“静息电位”与“动作电位”的高中解读

合集下载

静息电位及动作电位的形成原理

静息电位及动作电位的形成原理

主页博客相册个人档案好友查看文章相关文章静息电位和动作及其形成原理2009-09-16 16:19静息电位及其形成原理细胞膜的生物电现象主要有两种表现形式,即安静时的静息电位和受刺激时产生的膜电位的改变(包括局部电位和动作电位)。

生物电现象是以细胞为单位产生的,以细胞膜两侧带电离子的不均衡分布和离子的选择性跨膜转运为基础。

1.静息电位(resting potential,RP):指细胞未受刺激时存在于细胞膜内外两侧的电位差。

将一对测量电极中的一个放在细胞的外表面,另一个与微电极相连,准备刺入细胞膜内。

当两个电极都位于膜外时,电极之间不存在电位差。

在微电极尖端刺入膜内的一瞬间,示波器上显示一突然的电位跃变,表明两个电极间出现电位差,膜内侧的电位低于膜外侧电位。

该电位差是细胞安静时记录到的,因此称为静息电位。

几乎所有的动植物细胞的静息电位都表现为膜内电位值较膜外为负,如规定膜外电位为0,膜内电位可以负值表示,即大多数细胞的静息电位在-10~-100mV之间。

神经细胞的静息电位约为-70mV,红细胞的约为-10mV。

细胞膜两侧存在电位差,以及此电位差在某种条件下会发生波动,使细胞膜处于不同的电学状态。

人们将细胞安静时膜两侧保持的内负外正的的状态称为膜的极化;当膜电位向膜内负值加大的方向变化时,称为膜的超极化;相反,膜电位向膜内负值减小的方向变化,称为膜的去极化;细胞受刺激后先发生去极化,再向膜内为负的静息电位水平恢复,称为膜的复极化。

2.静息电位形成的原理(1)细胞膜内、外的离子浓度差RP的形成与细胞膜两侧的离子有关。

下表显示枪乌贼巨轴突细胞膜两侧主要离子浓度。

由表可见,细胞膜内外的离子呈不均衡分布,膜内K+多于膜外,Na+和Cl-低于膜外,即细胞内为高钾低钠低氯的状态。

此外,A-表示带负Hodgkin和Huxley推测:由于细胞内外存在K+的浓度差(细胞内高钾), K+具有从膜内侧向膜外侧扩散的趋势。

静息电位和动作电位的概念及形成机制

静息电位和动作电位的概念及形成机制

静息电位和动作电位的概念及形成机制静息电位和动作电位的概念及形成机制一、静息电位的概念及形成机制1. 静息电位的概念静息电位是指神经细胞在未被刺激时的电位状态。

在静息状态下,细胞内外存在电化学梯度,使神经元内外细胞膜的电位差保持在负数水平,为-70mV左右。

2. 静息电位的形成机制静息电位的形成主要与离子的通透性和Na+/K+泵有关。

在静息状态下,细胞膜上的Na+和K+离子通道处于闭合状态,但是Na+/K+泵仍在起作用,将细胞内的Na+排出,K+输进,维持细胞内外的离子平衡,保持负电位。

3. 静息电位的重要性静息电位是神经细胞正常功能的基础,它保证了细胞对外部刺激的敏感性,使神经元能够正常传递和处理信息。

二、动作电位的概念及形成机制1. 动作电位的概念动作电位是神经元在受到刺激时产生的短暂的电位变化。

它是神经元传递信息的基本单位,具有快速传导和全或无的特点。

2. 动作电位的形成机制动作电位的形成包括兴奋、去极化和复极化三个阶段。

当神经元受到足够的刺激时,细胞膜上的Na+通道打开,Na+大量流入细胞内,使细胞内外电位逆转,形成去极化;随后Na+通道关闭,K+通道打开,K+大量流出,使细胞内外电位恢复,形成复极化。

3. 动作电位的重要性动作电位是神经元传递信息的方式,它能够在神经元内外迅速传递信息,使神经元之间能够进行有效的通讯,实现信息的处理和传递。

总结与回顾:静息电位和动作电位是神经元活动的重要基础。

静息电位维持着神经元的正常状态,使其对外部刺激保持敏感;而动作电位则实现了神经元信息的传递,是神经元活动中最基本的过程之一。

在细胞水平上,静息电位的形成主要与离子的通透性和Na+/K+泵有关,通过保持细胞内外的离子平衡来维持静息状态;而动作电位的形成则依赖于离子通道的开闭和离子内外的流动,通过电压门控离子通道的开合来实现电位的变化。

