旋转机械常见故障各项参数及解释
5 旋转机械常见故障特征
特征频 常伴 振动稳 振动 相位 轴心 时域 率 频率 定性 方向 特征 轨迹 波形 1× 简谐 稳定 径向 稳定 椭圆 波形
转子不平衡振动敏感参数
1 振动 随转 速变 化 明显 2 振动 随负 荷变 化 不明 显 3 振动 随油 温变 化 不变 4 振动 随流 量变 化 不变 5 振动 随压 力变 化 不变 6 其它 识别 方法 低速 时趋 于零
转子不平衡产生的原因
转子不平衡产生的原因
转子不平衡类型
力不平衡
力偶不平衡
转子不平衡类型
动不平衡
悬臂转子不平衡
转子不平衡动力学特性
x = Acos(Ωt +θ )
me λ2 A= • M (1− λ2 )2 + 4ζ 2 λ2
2ζλ tanθ = 1− λ2
转子不平衡振动特征
1 2 3 4 5 6 7
转子不对中故障形式
轴线平行不对中
角度不对中
综合不对中
转子不对中故障轴心轨迹
∆α
∆y Z
∆α / 2
Z
∆L
(b)
Z
∆y
∆L
(a)
∆L
(c)
轴线平行不对中
角度不对中
综合不对中
转子不对中故障特征
1)齿式联轴器不对中故障的特征频率为轴转 角频率的2 角频率的2倍。 由不对中故障产生的对转子的激振力幅, 2)由不对中故障产生的对转子的激振力幅, 随转速的升高而加大,因此, 随转速的升高而加大,因此,高速旋转机 械应更加注重转子的对中要求。 械应更加注重转子的对中要求。 激励力幅与不对中量成正比, 3)激励力幅与不对中量成正比,随不对中量 的增加,激励力幅呈线性加大。 的增加,激励力幅呈线性加大。
总结旋转机械经常出现的故障有哪些
旋转机械是主要依靠旋转动作来实现特定功能的机械设备,典型的旋转机械包括汽轮机、燃气轮机、离心式和轴流式压缩机等,这类机械在电力、石化、冶金和航空航天等部门都有着广泛的应用。
常见的旋转机械故障包括不平衡、不对中、轴弯曲以及油膜涡动和油膜振荡,下面我们对其作一个详细的介绍。
转子不平衡:转子不平衡是旋转机械最常发生的故障。
这一故障的产生原因是多方面的,包括转子本身的原因,如结构设计不合理、材料材质不均匀、机械加工质量没有达到要求、装配存在误差、动平衡精度差、零部件缺损等;也包括联轴器的原因,如运行中联轴器相对位置的改变等,这些原因都会造成转子旋转不平衡。
转子不对中:转子不对中指的是相邻两个转子的轴心线与轴承中心线发生了倾斜或者偏移。
具体来说又分为联轴器不对中和轴承不对中两种情况。
联轴器不对中又包括平行不对中、偏角不对中和平行偏角不对中三种情况。
平行不对中时,转子振动频率是工频的两倍。
偏角不对中会导致联轴器附加一个弯矩,以减小两个轴中心线的偏角。
轴每旋转一周,弯矩作用方向都会改变两次,这大大增加了转子的轴向力,使转子在轴向产生工频振动。
而平行偏角不对中是以上两种情况的综合,转子既发生径向振动又发生轴向振动。
轴承不对中实际上是由于轴承座标高和轴中心位置之间的偏差造成的,这回导致轴系的载荷重新进行分配。
负荷较大的轴承可能会出现高次谐波振动,负荷较轻的轴承则容易偏离稳定状态,同时还使轴系的临界转速发生改变。
转子轴弯曲:转子的中心线发生弯曲称为轴弯曲,会造成与质量偏心情况相类似的旋转矢量激振力。
轴弯曲分为永久性和临时性两种类型。
转子永久性弯曲是由转子结构不合理、加工误差大、材质不均匀、长期存放不当等因素造成的转子轴永久性的弯曲变形。
也有可能是由于热态停车时未及时盘车或盘车不当、转子的热稳定性差、长期运行后轴的自然弯曲加大等原因造成的。
转子临时性弯曲是因转子上存在较大预负荷、开机运行时的暖机操作不当、升速过快、转轴热变形不均匀等原因造成的,可以通过停止加工使转子回复正常。
旋转机械设备动平衡故障与分析
旋转机械设备动平衡故障与分析旋转机械设备的动平衡是指在转动过程中,使设备任何位置的动力合力为零,减小振动幅值,提高设备的性能和使用寿命。
