机构的运动分析

机构的运动分析
机构的运动分析

机构运动仿真基本知识

机构仿真是PROE的功能模块之一。PROE能做的仿真内容还算比较好,不过用好的兄弟不多。当然真正专做仿真分析的兄弟,估计都用Ansys去了。但是,Ansys研究起来可比PROE麻烦多了。所以,学会PROE的仿真,在很多时候还是有用的。我再发一份学习笔记,并整理一下,当个基础教程吧。希望能对学习 仿真的兄弟有所帮助。 术语 创建机构前,应熟悉下列术语在PROE中的定义:主体(Body) - 一个元件或彼此无相对运动的一组元件,主体内DOF=0。 连接(Connections) - 定义并约束相对运动的主体之间的关系。 自由度(Degrees of Freedom) - 允许的机械系统运动。连接的作用是约束主体之间的相对运动,减少系统可能的总自由度。 拖动(Dragging) - 在屏幕上用鼠标拾取并移动机构。 动态(Dynamics) - 研究机构在受力后的运动。 执行电动机(Force Motor) - 作用于旋转轴或平移轴上(引起运动)的力。 齿轮副连接(Gear Pair Connection) - 应用到两连接轴的速度约束。 基础(Ground) - 不移动的主体。其它主体相对于基础运动。 机构(Joints) - 特定的连接类型(例如销钉机构、滑块机构和球机构)。 运动(Kinematics) - 研究机构的运动,而不考虑移动机构所需的力。 环连接(Loop Connection) - 添加到运动环中的最后一个连接。 运动(Motion) - 主体受电动机或负荷作用时的移动方式。 放置约束(Placement Constraint) - 组件中放置元件并限制该元件在组件中运动 的图元。 回放(Playback) - 记录并重放分析运行的结果。 伺服电动机(Servo Motor) - 定义一个主体相对于另一个主体运动的方式。可在机构或几何图元上放置电动机,并可指定主体间的位置、速度或加速度运动。LCS - 与主体相关的局部坐标系。LCS 是与主体中定义的第一个零件相关的缺 省坐标系。 UCS - 用户坐标系。 WCS - 全局坐标系。组件的全局坐标系,它包括用于组件及该组件内所有主体 的全局坐标系。 运动分析的定义 在满足伺服电动机轮廓和机构连接、凸轮从动机构、槽从动机构或齿轮副连接的要求的情况下,模拟机构的运动。运动分析不考虑受力,它模拟除质量和力之外的运动的所有方面。因此,运动分析不能使用执行电动机,也不必为机构指定质量属性。运动分析忽略模型中的所有动态图元,如弹簧、阻尼器、重力、力/力矩以及执行电动机等,所有动态图元都不影响运动分析结果。

平面机构的运动分析习题和答案

2 平面机构的运动分析 1.图 示 平 面 六 杆 机 构 的 速 度 多 边 形 中 矢 量 ed → 代 表 , 杆4 角 速 度 ω4的 方 向 为 时 针 方 向。 2.当 两 个 构 件 组 成 移 动 副 时 ,其 瞬 心 位 于 处 。当 两 构 件 组 成 纯 滚 动 的 高 副 时, 其 瞬 心 就 在 。当 求 机 构 的 不 互 相 直 接 联 接 各 构 件 间 的 瞬 心 时, 可 应 用 来 求。 3.3 个 彼 此 作 平 面 平 行 运 动 的 构 件 间 共 有 个 速 度 瞬 心, 这 几 个 瞬 心 必 定 位 于 上。 含 有6 个 构 件 的 平 面 机 构, 其 速 度 瞬 心 共 有 个, 其 中 有 个 是 绝 对 瞬 心, 有 个 是 相 对 瞬 心。 4.相 对 瞬 心 与 绝 对 瞬 心 的 相 同 点 是 ,不 同 点 是 。 5.速 度 比 例 尺 的 定 义 是 , 在 比 例 尺 单 位 相 同 的 条 件 下, 它 的 绝 对 值 愈 大, 绘 制 出 的 速 度 多 边 形 图 形 愈 小。 6.图 示 为 六 杆 机 构 的 机 构 运 动 简 图 及 速 度 多 边 形, 图 中 矢 量 cb → 代 表 , 杆3 角 速 度ω3 的 方 向 为 时 针 方 向。 7.机 构 瞬 心 的 数 目N 与 机 构 的 构 件 数 k 的 关 系 是 。 8.在 机 构 运 动 分 析 图 解 法 中, 影 像 原 理 只 适 用 于 。

