由三视图还原几何体

合集下载

2023年高考数学一轮复习点点练26空间几何体的三视图与直观图表面积与体积含解析理

2023年高考数学一轮复习点点练26空间几何体的三视图与直观图表面积与体积含解析理

第八单元立体几何考情分析多以两小一大的形式出现,每年必考,分值为17~22分.重点考查几何体的三视图问题、几何体的表面积与体积、空间线面位置关系,用向量法计算空间角,其中与球有关的接(切)问题是考查的难点.对于空间向量的应用,空间直角坐标系的建立是否合理是解决有关问题的关键,有时所给空间图形不规则——没有三条互相垂直的直线,不利于空间直角坐标系的建立,另外,探索性问题中动点坐标的设法及有关计算是难点.点点练26空间几何体的三视图与直观图、表面积与体积一基础小题练透篇1.[2022·山东济宁检测]已知水平放置的△ABC按“斜二测画法”得到如图所示的直观图,其中B′O′=C′O′=1,A′O′=32,那么原△ABC的面积是( )A.3B.22C.32D.342.[2021·江西吉安联考]某几何体的三视图如图所示,其中网格纸上小正方形的边长为1,则该几何体中,最长的棱的长度为( )A.3B.32C.33D.63.[2022·四川成都七中高三期中]已知一个几何体的三视图如图,则它的表面积为( )A .3πB .4πC.5πD.6π4.[2021·衡水模拟]已知正三棱锥S ­ABC 的三条侧棱两两垂直,且侧棱长为2,则此三棱锥的外接球的表面积为( )A .πB.3πC.6πD.9π5.[2022·云南大理模拟预测]一个几何体的三视图如图所示,则这个几何体的体积为( )A .43πB.2πC.πD.83π 6.[2021·江苏海安高级月考]三棱锥A ­BCD 中,∠ABC =∠CBD =∠DBA =60°,BC =BD =1,△ACD 的面积为114,则此三棱锥外接球的表面积为( ) A .4πB.16πC.163πD.323π7.[2022·四川省南充市白塔模拟]如图所示,网格纸上小正方形的边长为1,粗线画出的是某个多面体的三视图,若该多面体的所有顶点都在球C 的表面上,则球C 的表面积是( )A .8πB.12πC.16πD.32π 8.有一块多边形的菜地,它的水平放置的平面图形的斜二测直观图是直角梯形(如图所示),∠ABC =45°,AB =AD =1,DC ⊥BC ,则这块菜地的面积为________.9.[2022·湘豫名校联考]在四面体ABCD 中,AB =CD =5,AD =BC =13,AC =BD =10,则此四面体的体积为________.二能力小题提升篇1.[2022·深圳市高三调研]已知圆柱的底面半径为2,侧面展开图为面积为8π的矩形,则该圆柱的体积为( )A .8πB.4πC.83πD.2π2.[2022·浙江省高三测试]如图是用斜二测画法画出的∠AOB 的直观图∠A ′O ′B ′,则∠AOB 是( )A .锐角B .直角C .钝角D .无法判断3.[2022·河南省洛阳市高三调研]大约于东汉初年成书的我国古代数学名著《九章算术》中,“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径.“开立圆术”实际是知道了球的体积V ,利用球的体积,求其直径d 的一个近似值的公式:d =3169V ,而我们知道,若球的半径为r ,则球的体积V =43πr 3,则在上述公式d =3169V 中,相当于π的取值为( )A.3B .227C .278D .1694.[2021·云南省曲靖市高三二模]如图,在水平地面上的圆锥形物体的母线长为12,底面圆的半径等于4,一只小虫从圆锥的底面圆上的点P 出发,绕圆锥侧面爬行一周后回到点P 处,则小虫爬行的最短路程为( )A .123B .16C .24D .24 35.[2022·江西省兴国县高三月考]已知三棱锥P ­ABC 中,PA ⊥平面ABC ,AB ⊥AC ,AB =AC =2,且三棱锥P ­ABC 外接球的表面积为36π.则PA =________.6.[2022·广东七校第二次联考]在四棱锥P ­ABCD 中,四边形ABCD 是边长为2a 的正方形,PD ⊥底面ABCD ,且PD =2a ,若在这个四棱锥内放一个球,则该球半径的最大值为________.三高考小题重现篇1.[2021·山东卷]已知圆锥的底面半径为2,其侧面展开图为一个半圆,则该圆锥的母线长为( )A .2B.2 2 C .4D.4 22.[2021·全国甲卷]在一个正方体中,过顶点A 的三条棱的中点分别为E ,F ,G .该正方体截去三棱锥A ­EFG 后,所得多面体的三视图中,正视图如图所示,则相应的侧视图是( )3.[2021·全国甲卷]已知一个圆锥的底面半径为6,其体积为30π,则该圆锥的侧面积为________.4.[2021·全国甲卷]已知A,B,C是半径为1的球O的球面上的三个点,且AC⊥BC,AC=BC=1,则三棱锥O­ABC的体积为( )A.212B.312C.24D.345.[2020·山东卷]已知直四棱柱ABCD-A1B1C1D1的棱长均为2,∠BAD=60°.以D1为球心,5为半径的球面与侧面BCC1B1的交线长为________.6.[2019·全国卷Ⅱ]中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为________.四经典大题强化篇1.在三棱柱ABC­A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=AB=BC=2,且点O 为AC的中点.(1)证明:A1O⊥平面ABC;(2)求三棱锥C1­ABC的体积.2.已知点P,A,B,C是半径为2的球面上的点,PA=PB=PC=2,∠ABC=90°,点B 在AC上的射影为D,求三棱锥P-ABD体积的最大值.点点练26 空间几何体的三视图与直观图、表面积与体积一 基础小题练透篇1.答案:A解析:由题图可知原△ABC 的高AO =3,BC =B ′C ′=2,∴S △ABC =12·BC ·OA =12×2×3= 3.2.答案:C解析:由三视图还原几何体,可得该几何体可看作如图所示的棱长为3的正方体中,以A ,B ,C ,D 为顶点的三棱锥,其最长的棱为BD ,且BD =32+32+32=3 3.3.答案:B解析:由三视图可知,该几何体是圆锥和半球拼接成的组合体,且圆锥的底面圆和半球的大圆面半径相同,底面圆的半径r =1,圆锥的母线长l =(3)2+1=2,记该几何体的表面积为S ,故S =12(2πr )l +12×4πr 2=4π.4.答案:C解析:正三棱锥的外接球即是棱长为2的正方体的外接球,所以外接球的直径2R =(2)2+(2)2+(2)2=6,所以4R 2=6,外接球的表面积4πR 2=6π.5.答案:A解析:根据三视图可知几何体是由有公共的底面的圆锥和圆柱体的组合体,由三视图可知,圆锥的底面半径为1,高为1,圆柱的底面半径为1,高为1,所以组合体的体积为13π×12×1+π×12×1=4π3.6.答案:A解析:∵BC =BD =1,∠CBD =60°,∴CD =1,又AB =AB ,∠ABC =∠DBA =60°,BC =BD ,∴△ABC ≌△ABD ,则AC =AD ,取CD 中点E ,连接AE ,又由△ACD 的面积为114,可得△ACD 的高AE =112,则可得AC =AD =3,在△ABC 中,由余弦定理AC 2=AB 2+BC 2-2AB ·BC ·cos60°,∴3=AB 2+1-2×AB ×1×12,解得AB =2,则AC 2+BC 2=AB 2,可得∠ACB =90°,∴∠ADB=90°,∴AC ⊥BC ,AD ⊥BD ,根据球的性质可得AB 为三棱锥外接球的直径,则半径为1, 故外接球的表面积为4π×12=4π.7.答案:A解析:由三视图可还原几何体为从长、宽均为2,高为2的长方体中截得的四棱锥S ­ABCD ,则四棱锥S ­ABCD 的外接球即为长方体的外接球, ∴球C 的半径R =122+2+4=2,∴球C 的表面积S =4πR 2=8π. 8.答案:2+22解析:如图1,在直观图中,过点A 作AE ⊥BC ,垂足为E .在Rt△ABE 中,AB =1,∠ABE =45°,∴BE =22.又四边形AECD 为矩形,AD =EC =1,∴BC =BE +EC =22+1,由此还原为原图形如图2所示,是直角梯形A ′B ′C ′D ′.在梯形A ′B ′C ′D ′中,A ′D ′=1,B ′C ′=22+1,A ′B ′=2. ∴这块菜地的面积S =12(A ′D ′+B ′C ′)·A ′B ′=12×⎝ ⎛⎭⎪⎫1+1+22×2=2+22.9.答案:2解析:设四面体ABCD 所在的长方体的长、宽、高分别为a ,b ,c ,则⎩⎪⎨⎪⎧a 2+b 2=5,a 2+c 2=13,b 2+c 2=10,得⎩⎪⎨⎪⎧a =2,b =1,c =3,所以四面体ABCD 的体积V =abc -13×12abc ×4=13abc =2.二 能力小题提升篇1.答案:A解析:设圆柱的高为h ,则2π×2×h =8π⇒h =2,所以圆柱的体积为π×22×2=8π.2.答案:C解析:根据斜二测画法规则知,把直观图∠A ′O ′B ′还原为平面图,如图所示:所以∠AOB 是钝角. 3.答案:C解析:由d =3169V 得V =916·(2r )3=43·278r 3,比较V =43πr 3,相当于π的取值为278. 4.答案:A解析:如图,设圆锥侧面展开扇形的圆心角为θ,则由题可得2π×4=12θ,则θ=2π3,在Rt△POP ′中,OP =OP ′=12,则小虫爬行的最短路程为PP ′=122+122-2×12×12×⎝ ⎛⎭⎪⎫-12=12 3.5.答案:27解析:由PA ⊥平面ABC ,AB ⊥AC ,将三棱锥补成长方体,它的对角线是其外接球的直径,∵三棱锥外接球的表面积为36π,设外接球的半径为R ,则4πR 2=36π,解得R =3∴三棱锥外接球的半径为3,直径为6,∵AB =AC =2,∴22+22+PA 2=62,∴PA =27.6.答案:(2-2)a解析:方法一 由题意知,球内切于四棱锥P ­ABCD 时半径最大.设该四棱锥的内切球的球心为O ,半径为r ,连接OA ,OB ,OC ,OD ,OP ,则V P -ABCD =V O -ABCD +V O -PAD +V O -PAB +V O -PBC +V O -PCD ,即13×2a ×2a ×2a =13×⎝ ⎛⎭⎪⎫4a 2+2×12×2a ×2a +2×12×2a ×22a ×r ,解得r =(2-2)a .方法二 易知当球内切于四棱锥P -ABCD ,即与四棱锥P -ABCD 各个面均相切时,球的半径最大.作出相切时的侧视图如图所示,设四棱锥P -ABCD 内切球的半径为r ,则12×2a ×2a=12×(2a +2a +22a )×r ,解得r =(2-2)a . 三 高考小题重现篇1.答案:B解析:设圆锥的母线长为l ,由于圆锥底面圆的周长等于扇形的弧长,则πl =2π×2,解得l =2 2.2.答案:D解析:根据题目条件以及正视图可以得到该几何体的直观图,如图,结合选项可知该几何体的侧视图为D.3.答案:39π解析:设该圆锥的高为h ,则由已知条件可得13×π×62×h =30π,解得h =52,则圆锥的母线长为h 2+62=254+36=132,故该圆锥的侧面积为π×6×132=39π. 4.答案:A解析:如图所示,因为AC ⊥BC ,且AC =BC =1,所以AB 为截面圆O 1的直径,且AB = 2.连接OO 1,则OO 1⊥面ABC ,OO 1=1-⎝ ⎛⎭⎪⎫AB 22=1-⎝ ⎛⎭⎪⎫222=22,所以三棱锥O ­ABC 的体积V =13S △ABC ×OO 1=13×12×1×1×22=212. 5.答案:2π2解析:如图,连接B 1D 1,易知△B 1C 1D 1为正三角形,所以B 1D 1=C 1D 1=2.分别取B 1C 1,BB 1,CC 1的中点M ,G ,H ,连接D 1M ,D 1G ,D 1H ,则易得D 1G =D 1H =22+12=5,D 1M ⊥B 1C 1,且D 1M = 3.由题意知G ,H 分别是BB 1,CC 1与球面的交点.在侧面BCC 1B 1内任取一点P ,使MP =2,连接D 1P ,则D 1P =D 1M 2+MP 2=(3)2+(2)2=5,连接MG ,MH ,易得MG =MH =2,故可知以M 为圆心,2为半径的圆弧GH 为球面与侧面BCC 1B 1的交线.由∠B 1MG =∠C 1MH =45°知∠GMH =90°,所以GH 的长为14×2π×2=2π2. 6.答案:26 2-1 解析:依题意知,题中的半正多面体的上、下、左、右、前、后6个面都在正方体的表面上,且该半正多面体的表面由18个正方形,8个正三角形组成,因此题中的半正多面体共有26个面.注意到该半正多面体的俯视图的轮廓是一个正八边形,设题中的半正多面体的棱长为x ,则22x +x +22x =1,解得x =2-1,故题中的半正多面体的棱长为2-1. 四 经典大题强化篇1.解析:(1)证明:因为AA 1=A 1C ,且O 为AC 的中点,所以A 1O ⊥AC ,又平面AA 1C 1C ⊥平面ABC ,平面AA 1C 1C ∩平面ABC =AC ,且A 1O ⊂平面AA 1C 1C ,∴A 1O ⊥平面ABC .(2)∵A 1C 1∥AC ,A 1C 1⊄平面ABC ,AC ⊂平面ABC ,∴A 1C 1∥平面ABC ,即C 1到平面ABC 的距离等于A 1到平面ABC 的距离.由(1)知A 1O ⊥平面ABC ,且A 1O =AA 21 -AO 2=3,∴VC 1-ABC =VA 1-ABC =13S △ABC ·A 1O =13×12×2×3×3=1. 2.解析:设点P 在平面ABC 上的射影为G ,如图,由PA =PB =PC =2,∠ABC =90°,知点P 在平面ABC 上的射影G 为△ABC 的外心,即AC 的中点.设球的球心为O ,连接PG ,则O 在PG 的延长线上.连接OB ,BG ,设PG =h ,则OG =2-h ,所以OB 2-OG 2=PB 2-PG 2,即4-(2-h )2=4-h 2,解得h =1,则AG =CG = 3.设AD =x ,则GD =x -AG =x -3,BG =3,所以BD =BG 2-GD 2=-x 2+23x ,所以S △ABD =12AD ·BD =12-x 4+23x 3. 令f (x )=-x 4+23x 3,则f ′(x )=-4x 3+63x 2.由f ′(x )=0,得x =0或x =332,易知当x =332时,函数f (x )取得最大值24316,所以(S △ABD )max =12×934=938.又PG =1,所以三棱锥P -ABD 体积的最大值为13×938×1=338.。