然而,在实际运行中,旋转机械设备可能会出现动平衡故障,这会导致设备振动过大、噪声过高、增加机械磨损等问题,甚至可能引发事故。
动平衡故障的主要原因有以下几个:1.零件质量不均匀:机械设备零件在制造过程中可能存在质量不均匀的问题,如同一个零件的不同部分质量不一致等,这会导致零件在旋转过程中产生离心力,增加振动幅值。
2.零件安装不平衡:机械设备在安装过程中,如果零件的位置或角度不正确,会导致设备的重心偏离轴线,造成不平衡现象。
3.设备磨损:长期使用或不良维护会导致设备部件的磨损,如轴颈磨损、轴承磨损等,这些磨损会导致设备的动力分布不均匀,引起动平衡问题。
对于动平衡故障的分析,首先需要进行故障的判断和确认。
常用的方法包括振动测试、噪声测试、温度测试等。
在进行故障判断时,一般需要进行多次测试,以确定故障发生的频率或位置。
一旦动平衡故障被确认,接下来就需要进行故障的修复和调整。
常用的方法有以下几种:1.调整设备重心:通过调整设备零件的位置或角度,使设备的重心与轴线一致。
这可以通过增加或减小零件的质量、调整零件的位置等方式来实现。
2.更换磨损部件:对于出现磨损的零件,需要及时更换,以保证设备的动力分布均匀。
3.进行动平衡校正:对于无法通过调整设备重心或更换磨损部件来解决的动平衡问题,需要进行动平衡校正。
动平衡校正一般采用质量平衡或质量调整的方法,即在设备上增加或减少适当的质量,使设备的动力合力为零。
动平衡校正有以下几种常用的方法:(1)静平衡法:在设备的旋转轴上,在两个互相垂直的平面上各放一个力矩平衡块,使设备的质心与转轴重合。
(2)动平衡法:通过在设备上增加或减少适当的质量,使设备的动力合力为零。
动平衡可以根据设备的旋转速度、磨损情况等来确定。
动平衡校正时需要使用专用的动平衡设备进行,该设备可以测量设备的振动幅值、振动频率等参数,以确定校正的方法和参数。
旋转机械的振动监测与故障诊断
油膜振荡
其它故障
状态监测 故障诊断
三、旋转机械典型故障的机理和特征
转子不对中通常是指相邻两转子的轴心
转 子 不 平 衡 线与轴承中心线的倾斜或偏移程度。
转 子 不 对 中
转子碰摩
转子不对中可分为联轴器不对中和轴承不
油 膜 振 荡 对中,联轴器不对中又可分为平行不对中、
其 它 故 障 偏角不对中和平行偏角不对中三种情况。
二、 旋转机械振动监测参数与分析
1.常态频域分析
(4)拍
监测参数
振 动 分 析
状态监测 故障诊断
二、 旋转机械振动监测参数与分析
1.常态频域分析
(5)频率和差规律
监测参数
振 动 分 析
状态监测 故障诊断
二、旋转机械振动监测参数与分析
1.常态频域分析
(6)轴心轨迹
监测参数
振 动 分 析
状态监测 故障诊断
状态监测 故障诊断
三、旋转机械典型故障的机理和特征
1. 联轴器不对中
转子不平衡
转 子 不 对 中
转子碰摩 油膜振荡 其它故障
(1)平行不对中
状态监测 故障诊断
三、旋转机械典型故障的机理和特征
1. 联轴器不对中
转子不平衡
转 子 不 对 中
转子碰摩 油膜振荡 其它故障
(2)偏角不对中
状态监测 故障诊断
转子不对中 转子碰摩 油膜振荡 其它故障
(3)表示各圆盘中心位移的复数向量相角是不同的,因 此轴线弯曲成空间曲线,并以转子转速绕OZ轴转动。
状态监测 故障诊断
三、旋转机械典型故障的机理和特征
转子不平衡振动特征:
转 子 不 平 衡
转子不对中 转子碰摩
旋转机械常见振动故障及原因分析
旋转机械常见振动故障及原因分析旋转机械是指主要依靠旋转动作完成特定功能的机械,典型的旋转机械有汽轮机、燃气轮机、离心式和轴流式压缩机、风机、泵、水轮机、发电机和航空发动机等,广泛应用于电力、石化、冶金和航空航天等部门。
大型旋转机械一般安装有振动监测保护和故障诊断系统,旋转机械主要的振动故障有不平衡、不对中、碰摩和松动等,但诱发因素多样。
