主要程序清单及异常情况记录等):
习题求解
1.2将下列线性规划转化为标准型,并用程序求解。
解:转化为标准型如下:
用matlab求解命令如下:
f=[-3,4,-2,5,0,0];
aeq=[4,-1,2,-4,0,0;1,1,2,-1,1,0;-2,3,-1,2,0,-1];
b=[-60,-70,-60,-50,-20,-30]’;
lb=zeros(6,1);
[x,fval,exitflag,output,lambda]=linprog(f,a,b,[],[],lb);
解得结果为:
x =[41.9176,28.0824,35.0494,14.9506,9.8606,20.1394]
Z为浪费的线材总长度
又由于150*(8+12)远大于所需线材总长度,故知所用两种线材每种不超过150根
解不出
实验结果报告与实验总结:
对于实验指导书中matlab使用的例题和方法已经基本掌握,《运筹学》书中例题与方法处于基本了解的程度,不能灵活运用,但书后习题全都能独立完成,已经有一定解题能力。且实验书中的实际运用题的简易版问题的解题方法也已经掌握,但此实验题仍很吃力。
fval = 3.6000
线性规划实验报告
2012——2013学年第二学期实验报告课程名称:数学建模实验项目:求解线性规划问题实验类别:综合性□设计性□√验证性□专业班级:姓名: xxx 学号:xxxxxxxxxxxxxxxx 实验地点:实验时间:指导教师:成绩:一.实验目的(1)用MATLAB 求解线性规划问题,并对结果进行分析 (2)对实际问题建立数学模型 (3)熟悉相关软件的操作二.实验内容已知某工厂计划生产I ,II ,III 三种产品,各产品需要在A 、B 、C 设备上加工,有关数据如下:问:如何发挥生产能力,使生产盈利最大?三. 模型建立解 设计划生产I ,II ,III 三种产品产量为x1,x2,x3最大盈利为z 建立如下线性模型:123123123123123max 32 2.982103001058400..21310420,,0z x x x x x x x x x s t x x x x x x =++++≤⎧⎪++≤⎪⎨++≤⎪⎪≥⎩四. 模型求解(含经调试后正确的源程序)编写M 文件如下:c = [-3,-2,-2.9];A = [8,2,10;10,5,8;2,13,10]; b = [300;400;420]; vlb = [0;0;0]; vub=[];[x,fval] = linprog(c,A,b,[],[],vlb,vub)五.结果分析x =22.5333 23.2000 7.3333fval =-135.2667由结果可知,I,II,III三种产品分别生产22,23,7时,有最大盈利135.六.实验总结本次实验主要是熟悉用MATLAB软件解决线性规划问题,对实际问题进行分析并建立数学模型,然后编程继而模型求解。
线性规划在实际生活中有重要应用,所以此类方法应该掌握。
(完整word版)数学建模实训报告
目录实训项目一线性规划问题及lingo软件求解 (1)实训项目二lingo中集合的应用…………………………………………。
7实训项目三lingo中派生集合的应用 (9)实训项目四微分方程的数值解法一 (13)实训项目五微分方程的数值解法二……………………………………。
.15实训项目六数据点的插值与拟合 (17)综合实训作品 (18)每次实训课必须带上此本子,以便教师检查预习情况和记录实验原始数据。
实验时必须遵守实验规则.用正确的理论指导实践袁必须人人亲自动手实验,但反对盲目乱动,更不能无故损坏仪器设备。
这是一份重要的不可多得的自我学习资料袁它将记录着你在大学生涯中的学习和学习成果.请你保留下来,若干年后再翻阅仍将感到十分新鲜,记忆犹新.它将推动你在人生奋斗的道路上永往直前!项目一:线性规划问题及lingo软件求解一、实训课程名称数学建模实训二、实训项目名称线性规划问题及lingo软件求解三、实验目的和要求了解线性规划的基本知识,熟悉应用LINGO解决线性规划问题的一般方法四:实验内容和原理内容一:某医院负责人每日至少需要下列数量的护士班次时间最少护士数1 6:00—10:00 602 10:00—14:00 703 14:00—18:00 604 18:00—22:00 505 22:00—02:00 206 02:00—06:00 30每班的护士在值班的开始时向病房报道,连续工作8个小时,医院领导为满足每班所需要的护士数,最少需要多少护士。
内容二:内容三五:主要仪器及耗材计算机与Windows2000/XP系统;LINGO软件六:操作办法与实训步骤内容一:考虑班次的时间安排,是从6时开始第一班,而第一班最少需要护士数为60,故x1>=60 ,又每班护士连续工作八个小时,以此类推,可以看出每个班次的护士可以为下一个班次工作四小时,据此可以建立如下线性规划模型:程序编程过程:min=x1+x2+x3+x4+x5+x6;x1〉=60;x1+x2〉=70;x2+x3>=60;x3+x4〉=50;x4+x5〉=20;x5+x6〉=30;编程结果:Global optimal solution found.Objective value:150.0000 Infeasibilities: 0。
东北大学数学建模试验报告1
Aeq=[];
beq=[];
vlb=[0;0];
vub=[];
[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vuA=[65; 10 20;1 0];
b=[60;150;8];
Aeq=[];
beq=[];
1)若投资0.8万元可增加原料1千克,问应否作这项投资.
2)若每百箱甲饮料获利可增加1万元,问应否改变生产计划.