个人观点和理解:静息电位和动作电位是神经元活动的核心过程,对于理解神经元的功能和信息传递具有重要意义。

静息电位和动作电位及其产生原理

静息电位和动作电位及其产生原理

静息电位和动作电位及其产生原理
静息电位是指神经细胞在静止状态下的电位差,通常为-70mV。

静息电位的产生是由于细胞膜内外的不均匀分布导致的离子梯度,主要涉及Na+、K+和Cl-等离子。

在静息状态下,细胞膜
内外的Na+电压门控通道关闭,K+通道半开放,Cl-通道也处
于相对关闭状态,使得细胞内外的电荷分布不平衡,从而产生电位差。

当受到刺激时,细胞膜上的Na+通道打开,Na+离子向细胞内
流动,导致细胞内的电位快速升高,形成快速升高的脉冲,即动作电位。

动作电位是在神经细胞上短暂的电压变化,其主要特点是快速变化、时程短暂和不可逆转。

动作电位的传导是沿着神经细胞的轴突进行的,通过离子的运动和细胞膜的极化过程实现。

总而言之,静息电位和动作电位是神经细胞在不同状态下的电位变化,静息电位是细胞处于静止状态下的电位差,动作电位是细胞在受到刺激而产生的快速电位变化,二者之间通过离子通道的打开和关闭来实现。