本文就旋转设备中,常见的振动故障原因进行分析,与大家共同分享。
一、旋转机械运转产生的振动机械振动中包含着从低频到高频各种频率成分的振动,旋转机械运转时产生的振动也是同样的。
轴系异常(包括转子部件)所产生的振动频率特征如表1。
二、振动故障原因分析1、旋转失速旋转失速是压缩机中最常见的一种不稳定现象。
当压缩机流量减少时,由于冲角增大,叶栅背面将发生边界层分离,流道将部分或全部被堵塞。
这样失速区会以某速度向叶栅运动的反方向传播。
实验表明,失速区的相对速度低于叶栅转动的绝对速度,失速区沿转子的转动方向以低于工频的速度移动,这种相对叶栅的旋转运动即为旋转失速。
旋转失速使压缩机中的流动情况恶化,压比下降,流量及压力随时间波动。
在一定转速下,当入口流量减少到某一值时,机组会产生强烈的旋转失速。
强烈的旋转失速会进一步引起整个压缩机组系统产生危险性更大的不稳定气动现象,即喘振。
此外,旋转失速时压缩机叶片受到一种周期性的激振力,如旋转失速的频率与叶片的固有频率相吻合,将会引起强烈振动,使叶片疲劳损坏造成事故。
旋转失速故障的识别特征:1) 振动发生在流量减小时,且随着流量的减小而增大;2) 振动频率与工频之比为小于1X的常值;3) 转子的轴向振动对转速和流量十分敏感;4) 排气压力有波动现象;5) 流量指示有波动现象;6) 机组的压比有所下降,严重时压比可能会突降;7) 分子量较大或压缩比较高的机组比较容易发生。
2、喘振旋转失速严重时可以导致喘振。
喘振除了与压缩机内部的气体流动情况有关,还同与之相连的管道网络系统的工作特性有密切的联系。
旋转机械常见故障总结
旋转机械常见故障总结旋转机械的常见故障有很多,包括不平衡、不对中、轴弯曲和热弯曲、油膜涡动和油膜振荡、蒸汽激振、机械松动、转子断叶片与脱落、摩擦、轴裂纹、旋转失速与喘振、机械偏差和电气偏差等。
1不平衡不平衡是各种旋转机械中最普遍存在的故障。
引起转子不平衡的原因是多方面的,如转子的结构设计不合理、机械加工质量偏差、装配误差、材质不均匀、动平衡精度差;运行中联轴器相对位置的改变;转子部件缺损,如:运行中由于腐蚀、磨损、介质不均匀结垢、脱落;转子受疲劳应力作用造成转子的零部件(如叶轮、叶片、围带、拉筋等)局部损坏、脱落,产生碎块飞出等。
2不对中转子不对中通常是指相邻两转子的轴心线与轴承中心线的倾斜或偏移程度。
转子不对中可分为联轴器不对中和轴承不对中。
联轴器不对中又可分为平行不对中、偏角不对中和平行偏角不对中三种情况。
平行不对中时振动频率为转子工频的两倍。
偏角不对中使联轴器附加一个弯矩,以力图减小两个轴中心线的偏角。
轴每旋转一周,弯矩作用方向就交变一次,因此,偏角不对中增加了转子的轴向力,使转子在轴向产生工频振动。
平行偏角不对中是以上两种情况的综合,使转子发生径向和轴向振动。
轴承不对中实际上反映的是轴承座标高和轴中心位置的偏差。
轴承不对中使轴系的载荷重新分配。
负荷较大的轴承可能会出现高次谐波振动,负荷较轻的轴承容易失稳,同时还会使轴系的临界转速发生改变。
3轴弯曲和热弯曲轴弯曲是指转子的中心线处于不直状态。
转子弯曲分为永久性弯曲和临时性弯曲两种类型。
转子永久性弯曲是指转子的轴呈永久性的弓形,它是由于转子结构不合理、制造误差大、材质不均匀、转子长期存放不当而发生永久性的弯曲变形,或是热态停车时未及时盘车或盘车不当、转子的热稳定性差、长期运行后轴的自然弯曲加大等原因所造成。
转子临时性弯曲是指转子上有较大预负荷、开机运行时的暖机操作不当、升速过快、转轴热变形不均匀等原因造成。
转子永久性弯曲与临时性弯曲是两种不同的故障,但其故障的机理是相同的。
旋转机械故障相关诊断技术模版
旋转机械故障相关诊断技术模版一、引言1.1 背景旋转机械在工业生产和日常生活中广泛应用,但由于长期运行和使用,机械故障是不可避免的。
机械故障不仅会导致设备停机和生产损失,还可能造成人员伤亡和环境污染。
