正弦波三角波函数发生器
实验六-方波—三角波—正弦波函数发生器
实验六-方波—三角波—正弦波函数发生器六.方波-三角波-正弦波函数发生器一、实验目的函数信号发生器是一种可以同时产生正弦波、三角波和方波信号电压波形的电路,调节外部电路参数,还可以获得占空比可调的锯齿波、阶梯波等信号的电压波形。
本实验主要是掌握方波-三角波-正弦波函数发生器的设计方法。
二、设计任务要求频率范围:100~1000Hz,1000~10000Hz输出电压:方波V pp≤24V三角波V pp=6V正弦波V pp=1V波形特征:方波t r<100μs三、实验原理本实验方波-三角波-正弦波的设计电路如下图所示:由比较器、积分器和反馈网络组成振荡器,比较器所产生的方波通过积分器变成三角波,最后利用差分放大器传输特性曲线,将三角波转换成正弦波。
具体的电路设计如下图所示,三角波-方波产生电路是把比较器与积分器首尾相连,而三角波-正弦波的变换电路采用的是单端输入-单端输出差动放大电路输入输出方式。
下面将仔细分析两个子电路。
①方波-三角波产生器方波-三角波产生器有很多种,此次试验是采用把比较器和积分器首尾相连构成方波-三角波产生器的方式,具体分析电路如下所示:集成运放A 2的输出信号三角波V O2为A 1的输入信号V 1,又因为A1的反相端接地,可得三角波输出V O2的峰值V O2m 为V O2m =ZP V R R R 132+式中的V Z 为方波的峰值电压。
因积分电路输出电压从0上升到V 1m 所需时间为1/4T,故RCT V dt R V CV R R R V Z TZ Z P MO 4141322==+=⎰其中R=R 4+R P2 ()C R R R R R T p p 132424++=从上述分析关系可得,调节R P2和电容C 的大小可改变振荡频率,改变R 2/(R P1+R 3)的比值可调节三角波的峰值。
② 三角波-正弦波产生电路三角波-正弦波产生电路的设计简图如下所示:在电路两边对称的理想条件下,流过理想的恒流源R E 的电流I O 不会随差模输入电压而变化,晶体管工作在放大区时,它的集电极电流近似为: TBE V V S E C e I I I 1111=≈α TBE V V S E C eI I I 2222=≈α假设α≈1时, )1()1(12112121TBE BE V V VC C C C C C O eI I I I I I I -+=+=+≈由于V id =V BE1-V BE2 则TidV V OC eI I -+=11同理Tid V V OC eI I+=12分析表明,如果差分电路的差模输入V id 为三角波,则I c1与I c2的波形近似为正弦波,因为单端输出电压V o3也近似为正弦波,实现了三角波-正弦波变换。
模电课设——三角波正弦波函数发生器
课程设计任务书学生姓名:肖伟翔专业班级:电信1002班指导教师:刘运苟工作单位:信息工程学院题目: 正弦波-三角波-方波函数发生器初始条件:具备模拟电子电路的理论知识;具备模拟电路基本电路的设计能力;具备模拟电路的基本调试手段;自选相关电子器件;可以使用实验室仪器调试。
要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1、频率范围三段:10~100Hz,100 Hz~1KHz,1 KHz~10 KHz;2、正弦波Uopp≈3V,三角波Uopp≈5V,方波Uopp≈14V;3、幅度连续可调,线性失真小;4、安装调试并完成符合学校要求的设计说明书;5、设计电源;6、焊接:采用实验板完成,不得使用面包板。
时间安排:十六周一周,其中3天硬件设计,2天硬件调试指导教师签名:年月日系主任(或责任教师)签名:年月日目录一.仿真软件简介 (3)二.题目分析 (4)1. 方案一 (4)1.1 电路组成和工作原理 (4)1.2 电路设计与计算 (4)1.3 仿真波形 (6)2. 方案二 (10)2.1 电路组成和工作原理 (10)2.2 电路设计与计算 (11)2.3 仿真波形 (12)三.方案选择 (16)四.电源设计 (17)五.电路焊接 (17)六.系统测试 (18)七.心得体会 (23)八.参考文献 (23)九.成绩评定表 (24)一.仿真软件简介Multisim是美国国家仪器(NI)有限公司推出的以Windows为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。
它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。
NI Multisim软件是一个专门用于电子电路仿真与设计的EDA工具软件。
作为 Windows 下运行的个人桌面电子设计工具,NI Multisim 是一个完整的集成化设计环境。
NI Multisim计算机仿真与虚拟仪器技术可以很好地解决理论教学与实际动手实验相脱节的这一问题。
函数信号发生器(三角波,梯形波,正弦波)
电子课程设计题目:函数信号发生器的设计学院:机械工程学院班级:测控技术与仪器071班作者:学号:指导教师:2010年7月7日摘要:该函数发生器采用AT89S51 单片机作为控制核心,外围采用数字/模拟转换电路(DAC0832)、运放电路(1458N)等。
电路采用AT89S51单片机和一片DAC0832数模转换器组成函数信号发生器,在单片机的输出端口接DAC0832进行DA转换,再通过运放进行波形调整,最后输出波形接在示波器上显示。
它具有价格低、性能高和在低频范围内稳定性好、操作方便、体积小、耗电少等特点。