问题的分析和假设:
分析:实现两种饮料进行合理的分配以达到获利最多的效果。
基本假设:1两种饮料的生产原料分配是相互制约的。
2两种饮料的生产工人数量分配是相互制约的。
3甲饮料的产量不超过8百箱。
c=[-10-9];
A=[6 5; 10 20;1 0];
b=[60;150;8];
Aeq=[];beq=[];
vlb=[0;0];vub=[];
[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub)
问题一(增加投资后):
c=[-10-9];
A=[6 5;1020;1 0];
问题二结果:
x =
8.0000
2.4000
fval =
-109.6000
问题结果分析:
由于饮料箱数应为整数,故应生产甲饮料642箱,乙饮料428箱时,获利最大为102.72万元。
问题一中,当生产甲饮料671箱,乙饮料414箱时,这时的获利为103.56万元,比未增加原料前获利多,因此应选择这种投资方式。
数学建模试验报告(一)
姓名
黄兴
学号
20103562
班级
软件1008班
问题:(线性规划)
数学建模(线性规划).
1)模型建立。
①决策变量。决策变量为每年年初向四个项目的投资 额,设第i(i=1,2,3,4,5)年年初向A,B,C,D(j=1,2,3,4) 四个项目的投资额为xij(万元)。 ②目标函数。设第五年年末拥有的资金本利总额为z, 为了方便,将所有可能的投资列于下表1.2
表1.3 三个货舱装载货物的最大容许量和体积
前舱 重量限制/t 10
中舱 16
后舱 8
体积限制/m3
6800
8700
5300
现有四类货物供该货机本次飞行装运,其有关信息 如表1.4,最后一列指装运后获得的利润。
表1.4 四类装运货物的信息
货物1 货物2 货物3 货物4
质量/t 18 15 23 12
空间/(m3/t) 480 650 580 390
利润(元/t) 3100 3800 3500 2850
应如何安排装运,使该货机本次飞行利润最大?
1)模型假设。问题中没有对货物装运提出其他要 求,我们可做如下假设:
①每种货物可以分割到任意小; ②每种货物可以在一个或多个货舱中任意分布; ③多种货物可以混装,并保证不留空隙。 2)模型建立。 ①决策变量:用xij表示第i种货物装入第j个货舱的重 量(吨),货舱j=1,2,3分别表示前舱、中舱、后舱。
年份
1 x11
2 x21 x23 x24
3 x31 x32 x34
4 x41
5
项目
投资限额/万 元
A B C D
年年末回收的本利之和,于是, 目标函数为 ③约束条件 z 1.15x41 1.25x32 1.40 x23 1.06 x54
线性规划模型 实验报告
某部门现有资金10万元,五年内有以下投资项目可供选择:
项目A:从第一年到第四年每年初投资,次年末收回本金且获利15%;
项目B:第三年初投资,第五年末收回本金且获利25%,最大投资额为4万元;
项目C:第二年初投资,第五年末收回本金且获利40%,最大投资额为3万元;
项目D:每年初投资,年末收回本金且获利6%;
3.保存文件并运行;
4.观察运行结果(数值或图形),并不断地改变参数设置观察运行结果;
5.根据观察到的结果和体会,写出实验报告。
四、实验要求与任务
根据实验内容和步骤,完成以下实验,要求写出实验报告(实验目的→问题→数学模型→算法与编程→计算结果→分析、检验和结论)
基础实验
1.求解下述线性规划问题
min
300
分别设从Toronto和Detroit到Chicago运输的货物为x1,x2
从Chicago运输到NewYork、Phila.和St.louis的货物为x3,x4,x5
则 可列方程
Min=4*x1+7*(600-x1)+5*x2+7*(500-x2)+3*x3+2*x4+2*x5+1*(450-x3)+3*(350-x4)+4*(300-x5)
Z=zeros(16,1);
Z1=zeros(1,10);
Z4=zeros(1,4);
Z2=zeros(1,2);
F6=ones(1,6);
F2=ones(1,2);
A=[F6 Z1;Z4 F6 Z2 Z4;Z2 F2 Z4 F2 Z2 F2 Z2;Z4 F2 Z4 F2 Z2 F2];
b=[100 115 120 110]';
数学建模-线性规划实验
3 线性规划实验3.1实验目的与要求●学会建立线性规划模型●学会LINGO软件的基本使用方法,求解线性规划问题●学会对线性规划问题进行灵敏度分析,以及影子价格的意义3.2基本实验1.生产计划安排与灵敏度分析解:(1)假设最后总生产得到的Ⅰ型产品为x1kg,Ⅱ型产品为x2kg,那么它们必须同时满足以下条件:Max Z=130x1+400x2-100(x1+x2/0.33)x1+(x2)/0.33≤902x1+3(x2)/0.33≤200x2≤40LINGO程序:Max =130*x1+400*x2-100*(x1+x2/0.33);x1+x2/0.33<=90;2*x1+3*x2/0.33<=200;x2<=40;结果:Global optimalsolutionfound.Objective value:2740.000Infeasibilities: 0.000000Total solver iterations:3ModelClass:LPTotal variables: 2Nonlinear variables: 0Integer variables: 0Total constraints: 4Nonlinear constraints: 0Total nonzeros:7Nonlinear nonzeros:0VariableValue Reduced CostX170.000000.000000X2 6.6000000.000000Row Slack orSurplus Dual Price1 2740.0001.00000020.00000026.000003 0.0000002.000000433.40000 0.000000即:最优的方案是Ⅰ型产品为70kg,Ⅱ型产品为6.6kg。