静息电位和动作电位产生原理

静息电位和动作电位产生原理

静息电位和动作电位产生原理
神经元是神经系统的基本单位,它们通过电信号传递信息。

静息电位和动作电位是神经元电信号的两种形式,它们的产生原理是不同的。

静息电位是神经元在静止状态下的电位差,通常为-70mV。

这个电位差是由神经元细胞膜上的离子通道控制的。

细胞膜上有许多离子通道,其中最重要的是钠离子通道和钾离子通道。

在静息状态下,钠离子通道关闭,钾离子通道开放,使得细胞内外的离子浓度保持不平衡,从而形成静息电位。

这种电位差是维持神经元正常功能的基础,它使得神经元能够对外界刺激做出反应。

当神经元受到足够的刺激时,静息电位会发生变化,这种变化被称为动作电位。

动作电位是神经元在兴奋状态下的电信号,它是由钠离子通道和钾离子通道的开放和关闭所引起的。

当神经元受到足够的刺激时,钠离子通道会迅速开放,使得细胞内外的离子浓度发生短暂的反转,从而形成一个电位峰。

这个电位峰随后会迅速下降,因为钠离子通道会关闭,钾离子通道则会开放,使得细胞内外的离子浓度重新恢复平衡。

这个过程被称为复极化,它使得神经元回到静息状态。

动作电位的产生是一个快速而复杂的过程,它涉及到许多离子通道的开放和关闭。

这个过程的速度和强度可以被调节,从而使得神经
元能够对不同的刺激做出不同的反应。

动作电位的传递是神经元之间信息传递的基础,它使得神经系统能够完成复杂的信息处理和控制。

静息电位和动作电位是神经元电信号的两种形式,它们的产生原理是由离子通道的开放和关闭所控制的。

这种电信号的传递是神经系统正常功能的基础,它使得神经元能够对外界刺激做出反应,完成复杂的信息处理和控制。

静息电位和动作电位的定义和形成机制

静息电位和动作电位的定义和形成机制

静息电位和动作电位的定义和形成机制在我们日常生活中,神经系统起着至关重要的作用。

而在神经系统中,有两种非常重要的电位:静息电位和动作电位。

这两种电位在神经元之间的传递过程中起着关键作用,使我们能够感知到外界的各种刺激,并做出相应的反应。

那么,这两种电位究竟是如何产生的呢?本文将从理论和实践的角度,对静息电位和动作电位的定义和形成机制进行详细的阐述。

我们来了解一下静息电位。

静息电位是指神经元在未受到任何刺激时,细胞内外的电势差。

简单来说,就是当神经元处于安静状态时,它的内部电压是稳定的。

这种稳定的电压是由细胞膜上的离子泵负责维持的。

离子泵通过主动运输的方式,将钾离子从细胞内向外运输,同时将钠离子从细胞外向内运输,从而使得细胞内外的电势差保持在一个相对稳定的状态。

这个稳定的电压差就是静息电位。

接下来,我们再来探讨一下动作电位。

动作电位是指神经元在受到某种刺激(如光、声、化学物质等)后,细胞内外的电势差发生快速变化的现象。

这种快速变化的电势差是由细胞膜上的离子通道负责调控的。

当刺激传达到神经元时,离子通道会迅速打开或关闭,使得离子在细胞内大量流动,从而产生一个快速上升或下降的电势差。

这个快速上升或下降的电势差就是动作电位。

那么,静息电位和动作电位是如何形成的呢?这要从神经元的结构说起。

神经元由胞体、树突、轴突和突触四部分组成。

其中,胞体是神经元的代谢中心,负责合成和分解蛋白质;树突是神经元接受信息的部位;轴突是神经元传递信息的部位;突触是连接两个神经元的结构。

在正常情况下,静息状态下的神经元,其细胞膜上的离子泵会维持一定的离子浓度梯度,使得细胞内外的电势差保持在一个稳定的状态。

当神经元受到刺激时,刺激信号会传递到胞体,引起一系列生化反应。

这些反应会导致胞体释放出一种叫做乙酰胆碱的神经递质。

乙酰胆碱会与轴突上的乙酰胆碱受体结合,从而引发一系列的生理过程。

在这个过程中,离子通道会发生开关性的变化。

具体来说,当刺激信号传达到胞体时,离子通道会迅速打开,使得钠离子大量流入轴突;钾离子大量流出胞体。

如何理解静息电位和动作电位的形成机制

如何理解静息电位和动作电位的形成机制

如何理解静息电位和动作电位的形成机制作者:陈学大来源:《中学课程辅导·教师教育》 2018年第10期高三教学复习中,“兴奋在神经纤维上的传导”是一个必讲内容,其中“静息电位和动作电位的形成机制”在书上(人教版必修三第18页)以小字呈现,且描述极为简略,学生看后还是不甚清楚,而高考命题又涉及此内容,如:如2009山东卷第8题和2010湖南卷第5题等,如何让学生彻底弄懂,在考试中遇到类似问题心里有底?首先它就要求老师必须清楚。