三视图还原几何体-学生用卷

三视图还原几何体-学生用卷

三视图还原几何体一、选择题(本大题共51小题,共255.0分)1.已知某几何体的三视图如图所示,则该几何体的体积是()A. 108B. 100C. 92D. 84生松基左规留2. 一个几何体的三视图如上右图所示,则几何体的体积是()A. 5B. 10C. 5D. 23.某几何体的三视图如图所示,则该几何体的表面积为()A. 4B. 373 + 12C. 21 + 43D. 3^3+1224.若某几何体的三视图如上右图所示,则此几何体的体积是()A.7B. 232C. 6D. 205.已知一几何体的三视图如图所示,俯视图由一个直角三角形与一个半圆组成,则该几何体的体积为()A. 6兀+ 12B. 6兀+ 24C. 12兀+ 12D. 24兀+ 126.某几何体的三视图如图所示,则该几何体的体积为A. 8B. 672C. 472D. 47 .如图,三视图中正视图与左视图均是边长为2的正方形,俯视图为等腰直角三角形,那么这个几何体表面积为()__A. 8 + 4V2 + V6B. 7 + 4V2 + V6C. 8 + 6V2D. 8 + 272 + 768 .已知某几何体的三视图如上右图所示,则该几何体的表面积为()A. 20 + 1272 + 2714B. 20 + 672 + 2714C. 20 + 672 + 2734D. 20 + 12夜 + 27349 .某几何体的三视图如图所示,该几何体的体积为()A. 4兀+ 1B.?+1C.学+8D. 4兀+ 811 . 一空间几何体的三视图如图所示,则该几何体的体积为()12 .某几何体的三视图如上右图所示,则该几何体的表面积为() A. 8 + 2兀 B. 8 + 3兀 C. 10 + 2兀 D. 10 + 3兀A. 2兀+ 273 B . 4兀+ 273 10. 一个几何体的三视图如上右图所示,则该几何体的体积为( D. 18C. 2兀 + 273D . 4兀 + 2733 3正视因 便视能啊祝闻13 .如图所示某物体的三视图,则求该物体的体积为()如上右图,在各小正方形边长为1的网格上依次为某几何体的正视图.侧视图与俯视 图,其中正视图为等边三角形,则此几何体的体积为()B.4+ 如 C. 2v3+ 皿 D. 2v3+ 建8-也D. 8-也如上右图,网格纸上正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()C. 15D. 16某几何体的三视图如图所示,其中主视图,左视图均是由三角形与半圆构成,俯视图由圆与内接三角形构成,则该此几何体的体积为(18 .已知一个几何体的三视图如图所示,则该几何体的体积为()A. 8-宛12B. 8-江3D. 8-Z1214. 15. 一个几何体的三视图如图所示,该几何体的体积为() A. 1+2^316. 17. D.4 + 132俯祝困正视图B. V2K + 1C.为+ 1A. 4B. 8C. 4D. 819 .某三棱锥的三视图如图所示,则该三棱锥的体积为()A. 60B. 30C. 20D. 1020 .某四棱锥的三视图如上右图所示,则该四棱锥的底面的面积是()A. 2B. 3C. 1D. 321 .如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体最长勺棱长为()A. 4V3B. 4V2C. 6D. 2V522 .如上右图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则它的体积为() A. 48B. 16C. 32D. 167523 . 一个几何体的三视图如图所示,该几何体的体积为()24 . 一个空间几何体的三视图如图所示,俯视图为正三角形,则它的外接球的表面积为 ()A. 4兀B.音C. 28^D. 16兀•降怩EB A. 8B. 4C. 8D. 43 3 9 9俯视图锥的体积为()26 .如上右图,网格纸上小正方形的边长为1,下图画出的是某空间几何体的三视图,则该几何体的最短棱长为() _ _A. 4B. 5C. 4夜D. V4127 .如图,虚线小方格是边长为l 的正方形,粗实(虚)线为某几何体的三视图,则该几 何体的体积为()A. 8B. 16C. 32D. 6428 .如上右图是某空间几何体的三视图其中主视图、侧视图、俯视图依次为直角三角形、 直角梯形、等边三角形,则该几何体的体积()A.四325.如图,网格纸上小正方形的边长为1, 粗线画出的是某三棱锥的三视图,则该三棱A. 3B. 16C. 32D. 16D. V329 .某几何体的三视图如图所示,则该几何体的体积为() _A. 3V3B. V3C.生百3D. 5遮330. 一个几何体的三视图及其尺寸如图所示,则该几何 体的体积为()A.益3B. 28,23C. 28D. 22 + 6^331 .某几何体的三视图如图所示,则该几何体的体积为(A. 4V3B. 573C. 6V332 .某几何体的三视图如上右图所示,则该几何体的外接球的表面积为()D. 87320"左视图W 展用附视图俯视图A. 136TTB. 1447TC. 367rD. 347r33 .已知一个几何体的三视图如图所示(单位:cm ),那么这个几何体的表面积是() A. (1 +夜)cm2B. (3 + V2)cm2 c. (7 + V5)CTH 2D. (8 + V2)cm234 .已知某几何体的三视图如上右图所示,则在该几何体的所有顶点中任取两点,它们 之间的距离不可能为() A. V6 B. y/3 C. 2 D. ,5□I Z7I' IT35.《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”,将底面为矩形, 一条侧棱垂直于底面的四棱锥称之为“阳马”,已知某“堑堵”与某“阳马”组合 而成的几何体的三视图如图所示,则该几何体的体积为四面体的体积为A. 64B. 23V2C. 32D.163 33338.如上右图,网格纸上小正方形的边长为1,粗实线和虚线画出的是某空间几何体的三视图,则该几何体最长的棱为() A. V5 B. 2V2 C. 3 D. 2V3视图,则该四棱锥各个侧面中,最大的侧面面积为()A. 2B. V5C. 3D. 441 .如图为某几何体的三视图,则该几何体的体积为()C. 2V3336.如上右图,网格纸上小正方形的边长为1, 粗线画出的是某四面体的三视图,则该37.如图是某几何体的三视图, 则该几何体的体积为()C. 12D. 18A. 4^3B. 5V3的阻圉39. 一个三棱锥的三视图如图所示,则该几何体最长的棱长等于40.如上右图,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是某四棱锥的三42. 一个几何体的三视图如上右图所示,则该几何体的体积为().A. 5^3B.旬C. 5^3D. V3 3 3 643.某几何体的三视图如图所示,则该几何体的体积为()44.图是一个四面体的三视图,这三个视图均是腰长为2的等腰直角三角形,正视图和俯视图的虚线是三角形的中线,则该四面体的体积为()A. 2B. 4C. 8D. 23 3 345.如图,网格纸上小正方形的边长为1,图中画出的是某三棱锥的三视图,则该三棱锥的棱长不可能为46.如上右图,网格纸小正方形的边长为1,粗线是某四棱锥的三视图,则该几何体的体积为()A. 1B. 2C. 3D. 347.如图,网格纸上小正方形的边长为1,粗线画出的是某个四面体的三视图,则该四面体的表面积为A. ■.+-布B. 7 3C.T48 .已知某几何体的三视图如图所示,则该几何体的体一个几何体的三视图如图所示,则这个几何体的表面积为A. B.53 .某几何体的三视图如上右图所示,则该几何体的体积 ____ . 54 .如图是一个几何体的三视图,则这个几何体的表面积是 ____ ,体积为积是(A. ) B」C. 149. C.D. 48 + 87250. 如图,某几何体的三视图由半径相同的圆和扇形构成, 若俯视图中扇形的面积为3m 则该几何体的体积A. B. C. D.16几 351. 的三视图,则这个几何体的体积为()A. 1B.2C. 3D. 4 二、填空题(本大题共12小题,共60.0分)52. 一个棱长为4的正方体,被一个平面截去如图网格纸上小正方形的边长为1,粗实线画出的是某几何体部分后,所得几何体的三视图如图所示,正视图 侧视图俯视图 明主理田恻(左}视俯视图正网医 则就图俯视图55 .上右图中,小方格是边长为1的正方形,图中粗线画出的是某几何体的三视图,则 该几何体的体积为56 .57 .某几何体的三视图如图所示,则该几何体的体积是 ____ .58 .某几何体的三视图如上右图所示,其中俯视图中的弧线是半径为1的四分之一个圆 弧,则该几何体的表面积为.59 .如图为某几何体的三视图,则该几何体的体积为 cm 3,表面积为 cm 2. 61.如下图所示是一个几何体的三视图,则该几何体的表面积为 _____________一个空间几何体的三视图如图所示,其中主视图和侧视图都是半径为1的圆,且这一几何体的三视图如上右图所示,其中俯视图为等边三角形,则该几何体的体积62. 63. 个几何体是球体的一部分,则这个几何体的表面积为 64. 60.如上右图是某四面体的三视图,则该四面体的体积为 _____.。

2019专题 通过三视图找几何体原图的方法 Word版含解析

2019专题 通过三视图找几何体原图的方法 Word版含解析

2019专题通过三视图找几何体原图的方法方法一:直接法【例1】【2017课标II,理4】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为()A. 90πB.63πC.42πD.36π【点评】思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.由三视图还原几何体的方法:方法二:拼凑法【例2】【2017北京,文6】某三棱锥的三视图如图所示,则该三棱锥的体积为( )A. 60B.30C.20D.10解题步骤:第一步:画出正视图,第二步:平移俯视图到恰当的位置(长对正,高平齐),使它和正视图在一起,第三步:把侧视图顺时针旋转090再平移到恰当的位置(高平齐,宽相等),使它和正视图、俯视图在一起,第四步:调整它们的位置,找到顶点,找到原图.【点评】利用拼凑法找原图时,关键是第四步,结合三视图从那些顶点里找到原几何体的顶点. 这需要有空间观察力和分析能力.【例3】【2017北京,理7】某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为( )A.32B.23C.22D.2【解析】如下图所示,按照拼凑法得到三视图对应的原图是图中的四棱锥P ABCD -.该四棱锥的最长棱的长度为PC ,22222222(22)223PA PC =+==+=,故选B.方法三:模型法:三视图不容易观察出原图时使用.第一步:画出一个长方体或正方体或其他几何体;第二步:补点;第三步:结合三视图排除某些点;第四步:确定那些排除的点附近的点是否是几何体的顶点;第五步:结合实线虚线和确定的点找到几何体的顶点,从而找到符合三视图的原图. ①三视图基础【例4】. 某几何体的三视图如图所示,该几何体的体积为( )A. 16πB. 228π+C. 12πD. 14π 【答案】D【例5】 如图所示, 某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是283π, 则它的表面积是( )A. 17πB. 18πC. 20πD. 28π 【答案】A【解析】由题意可知三视图复原的几何体是一个球去掉18后的几何体,如图: 可得: 37428,2833R R ππ⨯==它的表面积是: 22734221784πππ⨯⋅+⨯⋅=【例6】. 如图为一个半球挖去一个圆锥后的几何体的三视图,则剩余部分与挖去部分的体积之比为( )A. 3:1B. 2:1C. 1:1D. 1:2②组合体的三视图问题【例7】.某几何体的三视图如图所示,则其表面积为( )A.172π B. 9π C. 192πD. 10π 【解析】由三视图可知几何体为圆柱与14球的组合体。

由三视图想象立体图形3

由三视图想象立体图形3

课堂练习: 由三视图想象实物的形状:
由物知图——利用正方体组合提升空间想象力 如图都是由7个小立方体搭成的几何体,从不 同方向看几何体,分别画出它们的主视图、左视 图与俯视图,并在小正方形内填上表示该位置的 小正方体的个数.
(1)
(2)
(3)
(4)
做一做:由几个相同的小立方块搭成的几何体的 俯视图如图所示。方格中的数字表示该位置的小 方块的个数.请画出这个几何体的三视图。
2.锥体——有两个视图是三角形. 3.台体
圆台——有两个视图是等腰梯形
棱台——有两个视图是梯形 4.球——三个视图都是圆
上节课我们讨论了由立体图形(实物)画出三视图, 下面我们讨论由三视图想象出立体图形(实物)。
分析:由三视图想象立体图形时,要分别根据主视图、俯视图 和左视图想象立体图形的前面、上面和左侧面,然后再综合起 来考虑整体图形。
5.一个几何体的主视图和左视图如图所示,它是什么 几何体?请补画这个几何体的俯视图.
(第5题)
直三棱柱
(第6题)
6.一个直棱柱的主视图和俯视图如图所示.描述这 个直棱柱的形状,并补画它的左视图.
直五棱柱,底面是五边形
7、右图是由一些相同的小正方体构成的几何 体的 三视图,则构成这个几何体的小正方体 的个数是【 】 A.5 B.6 C.7 D.8
由三视图想象几何体 下面是一些立体图形的三视图,请根据视 图说出立体图形的名称:
正视图
侧视图
俯视图
四棱柱
由三视图想象几何体 下面是一些立体图形的三视图,请根据视 图说出立体图形的名称:
正视图
左视图
圆锥 俯视图
由三视图想象几何体 一个几何体的三视图如下,你能说出它是 什么立体图形吗?

三视图还原几何体的方法

三视图还原几何体的方法

三视图还原——xyz 定位法一、首先要掌握简单几何体的三视图。

正方体、长方体、三棱柱、四棱柱、三棱锥、四棱锥、圆柱、圆锥、圆台和球的三视图分别是什么要熟悉掌握。

二、掌握简单组合体的组合形式。

简单组合体主要有拼接和挖去两种形式。

三、三视图之间的关系。

几何体的长:正视图、俯视图的长;几何体的宽:俯视图的高、侧视图的长;几何体的高:正视图、侧视图的高。

(口诀:主俯定长,俯左定宽,主左定高)(下面)左视左侧(后面)正视左侧(左面)正视右侧(右面)左视右侧(前面)(下面)四、清楚三视图各个线段说表示几何体位置,如上图所表示。