(2)Max Z=130x1+400x2-100(x1+x2/0.33)x1+(x2)/0.33≤872x1+3(x2)/0.33≤200x2≤40LINGO程序:Max=130*x1+400*x2-100*(x1+x2/0.33);x1+x2/0.33<=87;2*x1+3*x2/0.33<=200;x2<=40;结果:Variable Value Reduced CostX1 61.00000 0.000000X28.580000 0.000000Row Slack or Surplus Dual Price1 2662.000 1.00000020.000000 26.000003 0.000000 2.000000431.420000.000000那么公司得到的利润为:2662元(3)如果产品Ⅱ的销售价格变为395元/千克,最优解没有变化。
数学建模实验报告范文3线性规划与整数规划
数学建模实验报告范文3线性规划与整数规划实验名称三、线性规划与整数规划实验地点日期2022-10-28姓名班级学号成绩【实验目的及意义】[1]学习最优化技术和基本原理,了解最优化问题的分类;[2]掌握规划的建模技巧和求解方法;[3]学习灵敏度分析问题的思维方法;[4]熟悉MATLAB软件求解规划模型的基本命令;[5]通过范例学习,熟悉建立规划模型的基本要素和求解方法。
通过该实验的学习,使学生掌握最优化技术,认识面对什么样的实际问题,提出假设和建立优化模型,并且使学生学会使用MATLAB、Lingo软件进行规划模型求解的基本命令,并进行灵敏度分析。
解决现实生活中的最优化问题是本科生学习阶段中一门重要的课程,因此,本实验对学生的学习尤为重要。
【实验要求与任务】根据实验内容和步骤,完成以下实验,要求写出实验报告(符号说明—模型的建立—模型的求解(程序)—结论)A组高校资金投资问题高校现有一笔资金100万元,现有4个投资项目可供投资。
项目A:从第一年到底四年年初需要投资,并于次年年末回收本利115%。
额不超过40万元。
项目C:从第二年年初需要投资,并于第5年末才回收本利M%,但是规定最大投资总额不超过30万元。
(其中M为你学号的后三位+10)项目D:五年内每年年初可以买公债,并于当年年末归还,并可获得6%的利息。
试为该校确定投资方案,使得第5年末他拥有的资金本利总额最大。
该校在第3年有个校庆,学校准备拿出8万元来筹办,又应该如何安排投资方案,使得第5年末他拥有的资金本利总额最大。
B组题1)最短路问题,图1中弧上的数字为相邻2点之间的路程,求从1到7的最短路。
图1图2其中r1为你的学号后2位+102)最大车流量,图1中弧上的数字为相邻2点之间每小时的最大车流量。
求每小时1到7最大第-1-页共2页车流量。
3)最小费用流,30辆卡车从1到7运送物品。
图1中弧上的数字为相邻2点之间的容纳的车的数量。
另外每条路段都有不同的路费要缴纳,下图2中弧上的数字为相邻2点之间的路费。
《数学建模与数学实验》实验报告实验五:线性规划模型实验
《数学建模与数学实验》实验报告实验五:线性规划模型实验专业、班级数学09B 学号094080144 姓名徐波课程编号实验类型验证性学时 2实验(上机)地点同析楼4栋404 完成时间2012-6-10任课教师李锋评分一、实验目的及要求掌握数学软件lingo的基本用法和一些常用的规则,能用该软件进行基本线性规划运算,并能进行的编程,掌握线性规划模型的。
二、借助数学软件,研究、解答以下问题某电力公司经营两座发电站,发电站分别位于两个水库上,已知发电站A可以将A的一万m^3 的水转换成400千度电能,发电站B能将水库B的一万立方米转化成200千度电能。
发电站A,B每个月最大发电能力分别是60000千度,35000千度,每个月最多有50000千度能够以200元/千度的价格出售,多余的电能只能够以140元/千度的价格出售,水库A,B的其他有关数据如下:水库A 书库B水库最大蓄水量2000 1500水源本月流入水量200 40水源下月流入水量130 15水库最小蓄水量1200 800水库目前蓄水量1900 850设计该电力公司本月和下月的生产计划。
本月的情况:解:设本月高价卖出的水量是u,低价卖出的数量是v,A,B书库用来发电的水量好似xa,xb,从水库里放走的水量是ya,yb,水库月末剩余的水量分别是za,zb;建立模型如下:目标函数:、Max=200u+140v约束条件:每个月发电量与卖电量相等:400*x1+200*x2=u+v;水库发电后剩余水量及消耗水量与发电前的水量守恒:X1+y1+z1=2100;X2+y2+z2=890+x1+y1;其他约束条件:400*x1a<=60000;200*x1a<=35000;1200<=z1a<=2000;800<=z2a<=1500;u1<=50000;现在进行两个月同时计算:设本月和下月高价卖出的水量是u1,u2,低价卖出的水量是v1,v2,A,B水库用来发电的水量是xa1,xa2,xb1,xb2,从水库直接放走的水量分别是ya1,ya2,yb1,yb2,水库月末剩余水量分别是za1,za2,zb1,zb2.建立模型如下:目标函数:Max=200*(u1+u2)+140*(v1+v2)约束条件:每个月发电量与卖电量相等:400*xa1+200*xb1=u1+v1;400*xa2+200*xb2=u2+v2;水库发电后剩余水量及消耗水量与发电前的水量守恒:xa1+ya1+za1=2100;xb1+yb1+zb1=890+xa1+ya1;xb2+yb2+zb2=zb2+15+xa2+ya2;xa2+ya2+za2=za1+130;其他约束条件:400*xa1<=60000;400*xa2<=60000;200*xb1<=35000;200*xb2<=35000;1200<=za1<=2000;1200<=za2<=2000;800<=zb1<=1500;800<=zb2<=1500;u1<=50000;u2<=50000;编程实现如下:model:max=200*u+140*v;400*x1+200*x2=u+v;X1+y1+z1=2100;X2+y2+z2=890+x1+y1;400*x1<=60000;200*x2<=35000;Z1>=1200;Z1<=2000;Z2>=800;Z2<=1500;u<=50000;end解得:Global optimal solution found.Objective value: 0.1630000E+08Total solver iterations: 5Variable Value Reduced Cost U 50000.00 0.000000V 