我参阅了《普通生物学》及《人体及动物生理学》等书籍,综述如下,供同行们参考。

一、静息电位(Resting Potential)指细胞未受刺激时,存在于细胞膜内外两侧的外正内负的电位差。

也称跨膜静息电位。

(1)形成机制正常时胞内的K+浓度和有机负离子(A-)浓度比胞外高,而胞外的Na+浓度和CL-浓度比胞内高。

这种情况下,K+和A-有向膜外扩散的趋势,而Na+和CL-有向膜内扩散的趋势。

但细胞膜在安静时,对K+的通透性较大,对Na+和CL-的通透性很小,而对A-几乎不通透。

因此,K+顺浓度梯度由膜内扩散到膜外使膜外具有较多的正电荷,有机负离子A-由于不能透过膜而使膜内具有较多的负电荷。

造成了膜外变正、膜内变负的极化状态。

由K+扩散到膜外造成的外正内负的电位差,将成为阻止K+外移的力量,而随K+外移的增加,阻止K+外移的电位差也增大。

当促使K+外移的浓度差和阻止K+外移的电位差这两种力量达到平衡时,经膜的K+净通量为零。

此时,膜两侧的电位差就稳定于某一数值不变,此电位差称为K+的平衡电位,神经细胞膜的静息电位在数值上接近于K+的平衡电位。

(2)静息电位值的大小及影响因素静息电位是一个相对静止的膜电位固定值,不同细胞的数值不同。

如:哺乳动物神经细胞的静息电位为-70mV,骨骼肌细胞为-90mV。

静息电位主要是由K+向膜外扩散而造成的。

如果人工改变细胞膜外K+的浓度,当K+浓度增高时测得的静息电位值减小,反之则增大。

动作电位静息电位

动作电位静息电位

动作电位静息电位1. 什么是动作电位和静息电位?动作电位和静息电位是神经元细胞膜的两种电位状态。

动作电位是指神经元细胞膜在受到足够强度的刺激后,发生短暂的电压变化的过程。

而静息电位则是指神经元细胞膜在没有受到任何刺激时的电压状态。

2. 动作电位的过程当神经元受到足够强度的刺激时,细胞膜内外的离子浓度发生瞬间变化,导致细胞膜内外电位的反转。

这种电位反转的过程被称为动作电位。

动作电位的过程可以分为四个阶段:- 静息状态:细胞膜内外的离子浓度分布保持不变,细胞膜内外电位差为-70mV左右。

- 起始阶段:细胞膜受到刺激后,细胞膜内外的离子浓度发生瞬间变化,导致细胞膜内外电位差快速反转到+30mV左右。

- 上升阶段:细胞膜内外电位差继续上升到峰值,此时细胞膜内外电位差为+30mV左右。

- 下降阶段:细胞膜内外电位差开始迅速下降,恢复到静息状态。

3. 静息电位的维持静息电位的维持与神经元细胞膜内外的离子浓度分布有关。

在静息状态下,神经元细胞膜内外的离子浓度分布如下:- 细胞内钾离子(K+)浓度高,细胞外钠离子(Na+)浓度高。

- 细胞内氯离子(Cl-)浓度低,细胞外氯离子(Cl-)浓度高。

这种离子分布的差异导致了细胞膜内外的电位差,使得细胞膜内电位为负电荷,外电位为正电荷。

这种静息状态的电位差通常为-70mV左右。

维持这种静息状态需要通过细胞膜上的离子通道和离子泵来实现。

4. 总结动作电位和静息电位是神经元细胞膜的两种电位状态。

动作电位指细胞膜在受到足够强度的刺激后,发生短暂的电压变化的过程。

静息电位指细胞膜在没有受到任何刺激时的电压状态。

神经元细胞膜内外离子浓度分布的差异是维持静息电位的主要原因。

通过细胞膜上的离子通道和离子泵来调节离子浓度分布,从而维持静息状态。

动作电位和静息电位的研究有助于人们更好地理解神经元的工作原理,为治疗神经系统相关疾病提供参考。

动作电位恢复静息电位

动作电位恢复静息电位

动作电位恢复静息电位动作电位复极化后出现超极化,此时膜内电压低于-70mv,书上说此时钠钾泵发挥作用,将3个钠离子运出,2个钾离子运入,这样逐渐恢复-70mv的状态,但是出去的钠离子多,进来的钾离子少不是加重了膜内的负电荷吗,为什么能够恢复-70mv2014-12-25 17:32提问者采纳这个问题我总结并发表过,我给你解释,下附相应解释,不理解的大家一起探讨这个问题。

静息电位与动作电位一、静息电位1、概念表述静息电位是指组织细胞静止状态下存在于膜内外两侧的电位差,呈外正内负的极化状态。

其值常为数十毫伏,并稳定在某一固定水平。

2、产生条件(1)细胞膜内外离子分布不平衡。

就正离子来说,膜内K+浓度较高,约为膜外的30倍。

膜外Na+浓度较高约为膜内的10倍。

从负离子来看,膜外以Cl-为主,膜内则以大分子有机负离子(A-)为主。

(2)膜对离子通透性的选择。

在静息状态下,膜对K+的通透性大,对Na+的通透性则很小(Na+通道关闭),对膜内大分子A-则无通透性。

3、产生过程K+顺浓度差向膜外扩散,膜内A-因不能透过细胞膜被阻止在膜内。

致使膜外正电荷增多,电位变正,膜内负电荷相对增多,电位变负,这样膜内外便形成一个电位差。

当促使K+外流的浓度差和阻止K+外流的电位差这两种拮抗力量达到平衡时,使膜内外的电位差保持一个稳定状态,即静息电位。

这就是说,细胞内外K+的不均匀分布和安静状态下细胞膜主要对K+有通透性,是使细胞能保持内负外正的极化状态的基础,所以静息电位又称为K+的平衡电位。

二、动作电位1、概念表述动作电位是指可兴奋细胞受到阈或阈上刺激时,在静息电位的基础上发生的一次快速扩布性电位变化。

典型的神经动作电位的波形由峰电位、负后电位和正后电位组成。

2、产生条件(1)细胞膜内外离子分布不平衡。

细胞内外存在着Na+的浓度差,Na+在细胞外的浓度是细胞内的13倍之多。

(2)膜对离子通透性的选择。

细胞受到一定刺激时,膜对Na +的通透性先增加,对K+的通透性后增加。

动作电位和静息电位

动作电位和静息电位

动作电位和静息电位是生理学上描述神经细胞功能状态的重要概念。

动作电位指的是
神经元在收到外界刺激后产生的电位变化,它是一种瞬时的电信号传递,可以用来传递神经信号;静息电位指的是神经元在没有任何刺激的情况下产生的电位变化,它是一种持续的电信号传递,可以用来维持神经元的基础功能。

动作电位的构成主要来自于膜电位的变化,膜电位是由离子通道的选择性渗透决定的,它的变化反映了细胞内外离子的平衡状态的变化;静息电位的构成主要来自于安定电位的变化,它是由膜蛋白电位决定的,它的变化反映了细胞内外离子的偏置态的变化。

动作电位主要由膜电位变化产生,它是一种瞬时的电信号传递,可以用来传递神经信号;静息电位主要由安定电位变化产生,它是一种持续的电信号传递,可以用来维持神经
元的基础功能。