因此,准确和及时的故障诊断对于维护设备运行和生产安全至关重要。
1.2 目的本文旨在介绍一种旋转机械故障的相关诊断技术模版,以帮助工程师和技术人员识别和解决旋转机械故障。
二、常见的旋转机械故障2.1 轴承故障轴承故障是最常见的旋转机械故障之一,包括轴承损坏、磨损、松动和过热等。
轴承故障会导致机器运行不稳定、噪音增加和能耗增加。
2.2 齿轮故障齿轮故障包括齿轮磨损、齿轮脱齿和齿轮啮合不良等。
齿轮故障会导致机器转动不平稳、噪音增加和传动效率下降。
2.3 皮带故障皮带故障包括皮带松动、皮带磨损和皮带断裂等。
皮带故障会导致传动不稳定、能耗增加和设备停机。
2.4 电机故障电机故障包括电机停止运行、电机过载和电机线圈短路等。
电机故障会导致设备停机、能耗增加和电机损坏。
三、旋转机械故障诊断技术模版3.1 确定故障类型根据机器的工作状态和异常现象,确定故障类型。
可以根据维护记录、设备说明书和现场观察等方法进行分析和判断。
3.2 进行基本检查对旋转机械进行基本检查,包括检查外观、检查润滑情况、检查传动系统和检查电机等。
通过基本检查,可以发现一些明显的故障和异常现象。
3.3 使用传统故障诊断技术传统故障诊断技术包括振动分析、温度检测和噪声检测等。
通过对机器振动频谱、温度分布和噪声谱进行分析,可以确定故障的具体位置和原因。
3.4 使用先进故障诊断技术先进故障诊断技术包括红外成像、声发射检测和电机诊断等。
通过红外成像,可以检测机械的热量分布,从而确定故障的位置和程度。
通过声发射检测,可以检测机械的声波信号,从而判断机械是否存在故障。
通过电机诊断,可以检测电机的电流、电压和功率等参数,从而判断电机是否存在故障。
3.5 进行故障分析通过对机器的故障现象、故障原因和故障根源进行分析,确定故障的具体原因和解决方案。
旋转机械故障诊断
旋转机械故障诊断旋转机械故障指的是各种旋转设备在使用中出现的故障,例如电机、风扇、泵等。
为了确保机械设备的正常运转,需要及时检修旋转机械故障。
本文介绍了旋转机械故障的基本知识和常见故障处理方法。
旋转机械故障的基本知识旋转机械故障包括机械故障和电气故障两种。
机械故障主要指机械部分的损坏,例如轴承损坏、磨损、过热等;电气故障主要指电路部分的故障,例如电机烧毁、线路短路等。
为了保障机械设备的安全运行,需要及时检查机械设备中存在的故障并进行有效的处理。
常见的旋转机械故障1. 轴承故障轴承故障是旋转机械故障中最常见的一种故障。
轴承损坏的原因有很多,例如使用时间过长、润滑脂不足、使用温度过高等。
轴承受到过大的负荷或不正确的安装方式也会导致轴承故障。
轴承故障通常会导致机械设备的振动、噪音和温度升高等现象。
轴承故障的处理方法一般包括更换轴承、加强润滑等。
在更换轴承时,需要选择与原轴承参数相同的新轴承,并且必须正确安装、调整轴承预紧力和润滑方式。
2. 汽蚀汽蚀是液体在高速旋转设备内形成的气蚀现象。
汽蚀会导致机械设备的泵体、叶轮、轴承等部件受到损坏。
汽蚀的主要原因是设计不合理、液位过低、磨损等。
汽蚀的处理方法一般包括更换设备、改善设计、加大进口直管长度等。
在更换设备时,需要选择与原设备相同参数的新设备,并且必须正确安装。
3. 电气故障电气故障主要包括电机烧蚀、电路短路、线路老化等。
电气故障通常会造成设备的停止运转,需要及时检查机械设备中电气部分的故障。
电气故障的处理方法一般包括更换电机、修复电路等。
在更换电机时,需要选择与原电机参数相同的新电机,并且必须正确安装并接好电源。
检修旋转机械设备的步骤1. 确定故障部位在进行旋转机械设备的检修时,需要先确定故障部位。
通过观察、听到故障声音和故障所引起的振动等现象,可以初步判断故障部位。
2. 检查机械设备检查机械设备包括拆卸、清洁机械部件和更换损坏部件等。
在拆卸时,需要根据机械设备的结构图和工作原理,按照规范的步骤拆卸。