五、由三视图画出直观图的步骤和思考方法。

1、组合类题型,往往很简单,基本可以通过简单想象直接还原;2、有两个视角为三角形,为椎体特征。

选择底面还原(求体积可不用还原);3、凡是想不出来的,可用xyz 坐标定位法还原。

前面俯视左侧(左面)【类型一】:(三线交汇)例2:【类型二】:例3:连接这五个点的四棱锥,不满足俯视图。

而顶点又必须在这五点交点中,所以当点数超过4个,可能不需要全部连接,则这些点有所取舍。

第一法:俯视图看到的面不可以为上面四个点构成的整个四边形,而是中间有一条折痕,故只能说左半边三角形乡下折。

即舍弃前面左上方的点。

故得,第二:唯一法:正视图看,已标记下面的点必不可少;从俯视图看,上面有3个点必不可少;故只能舍弃前面左上方的点。

第三:口诀:实线两端的点保留,虚线两端的点待定。

从俯视图一看,便知道答案了。

取舍关键:墙角点是取舍的备选。

练习【类型三】:(八点齐飞,直观图不唯一)例4此题八点齐飞,通过类型二中的第三取舍法,我们很容易就能还原出来。

答案:然而,我们发现这个三视图也可以看成,是上图中的三棱锥与另外一个三棱锥组合而成。

如下图所示:M为顶点的三棱锥(四种)与上图的组合。

同理,还有其他两种形式,此处就不一一画图了。

由此得出,上题中的三视图至少有5种不同的直观图。

【三视图题目几点技巧】1,部分椎体求体积,直接用公式(可以不还原)2,斜二测画法与原图面积比例为定值(可以不还原)3,三视图中,和视线垂直的线段,长度不变。

太原高考数学王康民老师怎样把三视图又快又准还原成几何体

太原高考数学王康民老师怎样把三视图又快又准还原成几何体

高考在考查三视图方面出题有两个方向,一是给出三视图及相关数据,求几何体的体积、表面积、内切球体积或外接球体积等;二是给出几何体,确定其中一个视图的图形.由于第二点比较简单,所以高考中考查的较少.高考中对给出三视图求相关体积、面积等题型考查较多,一般以小题形式出现,分值为5分,该类型题的本质是考查三视图还原几何体,所以能快速准确的将三视图还原几何体,是解决这类问题的关键.王康民老师给大家介绍几种快速还原几何体的方法.先来复习一下三视图的相关知识:位置主在上,俯在下,左在右大小长对正,高平齐,宽相等虚实看的见的为实线,看不见的为虚线我来介绍两种快速又好用的三视图还原方法.当然,我默认大家已经掌握了基本几何体的三视图形状,这一点很重要,没有掌握的同学请麻利的自己去翻课本或者小册子.一.升点升线法1.升点法题目特征:当主视图和侧视图的顶部都是点时,采用升点法.如:还原如图所示的三视图的直观图.分析:观察三视图知主视图和侧视图的顶部都是点,则该图形可由俯视图的一个点升高形成,升的高度为主、侧视图的高2.用斜二测法画出俯视图,如下图所示:再根据其主视图为直角三角形,且直角在左侧,所以确定上升的点只能是点A,上升高度为2,三视图还原为下图所示.方法总结主、侧视图顶为点,上升点法1、俯视画图;2、主、侧找最高点;3、在俯视图上将找到的点上升(上升高度为主视图的高)2.升线法当主视图和侧视图的顶部为一点一线时,采用升线法.如:分析观察三视图知主视图和侧视图的顶部为一点一线,则该图形可由俯视图的一条线升高形成,升的高度为主、侧视图的高.用斜二测法画出俯视图,如下图所示.根据其主视图为正方形,左视图为直角三角形,且顶点在其左侧,所以确定上升的直线为线段AB,上升高度为主视图的高,如下图(左)所示.连接上顶点和下底面对应点,三视图还原为上图(右)所示.方法总结主、侧视图顶为一点一线,以点为基准升线.1、俯视画图;2、主、侧找升高线;3、升高直线(上升高度为主视图的高),连接对应点即可二.长方体中找点找面法我们所学的立体图形中,有锥、柱、台、球及组合体,像柱体和球的三视图还原就靠你自己了,简单到我都不想说.好,那就不说吧.我们通过研究锥体和台体的三视图还原来介绍这种方法.1.锥体的三视图还原锥体的三视图的特点是三个视图中有两个三角形.也就是说,我们在看到三视图的时候,如果其中有两个是三角形,我们能确定其为锥体.并且你要去还原它的主观图,这两个三角形就是关键!如:三视图如图所示.分析:首先三视图中有三个三角形,所以可以确定该几何体是一个椎体.俯视图就是该椎体的底面,大家要知道,一个椎体,如果底面确定了,再确定了顶点,则这个锥体就确定了.这个顶点是由主视图和侧视图的上顶点确定的,确定这个点是关键.第一步,我们取三个视图的长、宽、高分别为长、宽、高做出一个长方体,本题画出的正好是一个正方体,如图1所示.图1 图2 图3第二步:把主视图放到立方体正对着我们的这个面上,如图2所示.主视图的上顶点为图2中的顶点A,但该点不一定是锥体的顶点,由于主视图是由正前方看过去的,所以锥体的顶点应该在直线AA1上;再把侧视图放到立方体的右侧面上,如图3所示(注意侧视图是从左往右看的,不要画反了哦)侧视图的上顶点为图3中的顶点B,同理,锥体的顶点应该在直线AB上.所以直线AA1与直线AB的交点A即为锥体的顶点.第三步:将俯视图画在立方体中,由确定的底面和顶点,连接顶点与底面的各个顶点,锥体就确定了,如下图所示.直观图还原完成.步骤:1.三视图中有两个视图为三角形,确定该几何体为锥体,剩下的视图为该锥体的底面.2.将主视图和侧视图画在对应的立方体中,根据各自上顶点的投影线找其交点,确定锥体的顶点.3.俯视图作为底面,连接各顶点,锥体便还原出来了.方法:两个三角形→锥体.1、确定底面;2、确定顶点(主、侧视图上顶点的投影线交点).3、各顶点连线.【变式训练】三视图如图所示,还原几何体的主观图.【提示】将侧视图作为锥体的底面,利用主视图和俯视图寻找顶点即可.【答案】如下图所示.2.台体的三视图还原台的特点是三视图中有两个梯形,剩下的视图作为台的下底面,还原时找上底面是关键。

2022年初中数学《由三视图还原几何体》精品教案(公开课)

2022年初中数学《由三视图还原几何体》精品教案(公开课)

第2课时由三视图复原几何体1.进一步明确三视图的意义,由三视图想象出原型;(重点)2.由三视图得出实物原型并进行简单计算.(重点)一、情境导入同学们独立完成以下几个问题:1.画三视图的三条规律,即______视图、______视图长对正;______视图、______视图高平齐;______视图、______视图宽相等.2.如下列图,分别是由假设干个完全相同的小正方形组成的一个几何体的主视图和俯视图,那么组成这个几何体的小正方体的个数是多少?二、合作探究探究点一:由三视图描述几何体【类型一】由三视图确定几何体根据图①②的三视图,说出相应的几何体.解析:根据三视图想象几何体的形状,关键要熟练掌握直棱柱、圆锥、球等几何体的根本三视图.解:图①是直三棱柱,图②是圆锥和圆柱的组合体.方法总结:先根据各个视图想象从各个方向看到的几何体形状,再来确定几何体的形状.变式训练:见《》本课时练习“课堂达标训练〞第1题【类型二】由三视图确定正方体的个数一个几何体,是由许多规格相同的小正方体堆积而成的,其主视图、左视图如下列图,要摆成这样的图形,最少需用________个小正方体.解析:根据主视图、左视图是分别从物体正面、左面看,所得到的图形,结合此题进行分析即可.根据三视图可得第二层有2个小正方体,根据主视图和左视图可得第一层最少有4个小正方体,故最少需用7个小正方体.故答案为7.方法总结:由三视图判断几何体由多少个立方体组成时,先由俯视图判断底面的行列组成;再从主视图判断每列的高度(有几个立方体),并在俯视图中按照左、中、右的顺序用数字标出来;然后由左视图判断行的高度,在俯视图中按照上、中、下的顺序用数字标出来;最后把俯视图中的数字加起来.变式训练:见《 》本课时练习“课堂达标训练〞 第5题 探究点二:三视图的相关计算如图是某工件的三视图,其中圆的半径是10cm ,等腰三角形的高是30cm ,那么此工件的体积是( )A .1500πcm 3B .500πcm 3C .1000πcm 3D .2000πcm 3解析:由三视图可知该几何体是圆锥,底面半径和高.解:∵底面半径为10cm ,高为30cm.∴体积V =13π×102×30=1000π(cm 3).应选C.方法总结:依据三视图“长对正,高平齐,宽相等〞的原那么,正确识别几何体,再进行有关计算.变式训练:见《 》本课时练习“课堂达标训练〞第8题 三、板书设计本节课是在学习了简单几何体的三视图的根底上,反过来几何体的三视图想象出几何体,既是对三视图知识的完善,又是三视图知识的简单应用,培养了学生的空间想象能力,使学生初步体会到由平面图形到立体图形的转化也是一种数学方法.1.4 二次函数与一元二次方程的联系1.通过探索,理解二次函数与一元二次方程之间的联系,会用二次函数图象求一元二次方程的近似解;(重点)2.通过研究二次函数与一元二次方程的联系体会数形结合思想的应用.(难点)一、情境导入小唐画y =x 2-6x +c 的图象时,发现其顶点在x 轴上,请你帮小唐确定字母c 的值是多少?二、合作探究探究点一:二次函数与一元二次方程的联系【类型一】 二次函数图象与x 轴交点情况的判断以下函数的图象与x 轴只有一个交点的是( ) A .y =x 2+2x -3 B .y =x 2+2x +3 C .y =x 2-2x +3 D .y =x 2-2x +1解析:选项A 中b 2-4ac =22-4×1×(-3)=16>0,选项B 中b 2-4ac =22-4×1×3=-8<0,选项C 中b 2-4ac =(-2)2-4×1×3=-8<0,选项D 中b 2-4ac =(-2)2-4×1×1=0,所以选项D 的函数图象与x 轴只有一个交点.应选D.变式训练:见《 》本课时练习“课后稳固提升〞第1题【类型二】 利用函数图象与x 轴交点情况确定字母的取值范围(2021·武汉模拟)二次函数y =kx 2-6x +3的图象与x 轴有交点,那么k 的取值范围是( )A .k <3B .k <3且k ≠0C .k ≤3D .k ≤3且k ≠0解析:∵二次函数y =kx 2-6x +3的图象与x 轴有交点,∴方程kx 2-6x +3=0(k ≠0)有实数根,即Δ=36-12k ≥0,k ≤3.由于是二次函数,故k ≠0,那么k 的取值范围是k ≤3且k ≠0.应选D.方法总结:二次函数y =ax 2+bx +c ,当b 2-4ac >0时,图象与x 轴有两个交点;当b 2-4ac =0时,图象与x 轴有一个交点;当b 2-4ac <0时,图象与x 轴没有交点.变式训练:见《 》本课时练习“课堂达标训练〞第4题【类型三】利用抛物线与x 轴交点坐标确定一元二次方程的解(2021·苏州中考)假设二次函数y =x 2+bx 的图象的对称轴是经过点(2,0)且平行于y 轴的直线,那么关于x 的方程x 2+bx =5的解为( )A.⎩⎪⎨⎪⎧x 1=0,x 2=4B.⎩⎪⎨⎪⎧x 1=1,x 2=5C.⎩⎪⎨⎪⎧x 1=1,x 2=-5D.⎩⎪⎨⎪⎧x 1=-1,x 2=5解析:∵对称轴是经过点(2,0)且平行于y 轴的直线,∴-b2=2,解得b =-4.解方程x 2-4x =5,解得x 1=-1,x 2=5.应选D.方法总结:此题容易出错的地方是不知道二次函数的图象与一元二次方程的解的关系导致无法求解.变式训练:见《 》本课时练习“课堂达标训练〞第1题 探究点二:用二次函数的图象求一元二次方程的近似解利用二次函数的图象求一元二次方程-x 2+2x -3=-8的实数根(精确到0.1). 解析:对于y =-x 2+2x -3,当函数值为-8时,对应点的横坐标即为一元二次方程-x 2+2x -3=-8的实数根,故可通过作出函数图象来求方程的实数根.解:在平面直角坐标系内作出函数y =-x 2+2x -3的图象,如图.由图象可知方程-x 2+2x -3=-8的根是抛物线y =-x 2+2x -3与直线y =-8的交点的横坐标,左边的交点横坐标在-1与-2之间,另一个交点的横坐标在3与4之间.(1)先求在-2和-1之间的根,利用计算器进行探索:x - - - - - y-----因此x ≈-是方程的一个实数根. (2)另一个根可以类似地求出:x y-----x ≈是方程的另一个实数根.方法总结:用二次函数的图象求一元二次方程满足精确度的实数根的方法:(1)作出函数的图象,并由图象确定方程解的个数;(2)由图象与y =h 的交点的位置确定交点横坐标的取值范围;(3)利用计算器求方程的实数根.变式训练:见《 》本课时练习“课堂达标训练〞第8题 探究点三:二次函数与一元二次方程在运动轨迹中的应用某学校初三年级的一场篮球比赛中,如图,队员甲正在投篮,球出手时距地面209米,与篮框中心的水平距离为7米,当球出手后水平距离为4米时到达最大高度4米,设篮球运行轨迹为抛物线,篮框距地面3米.(1)建立如下列图的平面直角坐标系,问此球能否准确投中?(2)此时,假设对方队员乙在甲面前1米处跳起盖帽拦截,乙的最大摸高为米,那么他能否获得成功?解析:这是一个有趣的、贴近学生日常生活的应用题,由条件可得到出手点、最高点(顶点)和篮框的坐标,再由出手点、顶点的坐标可求出函数表达式;判断此球能否准确投中的关键就是判断代表篮框的点是否在抛物线上;判断盖帽拦截能否获得成功,就是比较当x =1时函数y 的值与最大摸高米的大小.解:(1)由条件可得到出手点、最高点和篮框的坐标分别为A (0,209),B (4,4),C (7,3),其中B 是抛物线的顶点.设二次函数关系式为y =a (x -h )2+k ,将点A 、B 的坐标代入,可得y =-19(x -4)2+4.将点C 的坐标代入上式,得左边=3,右边=-19(7-4)2+4=3,左边=右边,即点C在抛物线上.所以此球一定能投中;(2)将x =1代入函数关系式,得y =3.因为>3,所以盖帽能获得成功. 变式训练:见《 》本课时练习“课后稳固提升〞第7题 三、板书设计教学过程中,强调学生自主探索和合作交流,通过观察二次函数与x 轴的交点个数,讨论一元二次方程的根的情况,体会知识间的相互转化和相互联系.。