动作电位变化可以使神经元间的电信号传递得以实现,而静息电位则可以维持神经元内部的稳定性。

因此,动作电位和静息电位都是神经元功能的重要指标,为神经元功能的研究提供了重要的参考依据。

静息电位和动作电位的概念及形成机制

静息电位和动作电位的概念及形成机制

静息电位和动作电位的概念及形成机制一、静息电位的概念静息电位是指在神经元或肌细胞处于静息状态时,细胞内外的电位差。

在细胞膜内外侧产生的电压差异,形成静息电位。

一般情况下,静息电位为-70mV左右。

静息电位的存在,是生物神经元和肌肉细胞能够进行正常信号传导和兴奋性行为的重要基础。

静息电位是由细胞质内、外离子浓度梯度和细胞膜通透性共同作用的结果。

在静息状态下,细胞质内部存在高浓度的钾离子,而细胞外则存在高浓度的钠离子和氯离子。

细胞膜对钠、钾和氯离子的通透性不同,导致了这种电位差的形成。

静息电位的维持对于细胞的正常功能和生理活动至关重要。

它不仅能够维持细胞内外离子平衡,还能够保证细胞的正常兴奋和传导。

二、动作电位的概念动作电位是指在细胞兴奋状态下,细胞膜内外突然出现的短暂电压变化。

动作电位是神经元和肌肉细胞进行信号传导的基本单位,是产生神经冲动和肌肉收缩的物理基础。

动作电位的形成需要经历一系列的复杂过程。

当细胞受到刺激而兴奋时,细胞膜上的离子通道会发生开放和关闭的变化,导致钠离子快速内流和钾离子慢速外流。

这一过程导致了细胞膜内外的电位迅速变化,从而产生了动作电位。

动作电位具有快速传导、一次触发和不衰减的特点,能够保证神经信号和肌肉收缩的快速、准确和有效传导。

三、静息电位和动作电位的形成机制1. 静息电位的形成机制静息电位的形成受到静息时细胞膜的通透性和离子浓度梯度的影响。

细胞膜上的钠-钾泵能够使细胞内钠离子浓度降低,细胞内外存在电学和化学的离子浓度梯度。

细胞膜上的钠和钾通道保持半开状态,使得细胞膜内外的离子保持动态平衡,从而维持了静息电位的稳定状态。

2. 动作电位的形成机制动作电位的形成涉及到离子通道的快速开放和关闭。

当细胞受到刺激而兴奋时,细胞膜上的钠通道会迅速开放,使得钠离子快速内流,细胞膜内外的电位快速升高;随后钠通道关闭,钾通道开放,钾离子慢速外流,使得细胞膜内外的电位迅速下降和恢复。

这一过程形成了动作电位。

高中生物校本课程-动作电位和静息电位的形成

高中生物校本课程-动作电位和静息电位的形成
动作电位和静息电位的形成
一、细胞膜上的转运蛋白
• 在离子通道打开时,其通透途径是对膜两侧同时开放的; • 通过离子通道运输的底物只能通过电化学浓度梯度运输; • 离子通道的转运速度既可以是快,也可以慢。
离子通道的特征
• (1)离子选择性 • 决定因素:通道内的孔径、电荷 • 阴离子与阳离子: • Na+通道、K+通道、Cl-通道、Ca2+通道 • 特异性与非特异性 • Na+通道:Na +/NH4+/ 少量K+
• 神经细胞约-70 mV Nhomakorabea• 骨骼肌和心肌细胞约- 90 mV • 平滑肌细胞约- 55 mV • 红细胞约-10 mV
神经细胞: - 70 mV -70mV-→-90mV RP增大 -70 mV→- -50 mV RP减小
静息电位的产生机制
2、动作电位
③动作电位发生机制
欢迎大家批评指正!
• (2)门控特性 • 门控:开放状态,关闭状态 • 电压门控、配体门控、光控、温度敏感门控 • 非门控通道(漏通道)
电压门控的K+通道
如:突触后膜上钠离子 通道 允许不同离子进入,但 主要是钠离子。 是不是大量神经递质才 能让大量的离子通道打 开呢?
• 与底物结合,交替开放,不会同时开放。 • 载体蛋白可以介导特异性底物顺浓度梯度转运和逆浓度梯度转运。 • 特异性底物逆浓度梯度转运消耗的能量来自于化学反应(ATP)、光
或电化学势能(协同转运)
载体蛋白的活 动是细胞膜内 外产生离子浓 度差的基础。
二、静息电位和动作电位
• 1、静息电位(RP):
• ①概念:是指细胞在安静状态下(未受刺激时) ,存在于细胞膜两 侧的外正内负的电位差。