45000.00 0.000000X1 150.0000 0.000000 X2 175.0000 0.000000 Y1 0.000000 0.000000 Z1 1950.000 0.000000 Y2 0.000000 0.000000 Z2 865.0000 0.000000Row Slack or Surplus Dual Price1 0.1630000E+08 1.0000002 0.000000 -140.00003 0.000000 0.0000004 0.000000 0.0000005 0.000000 140.00006 0.000000 140.00007 750.0000 0.0000008 50.00000 0.0000009 65.00000 0.00000010 635.0000 0.00000011 0.000000 60.000000编程实现如下:model:max=200*(u1+u2)+140*(v1+v2);400*x1a+200*x2a-u1+v1=0;400*x1b+200*x2b=u2+v2;X1a+y1a+z1a=2100;X2b+y2b+z2b=zb2+15+x1b+y1b;X2a+y2a+z2a=890+x1a+y1a;X1a+y1b+z1b=z1a+130;400*x1a<=60000;400*x1b<=60000;200*x2a<=35000;200*x2b<=35000;Z1a<=2000;Z1a>=1200;Z1b<=2000;Z1a>=1200;Z2a<=1500;Z2a>=800;Z2b>=800;Z2b<=1500;u1<=50000;u2<=50000;end解得:Global optimal solution found.Objective value: 0.3330000E+08Total solver iterations: 0Variable Value Reduced Cost U1 50000.00 0.000000 U2 50000.00 0.000000 V1 50000.00 0.000000 V2 45000.00 0.000000 X1A 0.000000 56000.00 X2A 0.000000 28000.00 X1B 150.0000 0.000000 X2B 175.0000 0.000000 Y1A 900.0000 0.000000 Z1A 1200.000 0.000000 Y2B 0.000000 0.000000 Z2B 800.0000 0.000000 ZB2 810.0000 0.000000 Y1B 0.000000 0.000000 Y2A 990.0000 0.000000 Z2A 800.0000 0.000000 Z1B 1330.000 0.000000Row Slack or Surplus Dual Price1 0.3330000E+08 1.0000002 0.000000 140.00003 0.000000 -140.00004 0.000000 0.0000005 0.000000 0.0000006 0.000000 0.0000007 0.000000 0.0000008 60000.00 0.0000009 0.000000 140.000010 35000.00 0.00000011 0.000000 140.000012 800.0000 0.00000013 0.000000 0.00000014 670.0000 0.00000015 0.000000 0.00000016 700.0000 0.00000017 0.000000 0.00000018 0.000000 0.00000019 700.0000 0.00000020 0.000000 340.000021 0.000000 60.00000由上可知,最大值是0.3260000E+08,每月A,B厂发电用水量是150,175,150,175三、本次实验的难点分析实验过程中遇到了一些问题:对掌握lingo的基本用法有所欠缺,本实验中存在偏差。
大学生数学建模:作业-线性规划的实验
实验课题:(一)线性规划问题1.用lingo求解下列线性规划问题:2. 某班男同学30人、女同学20人,植树。
工作效率(个/人、天)如下表。
如何安排,植树最多?3.某牧场饲养一批动物,平均每头动物至少需要 700g 蛋白质、30g 矿物质和100g 维生素。
现有A、B、C、D、E五种饲料可供选用,每千克饲料的营养成分(单位:g)与价格(单位:元/kg)如下表所示:试求能满足动物生长营养需求又最经济的选用饲料方案。
4.在以色列,为分享农业技术服务和协调农业生产,常常由几个农庄组成一个公共农业社区。
在本课题中的这个公共农业社区由三个农庄组成,我们称之为南方农庄联盟。
南方农庄联盟的全部种植计划都由技术协调办公室制订。
当前,该办公室正在制订来年的农业生产计划。
南方农庄联盟的农业收成受到两种资源的制约。
一是可灌溉土地的面积,二是灌溉用水量。
这些数据由下表给出。
注:英亩-英尺是水容积单位,1英亩-英尺就是面积为1英亩,深度为1英尺的体积;1英亩-英尺≈1233.48立方米。
南方农庄联盟种植的作物是甜菜、棉花和高粱,这三种作物的纯利润及耗水量不同。
农业管理部门根据本地区资源的具体情况,对本联盟农田种植规划制定的最高限额数据由下表给出。
三家农庄达成协议:各家农庄的播种面积与其可灌溉耕地面积之比相等;各家农庄种植何种作物并无限制。
所以,技术协调办公室面对的任务是:根据现有的条件,制定适当的种植计划帮助南方农庄联盟获得最大的总利润,现请你替技术协调办公室完成这一决策。
对于技术协调办公室的上述安排,你觉得有何缺陷,请提出建议并制定新的种植计划。
5.有一艘货轮,分前、中、后三个舱位,它们的容积与最大允许载重量如下表所示:前舱中舱后舱最大允许载重量(t)2000 3000 1000容积(m3)4000 5400 1000现有三种货物待运,已知有关数据如下表所示:商品数量(件)每件体积(m3/件)每件重量(t/件)运价(元/件)A 600 10 8 1000B 1000 5 6 700C 800 7 5 600又为了航运安全,要求前、中、后舱在实际载重量上大体保持各舱最大允许载重量的比例关系。
数学建模 matlab求解线性规划实验报告