由于采用了1458N运算放大器,使其电路更加具有较高的稳定性能,性能比高。
此电路清晰,出现故障容易查找错误,操作简单、方便。
本设计主要应用AT89S51作为控制核心。
硬件电路简单,软件功能完善,控制系统可靠,性价比较高等特点,具有一定的使用和参考价值。
关键词:AT89S51、DAC0832、波形调整【Abstract】: For special requirement the function generator usingAT89S51 microcontroller as the control, external analog / digital conversion circuit (DAC0832), op-amp circuit (1458C) and so on. AT89S51 microcontroller circuit and an integral function DAC0832 digital-signal generator, the microcontroller output port connected to DA converter DAC0832, and then wave through the op amp to adjust the final output connected to the oscilloscope waveform display. It has a low cost, high performance and low frequency range, good stability, easy operation, small size, low power consumption and so on. As a result of 1458G operational amplifier circuit to a more stable performance with high performance is high. The circuit clear, easy to find failure error, simple and convenient.The design of the main application AT89S51 as the control center. Simple hardware circuit, software, functional, and reliable control system, high cost performance characteristics, has some use and reference.Key words:AT89S51, DAC0832, waveform adjust目录1、设计概述1.1、设计任务----------------------------------4 1.2、方案选择与论证----------------------------41.3、系统设计框图------------------------------52、硬件电路设计--------------------------------53、软件系统设计3.1、阶梯波设计思想及流程图--------------------133.3、三角波和正弦波设计思想--------------------144、系统软件仿真4.1、protues仿真原理图------------------------154.2、仿真波形图--------------------------------165、课程设计心得体会---------------------------176、参考文献------------------------------------177、附录附录一:protel原理图----------------------------18 附录二:PCB图 ----------------------------------18 附录三:焊接后的电路板实物图---------------------19 附录四:实际电路板调试后发生阶梯波图-------------19附录五:实验源程序-------------------------------191.1设计任务与要求:1采用AT89S51及DAC0832设计函数信号发生器;2输出信号为正弦波或三角波或阶梯波;3输出信号频率为100Hz,幅度-5V—+5V可调;4必须具有信号输出及外接电源、公共地线接口,程序在线下载接口。
定时器产生三种波形发生器
定时器产生三种波形发生器文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]目录摘要各种电器设备要正常工作,常常需要各种波形信号的支持。
电器设备中常用的信号有正弦波、矩形波、三角波和锯齿波等。
在电器设备中,这些信号是由波形产生和变换电路来提供的。
波形产生电路是一种不需外加激励信号就能将直流能源转化成具有一定频率、一定幅度和一定波形的交流能量输出电路,又称为振荡器或波形发生器。
在生产实践和科技领域中有着广泛的应用。
各种波形曲线均可以用三角函数方程式来表示。
能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。
波形发生器通过与波形变换电路相结合,它能产生正弦波、矩形波、三角波和阶梯波等各种波形,能满足现代测量、通信、自动控制和热加工、音视频设备及数字系统等对各种信号源的需求。