9.当 两 构 件 组 成 转 动 副 时, 其 速 度 瞬 心 在 处; 组 成 移 动 副 时, 其 速 度 瞬 心 在 处; 组 成 兼 有 相 对 滚 动 和 滑 动 的 平 面 高 副 时, 其 速 度 瞬 心 在 上。 10..速 度 瞬 心 是 两 刚 体 上 为 零 的 重 合 点。 11.铰 链 四 杆 机 构 共 有 个 速 度 瞬 心,其 中 个 是 绝 对 瞬 心, 个 是 相 对 瞬 心。 12.速 度 影 像 的 相 似 原 理 只 能 应 用 于 的 各 点, 而 不 能 应 用 于 机 构 的 的 各 点。 13.作 相 对 运 动 的3 个 构 件 的3 个 瞬 心 必 。 14.当 两 构 件 组 成 转 动 副 时, 其 瞬 心 就 是 。 15.在 摆 动 导 杆 机 构 中, 当 导 杆 和 滑 块 的 相 对 运 动 为 动, 牵 连 运 动 为 动 时, 两 构 件 的 重 合 点 之 间 将 有 哥 氏 加 速 度。 哥 氏 加 速 度 的 大 小 为 ; 方 向 与 的 方 向 一 致。 16.相 对 运 动 瞬 心 是 相 对 运 动 两 构 件 上 为 零 的 重 合 点。 17.车 轮 在 地 面 上 纯 滚 动 并 以 常 速 v 前 进, 则 轮缘 上 K 点 的 绝 对 加 速 度 a a v l K K K KP ==n /2 。 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -( ) 18.高 副 两 元 素 之 间 相 对 运 动 有 滚 动 和 滑 动 时, 其 瞬 心 就 在 两 元 素 的 接 触 点。- - - ( ) 19.在 图 示 机 构 中, 已 知ω1 及 机 构 尺 寸, 为 求 解C 2 点 的 加 速 度, 只 要 列 出 一 个 矢 量 方 程 r r r r a a a a C B C B C B 222222=++n t 就 可 以 用 图 解 法 将 a C 2求 出。- - - - - - - - - - - - - - - - - - ( ) 20.在 讨 论 杆2 和 杆3 上 的 瞬 时 重 合 点 的 速 度 和 加 速 度 关 系 时, 可 以 选 择 任 意 点 作 为 瞬 时 重 合 点。- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ( )

轿车后背门铰链机构的运动分析及修改设计

天津汽车 摘要 通过ADAMS建模对某轿车后背门开启机构做 运动分析,来解决后背门初开启阶段的干涉问题和完全开启时的漏雨问题。通过ADAMS的优化分析和运动分析,给出了解决问题的建议:调整相关点位置可以改善后背门与侧围的干涉现象,而且最佳的办法是将铰链机构整体前移;调整相关点位置或修改限位块尺寸可以改善后备门开启角度过大及行李箱漏雨的问题。 CAE在汽车工程中的效率和价值都得到了具体体现。 关键词 后背门铰链结构 运动分析 DOE AnalysisandDesignofPassengerCarBackDoorHinge Abstract:Theoperationmovementofopeningmechanismofcarbackdoorisanalyzedbybuildingamodelwith ADAMS,improvingtheinterferencebetweenbackdoorandsidepanelwhenbackdoorisopeningatthebeginningandresolvingleakrainproblemwhenbackdoorisinfull-sizeopening.SomesuggestionsareofferedaftertheoptimizationanalysisandoperationmovementanalysisarebothfinishedwithADAMS.Adjustingthepositionofrelativepointcanimprovetheinterferencebetweenbackdoorandsidepanel,furthermorethebestwayofadjustingistomovethewholehingemechanismforwardC adjustingthepositionofrelativepointandredesigninglimitingblockcanalsoimprovetheopeningangleofbackdoorandresolvetheproblemofleakrain.ThevalueandefficiencyofCAEinautomotiveengineeringisclearlypresentedinthispaper.Keywords:Hingemechanismofbackdoor OperationmovementanalysisDOE 张德超 杨亚娟 刘红领 陈伟 柳杨 (奇瑞汽车有限公司乘用车工程研究院CAE部) 车门是车身上重要部件之一,按其开启方式分 为顺开式、逆开式、水平移动式、上掀式和折叠式等几种。 轿车后背门主要有2种设计方案:第1种方案是典型两厢车的后备门,将后窗玻璃与后背门做成一个整体,也称掀背门,这种设计方案在三厢车及轻型货车等车型中也有广泛应用;另一种方案是将后窗玻璃与后背门做成分离的,其中后窗玻璃与车身是一个整体,2种方案的选择主要根据车身造型及布置来决定。 某轿车的后背门总成如图1所示。开启机构是由1个四连杆和1个气弹簧构成,如图2,左右两侧对称布置。在试制车间装车时,发现有2个问题,第 1个问题是后背门在初始开启阶段会与侧围发生干 涉,会损坏车身油漆;第2个问题是后背门完全打 开的时候,会有雨水漏入行李厢。 解决这2个问题最直接的办法是修改侧围的模具,但是修改量很大,成本很高,下面通过平面四连杆机构的运动分析,来解决这2个问题。 图1 后背门总成 图2 后背门开启机构轿车后背门铰链机构的运动分析及修改设计 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!" !!" !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!" !!" 汽车技术