高三数学空间几何体的三视图与直观图试题答案及解析

高三数学空间几何体的三视图与直观图试题答案及解析

高三数学空间几何体的三视图与直观图试题答案及解析1.已知某锥体的三视图(单位:cm)如图所示,则该锥体的体积为.【答案】2.【解析】由已知几何体的视图可知,几何体为四棱锥,其中SA垂直于平面ABCD,SA=2,四边形ABCD为直角梯形,AD=1,BC=2,AB=2,所以四棱锥的体积为【考点】三视图求几何体的体积.2.右图为某几何体的三视图,则该几何体的体积为【答案】【解析】由三视图知,该几何体是底面半径为1,高为1的圆柱与半径为1的球体组成的组合体,其体积为=.【考点】简单几何体的三视图,圆柱的体积公式,球的体积公式3.一个几何体的三视图及尺寸如图所示,则该几何体的外接球半径为()A.B.C.D.【答案】C【解析】由三视图可知:该几何体是一个如图所示的三棱锥P-ABC,它是一个正四棱锥P-ABCD 的一半,其中底面是一个两直角边都为6的直角三角形,高PE=4.设其外接球的球心为O,O点必在高线PE上,外接球半径为R,则在直角三角形BOE中,BO2=OE2+BE2=(PE-EO)2+BE2,即R2=(4-R)2+(3)2,解得:R=,故选C.【考点】三视图,球与多面体的切接问题,空间想象能力4.如图是一个几何体的三视图,则该几何体的表面积是____________【答案】28+12【解析】这是一个侧放的直三棱柱,底面是等腰直角三角形,侧棱长为6故表面积为2×(×2×2)+(2+2+2)×6=28+12.【考点】三视图,几何体的表面积.5.在长方体中割去两个小长方体后的几何体的三视图如图,则切割掉的两个小长方体的体积之和等于.【答案】24【解析】由题意割去的两个小长方体的体积为.【考点】三视图,几何体的体积..6.某空间几何体的正视图是三角形,则该几何体不可能是()圆柱圆锥四面体三棱柱【答案】A【解析】由于圆柱的三视图不可能是三角形所以选A.【考点】三视图.7.某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,侧视图是半径为1的半圆,则该几何体的表面积是________.【答案】2(π+)【解析】由三视图可知此几何体的表面积分为两部分:底面积即俯视图的面积为2;侧面积为一个完整的圆锥的侧面积,且圆锥的母线长为2,底面半径为1,所以侧面积为2π.两部分加起来即为几何体的表面积,为2(π+).8.一个锥体的主(正)视图和左(侧)视图如图所示,下面选项中,不可能是该锥体的俯视图的是()【答案】C【解析】俯视图是选项C的锥体的正视图不可能是直角三角形.另外直观图如图1的三棱锥(OP⊥面OEF,OE⊥EF,OP=OE=EF=1)的俯视图是选项A,直观图如图2的三棱锥(其中OP,OE,OF两两垂直,且长度都是1)的俯视图是选项B,直观图如图3的四棱锥(其中OP⊥平面OEGF,底面是边长为1的正方形,OP=1)的俯视图是选项D.9.如图所示,正方形O′A′B′C′的边长为1,它是水平放置的一个平面图形的直观图,则原图形的周长是()A.6B.8C.2+3D.2+2【答案】B【解析】如图,OB=2,OA=1,则AB=3.∴周长为8.10.某几何体的三视图如图所示,且该几何体的体积是2,则正(主)视图的面积等于()A.2B.C.D.3【答案】A【解析】由三视图可知该几何体是一个四棱锥,其底面积就是俯视图的面积S=(1+2)×2=3,其高就是正(主)视图以及侧(左)视图的高x,因此有×3×x=2,解得x=2,于是正(主)视图的面积S=×2×2=2.11.如图,三棱柱的侧棱长和底边长均为2,且侧棱AA1⊥底面A1B1C1,正视图是边长为2的正方形,俯视图为一个等边三角形,则该三棱柱的侧视图的面积为( )A. C.4 D.【答案】A【解析】侧视图也为矩形,底宽为原底等边三角形的高,侧视图的高为侧棱长,所以侧视图的面积为,故选B.【考点】三视图12.一个几何体的三视图如图所示,则该几何体内切球的体积为 .【答案】【解析】依题意可得该几何体是一个正三棱柱,底面边长为2,高为.由球的对称性可得内切球的半径为.由已知计算得底面内切圆的半径也为.所以内切球的体积为.【考点】1.三视图.2.几何体内切球的对称性.3.球的体积公式.4.空间想象力.13.已知一个正三棱柱的所有棱长均等于2,它的俯视图是一个边长为2的正三角形,那么它的左视图面积的最小值是________.【答案】【解析】如图,正三棱柱中,分别是的中点,则当面与侧面平行时,左视图面积最小,且面积为.【考点】三视图.14.某几何体的三视图如图3所示,则其体积为________.【答案】【解析】原几何体可视为圆锥的一半,其底面半径为1,高为2,∴其体积为×π×12×2×=.15.已知正△ABC的边长为2,那么用斜二测画法得到的△ABC的直观图△A′B′C′的面积为()A.B.C.D.【答案】D【解析】∵正△ABC的边长为2,故正△ABC的面积S==设△ABC的直观图△A′B′C′的面积为S′则S′=S=•=故选D16.一个体积为12的正三棱柱的三视图如图所示,则这个三棱柱的侧视图的面积为()A.B.C.D.【答案】A【解析】依题意可得三棱柱的底面是边长为4正三角形.又由体积为.所以可得三棱柱的高为3.所以侧面积为.故选A.【考点】1.三视图的知识.2.棱柱的体积公式.3.空间想象力.17.某几何体的三视图如题(6)所示,其侧视图是一个边长为1的等边三角形,俯视图是两个正三角形拼成的菱形,则这个几何体的体积为()A.1B.C.D.【答案】C【解析】这是由两个三棱锥拼成的几何体,其体积为.选C.【考点】三视图及几何体的体积.18.一个四面体的顶点在空间直角坐系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到的正视图可以为()A.B.C.D.【答案】A【解析】设O(0,0,0),A(1,0,1),B(1,1,0),C(0,1,1),将以O,A,B,C为顶点的四面体补成一正方体后,因为OA⊥BC,所以补成的几何体以zOx平面为投影面的正视图为A.19.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几体的体积为()A.6B.9C.12D.18【答案】B【解析】由三视图可知,此几何体为如图所示的三棱锥,其底面△ABC为等腰三角形且AB=BC,AC=6,AC边上的高为3,SB⊥底面ABC,且SB=3,因此此几体的体积为V=××6×3×3=920.如图所示,一个空间几何体的正视图和侧视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的表面积为 .【答案】【解析】由三视图知,该几何体是一个圆柱,其表面积为.【考点】三视图及几何体的表面积.21.在三棱锥中,,平面ABC,.若其主视图,俯视图如图所示,则其左视图的面积为【答案】【解析】左视图是一个直角三角形,其直角边分别是2与.所以面积为.【考点】1.三视图知识.2.三角形面积的计算.22.一个几何体的三视图如图所示,则这个几何体的体积是_________.【答案】【解析】由三视图还原几何体,该几何体为底面半径为,高为的圆柱,去掉底面半径为,高为的圆锥的剩余部分,则其体积为.【考点】1、三视图;2、几何体的体积.23.棱长为2的正方体被一平面截成两个几何体,其中一个几何体的三视图如图所示,那么该几何体的体积是( ).A.B.4C.D.3【答案】B【解析】如图,红色虚线表示截面,可见这个截面将正方体分为完全相同的两个几何体,则所求几何体的体积即是原正方体的体积的一半,.【考点】1.三视图;2.正方体的体积24.如图,一个四棱锥的底面为正方形,其三视图如图所示,则这个四棱锥的体积为()A.1B.2C.3D.4【答案】B【解析】由题设及图知,此几何体为一个四棱锥,其底面为一个对角线长为的正方形,故其底面积为,由三视图知其中一个侧棱为棱锥的高,其相对的侧棱与高及底面正方形的对角线组成一个直角三角形,由于此侧棱长为,对角线长为,故棱锥的高为,此棱锥的体积为,故选B.【考点】由三视图求面积、体积.25.已知某几何体的三视图如右图所示,其中,正视图,侧视图均是由三角形与半圆构成,俯视图由圆与内接三角形构成,根据图中的数据可得此几何体的体积为()A.B.C.D.【答案】C【解析】由已知的三视图可知原几何体是上方是三棱锥,下方是半球,∴,故选C.【考点】1.三视图;2.几何体的体积.26.如图是一个组合几何体的三视图,则该几何体的体积是.【答案】36+128π【解析】由三视图还原可知该几何体是一个组合体,下面是一个圆柱,上面是一个三棱柱,故所求体积为V=×3×4×6+16π×8=36+128π.27.某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为()A.B.C.D.【答案】D【解析】由三视图可知,该几何体是三分之一个圆锥,其体积为.【考点】三视图及几何体的体积.28.某几何体的三视图(图中单位:cm)如图所示,则此几何体的体积是()A.36 cm3B.48 cm3C.60 cm3D.72 cm3【答案】B【解析】由三视图可知几何体上方是一长方体,下方是一放倒的直四棱柱,且四棱柱底面是等腰梯形,上底长为2 cm,下底长为6 cm,高为2 cm,故几何体的体积是2×2×4+×(2+6)×2×4=48(cm3),故选B.29.如图是某三棱柱被削去一个底面后的直观图、侧(左)视图与俯视图.已知CF=2AD,侧视图是边长为2的等边三角形,俯视图是直角梯形,有关数据如图所示.求该几何体的体积.【答案】3【解析】解:取CF中点P,过P作PQ∥CB交BE于Q,连接PD,QD,则AD∥CP,且AD=CP.所以四边形ACPD为平行四边形,所以AC∥PD.所以平面PDQ∥平面ABC.该几何体可分割成三棱柱PDQ-CAB和四棱锥D-PQEF,所以V=V-CAB+V D-PQEFPDQ=×22sin 60°×2+××=3.30.一个几何体的三视图如图所示,则该几何体的表面积是()A.6+8B.12+7C.12+8D.18+2【答案】C【解析】该空间几何体是一个三棱柱.底面为等腰三角形且底面三角形的高是1,底边长是2 ,两个底面三角形的面积之和是2,侧面积是(2+2+2)×3=12+6,故其表面积是12+8.31. 已知四棱锥P-ABCD 的三视图如右图所示,则四棱锥P-ABCD 的四个侧面中的最大面积是( ).A .6B .8C .2D .3【答案】A【解析】四棱锥如图所示:PM =3,S △PDC =×4×=2,S △PBC =S △PAD =×2×3=3,S △PAB =×4×3=6,所以四棱锥P-ABCD 的四个侧面中的最大面积是6.32. 若某几何体的三视图如图所示,则这个几何体的直观图可以是( ).【答案】B【解析】分别从三视图中去验证、排除.由正视图可知,A 不正确;由俯视图可知,C ,D 不正确,所以选B.33. 一个几何体的三视图如图所示,已知这个几何体的体积为,则h________.【答案】【解析】依题意可得四棱锥的体积为.所以可得.解得.故填.本小题的是常见的立几中的三视图的题型,这类题型关键是要能还原几何体的直观图形.所以培养空间的思想很重要.【考点】1.三视图的识别.2.空间几何体的直观图.34.图中的网格纸是边长为的小正方形,在其上用粗线画出了一四棱锥的三视图,则该四棱锥的体积为()A.B.C.D.【答案】C【解析】由三视图知,该几何体是一个四棱锥,且其底面为一个矩形,底面积,高为,故该几何体的体积,故选C.【考点】1.三视图;2.锥体的体积35.已知某几何体的三视图如图,其中主视图中半圆直径为2,则该几何体的体积____________【答案】24-【解析】由三视图可知,该几何体是有长方体里面挖了一个半圆柱体,可知,长方体的长为4,宽为3,高为2,那么圆柱体的高位3,底面的半径为1,则可知该几何体的体积为,故答案为.【考点】由三视图求面积、体积.36.把边长为的正方形沿对角线折起,连结,得到三棱锥,其正视图、俯视图均为全等的等腰直角三角形(如图所示),则其侧视图的面积为()A.B.C.D.【答案】B【解析】在三棱锥中,在平面上的射影为的中点,∵正方形边长为,∴,∴侧视图的面积为.【考点】1.三视图;2.三角形的面积.37.一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的()A.外接球的半径为B.体积为C.表面积为D.外接球的表面积为【答案】D.【解析】由题意设外接球半径为,则,A错误;外接球的表面积为,D正确;此几何体的体积为,故B错误;此几何体的表面积为,C错误.【考点】三视图及球的表面积公式.38.一个几何体的三视图如图所示,则该几何体的体积为( )A.4B.8C.D.【答案】B【解析】有三视图可以看出,该几何体是一个三棱锥,它的体积为.【考点】三视图,几何体的体积.39.如图,直三棱柱的侧棱长和底面边长均为2,正视图和俯视图如图所示,则其侧视图的面积为()A.B.C.4D.2【答案】A【解析】由题意易知,直三棱柱的底面是边长为2的正三角形.其侧视图为矩形,矩形的高为2,宽为底面正三角形的高.易知边长为2的正三角形的高为.所以面积为.【考点】三视图40.如果一个几何体的三视图如图所示(单位长度:cm),则此几何体的表面积是( )A.B.21C.D.24【答案】A【解析】还原几何体,得棱长为2的正方体和高为1的正四棱锥构成的简单组合体,如图所示,=,选A.【考点】1、几何体的表面积;2、三视图.41.某几何体的三视图如图所示,则它的表面积为()A.B.C.D.【答案】A【解析】易知该三视图的直观图是倒立的半个三棱锥,其表面积由底面半圆,侧面三角形和侧面扇形,所以,故选A.【考点】1.立体几何三视图;2.表面积和体积的求法.42.一几何体的三视图如图所示,则该几何体的体积为()A.200+9πB.200+18πC.140+9πD.140+18π【答案】A【解析】通过观察三视图,易知该几何体是由半个圆柱和长方体组成的,则半个圆柱体积;长方体的体积为,所以该几何体的最终体积,故选A.【考点】1.三视图的应用;2.简单几何体体积的求解.43.一个几何体的三视图如图所示,其中主视图和左视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为( )A.B.C.D.【解析】把原来的几何体补成以为长、宽、高的长方体,原几何体四棱锥与长方体是同一个外接球,,,.【考点】1.补体法;2.几何体与外接球之间的元素换算.44.一个几何体的三视图如图所示,其中府视图为正三角形,则侧视图的面积为()A.8B.C.D.4【答案】B【解析】由三视图可知:该几何体是一个正三棱柱,高为4,底面是一个边长为2的正三角形.因此,侧视图是一个长为4,宽为的矩形,.【考点】三视图与几何体的关系、几何体的侧面积的求法能力.45.某几何体的三视图如图所示,则它的侧面积为()A.B.C.24D.【答案】A【解析】由三视图得,这是一个正四棱台,由条件,侧面积.【考点】1.三视图;2.正棱台侧面积的求法.46.一个几何体的三视图如图所示,其中正视图与侧视图都是底边长为6、腰长为5的等腰三角形,则这个几何体的全面积为()A.B.C.D.【解析】由三视图知,该几何体是一个圆锥,且圆锥的底面直径为,母线长为,用表示圆锥的底面半径,表示圆锥的母线长,则,,故该圆锥的全面积为.【考点】三视图、圆锥的表面积47.一个空间几何体的三视图如右图所示,其中主视图和侧视图都是半径为的圆,且这个几何体是球体的一部分,则这个几何体的表面积为( )A.3πB.4πC.6πD.8π【答案】B【解析】此空间几何体是球体切去四分之一的体积,表面积是四分之三的球表面积加上切面面积,切面面积是两个半圆面面积.故这个几何体的表面积是.【考点】1、几何体的三视图; 2、球的表面积公式.48.右图是一个几何体的三视图,其中正视图和侧视图都是一个两底长分别为和,腰长为的等腰梯形,则该几何体的表面积是.【答案】【解析】从三视图可以看出:几何体是一个圆台,上底面是一个直径为4的圆,下底面是一个直径为2的圆,侧棱长为4.上底面积,下底面积,侧面是一个扇环形,面积为,所以表面积为.【考点】空间几何体的三视图、表面积的计算.49.某零件的正(主)视图与侧(左)视图均是如图所示的图形(实线组成半径为的半圆,虚线是等腰三角形的两腰),俯视图是一个半径为的圆(包括圆心),则该零件的体积是 ( )A.B.C.D.【解析】由题意易知该几何体为一半球内部挖去一圆锥所成,故体积为.故选C.【考点】1.体积; 2.三视图.50.某四棱台的三视图如图所示,则该四棱台的体积是 ( )A.B.C.D.【答案】B【解析】由三视图可知,该四棱台的上下底面边长分别为和的正方形,高为,故,故选B.【考点】三视图与四棱台的体积51.若一个底面是正三角形的三棱柱的正视图如图所示,其顶点都在一个球面上,则该球的表面积为()A.B.C.D.【答案】B【解析】由已知底面是正三角形的三棱柱的正视图,我们可得该三棱柱的底面棱长为2,高为1,则底面外接圆半径,球心到底面的球心距,则球半径,则该球的表面积,故选B.【考点】由三视图求面积、体积.点评:本题考查的知识点是由三视图求表面积,其中根据截面圆半径、球心距、球半径满足勾股定理计算球的半径,是解答本题的关键.52.如图所示是某一容器的三视图,现向容器中匀速注水,容器中水面的高度随时间变化的可能图像是()A. B. C. D.【答案】B【解析】由三视图可知该几何体是圆锥,顶点在下,底面圆在上,在匀速注水过程中水面高度随着时间的增大而增大,且刚开始时截面积较小,所以高度变化较快,随着水面的升高,截面圆面积增大,高度变化速度减缓,因此函数的瞬时变化率逐渐减小,导数减小,图像为B项【考点】函数导数的定义点评:本题通过高度的瞬时变化率的变化情况得到函数的导数的大小,从而通过做出的切线斜率的变化得出正确图像53.已知一个三棱锥的主视图与俯视图如图所示,则该三棱锥的侧视图面积为()A.B.C.D.【答案】B【解析】根据题意,由于三棱锥的俯视图为直角三角形,正视图为直角三角形,且斜边长为2,直角边长为,那么结合图像可知其侧视图为底面边长为1,高为的三角形,因此其面积为,故选B.【考点】三棱锥点评:解决的关键是根据三棱锥的三视图来得到底面积和高进而求解侧视图,属于基础题。

(完整word)由三视图复原几何体小技巧

(完整word)由三视图复原几何体小技巧

三视图复原几何体小技巧
由三视图复原成几何体,一般采用下面的步骤:
第一步:把俯视图用斜二侧画法画出来,并画出z 轴;
第二步:让左视图与xoz 面平行,下底边与俯视图对应边重合,沿y 轴滑动(或让主视图与yoz 面平行,下底边与俯视图对应边重合,沿x 轴滑动),放在合适的位置上。

俯视图
主视图
主视
左视图


z
第三步:让主视图与yoz 面平行,下底边与俯视图对应边重合,沿x 轴滑动,(或让左视图与xoz 面平行,下底边与俯视图对应边重合),沿y 轴滑动放在合适的位置上。