例如在通信、广播、电视系统中,都需要射频(高频)发射,这里的射频波就是载波,把音频(低频)、视频信号或脉冲信号运载出去,就需要能够产生高频的振荡器。
在工业、农业、生物医学等领域内,如高频感应加热、熔炼、淬火、超声诊断、核磁共振成像等,都需要功率或大或小、频率或高或低的振荡器等。
关键字:方案确定、参数计算、信号、发生器等。
第一章方案提出三种波形都是比较简单且常见的波形,产生的方法由很多种,可以先产生方波,然后得到三角波和正弦波,也可以先得到正弦波,然后翻过来再输出另外两种波形;可以用集成芯片,同时也可以用运用各种元器件来实现振荡电路。
(1)利用专用直接数字合成DDS芯片的函数发生器。
(2)可以选用专门的函数信号发生器,如8038(3)由555定时器所构成的多谐振动器产生方波, 方波经过积分器的作用产生三角波,三角波在经过差分放大电路的非线性转换为正弦波。
比较以上几种方案:(1)方案比较简单同时也能产生任意波形并达到很高的频率。
但成本较高。
(2)它们虽然能够甚好的实现波形的产生但是功能较少,太单一。
函数发生器的工作原理
函数发生器的工作原理
函数发生器的工作原理:
①函数发生器是一种能够产生各种波形信号如正弦波方波三角波等的电子仪器广泛应用于科研教学维修测试等领域;
②核心部件为振荡电路其通过控制晶体管场效应管等开关元件的导通截止实现电流电压的周期性变化;
③在生成正弦波时常用方法之一是LC振荡器即利用电感L与电容C组成的谐振回路产生稳定的正弦波信号;
④方波产生通常采用施密特触发器该电路具有两个稳态当输入信号超过一定阈值时会自动翻转至另一状态;
⑤三角波则可以通过对积分电路充电放电来实现具体做法是在RC电路两端加上阶跃电压形成斜坡信号;
⑥为了获得所需频率幅度的波形信号还需要对上述基本波形进行调制滤波放大等处理;
⑦数字合成技术是现代函数发生器中常用的一种方式通过DAC 数模转换器将存储于内存中的波形数据转换成连续变化的模拟信号;
⑧用户界面部分包括按键显示屏等允许使用者方便地设置频率波形类型输出电平等参数;
⑨高端型号还配备有USB GPIB等接口支持与计算机连接实现远程控制波形编辑等功能;
⑩在实际应用中为确保信号纯净度减少噪声干扰设计时需注意电源滤波PCB布局等方面问题;
⑪通过对函数发生器工作原理的理解可以帮助我们更好地利用这一工具进行电路调试信号分析等工作;
⑫总结随着技术进步出现了许多新型号的函数发生器它们不仅功能强大而且操作更加简便。
方波-三角波-正弦波函数发生器设计
湖北民族学院课程设计报告课程设计题目课程:电子线路课程设计专业:班级:学号:学生姓名:指导教师:2014年 6 月20 日信息工程学院课程设计任务书2014年6月20日信息工程学院课程设计成绩评定表摘要函数信号发生器是一种能够产生多种波形,如方波、三角波、正弦波的电路。
函数发生器在电路实验和设备检测中具有十分广泛的用途。
通过对函数波形发生器的原理以及构成分析,可设计一个能变换出方波、三角波、正弦波、方波的函数波形发生器。
该系统通过介绍一种电路的连接,实现函数发生器的基本功能。
将其接入电源,并通过在示波器上观察波形及数据,得到结果。
其中电压比较器实现方波的输出,又连接积分器得到三角波,并通过三角波-正弦波转换电路看到正弦波,得到想要的信号。
该系统利用了Protues电路仿真软件进行电路图的绘制以及仿真。
Protues软件结合了直观的捕捉和功能强大的仿真,能够快速、轻松、高效地对电路进行设计和验证。
凭借Protues,可以立即创建具有完整组件库的电路图,并让设计者实现相应的技术指标。
本课题采用集成芯片ICL8038制作方波-三角波-正弦波函数发生器的设计方法,经过protues仿真得出了方波、三角波、正弦波、方波-正弦波转换及三角波-正弦波转换的波形图。
关键词:电源,波形,比较器,积分器,转换电路,低通滤波,Protues目录1引言-------------------------------------------------------------- 51.1课程设计任务------------------------------------------------- 51.2课程设计的目的----------------------------------------------- 51.3课程设计要求------------------------------------------------ 52 任务提出与方案论证------------------------------------------------ 62.1函数发生器的概述--------------------------------------------- 62.2方案论证 --------------------------------------------------- 63 总体设计---------------------------------------------------------- 83.1总电路图----------------------------------------------------- 83.2 电路仿真与调试技术------------------------------------------ 94 详细设计及仿真--------------------------------------------------- 10 4.1 方波发生电路的工作原理与运放741工作原理-------------------- 10 4.2方波—三角波产生电路的工作原理------------------------------ 104.3三角波—正弦波转换电路的工作原理---------------------------- 114.4整体仿真效果图---------------------------------------------- 135 总结------------------------------------------------------------- 14 参考文献----------------------------------------------------------- 151引言现在世界中电子技术和电子产品的应用越加广泛,人们对电子技术的要求也越来越高。