转动机械常见故障及其频率特征资料重点
转动机械常见故障及其频率特征资料重点转动机械是指依靠旋转运动来完成工作的机械设备,包括电机、风机、泵等。
这些机械设备在长时间运行的过程中,常常会遇到一些故障。
了解并掌握这些故障及其频率特征,对于提高设备的可靠性和运行效率具有重要意义。
以下是一些转动机械常见故障及其频率特征的重点概述:1.轴承故障:轴承故障是转动机械中最常见的故障之一、轴承故障的频率特征包括频谱分析中的频谱峰值,通常以倍频为特征。
其他可能的特征包括振动加速度、速度和位移等参数的变化。
2.不平衡故障:不平衡是指转动机械在运行过程中由于质量不均匀分布导致的问题。
不平衡故障的频率特征主要包括由于不平衡引起的径向振动频率。
此外,还应注意检查频谱中的谐波振动频率,这些频率通常会出现在不平衡故障的频谱中。
3.错位故障:错位故障是指转动机械中轴心与旋转件中心不重合的问题。
错位故障的频率特征主要表现为以旋转频率为中心的低频分量。
同时,对于大型机械设备,还可能会出现由于错位引起的回转频率。
4.轮齿故障:对于齿轮传动的转动机械,轮齿故障是常见的问题之一、轮齿故障的频率特征主要包括齿轮传动频率及其倍频,以及其谐波振动频率。
5.润滑故障:润滑故障包括油液流量问题、油液质量问题和油温过高等。
润滑故障的频率特征主要体现在振动和声音信号中的周期性模式变化上。
以上仅是一些转动机械常见故障及其频率特征的重点概述。
在实际应用过程中,具体的故障和频率特征可能会有所不同,需要根据具体设备的特点进行分析和判断。
对于转动机械的故障诊断和预防,可以借助振动分析、声学分析、热成像等技术手段来进行监测和判断。
及早发现并处理这些故障,可以提高设备的可靠性和运行效率,减少意外停机和维修成本。
转动机械常见故障及其频率特征
转速的精 确 倍频成分 噪声水平 高
转子摩擦故障特征
当旋转件与静止件相接触时,将产生转子摩擦。 可能是局部摩擦,也可能是转子一周的摩擦, 此时的损坏可能是灾难性的 转子摩擦频普特征: 1.产生摩擦的方向其振动频普中出现转速的整 分数倍亚谐波频率(1/2,1/3,1/4)及他们 的丰富的谐波频率分量 2.时域波形出现削波或截断。
0
平行不对中 e 0,
=0
角度不对中 e = 0,
0
综合不对中 e 0,
0
不对中故障的频谱
MO MI PI PO
2X 频率
电机
水泵
1X 频率
平行不对中在径向出现明显的 2X,3X频率分量,而且往往大于 1X频率分量。 角度不对中往往出现大的轴向振 动,而且径向轴向以1X频率分量 为主。 不对中振动随负荷的增加而成正 比增加,但转速影响不大。 角度不对中时,联轴器两端轴向 相位差180度,平行不对中时, 联轴器两端径向相位差180度
泵在过高的流量能力或过低的进口压力下工作 时,往往会发生气蚀。它对内部零件有十 分大的破坏力,有连续气蚀的泵,往往叶 轮有严重的凹坑或冲刷腐蚀。 气蚀的特征; 1.指示气蚀的经典频普往往在约20000r/m到约 120000r/m范围内随机的宽带能量。 2.发生气蚀时,GSE将增大许多。 3.气蚀往往发生奇特的噪声,象卵石通过泵的 声音
C型机械松动故障特征
C型机械松动是最常见的松动,包括 如下故障: a.轴承在轴承座中松动。 b.轴承内部间隙过大 c. 轴承衬套松动。 d.轴承在轴上松动或转动 频普特征: 1.在振动频普中存在可能高达10X甚 至20X的转速频率分量。 2.若干谐波频率的振动幅值明显,将 可能产生转速的1/2X间隔的频率, 此时将说明更严重的松动 3.C型松动结果通常不稳定测量的相 位
旋转机械常见故障都有哪些
旋转机械常见故障都有哪些?首先旋转机械的核心部分是转子组件,它是由转轴及固定在其上的各类圆形盘状零件组成。
由于整个转子高速旋转,所以对其制造、安装、调试、维护管理都有很高的要求。