细胞的生物电现象静息电位及动作电位

细胞的生物电现象静息电位及动作电位
小的电位变化过程。
二、生物电现象的产生机制
(一)化学现象
要在膜两侧形成电位差,必须具备两个条件:①膜两侧的离子分布不均,存在 浓度差;
②对离子有选择性通透的膜。
K K K 膜两侧[ +]差是促使 +扩散的动力,但随着 +的不断扩散,膜两侧不断 K K 加大的电位差是 +继续扩散的阻力,当动力和阻力达到动态平衡时, +的净
细胞的生物电现象
(一)静息电位(resting potential RP)
1.概 念 :细胞处于相对安静状态时,细胞膜内外存在的电位差。
2.RP实验现象:
3.证明RP的实验:
(甲)当A、B电极都位于细胞膜外,无 电位改变,证明膜外无电位差。
(乙)当A电极位于细胞膜外, B电极插 入膜内时,有电位改变,证明膜内、外 间有电位差。
②膜在受到阈或阈上刺激而兴奋时,对离子的通透性增加:
即电压门控性Na+通道激活而开放。
2.AP的产生机制: 当细胞受到刺激
细胞膜上少量Na+通道激活而开放 Na+顺浓度差少量内流→膜内外电位差↓→局部电位
当膜内电位变化到阈电位时→Na+通道大量开放 Na+顺电化学差和膜内负电位的吸引→再生式内流 膜内负电位减小到零并变为正电位(AP上升支) Na+通道关→Na+内流停+同时K+通道激活而开放 K+顺浓度差和膜内正电位的吸引→K+迅速外流 膜内电位迅速下降,恢复到RP水平(AP下降支)
主要 离子
离子浓度
(mmol/L)
膜内 膜外
膜内与膜 外离子比 例
膜对离子通 透性
Na+ 14
142 1:10 通透性很小

静息电位和动作电位的特点、成因及影响因素分析

静息电位和动作电位的特点、成因及影响因素分析

2022年高考生物总复习:静息电位和动作电位的特点、成因
及影响因素分析
1.(2015·经典高考)血液中K+浓度急性降低到一定程度会导致膝跳反射减弱,下列解释合理的是()
A.伸肌细胞膜的动作电位不能传播到肌纤维内部
B.传出神经元在动作电位形成时膜对K+的通透性增大
C.兴奋在传入神经元传导过程中逐渐减弱
D.可兴奋细胞静息膜电位的绝对值增大
解析静息电位的产生主要是K+的外流所致,血液中K+浓度急性降低,使神经细胞外K+浓度下降,K+外流增多,静息膜电位绝对值增大,当受刺激时,就可能导致Na+内流不足以引起内负外正电位的逆转或动作电位值偏小的情况发生,D正确。

答案D
2.(2016·河南八市重点高中一模,18)利用不同的处理使神经纤维上膜电位产生不同的变化,处理方式及作用机理如下:①利用药物Ⅰ阻断Na+通道;②利用药物Ⅱ阻断K+通道;③利用药物Ⅲ打开Cl-通道,导致Cl-内流;④将神经纤维置于低Na+溶液中。

上述处理方式与下列可能出现的结果对应正确的是()
A.甲—①,乙—②,丙—③,丁—④
B.甲—④,乙—①,丙—②,丁—③
C.甲—③,乙—①,丙—④,丁—②
D.甲—④,乙—②,丙—③,丁—①
解析利用药物Ⅰ阻断Na+通道,膜外钠离子不能内流,导致不能形成动作电位,①对应图乙;利用药物Ⅱ阻断K+通道,膜内钾离子不能外流,兴奋过后的动作
电位不能恢复为静息电位,②对应图丙;利用药物Ⅲ打开Cl-通道,导致Cl-内流,加固了内负外正的静息电位,不能形成动作电位,③对应图丁;将神经纤维置于低Na+溶液中,受刺激后膜外钠离子内流少,形成的动作电位幅度低,④对应图甲。