通过上面三个步骤,就可以画出或判断出是什么几何体了。

z
z。

专题4.1 复杂的三视图问题(解析版)

专题4.1 复杂的三视图问题(解析版)

一.方法综述三视图几乎是每年的必考内容,一般以选择题、填空题的形式出现,一是考查相关的识图,由直观图判断三视图或由三视图想象直观图,二是以三视图为载体,考查面积、体积的计算等,均属低中档题.三视图中的数据与原几何体中的数据不一定一一对应,识图要注意甄别. 揭示空间几何体的结构特征,包括几何体的形状,平行垂直等结构特征,这些正是数据运算的依据.还原几何体的基本要素是“长对齐,高平直,宽相等”.要切实弄清常见几何体(圆柱、圆锥、圆台、棱柱、棱锥、棱台、球)的三视图的特征,熟练掌握三视图的投影方向及正视图原理,才能迅速破解三视图问题,由三视图画出其直观图.对于简单几何体的组合体的三视图,首先要确定正视、侧视、俯视的方向,其次要注意组合体由哪些几何体组成,弄清它们的组成方式,特别应注意它们的交线的位置.解题时一定耐心加细心,观察准确线与线的位置关系,区分好实线和虚线的不同.根据几何体的三视图确定直观图的方法:(1)三视图为三个三角形,对应三棱锥;(2)三视图为两个三角形,一个四边形,对应四棱锥;(3)三视图为两个三角形,一个带圆心的圆,对应圆锥;(4)三视图为一个三角形,两个四边形,对应三棱锥;(5)三视图为两个四边形,一个圆,对应圆柱.对于几何体的三视图是多边形的,可构造长方体(正方体),在长方体(正方体)中去截得几何体. 二.解题策略类型一构造正方体(长方体)求解【例1】【2018年文北京卷】某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为A. 1B. 2C. 3D. 4【答案】C 【解析】由三视图可得四棱锥,在四棱锥中,,由勾股定理可知:,则在四棱锥中,直角三角形有:共三个,故选C.【指点迷津】正视图、侧视图是三角形,考虑底面顶点数是四,是四棱锥. 【举一反三】1、某三棱锥的三视图如图所示,则该三棱锥的体积为( )A.16B.13C.12D.1【答案】 B【解析】在长、宽、高分别为2、1、1的长方体中截得三棱锥P-ABC ,其中点A 为中点,所以611112131V ABC -P =⨯⨯⨯⨯=.故选B.2、如图是某几何体的三视图,则该几何体的体积为( )34.A 38.B 328.C 324.D 【答案】B3、【2017北京,理7】某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为(A )(B )C )(D )2 【答案】B【解析】原几何体是四棱锥P-ABCD ,如图,最长的棱长为补成的正方体的体对角线,由三视图可知正方体的棱长为2,所以该四棱锥的最长棱的长度为32222222=++=l .故选B.学科&网类型二 旋转体与多面体组合体的三视图【例2】【安徽省合肥一中、马鞍山二中等六校教育研究会2019届高三第二次联考】一个几何体的三视图如图所示,其中俯视图是半径为r 的圆,若该几何体的体积是则它的表面积是( )A .B .C .D .【答案】C 【解析】由已知三视图可知:该几何体的直观图是一个底面半径为,高为的圆柱内挖去一个半径为的半球, 因为该几何体的体积为, 所以,即,解得,所以该几何体的表面积为,故选C.【指点迷津】1.三视图有两个长方形含两个虚半圆,一个圆,故知该几何体是圆柱内挖去一个半径为的半球.2. 三视图有两个半圆含虚三角,想到半球有挖空部分,俯视图是一个圆含实线正方形,几何体是由半径为2的半球挖去一个正四棱锥. 【举一反三】1、一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为( )A. 13+23πB.13+23πC.13+26πD.1+26π 【答案】 C【解析】由三视图知该四棱锥是底面边长为1,高为1的正四棱锥,结合三视图可得半球半径为22,从而该几何体的体积为13×12×1+12×43π×⎝ ⎛⎭⎪⎫223=13+26π.故选C.2、一几何体的三视图如图所示,正视图和侧视图都是半径为的半圆,俯视图为圆内接一个正方形,则该几何体的体积为( )A .B .C .D .【答案】D 【解析】分析:该几何体是由半径为2的半球挖去一个正四棱锥,四棱锥的高为2,底面为正方形,其对角线为4,分别求出2部分的体积并相减即可得到答案.解:由题意知,该几何体是由半球挖去一个正四棱锥,四棱锥的高为2,底面为正方形,其对角线为4,则该正方形边长为,故四棱锥的体积为,半球的体积为,故该几何体的体积为.故答案为D.类型三与三视图相关的外接与内切问题【例3】已知一个几何体的正视图和侧视图是两个全等的等腰三角形,腰长为3,底边长为2,俯视图是一个半径为1的圆如图,则这个几何体的内切球的体积为A.B.C.D.【答案】A【解析】由三视图知该几何体是圆锥,且底面圆的半径为1,母线长为3,其正视图为等腰三角形,圆锥的内切球半径等于正视图三角形内切圆半径,且内切圆的半径满足,解得,几何体的内切球体积为,故选A.【指点迷津】(1)三视图的定义正确读取图中线的位置关系和数量关系.(2)内切球球心与三棱锥各顶点连线,把原三棱锥分割成四个小三棱锥,利用等体积法求内切球半径.(3)分析外切球球心位置,利用已知的数量,求外切圆半径.【举一反三】1、如图,网格纸上小正方形的边长为1,粗实线画出的是一个三棱锥的三视图,则该三棱锥的外接球的表面积是()A.B.C.D.【答案】C【解析】由三视图可得,三棱锥为如图所示的三棱锥,其中侧面底面,在和中,,.取的中点,连,则为外接圆的圆心,且底面,所以球心在上.设球半径为,则在中,,由勾股定理得,解得,所以三棱锥的外接球的表面积为.故选C.2、一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的外接球的表面积为( )A . B. 83π C . D. 163π 【答案】 D【解析】根据三视图还原几何体为一个如图所示的三棱锥D-ABC,其中平面ADC⊥平面ABC,△ADC 为等边三角形.取AC 的中点为E,连接DE 、BE,则有DE⊥AC,所以DE⊥平面ABC,所以DE⊥EB.由图中数据知AE=EC=EB=1,DE=,AD==2=DC=DB,AB=BC=,AC=2.设此三棱锥的外接球的球心为O,则它落在高线DE 上,连接OA,则有AO 2=AE 2+OE 2=1+OE 2,AO=DO=DE-OE= -OE,所以AO= ,故球O 的半径为 ,故所求几何体的外接球的表面积S=4π( )= π,故选D.3、一个几何体的三视图如图所示,其中主视图和左视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为( )A .12πB .C .3πD .类型四 与三视图相关的最值问题【例4的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a+b 的最大值为(A ) (B ) (C )4 (D )【答案】 C【指点迷津】构造长方体,体对角线为已知长度的棱,长方体三个面为投影面.根据题意,用长方体的棱长表示a+b ,用不等式2a b +≤.【举一反三】1、某三棱锥的三视图如图所示,且三个三角形均为直角三角形,则xy 的最大值为( )A.32 732.B C.64 764.D 【答案】C【解析】根据三视图可以画出该几何体的直观图如图,其中,平面,B D CD ⊥.作,BD //EC ,且、交于点,连接,则.设,根据图中的几何关系,有,,两式联立消去得,再由均值不等式,得.故选C.2、若某几何体的三视图如图所示,这个几何体中最长的棱长为,几何体的体积为.16【答案】33,33、某三棱锥的三视图如图所示.(1)该三棱锥的体积为__________.(2)该三棱椎的四个面中,最大面的面积是__________.【答案】 8 【解析】三棱锥的底面积13462S =⨯⨯=,1164833V Sh ==⨯⨯=, 其四个面的面积分别为113462S =⨯⨯=,2115322S =⨯=,314102S =⨯=,412S =⨯=&网三.强化训练 一、选择题1.【山东省泰安市高三2019年3月检测】九章算术中,将底面是直角三角形的直三棱柱称之为“堑堵”已知某“堑堵”的三视图如图所示,俯视图中间的实线平分矩形的面积,则该“堑堵”的表面积为4 2? 4 A B C D ++....【解析】解:根据题意和三视图知几何体是一个放倒的直三棱柱'''ABC A B C -,、斜边是2, 且侧棱与底面垂直,侧棱长是2,几何体的表面积1221222262S =⨯⨯⨯+⨯+⨯=+ 故选:D .2.【辽宁省大连市2019届高三3月测试】我国古代数学名著《九章算术》中有如下问题:“今有羡除,下广六尺,上广一丈,深三尺,末广八尺,无深,袤七尺.问积几何”,羡除是一个五面体,其中三个面是梯形,另两个面是三角形,已知一个羡除的三视图如图粗线所示,其中小正方形网格的边长为1,则该羡除的表面中,三个梯形的面积之和为( )A .40B .43C .46D .47【答案】C 【解析】由三视图可知,该几何体的直现图如图五面体,其中平面平面,,底面梯形是等腰梯形,高为3 ,梯形的高为4 ,等腰梯形的高为, 三个梯形的面积之和为,3.【广东省梅州市2019届高三总复习质检】九章算术给出求羡除体积的“术”是:“并三广,以深乘之,又以袤乘之,六而一”,其中的“广”指羡除的三条平行侧棱的长,“深”指一条侧棱到另两条侧棱所在平面的距离,“袤”指这两条侧棱所在平行线之间的距离,用现代语言描述:在羡除中,,,,,两条平行线与间的距离为h,直线到平面的距离为,则该羡除的体积为已知某羡除的三视图如图所示,则该羡除的体积为A.B.C.D.【答案】B【解析】由三视图还原原几何体知,羡除中,,底面ABCD是矩形,,,平面平面ABCD,AB,CD间的距离,如图,取AD中点G,连接EG,则平面ABCD,由侧视图知,直线EF到平面ABCD的距离为,该羡除的体积为.故选:B.4.【安徽省合肥市2018届高三三模】我国古代《九章算术》将上、下两面为平行矩形的六面体称为刍童.右图是一个刍童的三视图,其中正视图及侧视图均为等腰梯形,两底的长分别为2和4,高为2,则该刍童的表面积为A.B.40 C.D.【答案】D【解析】由三视图可知,该刍童的直观图是如图所示的六面体,图中正方体棱长为,分别是所在正方体棱的四等分点,其表面由两个全等的矩形,与四个全等的等腰梯形组成,矩形面积为,梯形的上下底分别为,梯形的高为,梯形面积为,所以该刍童的表面积为,故选D.5.如图,网格纸上小正方形的边长为1,粗线画出的是某三棱锥的三视图,则该三棱锥的外接球的表面积为()A.B.C.D.【答案】C【解析】通过三视图还原,可知三棱锥为如下图所示的,可通过切割长方体得到所以长方体的外接球即为三棱锥的外接球又,,所以外接球半径:球的表面积为:本题正确选项:6.如图,一个圆柱从上部挖去半球得到几何体的正视图,侧视图都是图1,俯视图是图2,若得到的几何体表面积为,则()A.3 B.4C.5 D.6【答案】B【解析】所得几何体的表面积等于底面圆面积加上侧面积和半球表面积,即.故选.7.已知某几何体的三视图如图所示,则该几何体的体积为( )A.B.C.D.【答案】D【解析】观察三视图发现:该几何体的形状为圆柱从上方削去一部分,削去部分的体积为圆柱体积一半的一半即,下方削去半个球,故几何体的体积为:,故选D.8.某三棱锥的三视图如图所示,则该三棱锥的体积为()A.10 B.20 C.30 D.60【答案】A【解析】根据三视图将三棱锥P-ABC还原到长方体中,如图所示,故选A.9.一个几何体的三视图如图所示,则这个几何体的体积为A.B.C.D.【答案】A【解析】由题意可知几何体是一个底面半径和高都是6的圆柱,挖去一个半圆锥的几何体如图:几何体的体积为:.故选:A.10.如图是一个几何体的三视图,根据图中的数据,计算该几何体的表面积为A.15π B.18π C.22π D.33π【答案】D【解析】由三视图可知,该几何体是一个组合体,组合体上部为一个半径为3的半球,下部是一个圆锥,圆锥的底面半径为3.母线长为5,半球的表面积为,圆锥的侧面积为,所以该几何体的表面积为,故选D.11.榫卯(sǔnmǎo)是两个木构件上所采用的一种凹凸结合的连接方式.凸出部分叫榫,凹进去的部分叫卯,榫和卯咬合,起到连接作用.代表建筑有北京的紫禁城、天坛祈年殿,山西悬空寺等,如图是一种榫卯构件中榫的三视图,则该榫的表面积和体积为()A.B.C.D.【答案】A【解析】由三视图知该榫头是由上下两部分构成:上方为长方体(底面为边长是1的正方形,高为2),下方为圆柱(底面圆半径为2,高为2).其表面积为圆柱的表面积加上长方体的侧面积,所以.其体积圆柱与长方体体积之和,所以.故选A.12.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()(A)(B)6(C)(D)4【答案】B13.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为()【答案】A【解析】该几何体是由两个小三棱锥和一个圆锥组成,所以体积为()1182224412333ππ⨯⨯⨯+⨯⨯=+,故选A.14. 如图所示,网格纸上小正方形的边长为,粗实线画出的是某几何体的三视图,其侧视图中的曲线为圆周,则该几何体的体积为()A .B .C .D .【答案】B 【解析】结合题意,绘制图像,如图所示平面DEF 的面积为,故该几何体的体积 ,故选B.二、填空题15.一个几何体的三视图如图,则该几何体的体积为.【答案】π2216、一个几何体的三视图如图所示,其中正视图是一个正三角形,俯视图是一个等腰直角三角形,则该几何体的外接球的表面积为俯视图侧视图正视图3 11【答案】。

由三视图复原几何体方法整理

由三视图复原几何体方法整理

研究成果总结
三视图复原几何体方法分类
本文总结了基于线框模型、表面模型、体素模型等多种三 视图复原几何体的方法,并对各种方法的优缺点进行了分 析比较。
三视图数据获取与处理
本文介绍了三视图数据的获取方式,包括从CAD模型、激 光扫描、结构光等获取方法,并详细阐述了三视图数据的 预处理方法,如去噪、配准等。
三视图复原几何体实验验证
本文通过大量实验验证了所提出的三视图复原几何体方法 的可行性和有效性,并与其他方法进行了比较,证明了本 文方法的优越性。
未来研究方向展望
深度学习在三视图复原几何体中的应用:随着深 度学习技术的不断发展,未来可以探索将深度学 习应用于三视图复原几何体中,以提高复原精度 和效率。
视图间对应关系不明确问题
特征匹配
01
通过提取不同视图间的共有特征,并进行匹配,以建立视图间
的对应关系。
几何约束
02
利用几何体本身的几何约束条件,如平行、垂直、相等等,来
辅助确定视图间的对应关系。
优化算法
03
采用优化算法对不同视图间的对应关系进行调整和优化,以得
到更准确的结果。
复杂几何体复原困难问题
长方体与球的组合体
根据三视图中的轮廓线和尺寸标注, 可以确定长方体和球的尺寸以及它们 之间的位置关系,从而复原出整个组 合体。
特殊几何体实例
斜二测画法下的几何体
在斜二测画法下,几何体的三视图可能呈现出特殊的形状。通过分析这些形状 和尺寸标注,可以逐步推导出原几何体的形状和大小。
含有虚线的三视图
当三视图中含有虚线时,通常表示原几何体中存在被遮挡的部分。通过分析虚 线的位置和长度,可以推断出被遮挡部分的形状和大小,进而复原出整个几何 体。

(压轴题)高中数学必修二第一章《立体几何初步》检测题(含答案解析)(2)