如果其中某个零件出了问题,或在某个连接配合部位发生了异常的变动,就可能会引起机组的强烈振动。
今天给大家介绍的是旋转机械常见故障都有哪些?1、不平衡不平衡振动的频率一般很明显,主要表现不平衡转子的故障频率等于转子的旋转频率:f0=fr=n/60,f0——转子的基频(HZ),fr——转子旋转频率(HZ),n——转子转速(r/min)除此旋转机械常见故障之外,不平衡振动还会激起其他频率成份例如分频、倍频等。
在诊断不平衡故障时,首先必须分析信号和频率成份,是否有突出的转频,其次看振动的方向特征,必要时再分析振幅随转速的变化情况,或测量相位。
2、转子不对中转子不对中也是旋转机械常见故障之一,有以下几种:a.转子与转子间的联接不对中,主要反映在联轴器的对中性上。
b.转子轴颈与两端轴承不对中,对滑动轴承来说,这种情况的产生的主要原因与轴承是否形成良好的油膜有直接关系。
对滚动轴承来讲,主要是因为两端轴承座孔不同轴、轴承元件损坏、外圈配合松动,两端支座变形等(对电动机而言是前后端盖),都会引起不对中。
转子不对中将产生一种附加弯矩,给轴承增加一种附加载荷,致使轴承上的负荷重新分配,形成附加激励引起机组强烈振动,严重时导致轴承和联轴器的损坏、地脚螺纹断裂或扭弯、油膜失稳、转轴弯曲、转子与定子产生碰磨等后果,所以及时预测处理不对中故障对设备的正常运转减少事故的发生十分重要。
3、松动机械松动也是旋转机械比较觉常见的故障,松动有两种情况,一种是地脚螺丝连接松动,它带来的后果是引起整个机器松动,另一种情况是零件之间正常的配合关系被破坏造成配合间隙超差而引起的松动,比如滚动轴承的内圈与转轴的配合或外圈与轴承座孔之间的配合,因丧失了配合精度而造成松动。
由松动引起的振动具有一定的非线性,其振动信号的频率成份相当复杂,除了基频(等于转频)以外,还产生高频次谐波和分频振动,频谱结构成梳状,有时还表现出一些方向特征很明显,主要在垂直方向很强烈。
旋转机械设备常见故障特征分析
第三部分:旋转机械设备常见故障特征分析一、系统共振特点:振动值在某一转速附近突变,振动相位在某一转速下发生约180度相位翻转,振动波形近似于简单正弦波形Amplitude ijurve or H⑴Phase Curve二、基础松动特点:信号具有丰富的高频谐波分量,振动具有明显的方向性,振动产生1/2,1/3RPM等分数倍亚谐波,存在1X,2X,3X,4X,5X,6X,7X,8X 等谐波分量,支座同设备连接的不同元件振动大小相差较大。
三•质量不平衡特点:1X频率成分大,Amp(1X)至少大于总振幅50%相位稳定,幅值稳定,振幅随RPM的平方成正比,水平与垂直方向约有90度相变(+-30度)。
0X1 S igna 1四.不对中故障特点:振动二倍频较大,负荷升高,振动逐渐增大,轴心轨迹香蕉形。
轴心轨迹正进动。
两轴承油压反方向变化。
o<«> 1.002五.轴初始弯曲故障特点:轴承1X幅频特性呈丘陵状,振动与负荷无关,相频非单调变化六、齿轮故障1.齿轮特征频率计算本程序用于计算齿靠振动特征參数1.齿轮的嘈合频率A = 工一®轮龈602、齿轮的團有特征频率k ------ 对齿轮的平均弹性慕数。
-=—+ —叫—大齿蹿性系数 5 -小齿轮弹I折数m——对齿轮的等逊质負丄三丄4■丄m 刚d 叫叫-大齿轮渡量現_小齿轮质養2.齿轮断齿故障特点:啮合频率GMF或其谐波两侧出现转速的边带簇,时域信号有明显等间隔冲击,设备有冲击异音,时域波形峭度值大。
3.齿轮不对中特点:存在齿轮高次啮合频率谐波,1GMF较小,但2GMF 3GM振幅较大,GMF的边频距离可为2RPM甚至为3RPM4.齿面磨损特点:信号存在齿轮自振频率,且该频率处存在边带,啮合频率GMF 或其谐波两侧出现转速的边带簇,存在较大的齿轮啮合频率GMF七、滚动轴承故障 1.轴承特征频率计算特征频率计算公式如下表;兀一轴转动频率以一接融角Z—滚动体个数D—节径d—法朗体直径4.轴承部件缺陷(内圈,滚动体剥落,滚道剥落等)特点:轴承缺陷频率和谐波成分丰富,时域波形有冲击,存在轴承内圈特征频率(BPFI),存在轴承外圈特征频率(BPFO),边带成分较明显或突出。