答案B
膜电位变化曲线分段解读。

浅谈静息电位和动作电位的产生机制

浅谈静息电位和动作电位的产生机制

浅谈静息电位和动作电位的产生机制静息电位和动作电位是神经细胞的两个重要电生理现象。

静息电位是神经细胞在静息状态下的稳定电位,而动作电位是神经细胞在受到刺激时产生的快速和短暂的电位变化。

首先,我们来讨论静息电位的产生机制。

静息电位是由神经细胞膜上的离子通道的开放和关闭所调控的。

在静息状态下,细胞膜上存在不对称分布的离子,包括钠离子(Na+)、钾离子(K+)、氯离子(Cl-)等。

此外,细胞内还存在一定数量的带负电的大分子离子,如有机阴离子等。

静息电位的维持主要依靠细胞膜上的离子泵和离子通道。

细胞膜上的钠钾泵能将3个Na+离子排出细胞,同时将2个K+离子进入细胞,从而保持钠离子在细胞外的浓度较高,而钾离子在细胞内的浓度较高。

此外,细胞膜上还存在钾离子泄漏通道,这些通道对钾离子通透性较高,使得少量的钾离子持续从细胞内泄漏到细胞外。

细胞内带负电的大分子离子也能够贡献一定的负电荷。

综合上述过程,细胞膜内外的离子浓度差和带负电的大分子离子导致了细胞膜的静息电位维持在约-70mV的水平。

这种细胞膜的稳定电位对细胞的正常功能发挥起到了重要的作用。

接下来,我们来讨论动作电位的产生机制。

动作电位是神经细胞受到足够强度的刺激后产生的电位变化。

它主要由细胞膜上的离子通道的开放和关闭所驱动。

当神经细胞受到足够强度的刺激时,首先会通过刺激导致钠离子通道的迅速开放。

这种钠离子通道被称为“电压门控钠通道”。

它的开放导致细胞内钠离子大量流入细胞,使膜电位迅速从静息电位-70mV变为正值,即达到一个峰值,也被称为“上升期”。

随后,由于细胞内钠离子浓度持续增加,反向静电力开始逐渐抵消电压门控钠通道的开放,同时与之相对应的是钾离子通道的开放。

这些钾离子通道被称为“延迟整流钾通道”。

它的开放使得钾离子从细胞内流出,从而逐渐还原膜电位。

当膜电位达到一定的临界值,延迟整流钾通道开始关闭,而细胞膜上的“重新整流钾通道”会迅速开放。

这种重新整流钾通道的开放导致大量的钾离子从细胞内流出,使膜电位快速超过正常值,然后又快速还原。

静息电位和动作电位的概念

静息电位和动作电位的概念

静息电位和动作电位的概念1. 引言在我们这条生动的生命之河中,神经细胞就像是一群忙碌的小邮差,负责把信息快速送到每个角落。

今天,我们就来聊聊这其中的两个重要角色:静息电位和动作电位。

这两个概念虽然听起来有些复杂,但其实它们就像是我们日常生活中的调皮小伙伴,各自扮演着重要的角色,让我们的身体能够正常运转。

2. 静息电位的概念2.1 静息电位是什么?静息电位就像是一个放松的状态,当神经细胞没有在发送信号时,它们就处于这种状态。

这就好比你在沙发上舒舒服服地看电视,没什么大事发生。

此时,细胞内部的负电荷与外部的正电荷形成了一种微妙的平衡,像是在进行一场无声的“电荷对抗赛”。

其实,静息电位一般是70毫伏,这个数字可能听起来有点无聊,但它却是神经信号传递的基础。

2.2 静息电位的形成那么,静息电位是怎么形成的呢?这就得提到细胞膜上那些可爱的离子通道了。

钠离子(Na+)和钾离子(K+)就像是我们的“家里蹲”,平时待在各自的“房间”里。

钠离子在外面,钾离子在里面,但静息状态下,钾离子偏爱留在细胞内部,所以内部是负电的。

简单来说,静息电位就像是一个随时准备出门的朋友,虽然现在在家,但只要有需要,它就能立刻出发。

3. 动作电位的概念3.1 动作电位是什么?一旦有信号传来,静息电位就会转变为动作电位,简直就像是开关被打开了一样!动作电位可以理解为一场狂欢派对,细胞膜的离子通道们开始“狂欢”,大量钠离子涌入,细胞内瞬间变得超级正电。