平面连杆机构的运动分析

平面连杆机构的运动分析 以典型平面连杆机构(牛头刨床机构)为研究对象,首先进行机构的运动分析,并列出相应方程,然后采用计算机C语言编程的方法,计算出机构中选定点的位移、速度,并绘出相关数据图像。 标签: 连杆机构;位移;速度;计算机编程 TB 1 前言 平面连杆机构是现代机械中应用的最为广泛的一种典型机构。平面连杆机构的典型应用包括牛头刨床机构、缝纫机、颚式破碎机等。在研究平面连杆机构的过程中对机构上某个特定点的研究是必不可少的。然而在传统的研究方法中,手工计算不仅计算量大,而且极易出错。随着计算机技术的广泛普及,计算机逐渐成为分析研究典型机械结构的有力工具。因此本文力求通过C语言编程技术来对牛头刨床机构来进行简单运动分析。 2 牛头刨床机构运动分析 图1所示的为一牛头刨床。假设已知各构件的尺寸如表1所示,原动件1以匀角速度ω1=1rad/s沿着逆时针方向回转,试求各从动件的角位移、角速度和角加速度以及刨头C点的位移、速度的变化情况。 角速度变化较为平缓,保证刨头慢速、稳定工作;在220°~340°之间为回程阶段,角速度变化较快,以提高效率;4杆有4个角速度为0点,即4杆的速度方向改变了四次。 C点的位移、速度分析:在0°~200°范围内,C点位移曲线斜率的绝对值变化较小,说明此时C点速度及加速度的变化量不大,且保持在较小值。200°~260°范围内C点的速度变化量明显增大,由速度图像可以推知加速度在220°左右达到最大值后快速减小,并使其速度在260°左右达到最大,而后加速度反向缓慢增大,速度持续减小到零以后又开始反向增大。 ①工作行程为θ1:0°~220°,回程为θ1:220°~340 °;工作行程角度大于回程角度,工作效率较高; ②工作行程阶段,刨头C点位移的变化较为平稳,速度可以近似看为匀速,

关于两种常用公交车车门的力学分析

关于两种常用公交车车门的力学分析 车门是各种车的重要组成部分,同时也是车的各个部件中鱼人联系紧密的重要部分。在实现车的用途的过程中,车门的作用往往不可忽视。事实上,要实现门的作用功能,需正确选择合适的车门开闭结构,因而了解车门的开闭结构至关重要。 在此,我们介绍两种常用车门的开闭结构。 1,曲柄滑块开门机构 曲柄滑块车门开闭机构如图所示(门分左右两扇,下图为一边门的结构简图),杆件1为主动杆件,1向左运动的过程中,使2杆转动一定的角度拉动3杆的移动,其中3杆是门的一部分的简化,3杆转动即门转动,滑块4只能在门上方的滑槽内滑动,整个系统组成一个稳定的曲柄滑块机构,从而实现门稳定安全的启动。 已知:2杆长为L,3杆与4杆间夹角α,1杆以w逆时针转动。当2和3杆间夹角θ时,求4的速度V2。 运算过程如下图:(鼠标绘图无力。。。。)

这种属于内摆式车门,占地空间小,使乘客上下车没有逆向乘客出现,不会产生拥挤碰撞现象。 2,双曲柄车门开闭机构 此类车门启闭机构利用了反平行四边形双曲柄中两曲柄反向运动的特点。运动简图如图所示,杆AB与左边门固结,CD与右边门固结,主动曲柄AB转动时,通过连杆BC 带动从动曲柄CD朝着相反方向转动,门随即打开,并且此机构可以保证两扇门同时开启关闭。

模型图: 试说明车门同时开闭的条件。(绘图无力,自行想象。。。) 使车门同时打开,则AB杆与CD杆有同样的角速度 B点与C点速度一致。 作BC杆的速度瞬心P,为AB杆与CD杆的延长线交点。 使B点与C点速度一致,则必须PB=PC。 三角形PBC为等腰三角形。 所以,车门能同时开闭的条件是: 当车门关闭时,角ABC与角DCB的和为180度,且AB=DC。

公交车门运动机构原理分析及模型制作

公交车门运动机构原理分析及模型制作 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

公交车门运动机构原理分析及模型制作 材料科学与工程学院2011级卓越一班第2小组 组员:朱富慧、王文霞、徐潇、 赵洪阳 目录 一、车门机构数据采集 本组主要了解了k52路公交的车门构造,通过拍摄细节照片和录制视频收集数据,并分析其运动原理和利用solidworks软件制作其模型(该过程在保证机构正常运动前提下,仅做了少部分简化和优化,最大程度保持拟实性与美观性)。收集到的资料(视频资料参见附件)如下:

二、机构运动原理分析 车门运动机构简图 该运动机构包括5个构件,1、5为机架,2、3为杆件,4为滑块。 4个低副:3个转动副O 1、O 2 、O 3 和一个移动副。 自由度F=3n-2P L -P H =3×3-2×4-0=1,自由度为1,有确定的运动。 三、装配分析 该机构中,1、5为机架,连接在车体上; 杆件2:柱子、柱子扣、连杆组成的整体; 杆件3:车门; O 1 :机构与动力系统连接形成的转动副; O 2 :连杆与门连接形成的转动副; O 3 :门与滑块4连接形成的转动副。 四、运动过程分析 开门时,动力系统通过转动副O 1使杆件2顺时针转动,杆件2通过转动副O 2 及杆件3 (门)带动滑块向两侧滑动同时在O 3 作用下使之逆时针旋转。关门与开门工程相反。 五、装配效果图(另可参见附件2) 六、装配效果动画展示 参见附件3.