旋转机械的常见故障
旋转机械的常见故障旋转机械的常见故障有很多,包括不平衡、不对中、轴弯曲和热弯曲、油膜涡动和油膜振荡、蒸汽激振、机械松动、转子断叶片与脱落、摩擦、轴裂纹、旋转失速与喘振、机械偏差和电气偏差等。
1、不平衡是各种旋转机械中最普遍存在的故障引起转子不平衡的原因是多方面的,如转子的结构设计不合理、机械加工质量偏差、装配误差、材质不均匀、动平衡精度差;运行中联轴器相对位置的改变;转子部件缺损,如:运行中由于腐蚀、磨损、介质不均匀结垢、脱落;转子受疲劳应力作用造成转子的零部件(如叶轮、叶片、围带、拉筋等)局部损坏、脱落,产生碎块飞出等。
2、转子不对中通常是指相邻两转子的轴心线与轴承中心线的倾斜或偏移程度。
转子不对中可分为联轴器不对中和轴承不对中。
联轴器不对中又可分为平行不对中、偏角不对中和平行偏角不对中三种情况。
平行不对中时振动频率为转子工频的两倍。
偏角不对中使联轴器附加一个弯矩,以力图减小两个轴中心线的偏角。
轴每旋转一周,弯矩作用方向就交变一次,因此,偏角不对中增加了转子的轴向力,使转子在轴向产生工频振动。
平行偏角不对中是以上两种情况的综合,使转子发生径向和轴向振动。
轴承不对中实际上反映的是轴承座标高和轴中心位置的偏差。
轴承不对中使轴系的载荷重新分配。
负荷较大的轴承可能会出现高次谐波振动,负荷较轻的轴承容易失稳,同时还会使轴系的临界转速发生改变。
3、轴弯曲是指转子的中心线处于不直状态。
转子弯曲分为永久性弯曲和临时性弯曲两种类型。
转子永久性弯曲是指转子的轴呈永久性的弓形,它是由于转子结构不合理、制造误差大、材质不均匀、转子长期存放不当而发生永久性的弯曲变形,或是热态停车时未及时盘车或盘车不当、转子的热稳定性差、长期运行后轴的自然弯曲加大等原因所造成。
转子临时性弯曲是指转子上有较大预负荷、开机运行时的暖机操作不当、升速过快、转轴热变形不均匀等原因造成。
转子永久性弯曲与临时性弯曲是两种不同的故障,但其故障的机理是相同的。
旋转机械常见故障的频率特征(一)
相位常相反
轴向振动大,有2X 径向振动可能有2X、 联轴节两侧振动的
转子系统松动故障的频谱
PI PO
电机
水泵
本例中最高 出现16X成分
• 波形出现许多毛刺。
• 谱图中噪声水平高。
• 出现精确的倍频2X, 3X…等成分。
• 松动结合面两边, 振幅有明显差别。
转速的精确 倍频成分
噪声水平高
正进动 正进动
滚动轴承
外环故障… 内环故障… 滚珠故障…
故障名称 油膜涡动 油膜振荡 气隙振荡 内腔积液
转子内阻
径向摩擦
轴向摩擦
频率特征
(0.4~0.49)× R 等于低阶固有 频率 等于低阶固有 频率 失 稳 前 0.5× R 失稳后为低阶 固有频率 失 稳 前 0.5× R 失稳后为低阶 固有频率 失稳前小于低 阶固有频率 失稳后等于低 阶固有频率 失稳前小于低 阶固有频率 失稳后等于低 阶固有频率
松动故障引起的间入谐量
• 未松动时的 频谱
• 松动时的频 谱
出现0.5X, 1.5X,2.5X, 3.5X...等频 率成分
滚动轴承故障的特征频率
波形为简谐波,少毛刺。
外环故障频率
轴心轨迹成香蕉形或8字形。
滚动轴承故障的特征频率
本例中,出现叶片通过频率。 平行不对中 e 0, = 0
d
f z(1dcos)R
— 接触角
z — 滚珠数
f 1(1dcos)R
保持架碰内环2 D
滚动轴承故障的频谱
PI PO
电机 离心泵
• 轴承每一种零件 有其特殊的故障 频率。
• 随着故障发展, 它的幅值增加, 并有谐波;谐波 两边产生边频。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