设计能产生方波、三角波、正弦波的函数信号发生器电路
目录1 课程设计的目的与作用 (1)2 设计任务及所用multisim软件环境介绍 (1)2.1设计任务 (1)2.2所用multisim软件环境介绍 (1)2.2.1 Multistim 10简介 (1)2.2.2 Multistim 10主页面 (2)2.2.3 Multistim 10元器件库 (2)2.2.4 Multistim 10虚拟仪器 (3)2.2.5 Multistim 10分析工具 (3)3 电路模型的建立 (3)3.1原理分析 (3)3.2函数信号发生器各单元电路的设计 (5)3.2.1方波产生电路图 (5)3.2.2方波—三角波转换电路图 (5)3.2.3正弦波电路图 (6)3.2.4方波-三角波-正弦波函数发生器整体电路图 (6)4 理论分析及计算 (7)4.1方波发生电路 (7)4.2方波—三角波 (7)4.3正弦波 (7)5 仿真结果分析 (8)5.1仿真结果 (8)5.1.1方波、三角波产生电路的仿真波形如图所示 (8)5.1.2方波—三角波转换电路的仿真 (10)5.1.3三角波—正弦波转换电路仿真 (11)5.1.4方波—三角波—正弦波转换电路仿真 (12)5.2结果分析 (13)6 设计总结和体会 (133)7 参考文献 (144)I1 课程设计的目的与作用1.巩固和加深对电子电路基本知识的理解,提高综合运用本课程所学知识的能力。
2.培养根据课题需要选学参考书籍,查阅手册、图表和文献资料的自学能力。
通过独立思考,深入钻研有关问题,学会自己分析并解决问题的方法。
3.通过电路方案的分析、论证和比较,设计计算和选取元器件;初步掌握简单实用电路的分析方法和工程设计方法。
4.了解与课题有关的电子电路以及元器件的工程技术规范,能按设计任务书的要求,完成设计任务,编写设计说明书,正确地反映设计与实验的成果,正确地绘制电路图等。
5.培养严肃、认真的工作作风和科学态度2 设计任务及所用multisim软件环境介绍2.1 设计任务设计能产生方波、三角波、正弦波的函数信号发生器电路1)输出各种波形工作频率范围:10—100Hz,100—1KHz,1K—10KHz。
基于LM324的方波、三角波、正弦波发生器(含原理图)讲解
课程设计(论文)说明书题目:方波、三角波、正弦波发生器院(系):专业:学生姓名:学号:指导教师:职称:2012年12 月 5 日摘要本文通过介绍一种电路的连接,实现函数发生器的基本功能。
将其接入电源,并通过在显示器上观察波形及数据,得到结果。
电压比较器实现方波的输出,又连接积分器得到三角波,并通过差分放大器电路得到正弦波,得到想要的信号。
NI Multisim 软件结合了直观的捕捉和功能强大的仿真,能过快速、轻松、高效地对电路进行设计和验证。
凭借NI Multisim ,你可以立即创建具有完整组件库的电路图,并利用0工业标准SPICE模拟器模仿电路行为。
本设计就是利用Multisim软件进行电路图的绘制并进行仿真。
关键词:电源、波形、比较器、积分器、MultisimAbstractThis paper introduces a circuit connection, to achieve the basic functions of function generator. Their access to power, and through the display of waveform and data, and get the result.A voltage comparator to achieve a square wave output, in turn connected integrator triangle wave, and through the triangle wave - sine wave conversion circuit to see the sine wave, the desired signal.NI Multisim software combines intuitive capture and powerful simulation, an quickly, easily, efficiently for circuit design and verification. With NI Multisim, you can immediately create a complete component library circuitdiagram, and the use of 0 industry standard SPICE simulator to mimic circuit behavior. This design is the use of Multisim software in circuit diagram and carry out