七、部分零件模型(另可参见附件2) 八、成果与收获 在本次公交车门运动机构原理分析及模型制作的协作中,我们实地收集资料、分析原理、制作模型,并成功利用模型模拟了车门机构的运动。从中我们也遇到许多配合和尺寸方面的问题,提升了综合分析问题的能力,对机构运动原理也有了更为深刻的认识。

第二章平面机构的运动分析

1、试求出下列机构中的所有速度瞬心。 (a) (b) (c) (d) 2、图示的凸轮机构中,凸轮的角速度ω1=10s-1,R=50mm,l A0=20mm,试求当φ=0°、45°及90°时,构件2的速度v。 题2图凸轮机构题3图组合机构 3、图示机构,由曲柄1、连杆2、摇杆3及机架6组成铰链四杆机构,轮1′与曲柄1

固接,其轴心为B,轮4分别与轮1′和轮5相切,轮5活套于轴D上。各相切轮之间作纯滚动。试用速度瞬心法确定曲柄1与轮5的角速比ω1/ω5。 4、在图示的颚式破碎机中,已知:x D=260mm,y D=480mm,x G=400mm,y G=200mm,l AB=l CE=100mm,l BC=l BE=500mm,l CD=300mm,l EF=400mm,l GF=685mm,?1=45°,ω1=30rad/s逆时针。求ω 5、ε5。 题4图破碎机题5图曲柄摇块机构 5、图示的曲柄摇块机构, l AB=30mm,l AC=100mm,l BD=50mm,l DE=40mm,?1=45°,等角速度ω1=10rad/s,求点E、D的速度和加速度,构件3的角速度和角加速度。 6、图示正弦机构,曲柄1长度l1=,角速度ω1=20rad/s(常数),试分别用图解法和解析法确定该机构在?1=45°时导杆3的速度v3与加速度a3。 题6图正弦机构题7图六杆机构 7、在图示机构中,已知l AE=70mm,l AB=40mm,l EF=70mm,l DE=35mm,l CD=75mm,l BC=50mm,?1=60°,构件1以等角速度ω1=10rad/s逆时针方向转动,试求点C的速度和加速度。

门机构运动仿真分析技术研究

门机构运动仿真分析技术研究 作者:上海飞机制造有限公司庞微卢鹄来源:航空制造技术 一架飞机有大小十几个舱门,包含登机门、服务门、货舱门、应急门等。舱门结构设计复杂,连杆、铰链数量众多,机构运动过程多阶段,运动关系复杂多变。由于舱门上的机构运动关系复杂,如何将这些舱门安装到位一直是飞机装配的一个难点。为了理清舱门各个机构运动的原理,指导现场工艺人员更好地进行工艺分析,采用CATIA的DMU模块对舱门进行运动机构仿真分析[1]。通过虚拟仿真技术的研究应用,验证舱门机构运动,找出机构中的可调节量,能指导工人现场安装调试,确保安装的顺利进行,缩短研制及安装周期[2]。 民用飞机舱门结构特点分析 民用飞机舱门:指民用飞机上带铰链机构,供人员进出或作为舱段主要维护通道的开口。完整的舱门包含的主要功能有:开关功能、应急开启功能、安全性功能、滑体预位功能、指示功能、辅助功能等。 民用飞机舱门结构一般采用金属材料。由于结构厚度较高,没有内蒙皮,采用连接角片连接横纵梁,采用预变形设计,飞行中正常飞行压差下为30% 压缩量,以保证良好的密封性能。 舱门结构方式主要有2种:外翻式打开方式与抛放式打开方式。外翻式,如ARJ的货舱门、大客的应急门等,重力方向与舱门运动方向一致;抛放式主要为ARJ的应急门、大客的登机门等,舱门提升后与机身平行沿航向前方打开,各位置垂直提升高度有所不同。 舱门的开启过程一般分为3个阶段:首先是对舱门进行解锁;然后对开启手柄进行提升;最后是将门推开的过程。在整个过程中包含的主要机构有:提升机构、导向机构、平移机构、内手柄及齿轮盒、外手柄机构、扭矩杆机构、阵风锁机构、外伸机构、增压预防、内外手柄机构、滑梯启动机构、驱动机构等。 舱门机构的简化 机构由若干个相互联接起来的构件组成。机构中两构件之间直接接触并能作相对运动的可

运动负荷的检测与分析方法

运动负荷检测与分析方法 一、了解几个名词 (一)、运动负荷 运动负荷,又称生理负荷,是指人做练习时所承受的生理负荷。运动负荷包括运动量和运动强度两个方面。由强度、密度、时间、数量及运动项目的特点等因素构成。在锻炼时只有运动负荷保持适宜,才能收到较好的效果,运动负荷过小过大都不行。过小,则达不到锻炼的目的;过大,又超出了人身心所能承受的限度,对人身心健康和教学任务的完成都十分不利。因此,要学会合理地安排和调节运动负荷。 (二)、运动强度 运动强度是指单位时间内完成练习所用的力量大小和机体的紧张程度,影响运动强度的主要因素是练习时的速度和负重量。如初中生100米快速跑,跑后即刻心率可达到180次/分以上,慢跑1分钟,心率一般在130次/分左右,显然前者强度大,后者强度小。在体育活动中,较大强度的项目有跑、跳、攀登等,而走、爬、投掷等的运动强度则相对较小。(三)、运动时间 运动时间是指一次体育课练习的总时间或每个练习的间歇时间,在保证一定的合理强度和密度的同时,练习时间持续的长短直接关系着运动负荷的大小。如果一节课,学生长时间处于大强度的运动之中,那么,他们的运动负荷就偏大。运动时间可以根据不同的人制定不同的项目。 (四)、练习密度 练习密度是指单位时间内重复练习的次数,它在运动负荷中反映时间和数量的关系。练习密度是否合适较大地影响着学生的运动负荷,一般与运动负荷成正比。 二、运动负荷检测与分析从两个方面入手:(每学期对所有体育教师体育课进行1次以上运动负荷检测与分析:填好两张表作好两个分析) 1、体育课运动负荷(心率)测定记表(表一) 2、体育课密度测量表(表二) 附:(表一)(男女各抽测3名学生、每生一张)