实验三 线性规划程序: linprogc=[-0.4 -0.28 -0.32 -0.72 -0.64 -0.6];A=[0.01 0.01 0.01 0.03 0.03 0.03;0.02 0 0 0.05 0 0;0 0.02 0 0 0.05 0;0 0 0.03 0 0 0.08]; b=[850;700;100;900]; Aeq=[]; beq=[];vlb=[0;0;0;0;0;0]; vub=[];[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub)Exam5:function f=fun3(x);f=-x(1)-2*x(2)+(1/2)*x(1)^2+(1/2)*x(2)^2实验目的2、掌握用数学软件包求解线性规划问题。
1、了解线性规划的基本内容。
例1 max 6543216.064.072.032.028.04.0x x x x x x z +++++= 85003.003.003.001.001.001.0..654321≤+++++x x x x x x t s 70005.002.041≤+x x 10005.002.052≤+x x 90008.003.063≤+x x 6,2,10 =≥j x jx0=[1;1];A=[2 3 ;1 4]; b=[6;5]; Aeq=[];beq=[]; VLB=[0;0]; VUB=[];[x,fval]=fmincon('fun3',x0,A,b,Aeq,beq,VLB,VUB)书 求下列非线性规划2221232212322123212223123min 8020..2023,,0x x x x x x x x x s t x x x x x x x +++⎧-+≥⎪++≤⎪⎪--+=⎨⎪+=⎪⎪≥⎩在Matlab 2013软件中输入如下程序: (i )编写M 文件fun1.m 定义目标函数function f=fun1(x); f=sum(x.^2)+8;(ii )编写M 文件fun2.m 定义非线性约束条件 function [g,h]=fun2(x); g=[-x(1)^2+x(2)-x(3)^2x(1)+x(2)^2+x(3)^3-20]; %非线性不等式约束 h=[-x(1)-x(2)^2+2x(2)+2*x(3)^2-3]; %非线性等式约束 (iii )编写主程序文件example2.m 如下:options=optimset('largescale','off');[x,y]=fmincon('fun1',rand(3,1),[],[],[],[],zeros(3,1),[], ... 'fun2', options)就可以求得当1230.5522 1.2033,,0.9478x x x ===时,最小值y =10.6511。
线性规划问题求解----数学建模实验报告
由题目所给的数据可建立如下的线性规划模型:
Min z(1.250.25)(������1 ������2 )(20.35)������8 (2.80.5)������9 10������6 )
084 实验报告
1、 实验目的:
(1)学会用 matlab 软件解决线性规划问题的最优值求解问题。 (2) 学会将实际问题归结为线性规划问题用 MATLAB 软件建立恰 当的数学模型来求解。 (3)学会用最小二乘法进行数据拟合。 (4)学会用 MATLAB 提供的拟合方法解决实际问题。
2、 实验要求:
(1)按照正确格式用 MATLAB 软件解决课本第 9 页 1.1、1.3, 第 100 页 5.1、5.3 这几个问题,完成实验内容。 (2)写出相应的 MATLAB 程序。 (3)给出实验结果。 (4)对实验结果进行分析讨论。 (5)写出相应的实验报告。
3、 实验步骤:
(1)、对于习题 1.1: a.将该线性规划问题首先化成 MATLAB 标准型 b.用 MATLAB 软件编写正确求解程序:程序如下:
(4)、对于习题5.3:用MATLAB中最小二乘法求拟合表中的数据。 程序如下:x=[1:8]';
y=[15.3,20.5,27.4,36.6,49.1,65.6,87.87,117.6]'; xishu=[ones(8,1),x];%构造系数矩阵 cs=xishu\log(y);%线性最小二乘法拟合参数 cs(1)=exp(cs(1));%把lna变换成a
对应整数规划的最优解为 x11200,x2230,x30,x4859,x5571,x60,x7500,x8 500,x9324, 最优值为 z1146.414 元。
数学建模作业线性规划
数学建模(第 1 次作业)题目:线性规划工厂生产摘要:某工厂用三种原材料,,c,p,h混合调配出三种不同规格的产品A,B,D。
已知产品的规格要求,产品单价,每天能提供的原材料数量及原材料单价,分别见表1和表2.该厂应该如何安排,使得利润收入最大?Table: 1.产品规格要求与单价表假设一:每天没有原材料损耗假设二:生产的产品都能卖出去假设三:市场价格恒定(利润恒定)假设四:工厂能有效完成工程任务量正文:设产品A,B,D的每日产量分别为X1,X2,X3。
其中A产品需要原材料为X11,X12,X13。
产品B为X21,X22,X23。
产品D为X31,X32,X33。
厂家利润为Z元。
由上图所给表格1与表格2,给出利润表达式Zmax=50X1+35X2+25X3-(X11+X21+X31)*65-(X12+X22+X32)*25-(X13+X23+X33)*35由A,B,D,原材料生产要求给出限制条件X11≥50%X1X12≤25%X1X21≥25%X2X22≤50%X2X11+X21+X31≤100X12+X22+X32≤100X13+X23+X33≤60X1=X11+X12+X13X2=X21+X22+X23X3=X31+X32+X33X1,X2,X3,X11,X12,X13,X21,X22,X23,X31,X32,X33≥0由上述限制推出:-X11+1/2*X1≤0X12-1/4*X1≤0-X21+1/4*X2≤0X22-1/2*X2≤0X11+X21+X31≤100X12+X22+X32≤100X13+X23+X33≤60X1-(X11+X12+X13)=0X2-(X21+X22+X23)=0X3-(X31+X32+X33)=OX1,X2,X3,X11,X12,X13,X21,X22,X23,X31,X32,X33≥0将上述方程通过编程然后输入matlabe,得出答案-6.1000e+03编程输出结果截图程序:c=[50,35,25,-65,-25,-35,-65,-25,-35,-65,-25,-35];A=[1/2,0,0,-1,0,0,0,0,0,0,0,0;-1/4,0,0,0,1,0,0,0,0,0,0,0;0,1/4,0,0,0, 