旋转机械常见故障各项参数及解释
1. 频率参数
表1振动位移、速度和加速度之间的关系
频谱就是频率的分布曲线,复杂振荡分解为振幅不同和频率不同的谐振荡,这些谐振荡的幅值按频率排列的图形叫做频谱。
倍频程是指使用频率f与基准频率f0之比等于2的n次方,即f/f0=2^n 次方,则f称f0的n次倍频程。
将时域信号变换至频域加以分析的方法称为频谱分析。
时域
时域是真实世界,是惟一实际存在的域。
因为我们的经历都是在时域中发展和验证的,已经习惯于事件按时间的先后顺序地发生。
而评估数字产品的性能时,通常在时域中进行分析,因为产品的性能最终就是在时域中测量的。
频域
非真实的,是一个数学构造。
时域是惟一客观存在的域,而频域是一个遵循特定规则的数学范畴。
时域频域的关系
时域分析与频域分析是对模拟信号的两个观察面。
时域分析是以时间轴为坐标表示动态信号的关系;频域分析是把信号变为以频率轴为坐标表示出来。
一般来说,时域的表示较为形象与直观,频域分析则更为简练,剖析问题更为深刻和方便。
目前,信号分析的趋势是从时域向频域发展。
然而,它们是互相联系,缺一不可,相辅相成的。
时域和频域的转换
动态信号从时间域变换到频率域主要通过傅立叶级数和傅立叶变换实现。
周期信号靠傅立叶级数,非周期信号靠傅立叶变换。
时域越宽,频域越短。
s(f) = ∫-∞+∞(s(t)·e)dt
s D(t)= dS(t)/dt
s D(f)= ∫-∞(s D(t)·e-j2∏ft)dt=j·2∏f· s(f)
(附件1 pp 9-11,34,37-45)(附件2 第一节,第三节)
2. 振动稳定性
通常稳定性是指测量仪器的计量特性(振动频率,振幅,相位)随时间不变化的能力。
依靠频谱分析来判断。
3. 振动方向
3个振动方向:径向,轴向,水平。
4. 相位特征
相位(phase)是对于一个波,特定的时刻在它循环中的位置:一种它是否在波峰、波谷或它们之间的某点的标度。
描述讯号波形变化的度量,通常以度(角度)作为单位,也称作相角。
5. 轴心轨迹
当转轴旋转时,它会绕转轴中心点振动,运动的轨迹就是轴心轨迹。
正常的轴心轨迹应该是一个较为稳定的、长短轴相差不大的椭圆。
轴心轨迹图有原始、提纯、平均、一倍频、二倍频、0.5倍频等多种轴心轨迹,主要看提纯、一倍频、二倍频的轴心轨迹图。
这是因为转子振动信号中不可避免地包含了噪声、电磁信号干扰等超高次谐波分量,使得轴心轨迹的形状变得十分复杂,有时甚至是非常地混乱。
而提纯的轴心轨迹排除了噪声和电磁干扰等超高次谐波信号的影响,突出了工频、0.5倍频、二倍频等主要因素,便于清晰地看到问题的本质;一倍频轴心轨迹则可以更合理地看出轴承的间隙及刚度是否存在问题,因为不平衡量引起的工频振动是一个弓状回转涡动,工频的轴心轨迹就应该是一个圆或长短轴相差不大的椭圆,而如果轴承间隙或刚度存在方向上的较大差异,那么工频的轴心轨迹就会变成一个很扁、很扁的椭圆,从而把同为工频的不平衡故障和轴承间隙或刚度差异过大很简便地区别开来;二倍频轴心轨迹则可以看出严重不对中时的影响方向等。
通过轴心轨迹图,还可以判断转子的涡动是正进动、还是反进动。
6. 进动方向
转子一边进行旋转运动,同时自身发生转动(涡动),如果涡动方向与旋转方向一致,则是正向涡动,否则是反向涡动。
7. 矢量区域
从坐标原点O(平衡位置)画一矢量,使它的模等于谐振动的振幅A,并令t=0时A与x轴的夹角等于谐振动的初位相φ0,然后使A以等于角频率ω的角速度在平面上绕O点作逆时针转动,这样作出的矢量称为旋转矢量。
显然,旋转矢量任一时刻在x轴上的投影x=Acos(ωt+φ0)就描述了一个谐振动。
当旋转矢量绕坐标原点旋转一周,表明谐振动完成了一个周期的运动。
任意时刻旋转矢量与x轴的夹角就是该时刻的位相。
/ptwl/show.asp?id=351。