这一过程就像是火箭发射,短短几毫秒内,细胞就会从70毫伏飙升到+30毫伏,让你惊叹不已。

3.2 动作电位的传播动作电位就像是波浪一样,一旦形成,就会沿着神经纤维不断传播。

这就像在海边玩水,第一波涌来,第二波接踵而至,没完没了!这种波动确保了信息能够快速到达大脑,让我们反应灵敏。

这就是为什么我们能在看到热汤时迅速抽回手来,哦,那可是真刺激啊!4. 总结静息电位和动作电位就像是生活中的两种状态:放松和激动。

静息电位和动作电位产生原理

静息电位和动作电位产生原理

静息电位和动作电位产生原理静息电位产生原理是细胞静息时在膜两侧存在电位差。

动作电位的产生原理是细胞外钠离子的浓度比细胞内高的多,它有从细胞外向细胞内扩散的趋势。

1、静息电位静息电位是指细胞未受刺激时,存在于细胞膜内外两侧的外正内负的电位差。

它是一切生物电产生和变化的基础。

当一对测量微电极都处于膜外时,电极间没有电位差。

在一个微电极尖端刺入膜内的一瞬间,示波器上会显示出突然的电位改变,这表明两个电极间存在电位差,即细胞膜两侧存在电位差,膜内的电位较膜外低。

该电位在安静状态始终保持不变,因此称为静息电位。

几乎所有的动植物细胞的静息电位膜内均较膜外低,若规定膜外电位为零,则膜内电位即为负值。

大多数细胞的静息电位在-10~-100mV之间。

2、动作电位动作电位是指可兴奋细胞受到刺激时在静息电位的基础上产生的可扩布的电位变化过程。

动作电位由峰电位(迅速去极化上升支和迅速复极化下降支的总称)和后电位(缓慢的电位变化,包括负后电位和正后电位)组成。

峰电位是动作电位的主要组成成分,因此通常意义的动作电位主要指峰电位。

动作电位的幅度约为90~130mV,动作电位超过零电位水平约35mV,这一段称为超射。

神经纤维的动作电位一般历时约0.5~2.0ms,可沿膜传播,又称神经冲动,即兴奋和神经冲动是动作电位意义相同。

3、形成条件①细胞膜两侧存在离子浓度差,细胞膜内钾离子浓度高于细胞膜外,而细胞外钠离子、钙离子、氯离子高于细胞内,这种浓度差的维持依靠离子泵的主动转运。

(主要是钠-钾泵(每3个Na+流出细胞,就有2个K+流入细胞内。

即:Na+:K+=3:2)的转运)。

②细胞膜在不同状态下对不同离子的通透性不同,例如,安静时主要允许钾离子通透,而去极化到阈电位水平时又主要允许钠离子通透。

③可兴奋组织或细胞受阈刺激或阈上刺激。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“静息电位”与“动作电位”的高中解读
这部分知识较难掌握,这里是高中知识的衍生,同学们可以了解。

一、静息电位
1、概念表述
静息电位是指组织细胞静止状态下存在于膜内外两侧的电位差,呈外正内负的极化状态。

2、产生条件
(1)细胞膜内外离子分布不平衡。

就正离子来说,膜内K+浓度较高,约为膜外的30倍。

膜外Na+浓度较高约为膜内的10倍。

从负离子来看,膜外以Cl-为主,膜内则以大分子有机负离子(A-)为主。

(2)膜对离子通透性的选择。

在静息状态下,膜对K+的通透性大,对Na+的通透性则很小(Na+通道关闭),对膜内大分子A-则无通透性。

3、产生过程
K+顺浓度差向膜外扩散,膜内A-因不能透过细胞膜被阻止在膜内。

致使膜外正电荷增多,电位变正,膜内负电荷相对增多,电位变负,这样膜内外便形成一个电位差。

当促使K+外流的浓度差和阻止K+外流的电位差这两种拮抗力量达到平衡时,使膜内外的电位差保持一个稳定状态,即静息电位。

这就是说,细胞内外K+的不均匀分布和安静状态下细胞膜主要对K+有通透性,是使细胞能保持内负外正的极化状态的基础,所以静息电位又称为K+的平衡电位。

二、动作电位
1、概念表述
动作电位是指可兴奋细胞受到刺激时,在静息电位的基础上发生的一次快速扩布性电位变化。

2、产生条件
(1)细胞膜内外离子分布不平衡。

细胞内外存在着Na+浓度差,Na+在细胞外的浓度是细胞内的13倍之多。

(2)膜对离子通透性的选择。

细胞受到一定刺激时,膜对Na+的通透性增加
3、产生过程
(1)去极化:细胞受到阀上刺激→细胞外Na+顺浓度梯度流人细胞内→当膜内负电位减小到阈电位时Na+通道全部开放→Na+顺浓度梯度瞬间大量内流(正反馈倍增)→细胞内正电荷增加→膜内负电位从减小到消失,进而出现膜内正电位→膜内正电位增大到足以对抗由浓度差所致的Na+内流→膜两侧电位达到一个新的平衡点。

该过程主要是Na+内流形成的平衡电位,可表示为动作电位模式图的上升支。

(2)复极化:达峰值时Na+通道迅速关闭而失活→Na+内流停止→K+通道被激活→膜对K+的通透性增加→K+借助于浓度差和电位差快速外流→膜内电位迅速下降(负值迅速上升)→电位恢复静息值。

该过程是K+外流形成的,可表示为动作电位模式图的下降支。

(3)Na+-K+泵转运:当膜复极化结束后,有一部分Na+在去极化中扩散到细胞内,一部分K+在复极过程中扩散到细胞外。

这样细胞膜上Na+-K+泵就会被激活,并主动将膜内的Na+泵出膜外,同时把流失到膜外的K+泵回膜内,以恢复兴奋前的离子分布的浓度。

相关文档
最新文档