(压轴题)高中数学必修二第一章《立体几何初步》检测题(含答案解析)(2)
8.已知四面体 中,二面角 的大小为 ,且 , , ,则四面体 体积的最大值是()
A. B. C. D.
9.如下图所示是一个正方体的平面展开图,在这个正方体中① 平面 ;② ;③平面 平面 ;④ 平面 .以上四个命题中,真命题的序号是()
A.①②③④B.①②③C.①②④D.②③④
10.某三棱锥的三视图如图所示,则该三棱锥的体积为( )
【详解】
因为侧棱 底面 ,
则 是 与底面 所成的角,则 .
故由 ,得 .
设 ,则 ,
解得 .
所以球 的半径 ,
所以球 的表面积 .
故选:A.
【点睛】
解决球与其他几何体的切、接问题,关键在于仔细观察、分析,弄清相关元素的关系和数量关系,选准最佳角度作出截面(要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系),达到空间问题平面化的目的.
,且 是 的中点, , , ,作 于 ,连接 , ,所以 ,
由余弦定理得 ,
所以 , ,
, ,
故选:A.
【点睛】
本题考查了正四棱锥的性质及线段的取值范围问题,关键点是画出正四棱锥分析出问题的实质,考查了学生的空间想象力.
6.D
解析:D
【分析】
在A中, 与 相交、平行或异面;
在B中, 与 不一定平行,有可能相交;
【详解】
如图正四棱锥 , 平面 , 是底面中心,
分别是 的中点,由题意知, 点在 上运动, 点在 上运动,
所以 ,且 ,
所以四边形 是梯形,在 与 中, ,所以 ,所以 ,
所以四边形 是等腰梯形,则 的取值范围的最小值就是等腰梯形的高,
最大值就是梯形的对角线长,且 , ,
作 于 ,所以 , 平面 ,

专题01 关于三视图还原几何体的深度剖析与秒杀(解析版)

专题01 关于三视图还原几何体的深度剖析与秒杀(解析版)

专题01关于三视图还原几何体的深度剖析与秒杀
一标准几何体还原
标准几何体还原口诀
1.如果一个几何体的三视图中有两个视图是矩形,那么这个几何体是直棱柱或圆柱;
2.如果一个几何体的三视图是两个平行四边形+一个交错结构,那么这个几何体是斜棱柱;
3.如果一个几何体的三视图中有两个视图是三角形,那么这个几何体是锥体;
4.如果一个几何体的三视图是两个梯形+一个位似结构,那么这个几何体是棱台;
5.三圆得球.
【例题选讲】
[例1]下图是一些标准几何体的三视图,写出其直观图的名称.。

(必考题)高中数学必修二第一章《立体几何初步》测试卷(有答案解析)(3)

(必考题)高中数学必修二第一章《立体几何初步》测试卷(有答案解析)(3)