0,-1,0,0,0,0,0;0,-1/2,0,0,0,0,0,1,0,0,0,0;0,0,0,1,0,0,1,0,0,1,0,0;0,0 ,0,0,1,0,0,1,0,0,1,0;0,0,0,0,0,1,0,0,1,0,0,1];b=[0;0;0;0;100;100;60];Aeq=[1,0,0,-1,-1,-1,0,0,0,0,0,0;0,1,0,0,0,0,-1,-1,-1,0,0,0;0,0,1,0,0, 0,0,0,-1,-1,-1,0];beq=[0;0;0];vlb=[0;0;0;0;0;0;0;0;0;0;0;0];vub=[];[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub)注:采用小四宋体、单位行距。
数学建模求解线性规划实验报告
三参考书上4.1节。设投资证券A,B,C,D,E的金额分别为x1,x2,x3,x4,x5万元,则根据题目条件,有:
max=0.043*x1+0.027*x2+0.025*x3+0.022*x4+0.045*x5;
(3)得到如下结果报告:
根据此结果报告可回答题目问题:
(以下省略)。。。。。
文件名格式为:1603_05张三_12李四_求解线性规划.doc,电子邮件主题和文件名相同,发到
四、心得体会
要写一点体会。。。
二、实验环境、内容和方法
内容:
1、求解书本上P130的习题1:
某银行经理计划用一笔资金进行有价证券的投资,可供购进的证券以及其信用等级、到期年限、收益如书中的表所示,并且有若干限制。回答如下问题:
(1)若该经理有1000万元资金,应如何投资?
(2)如果能够以2.75%的利率借到不超过100万元资金,该经理应如何操作?
x2+x3+x4>=400;
x1+x2+x3+x4+x5<=1000;
(2*x1+2*x2+x3+x4+5*x5)-1.48*(x1+x2+x3+x4+x5)<0;
(9*x1+15*x2+4*x3+3*x4+2*x5)-5*(x1+x2+x3+x4+x5)<0;
(2)转化成符合Lingo语法的代码进行求解,如下图:
数学学院
实验报告
课程名称:数学建模实验名称:求解线性规划实验地点:
数学建模实验报告之线性规划
数学模型实验报告——线性规划专业:数学与应用数学L081姓名: XXX 学号: 08L1002106姓名: XXX 学号: 08L1002109姓名: XXX 学号: 08L1002112数学模型实验报告(线性规划)一、 实验目的:1、了解线性规划的基本内容。
2、掌握用数学软件包求解线性规划问题。
二、实验内容:1、用MATLAB 优化工具箱解线性规划 ;2、两个例题;3、实验作业。
三、内容分析:(一)用MATLAB 优化工具箱解线性规划1、模型: min z=cXb AX t s ≤..命令:x=linprog (c ,A ,b )2、模型: min z=cXb AX t s ≤..beq X Aeq =⋅命令:x=linprog (c ,A ,b ,Aeq, beq ) 注意:若没有不等式:b AX ≤ 存在,则令A=[ ],b=[ ].3、模型:min z=cX b AX t s ≤..beq X Aeq =⋅VLB ≤X ≤VUB命令:[1] x=linprog (c ,A ,b ,Aeq,beq, VLB ,VUB )[2] x=linprog (c ,A ,b ,Aeq,beq, VLB ,VUB, X 0)注意:[1] 若没有等式约束: beq X Aeq =⋅, 则令Aeq=[ ], beq=[ ]. [2]其中X 0表示初始点4、命令:[x,fval]=linprog(…) 返回最优解x及x处的目标函数值fval.例1 max 6543216.064.072.032.028.04.0x x x x x x z +++++=85003.003.003.001.001.001.0..654321≤+++++x x x x x x t s70005.002.041≤+x x 10005.002.052≤+x x 90008.003.063≤+x x 6,2,10=≥j x j解 :编写M 文件程序如下:c=[-0.4 -0.28 -0.32 -0.72 -0.64 -0.6]; A=[0.01 0.01 0.01 0.03 0.03 0.03;0.02 0 0 0.05 0 0; 0 0.02 0 0 0.05 0; 0 0 0.03 0 0 0.08]; b=[850;700;100;900]; Aeq=[]; beq=[];vlb=[0;0;0;0;0;0]; vub=[];[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub)例2321436m in x x x z ++= 120..321=++x x x t s301≥x 5002≤≤x 203≥x解:编写M 文件程序如下: c=[6 3 4]; A=[0 1 0]; b=[50];Aeq=[1 1 1]; beq=[120]; vlb=[30,0,20];vub=[];[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub)运行结果如下:Optimization terminated. (最优解为) x =1.0e+004 * 3.5000 0.5000 3.0000 0.0000 0.0000 0.0000 fval =-2.5000e+004(二)例题例1:任务分配问题:某车间有甲、乙两台机床,可用于加工三种工件。
数学建模实验报告
《数学建模实验报告》Lingo软件的上机实践应用简单的线性规划与灵敏度分析学号:班级:姓名:日期:2010—7—21数学与计算科学学院一、实验目的:通过对数学建模课的学习,熟悉了matlab和lingo等数学软件的简单应用,了解了用lingo软件解线性规划的算法及灵敏性分析。