CATIA_DMU运动分析

1 产品介绍 DMU机构运动分析(Kin )是专门做DMU装配运动仿真的模块。针对大型产品如整车、飞机、 轮船等的机构运动状态进行评价。 2 图标功能介绍(基本概念、基本界面介绍) 2.1DMU运动仿真(DMU Simulation)工具条 命令驱动仿真(Simulating with Commands) 规则驱动仿真(Simulating With Laws) 机构修饰(Mechanism Dressup) 创建固定副(Fixed Part) 装配约束转换(Assembly Constraints Conver) 测量速度和加速度(Speeds and Accelerations) 机构分析(Mechanism Analysis) 2.2DMU运动副创建工具条(Kinematics Joints) 创建转动副( Creating Revolute Joints) 创建滑动副(Creating Prismatic Joints) 创建同轴副(Creating Cylindrical Joints) 创建球铰连接(Creating Spherical Joints) 1 第五章CATIA V5 DMU 机构运动分析

2 第五章 CATIA V5 DMU 机构运动分析 创建平动副(Creating Planar Joints ) 创建刚性副(Rigid Joints ) 点-线副(Point Curve Joints ) 曲线滑动副(Slide Curve Joints ) 点-面副(Point Surface Joints ) 万向节(Universal Joints ) CV 连接(CV Joints ) 创建齿轮副(Gear Joints ) 滑动-转动复合运动副(Rack Joints ) 滑动-滑动复合运动副(Cable Joints ) 用坐标系法建立运动副(Creating Joints Using Axis Systems ) 2.3 DMU Generic Animation 创建运动仿真记录(Simulation ) 生成重放文件(Generate Replay ) 重放(Replay ) 仿真播放器(Simulation Player ) 编辑序列(Edit Sequence )

公交车门运动机构原理分析及模型制作

公交车门运动机构原理分析及模型制作 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

公交车门运动机构原理分析及模型制作 材料科学与工程学院2011级卓越一班第2小组 组员:朱富慧、王文霞、徐潇、 赵洪阳 目录 一、车门机构数据采集 本组主要了解了k52路公交的车门构造,通过拍摄细节照片和录制视频收集数据,并分析其运动原理和利用solidworks软件制作其模型(该过程在保证机构正常运动前提下,仅做了少部分简化和优化,最大程度保持拟实性与美观性)。收集到的资料(视频资料参见附件)如下:

二、机构运动原理分析 车门运动机构简图 该运动机构包括5个构件, 1、5为机架,2、3为杆件,4为滑块。 4个低副:3个转动副O 1、O 2 、O 3 和一个移动副。 自由度F=3n-2P L -P H =3×3-2×4-0=1,自由度为1,有确定的运动。 三、装配分析 该机构中,1、5为机架,连接在车体上; 杆件2:柱子、柱子扣、连杆组成的整体; 杆件3:车门; O 1 :机构与动力系统连接形成的转动副; O 2 :连杆与门连接形成的转动副; O 3 :门与滑块4连接形成的转动副。 四、运动过程分析 开门时,动力系统通过转动副O 1使杆件2顺时针转动,杆件2通过转动副O 2 及杆件3 (门)带动滑块向两侧滑动同时在O 3 作用下使之逆时针旋转。关门与开门工程相反。 五、装配效果图(另可参见附件2) 六、装配效果动画展示 参见附件3.

七、部分零件模型(另可参见附件2) 八、成果与收获 在本次公交车门运动机构原理分析及模型制作的协作中,我们实地收集资料、分析原理、制作模型,并成功利用模型模拟了车门机构的运动。从中我们也遇到许多配合和尺寸方面的问题,提升了综合分析问题的能力,对机构运动原理也有了更为深刻的认识。

平面连杆机构大作业

大作业(一) 平面连杆机构的运动分析 (题号:5-C) 班级:机制114 学号:2011012789 姓名:陈莎 同组其他人员:许龙飞张海洋 完成日期:2012.10.31

一.题目及原始数据; 二、牛头刨床机构的运动分析方程三.计算程序框图; 四.计算源程序; 五.计算结果; 六.运动线图及运动分析 七.参考书;