一、选择题1.某几何体的三视图如图所示(单位:cm ),则该几何体的外接球的表面积(单位:2cm )是( )A .36πB .54πC .72πD .90π2.现有一个三棱锥形状的工艺品P ABC -,点P 在底面ABC 的投影为Q ,满足12QABQAC QBC PABPACPBCS S S S S S ===△△△△△△,22222213QA QB QC AB BC CA ++=++,93ABCS =,若要将此工艺品放入一个球形容器(不计此球形容器的厚度)中,则该球形容器的表面积的最小值为( )A .42πB .44πC .48πD .49π3.大摆锤是一种大型游乐设备(如图),游客坐在圆形的座舱中,面向外,通常大摆锤以压肩作为安全束缚,配以安全带作为二次保险,座舱旋转的同时,悬挂座舱的主轴在电机的驱动下做单摆运动.假设小明坐在点A 处,“大摆锤”启动后,主轴OB 在平面α内绕点O 左右摆动,平面α与水平地面垂直,OB 摆动的过程中,点A 在平面β内绕点B 作圆周运动,并且始终保持OB β⊥,B β∈.设4OB AB =,在“大摆锤”启动后,下列结论错误的是( )A .点A 在某个定球面上运动;B .β与水平地面所成锐角记为θ,直线OB 与水平地面所成角记为δ,则θδ+为定值;C .可能在某个时刻,AB//α;D .直线OA 与平面α所成角的正弦值的最大值为17. 4.已知三棱锥A BCD -的各棱长都相等,E 为BC 中点,则异面直线AB 与DE 所成角的余弦值为( ) A .13 B .36C .33 D .1165.一个几何体的三视图如图所示,则该几何体的外接球的表面积是( )A .2πB .3πC .4πD .16π6.如图,在四棱锥P ABCD -中,底面ABCD 是矩形.其中3AB =,2AD =,PAD △是以A ∠为直角的等腰直角三角形,若60PAB ∠=︒,则异面直线PC 与AD 所成角的余弦值是( )A .2211B .2211-C 27D .11117.如图,正方形ABCD 的边长为4,点E ,F 分别是AB ,B C 的中点,将ADE ,EBF △,FCD 分别沿DE ,EF ,FD 折起,使得A ,B ,C 三点重合于点A ',若点G 及四面体A DEF '的四个顶点都在同一个球面上,则以FDE 为底面的三棱锥G -DEF 的高h 的最大值为( )A.263+B.463+C.4263-D.2263-8.某几何体的三视图如图所示,该几何体的体积为V,该几何体所有棱的棱长之和为L,则()A.8,14253V L==+B.8,1425V L==+C.8,16253V L==+D.8,1625V L==+9.某三棱锥的三视图如图所示,则该三棱锥的体积为()A.16B.13C.23D.210.在四棱锥P -ABCD 中,//AD BC ,2AD BC =,E 为PD 中点,平面ABE 交PC 于F ,则PFFC=( ) A .1B .32C .2D .311.平行六面体1111ABCD A B C D -的六个面都是菱形,那么点1A 在面11AB D 上的射影一定是11AB D 的________心,点1A 在面1BC D 上的射影一定是1BC D 的________心( )A .外心、重心B .内心、垂心C .外心、垂心D .内心、重心12.如图(1),Rt ABC ,1,3,2AC AB BC ===,D 为BC 的中点,沿AD 将ACD △折起到AC D ',使得C '在平面ABD 上的射影H 落在AB 上,如图(2),则以下结论正确的是( )A .AC BD '⊥B .AD BC '⊥ C .BD C D ⊥' D .AB C D ⊥'二、填空题13.已知直三棱柱111ABC A B C -,14AB BC AA ===,42AC =,若点P 是上底面111 A B C 所在平面内一动点,若三棱锥P ABC -的外接球表面积恰为41π,则此时点P 构成的图形面积为________.14.如图所示,Rt A B C '''∆为水平放置的ABC ∆的直观图,其中A C B C ''''⊥,2B O O C ''''==,则ABC ∆的面积是________________.15.已知正四棱锥的体积为18,侧棱与底面所成的角为45,则该正四棱锥外接球的表面积为___________.16.已知一个几何体的三视图如图所示,俯视图为等腰三角形,则该几何体的外接球表面积为_________.17.在三棱锥D ABC -中,AD ⊥平面ABC ,3AC =,17BC =,1cos 3BAC ∠=,若三棱锥D ABC -的体积为27,则此三棱锥的外接球的表面积为______18.已知棱长为4的正方体ABCD -A 1B 1C 1D 1中,点M 是棱AD 的中点,点N 是棱AA 1的中点,P 是侧面四边形ADD 1A 1内一动点(含边界),若C 1P ∥平面CMN ,则线段C 1P 长度的取值范围是________.19.如图,在直角梯形ABCD 中,//,,2,3,60AB CD AB AD CD AB ABC ⊥==∠=°,将此梯形以AD 所在直线为轴旋转一周,所得几何体的表面积是_________________.20.将底面直径为8,高为23为______.三、解答题21.如图,在直三棱柱111ABC A B C -中,1,2AC BC AC BC CC ⊥===.(1)求三棱柱111ABC A B C -的体积; (2)求异面直线1CB 与1AC 所成角的大小; (3)求二面角1B AC C --的平面角的余弦值.22.如图,四棱锥P ABCD -的底面ABCD 是边长为2的菱形,60BCD ∠=,已知2PB PD ==,6PA =,E 为PA 的中点.(1)求证:PC BD ⊥;(2)求二面角B PC E --的余弦值; (3)求三棱锥P BCE -的体积.23.如图,在多面体ABCDEF 中,底面ABCD 为菱形,且∠DAB =π3,AB =2,EF //AC ,EA =ED =3,BE =5.(1)求证:平面EAD ⊥平面ABCD ; (2)求三棱锥F -BCD 的体积.24.如图,四棱锥E ABCD -中,底面ABCD 是边长为2的正方形,平面AEB ⊥平面ABCD ,4EBA π∠=,2EB =F 为CE 上的点,BF CE ⊥.(1)求证:BF ⊥平面ACE ; (2)求点D 到平面ACE 的距离.25.如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,四边形ABCD 为梯形,//AD BC ,6BC =,2PA AD CD ===,E 是BC 上一点且23BE BC =,PB AE ⊥.(1)求证:AB ⊥平面PAE ; (2)求点C 到平面PDE 的距离.26.如图,在直角梯形ABED 中,//BE AD ,DE AD ⊥,BC AD ⊥,4AB =,23BE =.将矩形BEDC 沿BC 翻折,使得平面ABC ⊥平面BCDE .(1)若BC BE =,证明:平面ABD ⊥平面ACE ;(2)当三棱锥A BCE -的体积最大时,求平面ADE 与平面ABC 所成的锐二面角的余弦值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】由三视图知该几何体是底面为等腰直角三角形,且侧面垂直于底面的三棱锥,由题意画出图形,结合图形求出外接球的半径,再计算外接球的表面积. 【详解】解:由几何体的三视图知,该几何体是三棱锥P ABC -,底面为等腰ABC ∆, 且侧面PAB ⊥底面ABC ,如图所示;设D 为AB 的中点,又3DA DB DC DP ====,且PD ⊥平面ABC ,∴三棱锥P ABC -的外接球的球心O 在PD 上,设OP R =,则OA R =,3OD R =-,222(3)3R R ∴=-+, 解得3R =,∴该几何体外接球的表面积是32436R cm ππ=.故选:A . 【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.2.D解析:D 【分析】作QM AB ⊥,连接PM ,易证AB PM ⊥,由112122QAB PABAB QMS S AB PM ⨯⨯==⨯⨯△△,得到2PM QM=,再根据12 QAB QACQBCPAB PAC PBCS S SS S S===△△△△△△,由对称性得到AB BC AC==,然后根据22222213QA QB QCAB BC CA++=++,93ABCS=,求得6,23AB AQ==,在AOQ△中,由222AO OQ AQ=+求解半径即可.【详解】如图所示:作QM AB⊥与M,连接PM,因为PQ⊥平面ABC,所以PQ AB⊥,又QM PQ Q⋂=,所以AB⊥平面PQM,所以AB PM⊥,所以112122QABPABAB QMSS AB PM⨯⨯==⨯⨯△△,2PM QM=,因为12QAB QAC QBCPAB PAC PBCS S SS S S===△△△△△△,由对称性得AB BC AC==,又因为22222213QA QB QCAB BC CA++=++,93ABCS=所以21sin60932ABCS AB=⨯⨯=解得6,3AB AQ==所以3,23,3QM PM PQ===,设外接球的半径为r,在AOQ △中,222AO OQ AQ =+,即()()222323r r =-+, 解得72r =, 所以外接球的表面积为2449S r ππ==, 即该球形容器的表面积的最小值为49π. 故选:D 【点睛】关键点点睛:本题关键是由12QAB QAC QBC PABPACPBCS S S S S S ===△△△△△△得到三棱锥是正棱锥,从而找到外接球球心的位置而得解..3.C解析:C 【分析】利用已知条件确定OA 是定值,即得A 选项正确;作模型的简图,即得B 正确;依题意点B 在平面α内,不可能AB//α,得C 错误;设AB a ,结合题意知AB α⊥时,直线OA 与平面α所成角最大,计算此时正弦值,即得D 正确. 【详解】因为点A 在平面β内绕点B 作圆周运动,并且始终保持OB β⊥,所22OA OB AB =+,又因为OB ,AB 为定值,所以OA 也是定值,所以点A 在某个定球面上运动,故A 正确;作出简图如下,OB l ⊥,所以2πδθ+=,故B 正确;因为B α∈,所以不可能有AB//α,故C 不正确; 设AB a ,则4OB a =,2217OA AB OB a =+,当AB α⊥时,直线OA 与平面α所成角最大,此时直线OA 与平面α1717a=,故D 正确. 故选:C. 【点睛】本题解题关键在于认真读题、通过直观想象,以实际问题为背景构建立体几何关系,再运用立体几何知识突破难点.4.B解析:B 【分析】取AC 中点F ,连接,EF DF ,证明FED ∠是异面直线AB 与DE 所成角(或其补角),然后在三角形中求得其余弦值即可得. 【详解】取AC 中点F ,连接,EF DF ,∵E 是BC 中点,∴//EF AB ,12EF AB =, 则FED ∠是异面直线AB 与DE 所成角(或其补角), 设1AB =,则12EF =,32DE DF ==, ∴在等腰三角形DEF 中,11324cos 63EF FED DE ∠===. 所以异面直线AB 与DE 所成角的余弦值为36. 故选:B .【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.5.C解析:C 【分析】由三视图还原出原几何体,确定其结构,再求出外接球的半径得球的表面积. 【详解】由三视图,知原几何体是一个四棱锥P ABCD -,如图,底面ABCD 是边长为1的正方形,PB ⊥底面ABCD ,由PB ⊥底面ABCD ,AD ⊂面ABCD ,得PB AD ⊥,又AD AB ⊥,AB PB B ⋂=,,AB PB ⊂平面PAB ,所以AD ⊥平面PAB ,而PA ⊂平面PAB ,所以AD PA ⊥,同理DC PC ⊥,同样由PB ⊥底面ABCD 得PB BD ⊥,所以PD 中点O 到四棱锥各顶点距离相等,即为其外接球球心,PD 为球直径,222222PD PB BD PA AD AB =+=++=,∴外接球半径为12ADr ==, 表面积为2414S ππ=⨯=. 故选:C .【点睛】关键点点睛:本题考查由三视图还原几何体,考查棱锥的外接球表面积.解题关键是确定外接球的球心.棱锥的外接球球心在过各面外心(外接圆圆心)且与该面垂直的直线上.6.D解析:D 【分析】在图形中找到(并证明)异面直线所成的角,然后在三角形中计算. 【详解】因为//AD BC ,所以PCB ∠是异面直线PC 与AD 所成角(或其补角), 又PA AD ⊥,所以PA BC ⊥,因为AB BC ⊥,AB PA A ⋂=,,AB PA ⊂平面PAB ,所以BC ⊥平面PAB , 又PB ⊂平面PAB ,所以PB BC ⊥. 由已知2PA AD ==,所以22222cos 23223cos607PB PA AB PA AB PAB =+-⋅∠=+-⨯⨯︒=22211cos 11(7)2BC PCB PC ∠===+, 所以异面直线PC 与AD 所成角的余弦值为21111. 故选:D . 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.7.A解析:A 【分析】先求出'A FDE -外接球的半径和外接圆的半径,再利用勾股定理求出外接球的球心到外接圆的圆心的距离,可得高h 的最大值. 【详解】因为A ,B ,C 三点重合于点A ',原来A B C ∠∠∠、、都是直角,所以折起后三条棱'''A F A D A E 、、互相垂直,所以三棱锥'A FDE -可以看作一个长方体的一个角,它们有相同的外接球,外接球的直径就是长方体的体对角线,即为'2'2'22441626R AF AD AE =++=++6R =2241625DE DF AD AE ==++=2222EF BE BF =+= 在DFE △中,22210cos 222522DE EF DF DEF DE EF +-∠===⨯⨯⨯, 所以DEF ∠为锐角,所以2310sin 1cos DEF DEF ∠=-∠=,DEF的外接圆的半径为552 2sin310DFrDEF===∠,则球心到DEF外心的距离为2223R r-=,以FDE为底面的三棱锥G-DEF的高h的最大值为1R OO+的距离为263+.故选:A.【点睛】本题考查了翻折问题和外接球的问题,关键点翻折前后量的变化及理解外接球和三棱锥的关系,考查了学生的空间想象力和计算能力.8.A解析:A【分析】由三视图还原几何体,由棱锥的体积公式可得选项.【详解】在如图所示的正方体1111ABCD A B C D-中,P,E分别为11,B C BC的中点,该几何体为四棱锥P ABCD-,且PE⊥平面ABCD.由三视图可知2AB=,则5,3PC PB PD PA====,则21825681425,2233L V=++=+=⨯⨯=.故选:A.【点睛】方法点睛:三视图问题的常见类型及解题策略:(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.9.C解析:C【分析】根据题中所给的几何体的三视图还原几何体,得到相应的三棱锥,之后利用椎体体积公式求得结果.【详解】根据题中所给的几何体的三视图还原几何体如图所示:该三棱锥满足底面BCD△是等腰三角形,且底边和底边上的高线都是2;且侧棱AD⊥底面BCD,1AD=,所以112 =221=323V⨯⨯⨯⨯,故选:C.【点睛】方法点睛:该题考查的是有关根据所给几何体三视图求几何体体积的问题,解题方法如下:(1)应注意把握三个视图的尺寸关系:主视图与俯视图长应对正(简称长对正),主视图与左视图高度保持平齐(简称高平齐),左视图与俯视图宽度应相等(简称宽相等),若不按顺序放置和不全时,则应注意三个视图名称;(2)根据三视图还原几何体;(3)利用椎体体积公式求解即可.10.C解析:C【分析】首先通过延长直线,DC AB,交于点G,平面BAE变为GAE,连结PG,EG交于点F,再根据三角形中线的性质,求PFFC的值.【详解】延长,DC AB,交于点G,连结PG,EG交PC于点F,//AD BC ,且2AD BC =,可得点,B C 分别是,AG DG 的中点,又点E 是PD 的中点,PC ∴和GE 是△PGD 的中线,∴点F 是重心,得2PFFC=故选:C 【点睛】关键点点睛:本题的关键是找到PC 与平面BAE 的交点,即将平面BAE 转化为平面GAE 是关键. 11.C解析:C 【分析】将三棱锥111A AB D -、三棱锥11A BC D -分离出来单独分析,根据线段长度以及线线关系证明1A 的射影点分别是11AB D 和1BC D 的哪一种心. 【详解】三棱锥111A AB D -如下图所示:记1A 在面11AB D 上的射影点为O ,连接11,,AO B O D O ,因为11111AA A D A B ==,又1A O ⊥平面11AB D , 所以222222*********1,,AA AO AO A D AO OD A B AO OB =+=+=+ 所以11AO OB OD ==,所以O 为11AB D 的外心;三棱锥11A BC D -如下图所示:记1A 在面1BC D 上的射影点为1O ,连接1111,,BO C O DO ,因为11//BC AD ,且四边形11ADD A 是菱形,所以11AD A D ⊥,所以11BC A D ⊥, 又因为11A O ⊥平面1BC D ,所以1111111,AO BC AO A D A ⊥=,所以1BC ⊥平面11AO D ,又因为1DO ⊂平面11AO D ,所以11DO BC ⊥, 同理可知:1111,BO DC C O DB ⊥⊥,所以1O 为1BC D 的垂心, 故选:C. 【点睛】关键点点睛:解答本题的关键是通过1A 的射影点去证明线段长度的关系、线段位置的关系,借助线面垂直的定义和判定定理去分析解答问题.12.C解析:C 【分析】设AH a =,则3BH a =,由线面垂直的性质和勾股定理可求得DH a AH ==,由等腰三角形的性质可证得BD ⊥DH ,再根据线面垂直的判定和性质可得选项. 【详解】设AH a =,则3BH a =,因为'C H ⊥面ABD ,AB 面ABD ,DH ⊂面ABD ,所以'C H ⊥AB ,'C H ⊥DH ,'C H ⊥DB , 又Rt ABC ,1,3,2AC AB BC ===,D 为BC 的中点,所以'1,6C D BD B DAB π==∠=∠=,所以在'Rt AC H 中,()2''221C H AC AHa =-=-Rt C HD ’中,()2'222'211DH C D C H a a =-=--=,所以DH a AH ==,所以6ADH DAB π∠=∠=,又23ADB π∠=,所以2HDB π∠=,所以BD ⊥DH ,又'C HDH H =,所以BD ⊥面'C DH ,又'C D ⊂面'C DH ,所以BD ⊥'C D , 故选:C. 【点睛】关键点点睛:在解决折叠问题时,关键在于得出折叠的前后中,线线、线面、面面之间的位置关系的不变和变化,以及其中的边的长度、角度中的不变量和变化的量.二、填空题13.【分析】确定是等腰直角三角形的中点分别是和的外心由直棱柱性质得的外接球的球心在上外接球面与平面的交线是圆是以为圆心为半径的圆求出可得面积【详解】则设分别是的中点则分别是和的外心由直三棱柱的性质得平面 解析:4π【分析】确定ABC 是等腰直角三角形,11,AC A C 的中点1,D D 分别是ABC 和111A B C △的外心,由直棱柱性质得P ABC -的外接球的球心O 在1DD 上,外接球面与平面111A B C 的交线是圆,是以1D 为圆心,1D P 为半径的圆,求出1PD 可得面积. 【详解】4,AB BC AC ===90ABC ∠=︒,设1,D D 分别是11,AC A C 的中点,则1,D D 分别是ABC 和111A B C △的外心,由直三棱柱的性质得1DD ⊥平面ABC , 所以P ABC -的外接球的球心O 在1DD 上,如图,24()41OA ππ=,则2OP OA ==,32OD ===, 所以11135422OD DD OD AA OD =-=-=-=,12PD ===, P ABC -的外接球面与平面111A B C 的交线是圆,是以1D 为圆心,1D P 为半径的圆,其面积为224S ππ=⨯=. 故答案为:4π.【点睛】关键点点睛:本题考查立体几何中动点轨迹问题的求解,重点考查了几何体的外接球的有关问题的求解,关键是根据外接球的性质确定球心位置,结合勾股定理得出动点所满足的具体条件,结论:三棱锥的外接球的球心在过各面外心且与此面垂直的直线上.14.【分析】根据直观图和原图的之间的关系由直观图画法规则将还原为如图所示是一个等腰三角形直接求解其面积即可【详解】由直观图画法规则将还原为如图所示是一个等腰三角形则有所以故答案为:【点睛】关键点点睛:根 解析:82【分析】根据直观图和原图的之间的关系,由直观图画法规则将Rt A B C '''还原为ABC ,如图所示,ABC 是一个等腰三角形,直接求解其面积即可. 【详解】由直观图画法规则将Rt A B C '''还原为ABC ,如图所示,ABC 是一个等腰三角形,则有2BO OC B O O C ''''====,242AO A O ''==所以114428222ABCSBC AO =⋅=⨯⨯= 故答案为:2【点睛】关键点点睛:根据斜二测画法的规则,可得出三角形的直观图,并求出对应边长,根据面积公式求解.15.【分析】作出图形计算出正四棱锥的高与底面边长设底面的中心为计算得出为正四棱锥的外接球球心可求得该正四棱锥的外接球半径即可得解【详解】如下图所示设正四棱锥的底面的中心为连接设正四棱锥的底面边长为则由于解析:36π【分析】作出图形,计算出正四棱锥P ABCD -的高与底面边长,设底面ABCD 的中心为E ,计算得出E 为正四棱锥P ABCD -的外接球球心,可求得该正四棱锥的外接球半径,即可得解. 【详解】如下图所示,设正四棱锥P ABCD -的底面ABCD 的中心为E ,连接PE 、AC 、BD ,设正四棱锥P ABCD -的底面边长为a ,则2AC BD a ==,由于E 为正四棱锥P ABCD -的底面ABCD 的中心,则PE ⊥平面ABCD , 由于正四棱锥P ABCD -的侧棱与底面所成的角为45,则45PAC PCA ∠=∠=, 所以,PAC △是以APC ∠为直角的等腰直角三角形, 同理可知,PBD △是以BPD ∠为直角的等腰直角三角形,E 为AC 的中点,1222PE AC a ==,2ABCD S a =正方形, 231122183326P ABCD ABCD V S PE a a a -=⋅=⨯⨯==正方形,解得32a =,232PE a ==,由直角三角形的性质可得1122PE AC BD ==,即PE AE BE CE DE ====,所以,E 为正四棱锥P ABCD -外接球的球心, 球E 的半径为3r PE ==,该球的表面积为2436r ππ=. 故答案为:36π. 【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.16.【分析】首先把三视图转换为直观图进一步求出几何体的外接球的半径最后求出球的表面积【详解】根据几何体的三视图可知该几何体是底面为等腰三角形高为2的三棱锥体如图所示:设底面外接圆的半径为t 圆心为H 则解得 解析:414π 【分析】首先把三视图转换为直观图,进一步求出几何体的外接球的半径,最后求出球的表面积.【详解】根据几何体的三视图可知该几何体是底面为等腰三角形,高为2的三棱锥体.如图所示:设底面外接圆的半径为t ,圆心为H ,则2221(2)t t =+-,解得54t =, 设外接球的半径r ,球心为O ,则OH ⊥底面,且1OH =, 则22541()144r =+=所以41414().164S ππ=⨯⨯= 故答案为:414π 【点睛】 关键点点睛:球心与底面外接圆圆心连线垂直底面,且OH 等于棱锥高的一半,利用勾股定理求出球的半径,由面积公式计算即可.17.【分析】设出外接球的半径球心的外心半径r 连接过作的平行线交于连接如图所示在中运用正弦定理求得的外接圆的半径r 再利用的关系求得外接球的半径运用球的表面积公式可得答案【详解】设三棱锥外接球的半径为球心为 解析:20π【分析】设出外接球的半径R 、球心O ,ABC 的外心1O 、半径 r , 连接1AO ,过O 作的平行线OE 交AD 于 E ,连接OA ,OD ,如图所示,在ABC 中,运用正弦定理求得 ABC的外接圆的半径r ,再利用1,,R r OO 的关系求得外接球的半径,运用球的表面积公式可得答案.【详解】设三棱锥外接球的半径为R 、球心为O ,ABC 的外心为1O 、外接圆的半径为r ,连接1AO ,过O 作平行线OE 交AD 于E ,连接OA ,OD ,如图所示,则OA OD R ==,1O A r =,OE AD ⊥,所以E 为AD 的中点.在ABC 中,由正弦定理得172sin 22BC r BAC ==∠,解得334r =. 在ABC 中,由余弦定理2222cos BC AB AC AB AC BAC =+-⋅⋅∠,可得2117963AB AB =+-⋅⋅,得4AB =. 所以1122sin 3442223ABC S AB AC BAC =⋅⋅∠=⨯⨯⨯=△. 因为112742333D ABC ABC V S AD AD -=⋅⋅=⨯⨯=△,所以144AD =.连接1OO ,又1//OO AD ,所以四边形1EAO O 为平行四边形,111428EA OO AD ===,所以22221114324588R OO AO ⎛⎫⎛⎫=+=+= ⎪ ⎪⎝⎭⎝⎭. 所以该三棱锥的外接球的表面积()224π4π520πS R ===.故答案为:20π.【点睛】本题考查三棱锥的外接球,及球的表面积计算公式,解决问题的关键在于利用线面关系求得外接球的球心和球半径,属于中档题.18.【分析】分别取棱的中点连接易证平面平面由题意知点必在线段上由此可判断在或处时最长位于线段中点处时最短通过解直角三角形即可求得【详解】如下图所示连分别为所在棱的中点则又平面平面平面四边形为平行四边形又 解析:[32,25]【分析】分别取棱1BB 、11B C 的中点M 、N ,连接MN ,易证平面1//A MN 平面AEF ,由题意知点P 必在线段MN 上,由此可判断P 在M 或N 处时1A P 最长,位于线段MN 中点处时最短,通过解直角三角形即可求得.【详解】如下图所示,连MN ,EF ,1A D ,EMM ,N ,E ,F 分别为所在棱的中点,则1//MN A D ,1//EF A D ,//EF MN ∴,又MN ⊂平面1C EF ,EF ⊂平面1C EF ,//MN ∴平面1C EF .11//,C C EM C C EM =,∴四边形1C CME 为平行四边形,1//C E CM ,又CM ⊄平面1C EF ,1C E ⊂平面1C EF ,//CM ∴平面1C EF ,又NM CM M =, ∴平面//NMC 平面1C EF .P 是侧面四边形ADD 1A 1内一动点,且C 1P ∥平面CMN ,∴点P 必在线段EF 上.在Rt △11C D E 中,222211114225C E C D D E =+=+=同理,在Rt △11C D F 中,可得125C F =, ∴△1C EF 为等腰三角形.当点P 为EF 中点O 时,1C P EF ⊥,此时1C P 最短;点P 位于,E F 处时,1C P 最长. ()222211(25)232C O C E OE =-=-=1125C E C F ==∴线段1C P长度的取值范围是.故答案为:【点睛】本题考查点、线、面间的距离问题,考查学生的运算能力及推理转化能力,属中档题,解决本题的关键是通过构造平行平面寻找P点位置.19.【分析】此梯形以AD所在直线为轴旋转一周得到的是圆台然后根据圆台的侧面积和表面积公式进行计算【详解】将此梯形以AD所在直线为轴旋转一周得到的是圆台其中圆台的上底半径为r=CD=2下底半径为R=AB=解析:23π【分析】此梯形以AD所在直线为轴旋转一周,得到的是圆台,然后根据圆台的侧面积和表面积公式进行计算.【详解】将此梯形以AD所在直线为轴旋转一周,得到的是圆台,其中圆台的上底半径为r=CD=2,下底半径为R=AB=3,母线BC=2,∴圆台的上底面积为πr2=4π,下底面积为πR2=9π,圆台的侧面积为(πr+πR)•BC=π(2+3)×2=10π,∴圆台的表面积为4π+9π+10π=23π,故答案为23π.【点睛】本题考查圆台表面积的计算,利用旋转体的定义确定该几何体是圆台是解决本题的关键.20.【分析】欲使圆柱侧面积最大需使圆柱内接于圆锥设圆柱的高为h底面半径为r用r表示h从而求出圆柱侧面积的最大值【详解】欲使圆柱侧面积最大需使圆柱内接于圆锥;设圆柱的高为h底面半径为r则解得;所以;当时取解析:【分析】欲使圆柱侧面积最大,需使圆柱内接于圆锥,设圆柱的高为h,底面半径为r,用r表示h,从而求出圆柱侧面积的最大值.【详解】欲使圆柱侧面积最大,需使圆柱内接于圆锥;设圆柱的高为h ,底面半径为r , 23423r =,解得33h r =; 所以()23222334S rh r r r πππ⎛⎫===- ⎪ ⎪⎝⎭圆柱侧; 当2r 时,S 圆柱侧取得最大值为43π 故答案为:3π.【点睛】本题考查了求圆柱侧面积的最值,考查空间想象能力,将问题转化为函数求最值,属于中档题.三、解答题21.(1)4;(2)60︒;(3)33. 【分析】(1)根据棱锥的体积公式求解即可;(2)作辅助线,利用平行得出异面直线1CB 与1AC 所成角就是COE ∠,再结合等边三角形的性质得出夹角;(3)过C 作1CF AC ⊥于点F ,连接,CF BF ,由11,CF AC BF AC ⊥⊥结合定义得出二面角1B AC C --的平面角,再由直角三角形的边角关系得出平面角的余弦值.【详解】(1)三棱柱111ABC A B C -的体积1122242ABC V S CC ⎛⎫=⋅=⨯⨯⨯= ⎪⎝⎭(2)记1BC 与1B C 的交点为O ,作AB 的中点E ,连接,OE CE ,异面直线1CB 与1AC 所成角就是COE ∠2CO OE CE ===60COE ︒∴∠=(3)过C 作1CF AC ⊥于点F ,连接,CF BF11,CF AC BF AC BFC ⊥⊥⇒∠为所求角 3tan 2,cos 2BC BFC BFC FC ∠===∠=【点睛】关键点睛:在求异面直线的夹角时,关键是利用中位线定理得出平行,从而得出异面直线的夹角.22.(1)证明见解析;(2)155;(3)12. 【分析】(1)连接AC 交BD 于点O ,连接PO ,推导出BD ⊥平面PAC ,进而可得出PC BD ⊥;(2)过点O 在平面PAC 内作OF PC ⊥,垂足为点F ,连接BF ,推导出OFB ∠为二面角B PC E --的平面角,计算出OF 、BF ,可计算出cos OFB ∠,即可得解; (3)计算出PCE 的面积,利用锥体的体积公式可得出13P BCE B PCE PCE V V S OB --==⋅△,即可得解. 【详解】证明:(1)连接AC 交BD 于O 点,连接PO ,∵四边形ABCD 是菱形,AC BD ∴⊥,则O 是BD 的中点,PB PD =,PO BD ∴⊥,又AC PO O =,AC 、OP ⊂平面PAC ,BD ∴⊥平面PAC ,又PC ⊂平面PAC ,PC BD ∴⊥;(2)由(1)知BO ⊥平面PAC ,PC ⊂平面PAC ,则OB PC ⊥,过O 在平面PAC 内作OF PC ⊥于F ,连接BF ,由OB OF O ⋂=,则PC ⊥平面OBF ,BF ⊂平面OBF ,得BF PC ⊥,故OFB ∠为二面角B PC E --的平面角, 四边形ABCD 是菱形,60BAD ∠=,ABD ∴为等边三角形,2BD AB AD ∴===,112OB BD ∴==,223OC OA AB OB ==-= OB ⊥平面PAC ,OP ⊂平面PAC ,OP OB ∴⊥,223OP PB OB ∴-= 3OA =3OP =6PA =222OP PA OA +∴=,即OA OP ⊥,即PO AC ⊥,3366PO OC OF PC ⋅⨯∴===,222261012BF BO OF ⎛⎫=+=+= ⎪ ⎪⎝⎭, 故615cos 510OF OFB BF ∠===,即二面角B PC E --的余弦值是155; (3)E 为PA 的中点,11333222PCE PAC POA S S S ∴====△△△, 又OB ⊥平面PAC ,113113322P BCE B PCE PCE V V S OB --∴==⋅=⨯⨯=△. 【点睛】方法点睛:求二面角常用的方法:(1)几何法:二面角的大小常用它的平面角来度量,平面角的作法常见的有: ①定义法;②垂面法,注意利用等腰三角形的性质;(2)空间向量法:分别求出两个平面的法向量,然后通过两个平面法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求二面角是锐角还是钝角.。