此次lingo上机实验又使我更好地理解了lingo程序的输入格式及其使用,增加了操作连贯性,初步掌握了lingo软件的基本用法,会使用lingo计算线性规划题,掌握类似题目的程序设计及数据分析。
二、实验题目(P55课后习题5):某工厂生产A、2A两种型号的产品都必须经过零件装配和检验两道工序,1如果每天可用于零件装配的工时只有100h,可用于检验的工时只有120h,各型号产品每件需占用各工序时数和可获得的利润如下表所示:(1)试写出此问题的数学模型,并求出最优化生产方案.(2)对产品A的利润进行灵敏度分析1(3)对装配工序的工时进行灵敏度分析(4)如果工厂试制了A型产品,每件3A产品需装配工时4h,检验工时2h,可获3利润5元,那么该产品是否应投入生产?三、题目分析:总体分析:要解答此题,就要运用已知条件编写出一个线性规划的Lingo 程序,对运行结果进行分析得到所要数据;当然第四问也可另编程序解答.四、 实验过程:(1)符号说明设生产1x 件1A 产品,生产2x 件2A 产品.(2)建立模型目标函数:maxz=61x +42x 约束条件:1) 装配时间:21x +32x <=100 2) 检验时间:41x +22x <=120 3) 非负约束:1x ,2x >=0所以模型为: maxz=61x +42xs.t 。
⎪⎩⎪⎨⎧>=<=+<=+0,1202410032212121x x x x x x(3)模型求解:1)程序model:title 零件生产计划; max=6*x1+4*x2; 2*x1+3*x2<=100; 4*x1+2*x2<=120; end附程序图1:2)计算结果Global optimal solution found。
数学建模实验线性规划模型实验实验报告
线性规划模型实验一、实验目的:掌握线性规划模型的建立与Lingo求解方法。
二、实验题目:某工厂计划生产甲、乙两种产品,主要材料有钢材3600 kg、铜材2000 kg、专用设备能力3000台时。
材料与设备能力的消耗定额以及单位产品所获利润如下表所示,问如何安排生产,才能使该厂所获利润最大。
若用10元可以买到1kg铜材,问是否应该作这项投资?若投资,每天最多买多少kg铜材?三、实验内容及步骤(1)如何安排生产,才能使该厂所获利润最大。
假设利润设为z,甲生产x件,乙生产y件三者满足的线性方程组为:70x+120y=z9x+4y<=36004x+5y<=20003x+10y<=3000x≥0,y≥0lingo 程序:model:max =70*x+120*y ;9*x+4*y<3600;4*x+5*y<2000;3*x+10*y<3000;EndGlobal optimal solution found.Objective value: 42800.00Infeasibilities: 0.000000Total solver iterations: 2Variable Value Reduced CostX 200.0000 0.000000Y 240.0000 0.000000Row Slack or Surplus Dual Price1 42800.00 1.0000002 840.0000 0.0000003 0.000000 13.600004 0.000000 5.200000X=200,y=240,z=42800利用matlab求下面优化问题:>> c=[-70,-120];A=[9 4;4 5;3 10];b=[3600;2000;3000];Aeq=[]; beq=[];vlb=[0;0]; vub=[];[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub)x =200.0000240.0000fval =-4.2800e+004所以应该甲生产200件,乙生产240件,才能使该厂所获利润最大,最大利润为42800元(2)若用10元可以买到1kg铜材,问是否应该作这项投资?若投资,每天最多买多少kg铜材?假设每天最多买t kg铜材线性方程组为:70x+120y-10t=z9x+4y<=36004x+5y<=2000+t3x+10y<=3000x≥0,y≥0lingo 程序:model:max =70*x+120*y-10*t ;9*x+4*y<3600;4*x+5*y<2000+t;3*x+10*y<3000;endGlobal optimal solution found.Objective value: 43769.23Infeasibilities: 0.000000Total solver iterations: 3Variable Value Reduced CostX 307.6923 0.000000Y 207.6923 0.000000T 269.2308 0.000000Row Slack or Surplus Dual Price1 43769.23 1.0000002 0.000000 1.1538463 0.000000 10.000004 0.000000 6.538462x=307.6923,y=207.6923,t=269.2308,Max z=43769.23利用matlab求下面优化问题:>> c=[-70 -120 +10];A=[9 4 0;4 5 -1;3 10 0];b=[3600;2000;3000];Aeq=[]; beq=[];vlb=[0;0;0]; vub=[];[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub)Optimization terminated.x =307.6923207.6923269.2308fval =-4.3769e+004所以应该做这项投资,t=269.2308,每天最多买269 kg铜材,利润为43769元。
求解线性规划(实验报告)
1、了解对策论建模的方法和模型的算法;
2、了解带线性规划的基本原理和解法;
3、掌握Matlab优化工具箱求解线性规划的基本用法;
二、实验要求
1、掌握对策论建模的方法以及如何用MATLAB去实现;
2、能够掌握Matlab优化工具箱中linprog的基本用法,能够对控制参数进行设置,能够对不同算法进行选择和比较。
1.7500
f =
-11.5000
(2)Optimization terminated.