一、题目及原始数据; 图b 所示的为一牛头刨床(Ⅲ级机构)。假设已知各构件的尺寸如表2所示,原动件1以等角速度ω1=1rad/s 沿着逆时针方向回转,试求各从动件的角位移、角速度和角加速度以及刨头C 点的位移、速度和加速度的变化情况。 G b ) 表2 牛头刨床机构的尺寸参数(单位:mm ) 题 号 l AB l CD l DE h h 1 h 2 A B C 5-c 200 180 900 460 120 l CD =950 l CD =1020 l CD =980 要求:每三人一组,每人一个题目,每组中至少打印出一份源程序,每人计算出原动件从0゜~360゜时(N=36) 各运动变量的大小,并绘出各组对应的运动线图以 及E 点的轨迹曲线。 二、牛头刨床机构的运动分析方程 1)位置分析 建立封闭矢量多边形 由图可知 =3θ,故未知量有3θ、4θ、3S 、5S 。利用两个封闭图形ABDEA 和EDCGE , 建立两个封闭矢量方程,由此可得: A B C D E 2 1 3 4 5 6 h h 1 h 2 x y F F'

把(式Ⅰ)写成投影方程得:??? ? ??????????=+=-++=++=+h l l s l l l h s l l h s l 33445334411133441123344sin sin 0cos cos sin sin sin cos cos cos θθθθθθθθθθ(式Ⅱ) 由以上各式用型转化法可求得5343 s s θθ, 23θθ= 解: 211111 *cos *sin b b x h l y h l θθ=+?? =+? 44 44 *cos *sin d d x l y l θθ=?? =? 223()()d b d b s x x y y =-++ 3 sin b d x x s α-= 333 33)*sin *()/*cos *(/c d d b d c d d b d s x x l x l x x s y y l y l y y s αα=+=+-??? =+=+-?? 3tan c d c d y y x x θ-= - 5c s x = ()2212ae AE h h =+ 444 () tan *cos d c y h y l θθ+-= 高斯消去法求解 2.速度分析 对(式Ⅱ)求一次导数得: 44433333111444333331114443335444333*sin *s '*cos *sin **sin **cos *'*sin *cos **cos **sin **sin *'0*cos **cos *0l s l l s s l l l s l l θωθθωθωθωθθωθωθωθωθωθω-+-=-??++=? ? ---=? ?+=? (式Ⅲ) 矩阵式:

图解法作运动分析

图3.2 三心共线 图3.3 铰链四杆机构与速度瞬心 3.2 平面机构运动分析的图解法 对平面机构作运动分析的方法有速度瞬心法与矢量方程图解法,其中速度瞬心法只能对平面机构作速度分析。 3.2.1 速度瞬心法 1) 速度瞬心与位置 速度瞬心是两个作平面相对运动构件上的同速点,当该点的速度等于零时,称为绝对瞬心;当该点的速度不等于零时,称为相对瞬心。由于每两个构件形成一个瞬心,对于N 个构件形成的机构,其瞬心的数目S 为 )13(2/)1(--= N N S 运动副与速度瞬心的关系如图3.1所示,转动副的几何中心是速度瞬心;移动副的速度瞬心在 垂直于运动方向的无限远处;高副的速度瞬心在过接触点所作的公法线上;纯滚动高副的速度瞬心在接触点上。三个构件形成三个速度瞬心,这三个速度瞬心位于一条直线上,如图3.2所示,该规律称为三心定理。 2) 用速度瞬心法作机构的速度分析 在图3.3所示的铰链四杆机构中,主动件1以ω1作匀速转动,求图示位置构件2、摇杆3的角速度ω2、ω3。 利用三心定理确定速度瞬心P 13、P 24,由P 13是构件1、3的同速点得 L 34133L 14131μωμω??=??P P P P 式中μL 是长度比例尺(μL =实际尺寸/图上尺寸),由此得构件3的角速度ω3为 ) 23(/3413141313-?= P P P P ωω 由于P 24是绝对瞬心,构件2在此时绕P 24点作瞬时转动,由 P 12是构件1、2的同速点得速度方程与ω2分别为 L 24122L 14121μωμω??=??P P P P ) 33(/2412141212-?= P P P P ωω ω2、ω3的方向如图所示。 在图3.4所示的曲柄滑块机构中,利用三心定理确定速度瞬心P 13 、P 24,由P 13是构件1、3的同速点得滑块3的速度V 3得 (a) (c) (b) 1 图3.1 运动副与速度瞬心 (d)

平面连杆机构运动及动力分析

毕业设计报告(论文) 报告(论文)题目:平面连杆机构运动及动力分析作者所在系部:机械工程系 作者所在专业:机械设计制造及其自动化 作者所在班级: B07115 作者姓名: 作者学号: 指导教师姓名: 完成时间: 2011年6月 北华航天工业学院教务处