高考数学总复习考点知识专题讲解37---空间几何体的表面积和体积

高考数学总复习考点知识专题讲解37---空间几何体的表面积和体积
高考数学总复习考点知识专题讲解 空间几何体的表面积和体积
最新考纲:1.了解球、柱体、锥体、台体的表面积计算 公式;2.了解球、柱体、锥体、台体的体积计算公式.
基础
知识回顾
1.多面体的表(侧)面积 多面体的各个面都是平面,则多面体的侧面积就是所 有侧面的面积之和,表面积是侧面积与底面面积之和.
2.圆柱、圆锥、圆台的侧面展开图及侧面积公式
角度2:几何体的内切球
【例3-2】 (1)(2019·重庆七校联考)已知正三棱锥的
高为6,内切球(与四个面都相切)的表面积为16π,则其底面
边长为( B )
A.18
B.12
C.6 3
D.4 3
ห้องสมุดไป่ตู้
(2)(2019·广东七校第二次联考)在四棱锥P-ABCD中, 四边形ABCD是边长为2a的正方形,PD⊥底面ABCD,且PD =2a,若在这个四棱锥内放一个球,则该球半径的最大值 为_(_2_-___2_)_a.
1 2
×3×4×5-
1 3
×
1 2
×3×4×(5-2)=
24,故选C.
2.(2019·福建泉州期中)已知一几何体的三视图如图所 示,俯视图是一个等腰直角三角形和半圆,则该几何体的 体积为( B )
A.16+8π B.136+8π C.16+16π D.136+16π
[解析] 由三视图可知,该几何体是一个三棱锥与半圆
[拓展探究] (1)本例(1)改为“侧棱和底面边长都是3 2
的正四棱锥”,则其外接球的半径是___3_____. (2)本例(2)改为:底面为正三角形的直棱柱ABC-
A′B′C′的6个顶点都在球面上,且AB=6,AA′=12, 则球O的半径是__4__3____.

高一数学如何从三视图还原几何体

高一数学如何从三视图还原几何体

高一数学如何从三视图还原几何体(许兴华选编)三视图的投影特征是“长对正,高平齐,宽相等”,即正、俯视图的长对正,正、侧视图的高平齐,俯、侧视图的宽相等.将物体的三视图复原成其所表示的几何体,需抓住以下几个读图要点:思路:由正、侧视图可以看出,该几何体可分解成上、下两部分(也可由正、俯视图将几何体分解为左、中、右三部分),结合俯视图,得上半部分是长、宽、高分别为3、3、l的长方体,下半部分是长、宽、高分别为1、3、3的长方体,因而,所求几何体的体积为3×3×l+1×3×3=18(cm立方).[例2]一个几何体的三视图如图2所示,则该几何体的表面积为多少?思路:从各视图的外围部分看,该几何体的构成中有一个长、宽、高分别为8、6、2的长方体,再从各视图内的其他线条来看,该几何体是从长方体中挖去了一个直径为4、高为2的圆柱体,且挖去圆柱体的轴线为长方体两竖直对角面的交线,因而,几何体的表面积思路:如图4,我们在俯视图的各正方形中分别标出在该位置上搭叠的长方块个数,由正视图第2列有2个长方形知,标记“2或1”的3个框中,右边二框至少有一框应为“2”,由侧视图第2列有2个长方形知,标记“2或1”的3个框中,下边二框至少有一框应为“2”,所以这3个框中的标记有5种可能的情形.图4的右边标示出了这3个框的对应位置上各自搭叠的长方块个数所有情形)二、辨识图形特征【例4 】一空间几何体的三视图如图5所示,则该几何体的体积为( )思路:由正、侧视图,将该几何体分解成上、下两半部分,再由三视图的投影特征,将上、下两半部分的三视图分离开来,即可得上半部分为一正四棱锥,下半部分为一圆柱(图6).且正四棱锥的底面正方形内接于圆柱的底面圆,正四棱锥的侧棱长和底面正方形对角线长均为2,圆柱的底面直径和高均为2.故所求几何体的体积【例5】一个几何体的三视图如图7所示,则这个几何体的体积为多少?思路:由俯、侧视图,将该几何体分解成前、后两半部分,再由三视图的投影特征,将前、后两半部分的三视图分离开来(略),即可得前半部分为一正六棱柱,后半部分为一圆柱,从而思路:我们可应用排除法,由正、侧、俯视图依次排除(A)、(B)、(C)选项,得正确选项为(D).以下则通过对三视图的分析,辨识特征,还原几何体.由正、侧视图,将该几何体分解成上、下两半部分,再由三视图的投影特征,将上、下两半部分的三视图分离开来(图9),即可得上半部分为一直三棱柱,下半部分为一长方体.(还可由正视图中的虚实线条关系知,两部分简单几何体的前面在同一平面内;由侧视图中的虚实线条关系知,两半部分简单几何体的左面在同一平面内)据此得正确选项为(D).三、注意垂直与平行关系如果我们将各投影面均看成由2条横线、2条竖线所组成的矩形,则(1)垂直于某一投影面的线段在与其垂直的投影面上的投影为一个点,在另外二个投影面上的投影均为一条保持其长度的横线或竖线;平行于某一投影面且不垂直于其他投影面的线段,在与其平行的投影面上的投影为一条保持其长度的非横非竖线段,在另外二个投影面上的投影均为一条(长度缩短了的)横线或竖线;不平行于任一投影面的线段在三个投影面上的投影均为一条(长度缩短了的)非横非竖线段.(2)在几何体中,垂直于某一投影面的面在该投影面上的投影为一条线段;平行于某一投影面的面在该投影面上的投影保持了原形状,在另外两个投影面上的投影均为一条横向或竖向的线段.思路:我们在三个视图的各相关点处标上如图11的字母。

高考中三视图还原几何体的常用方法

高考中三视图还原几何体的常用方法

高考中三视图还原几何体的常用方法作者:梁艳菊来源:《学校教育研究》2018年第28期三视图在高考中占有重要地位,该知识点着重考察同学们的想象力和空间几何能力,然而对于高三有部分空间想象能力比较差的学生来说短时间内很难去培养和提高,作为高三的数学老师,如何让学生快捷的几何体的三视图还原回几何体呢?因此根据几年的高三教学经验来谈谈对三视图还原方法的一些个人见解。

高效的课堂是非常重要的,把握数学知识的解决方法,才有效的启发数学思维,提高学习的效率。

三視图的投影形成:如右图,将物体放在三面投影体系中,尽可能使物体的各个面平行或垂直于其中的一个投影面,保持物体不动,将物体分别向三个投影面作正投影,就得到物体的三视图。

第一类题型:棱锥或棱柱例1:如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各棱中,最长的棱的长度为()A. B.6 C. D.4解:以长方体为载体:第一步,先看俯视图,左下方没有角,则在长方体中用去掉两个角,如图①所示;第二步,再从正视图来看,左下方没有角,则在图①的基础上,用去掉一个角,同时正视图中右边的直角边中点上有一点,则在长方体上标上一个点A,如图②所示;第三步,最后到侧视图,三角形的顶点在视线的右边上,右上方、右下方没有角,则在图②基础上,用去掉两个角,如图③所示;第四步,把长方体剩下的顶点和标点连起来构成一个三棱锥,如图④所示。

从图中可知PA为最长边,可求得PA=6,故选B此类题型常以长方体或正方体作为载体,根据三视图逐一排除顶点,最后把剩下的点连起来构成空间几何体,再检验该几何体三视图是否符合。

第一步:从俯视图入手;第二步:再到正视图第三步:最后到侧视图.此种方法对于想象力不强的学生来说比较容易接受,主要多做练习来熟悉就可以灵活应用,但是有一点不足之处是对于一些切割体和组合体的题型就不能解决了。

第二类题型:切割体例2:某几何体的三视图如图(2)所示,则该几何体的表面积为()A.50B.56C.60D.70解:第一步,根据正视图,在长方体中切割出四棱柱ADEN-BCFM,如图(1)第二步:根据侧视图,在长方体中切割出四棱柱CDEF-ABNG,如图(2)第三步:根据俯视图,在长方体中切割出ABP-DCE,如图(3)第四步:观察图(1)(2)(3)的公共点,发现A、B、C、D、E、N为公共点,则将这些点连起来得到多面体ABCDEN如图(4),反过来检验发现该多面体的三视图满足三视图的要求,从图(4)中容易算出该多面体的表面积为60,故选C主要的方法技巧是找出正视图,侧视图,俯视图还原后的公共点,把这些点连起来可得到切割体,特别也要审视三视图中的虚线和实线.第三类题型:组合体例3:如图为一个几何体的三视图,正视图和侧视图均为矩形,俯视图中曲线部分为半圆,尺寸如图,则该几何体的体积为()A. B.C. D.解:将视图分为两部分,图(1)和图(2);按“高平齐、长对正、宽相等”的原则把图(1)和图(2)分别投影到投影面上,将其还原,可知两个简单几何体分别为三棱柱和半圆柱,再验证还原所得几何体的三视图是否与已知相符,可得如图(3),计算组合体的体积,可知答案为A。

三视图还原几何体口诀

三视图还原几何体口诀

三视图还原几何体口诀
制作人董教授2019.3.2
打地基,长对正;俯侧图,宽相等;正侧高,疯狂升。

释义:还原几何体,先从俯视图“打地基”,俯视图的长和正视图的长相等;俯视图和侧视图的宽相等;正视图和侧视图的高相等,据此“疯狂升”画出几何体的高。

折痕现,平直等,斜投影。

释义:每个面的折痕是要表示出来的;从每个方向观察到的横平竖直的线段长度,在三视图中显示的长度与实际的长度相等的;从每个面观察到的不是横平竖直的线段,在三视图中对应的其实是这些线段在后面的投影,投影长度和后面的高相等。

眼见为实不见虚,先虚后实立体成。

释义:凡是从正面看得见的线,都画成实线,凡是从正面看不见的线,都画成虚线。

在画几何体的时候,先把所有的线段都画成虚线,然后再把正面看得见的线都画成实线,立体图形就画出来了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
侧视图
例2.某四棱锥的三视图如图所示,则其棱长的最大值A .
A. 3 B. 2 C.2 D.1
第一步:构建长方体 第二步:立足俯视图描点 第三步:结合正、侧视图 拉伸相关点,定顶点. 第四步:连接顶点得几何体
第五步:反思检验判正误.
正视图 俯视图
左视图
2.组合体的还原
例3.由半球和四棱锥组成的几何体的
三视图如图所示,则其体积为 .
A. 1 + 1
33
C.1 + 2
36
B. 1 + 2
33
D.1 2
6
1
1 1
正视图
侧视图
俯视图
二、立体几何动态问题
例4.正方体ABCD - A1B1C1D1的棱长为 3,在正方体的表面 上与点A距离为2的点形成一条封闭的期限,该曲线
的长度是 D .
A.
B. 3 C.3
三视图是描述空间几何体的重要方法之一,也是高中数学 新课程新增内容之一,其目的是考查我们的识图能力、判断能 力、空间想象能力.
考纲要求
能画出简单几何体的三视图,会根据三视图还原出几何体 进而画出直观图,并准确判断其相应的位置关系,正确计算出 几何体的表面积、体积等相关量.
D'
F'
C'
A' D
E' F
3
3
பைடு நூலகம்
下方为直三棱柱,上方 为四棱锥的组合体.
一、三视图 1.简单几何体的还原
例1.三棱锥的三视图如图所示,则其体积为 A .
A. 1 B.1 C. 1 D.1
6
3
2
如何还原几何体?模型定点法----构建长方体
交线定点 三线交点即为顶点 由主视图得 由侧视图得
由俯视图得
正视图
1 1
俯视图
1
1
D. 5
2
2
例5.如图所示,在棱长为3 的正方体ABCD - A1B1C1D1中,
点P,Q, R分别是棱AB, AD, AA1上的点,AP AQ AR 1,
点S是此正方体的表面上一点,求四面体SPQR 的体积的
最大值 4
3
D1
C1
A1
D
RQ
A
P
B1
C
B
B' C
A
E
B
1.在正面画出正视图,同时画出投影线;
F'
2.在底面画出俯视图,同时画出投影线;
3.在侧面画出左视图,同时画出投影线; D
F
C
4.计算所有点处经过的投影线数量
E
A2 B2 C 3 D3 E 3 F 3
A'0 B'0 C '2 D'2 E '2 F '3
3 3
3 3
4
2 6
3
3 3
3
相关文档
最新文档