x =
20.0000
20.0000
fva实验报告质量作出写事性评价
2、评分
综合评分
折合成等级
指导教师签名:
时间:年月日
返回最优解x及x处的目标函数值fval.
四、实验程序
问题:
(1)求解线性规划
.
程序:
c=[-5 4 2];
A=[-6 1 -1;-1 -2 -4];
b=[-8 -10];
Aeq=[];beq=[];
vlb=[-1 0 0];
vub=[3 2 inf];
[x,f]=linprog(c,A,b,Aeq,beq,vlb,vub)
(2)求解线性规划
.
程序:
c=[-6 -4];
A=[2 3;4 2];
b=[100 120];
lb=[0 0]';
ub=[inf inf]';
[x,fval]=linprog(c,A,b,[ ],[ ],lb,ub
五、结果
(1)Optimization terminated.
x =
3.0000
0.0000
安徽师范大学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学建模实验报告线性规划
数学建模实验报告姓名:霍妮娜班级:计算机95学号:09055093指导老师:戴永红提交日期:5月15日一.线性规划问题描述:某厂生产甲乙两种口味的饮料,每百箱甲饮料需用原料6千克,工人10名,可获利10万元;每百箱乙饮料需用原料5千克,工人级大学生正在从若干个招聘单位中挑选合适的工作岗位,他考虑的主要因素包括发展前景、经济收入、单位信誉、地理位置等,试建立模型给他提出决策建议。
问题分析首先经过对问题的具体情况了解后,建立层次结构模型,进而进行决策分析。
下面我建立这样一个层次结构模型:某岗位综合分数发展前景x1经济收入x2家庭因素x3地理位置x4这是一个比较简单的层次结构模型,经过如下步骤就可以将问题解决。
1.成对比较从x1,x2,x3,x4中任取xi和xj,对他们对于y贡献的大小,按照以下标度给xi/xj赋值:xi/xj=1,认为前者与后者贡献程度相同;xi/xj=3,前者比后者的贡献程度略大;xi/xj=5,前者比后者的贡献程度大;xi/xj=7,前者比后者的贡献大很多;xi/xj=9,前者的贡献非常大,以至于后者根本不能和它相提并论;xi/xj=2n,n=1,2,3,4,认为xi/xj介于2n-1和2n+1直接。
xj/xi=1/n,n=1,2,…,9,当且仅当xi/xj=n。
2.建立逆对称矩阵记已得所有xi/xj,i,j=1,2,3,4,建立n阶方阵1135A=11351/31/3131/51/51/31
3.迭代e0=(1/n,1/n,1/n,1/n)
Tek=Aek-1一直迭代直达到极限e=(a1,a2,…,a4)T则权系数可取Wi=ai 解:首先通过迭代法计算得x1,x2,x3,x4的权数分别为:0.278,0.278,0.235,0.209.假设对所有的xi都采用十分制,现假设有三家招聘公司,它们的个指标如下所示:x1x2x3x4甲8579乙7966丙5798按公式分别求出甲、乙、丙三家公司的综合指数为7.144,7.112和7.123.由此可以看出,应该选择甲公司。
实验体会:或许这次的实验不是一道很难的题目,但是我却通过本次这个简单的层次分析法解决的问题的实验,学会了用层次来解决与管理有关的决策问题,对迭代法的认识更加深刻。
由小到大,由简到难,知道了如何判断矩阵的一致性,如何利用方根法以及和积法计算矩阵的最大特征根。
总结词:通过这一学期对数学建模的学习,我对数学建模的三大功能:解释,判断,预测有了更进一步的感性认识。
当然,通过一学期的实验,我也对强大的数学软件Matlab和Mathematic有所了解,如果能够好好的利用这些软件,那么在处理建模问题的过程中将会大大的省事省力。
学有涯而知无涯,通过不断的学习,我更加认识到了自己的知识的匮乏,利用学过的数学知识、计算机知识以及网上查到的资料,最终得以解决了一道题目,或许这就是数学建模旨在传递的思想,通过学生自主学习解决实际问题,提高学生的应用意识和创新能力。
在实验过程遇到很多问题,都是同学们在一起讨论试验完成的,这种团体合作的力量,其实也很强大。
最后,真的非常感谢老师一学期的悉心教导,你用你的耐心、细心教会了我们很多东西,而有些东西并不是看书本就可以得到的。