摘要 平面连杆机构是一种应用十分广泛的机构。平面连杆机构全部采用低副连接,因而结构简单易于制造,结实耐用,不易磨损,适于高速重载;运动低副具有良好的匣形结构,无需保养,适于极度污染或腐蚀而易出现问题的机器中;平面连杆机构能够实现多种多样复杂的运动规律,而且结构的复杂性不一定随所需完成的运动规律性的复杂程度而增加;平面连杆机构还具有一个独特的优点,就是可调性,即通过改变机构中各杆件长度,从而方便地改变了原机构的运动规律和性能。连杆机构由于结构上的特点在各种机械行业中被广泛的采用。通过对连杆机构的设计,可以实现不同的运动规律,满足预定的位置要求和满足预定的轨迹要求。 机构运动及动力分析的目的是分析各个构件的位移、、角加速度以及受力,分析构件上某点的位置、轨迹、速度和加速度等。这种方法能给出各运动参数与机构尺寸间的解析关系及写出机构某些点的轨迹方程式,能帮助我们合理地选择机构的尺寸,从而对某一机构作深入的系统研究。 平面连杆机构运动及动力分析,就是以连杆机构作为研究对象,对其各个运动件之间的关系公式进行推导,应用现代设计理论方法和有关专业知识进行系统深入地分析和研究,探索掌握其运动规律,讨论重要参数间的关系。 关键词:平面连杆机构运动性能仿真运动规律 Abstract Planar linkage mechanisms are used widely. Planar linkage mechanisms take the use of lower pair connection, so its structure is easy to manufacture, durable and resistant, especially suitable for high-speed and heavy-duty; lower pair sports has a good box-shaped structure, without maintenance, which is fit for machines working in extreme contamination or often coming with problems because of corrosion; planar linkage mechanism not only can achieve a variety of complex movement, but also the more complex movem ent doesn’t go with more complex structure; what gives linkage a unique advantage is that the motive rules and performance of the original mechanism will change with the length of the bar. As a result, linkage mechanisms are widely used in mechanical industries. By changing the design of linkage mechanisms, it can achieve different motive rules in order to move as the intended location and trajectory.

四种门机构的运动分析

四种门机构的运动分析 Student:XXX Course: 工程概论 Instructor: XXX Date:201X年X月Course Paper Grade 201X

摘要:门机构为生产生活中一种广泛应用的装置。门是分割有限空间的一种实体,作用是连接和关闭两个或多个空间的出入口①。在不同场合中,为适应不同生产生活的需要,门机构演变出诸多类型,分别具有不同的原理和功能。本文对生产生活中四种常见门机构——推拉门、卷帘门、旋转门、伸缩门等的工作和运动机制进行了详尽而深入的分析。 关键词:门机构;机械原理;运动分析 Motion Analysis ofFourKinds of Mechanical Structure ofDoors Anonymous (XXXUniversity,Chengdu 61XXXX,China) Abstract: Mechanical structures ofdoorsarewidely useddevices installed at the entrance of structurefor production and living. Door is a kind of entity and segmentation oflimited space. Its function is to connect or shutthe entrance oftwo or more spaces. On different occasions, in order to adapt to theneeds of production and living, mechanical structures ofdoors have developed intomany types, each with different principles and functions. This article looks through fourkinds of common door structure in production and living--sliding door, rolling door, revolving door, retractable doorand analyzestheir motion mechanism. Keywords:Mechanical structures ofdoors; Principle of machinery; Motion analysis 1 Net: 门(汉语汉字), 2016年2月18日 https://www.360docs.net/doc/075007796.html,/subview/13543/7943569.htm#viewPageContent

项目管理九大模块-项目分析方法

项目管理九大模块 核心:1。成本管理2。质量管理3。进度管理 其它:4。范围管理5。风险管理6。沟通管理 7。采购管理8。团队与人力资源管理9。整合(优化)管理 形成项目组--PO、准证、场勘、设计、评审、施工、验收、回款 项目组功能划分:采购物流组、仓库与后勤管理组、交付管理组、 设计评审和质量管理组、设计组、施工单位 没有好与不好,只有适合与不适合 项目进度计划:立项、移交、计划、设计、实施、初验、结算、试运行、终验、决算、归档、关闭。 项目管理知识体系 综合管理范围管理时间管理 1.开发计划 1.启动 1.活动定义 2.执行计划 2.范围规划 2.活动排序 3.变更计划 3.细分子项目 3.具体时间估算 4.范围核实 4.进度编制 5.范围变更控制 5.进度控制 成本管理 1.资源规划质量管理人力资源管理 2.成本估算 1.质量规划 1.组织计划 3.成本预算 2.质量保证 2.人员组织 4.成本控制 3.质量控制 3.团队建设 沟通原理风险管理采购管理

1.沟通计划 1.风险识别 1.采购计划 2.信息交流 2.风险度量 2.征集采购申请 3.实施情况 3.风险应对 3.货源组织 4.行政总结 4.风险控制 4.合同管理 项目的特征

(1)一次性:这是项目最主要的特征,也是项目与其他重复性的操作和运行工作的基本区别。意思是,它常常没有完全可以照搬的先例,将来也不会再有完全相同的重复,并带有某种创新的性质。 (2)独特性:项目的过程总具有自身的独特性。不同项目之间的地点和时间、内部环境和外部环境、自然和社会条件都会有所差别;不同项目的产品和服务也总在不断地更新和完善。 (3)目标的确定性:项目一定有确定的终点。目标一般包括时间目标、成果型目标、约束性目标,以及其他需要满足的条件。 (4)组织的临时性和开放性:项目开始是要组建项目班子,项目结束时该项目班子要解散。 (5)成果的不可挽回性:由上述项目的一次性和独特性所决定,项目一般失败了,就永远失去了实施原项目的机会。因此项目必须确保成功。 项目管理知识体系

平面四杆机构的运动仿真模型分析

平面四杆机构的运动仿真模型分析1前言 平面四杆机构是是平面连杆机构的基础,它虽然结构简单,但其承载能力大,而且同样能够实现多种运动轨迹曲线和运动规律,因而在工程实践中得到广泛应用。 平面四杆机构的运动分析, 就是对机构上某点的位移、轨迹、速度、加速度进行分析, 根据原动件的运动规律, 求解出从动件的运动规律。平面四杆机构的运动设计方法有很多,传统的有图解法、解析法和实验法。随着计算机技术的飞速发展,机构设计及运动分析已逐渐脱离传统方法,取而代之的是计算机仿真技术。本文在UG NX5环境下对平面四杆机构进行草图建模,通过草图中的尺寸约束、几何约束及动画尺寸等功能确定各连杆的尺寸,之后建立相应的连杆、运动副及运动驱动,对建立的运动模型进行运动学分析,给出构件上某点的运动轨迹及其速度和加速度变化规律曲线,文章最后简要分析几个应用于工程的平面四杆机构实例。 2平面四杆机构的建模 问题的提出 平面四杆机构因其承载能力大,可以满足或近似满足很多的运动规律,所以其应用非常广泛,本文以基于曲柄摇杆机构的物料传送机构为例,讨论其建模及运动分析。 如图1所示,ABCD为曲柄摇杆机构,曲柄AB为主动件,机构在运动中要求连杆BC的延伸线上E 点保持近似直线运动,其中直线轨迹为工作行程,圆弧轨迹为回程或空程,从而实现物料传送的功能。

平面四杆机构的建模 由于物料传送机构为曲柄摇杆机构,所以它符合曲柄存在条件。根据机械原理课程中的应用实例[1],选取AB=100,BC=CD=CE=250,AD=200,单位均为毫米。 在UG NX5的Sketch环境里,创建如图2所示的草图,并作相应的尺寸约束和几何约束,其中EE'为通过E点的水平轨迹参考线,用以检验E点的工作行程运动轨迹。现通过草图里的尺寸动画功能,令AB与AD 的夹角从0°到360°变化,可看到E点的变化轨迹为直线和圆弧,如图3所示为尺寸动画的四个截图,其中图3(a)中的E点为水平轨迹的起点,图3(b)中的E点为水平轨迹的中点,图3(c)中的E点为水平轨迹的终点,而图3(d)中的E点为圆弧轨迹(图中未画出)即回程的中点。

平面六杆机构的运动分析Matlab代码

平面六杆机构的运动分析M代码 %参数赋值 clc,clear l0=22; l1=40; l2=55; l3=55; l4=44; l5=35; M=-1; Omiga1=10; Theta1=0:0.01:360; Theta1=Theta1*pi/180; %求解各个构件位移、速度、加速度 A=2*l1*l2*sin(Theta1); B=2*l2*(l1*cos(Theta1)-l0); C=l1^2+l2^2+l0^2-l3^2-2*l1*l0*cos(Theta1); E=2*l1*l3*sin(Theta1); F=2*l3*(l1*cos(Theta1)-l0); G=l2^2-l1^2-l3^2-l0^2+2*l1*l0*cos(Theta1); Theta3=2*atan((E+M*sqrt(E.^2+ F.^2- G.^2))./(F-G)); Theta31= Theta3-30; S=l5.*cos(Theta31)-sqrt(-l5^2.* sin(Theta31).^2+l4^2); Theta2=2*atan((A+M*sqrt(A.^2+B.^2-C.^2))./(B-C)); Theta4=atan(l5.*sin(Theta31)./(l5.*cos(Theta31)-S)); Omiga2=Omiga1*l1*sin(Theta1-Theta3)./(l2*sin(Theta3-Theta2)); Omiga3=Omiga1*l1*sin(Theta1-Theta2)./(l3*sin(Theta3-Theta2)); Omiga4=((-l5).*Omiga3.*cos(Theta31))./(l4.*cos(Theta4)); Vf=-l5.*Omiga3.*sin(Theta31)+l4.*Omiga4.*sin(Theta4); Alfa3=(Omiga1^2*l1*cos(Theta1-Theta2)+Omiga2.^2*l2-Omiga3.^2*l3.*cos(Theta3-Theta2))./ (l3*sin(Theta3-Theta2)); Alfa2=(-Omiga1^2*l1*cos(Theta1-Theta3)+Omiga3.^2*l3-Omiga2.^2*l2.*cos(Theta2-Theta3))./ (l2*sin(Theta2-Theta3)); Alfa4=(l5.*Alfa3.*cos(Theta31)+l4.*Omiga4.^2.*sin(Theta4)-l5.*Omiga3.^2.*sin(Theta31))./(l4. *cos(Theta4)); Af=(-l5).*Omiga3.^2.*cos(Theta31)+l4.*(Omiga4.^2.*cos(Theta4)+Alfa4.*sin(Theta4))-l5.*Alfa 3.*sin(Theta31); %绘图 Theta1=Theta1*180/pi;

相关文档
最新文档