simulationKey words: power, waveform, comparator, an integrator, a converter circuit, Multisim目录1 设计任务---------------------------------------11.1 电路设计任务------------------------------11.2 电路设计要求------------------------------12正弦波、方波发生器的组成------------------------12.1 原理框图----------------------------------12.2 原理分析----------------------------------12.3 放大器功能及管脚图------------------------23 系统中各模块设计--------------------------------23.1方波-三角波-正弦波-------------------------23.1.1方波形仿真图-----------------------------43.1.2三角波仿真电路图以及仿真图---------------43.1.3正弦波仿真图-----------------------------63.1.4实验设计电路图---------------------------63.1.5实验电路PCB图---------------------------73.1.6参数设计---------------------------------73.2元器件型号---------------------------------94 电路调试---------------------------------------104.1 安装正弦波、方波发生器- ------------------134.2调试正弦波、方波发生器---------------------134.3调试结果展示------------------------------134.3.1方波实验波形图--------------------------114.3.2三角波实验波形图------------------------114.3.3正弦波实验波形图------------------------124.3.4实际电路图及实物图展示------------------124.4性能指标测量与误差分析--------------------135 实验总结--------------------------------------13谢辞、参考文献-----------------------------------14一设计任务1.1 任务设计制作一个方波-三角波-正弦波发生器。
函数发生器
一、初步认识函数发生器1.函数发生器概述函数发生器是一种能产生正弦波、三角波、方波、斜波和脉冲波等信号的装置。
常用于科研、生产、维修和实验中。
例如在教学实验中,常使用函数发生器的输出波形作为标准输入信号,接至放大器的输入端,配合测试仪器,例如用示波器定性观察放大器的输出端,判断放大器是否工作正常,否则,通过调整放大器的电路参数,使之工作在放大状态;然后,通过测试仪器(例如用晶体管毫伏表对输出端进行定量测试),从而获得该放大器的性能指标。
2.实验室提供的函数发生器指标实验室使用的是DF1641A型函数信号发生器,主要性能指标如下:频率范围:0.1Hz—2MHz输出波形:方波、三角波、正弦波、正向或负向脉冲波、正向或负向锯齿波方波前沿:≤100ns正弦波失真:10Hz—100kHz ≤1%。
电压输出幅度:≥20V P-P(空载)输出阻抗:50Ω输出衰减:20dB、40dB、60dB。
频率计测量范围:1Hz—10MHz。
电源适应范围:220V±10%,频率:50Hz±2Hz。
功率:10VA。
3.函数发生器使用注意事项1)函数发生器面板上显示的输出频率,仅供参考。
要精确测量输出频率,需要其它设备,比如示波器或者频率计。
2)输出频率的粗略读取,以显示值(数码管)结合频率单位(两个发光二极管,有一个被点亮)读取,与频率波段按键无关。
比如显示12.9,频率单位灯“kHz”点亮,应读为12.9kHz,不需要观察是哪个频段按键被按下。
3)函数发生器的输出端不能被短接。
二、函数发生器的工作原理1.波形发生电路这部分电路由MAX038函数发生器及频率、占空比控制电路组成,波形的选择、频率、占空比的调节都是由单片机来控制。
MAX038是一个产生从1Hz到大于20MHz的低失真正弦波、三角波、锯齿波或矩形(脉冲)波的高频波形发生器,它只要少量的外部元件。
频率和占空比可以由调整电流、电压或电阻来独立控制。
函数信号发生器工作原理
函数信号发生器工作原理函数信号发生器是一种可以产生不同形式的波形信号的电子设备。
它通常用于测试电路或设备的响应,及验证系统的可靠性和性能。
本文将介绍函数信号发生器的工作原理及其基本组成。
1、函数信号发生器的基本原理函数信号发生器使用内部电路产生信号波形,这些波形可以是正弦波、方波、三角波等,也可以是随时间变化的任意模拟波形信号,称为任意波形(Arbitrary Waveform)。
任意波形信号可以通过数字信号处理器(DSP)和相应的算法产生,可以控制其幅值、频率、相位、周期等参数,与旋钮手动调节产生的波形相比,任意波形信号更具有可重复性和精度。
任意波形成为了近年来函数信号发生器的重要特点之一。
函数信号发生器的工作原理基于模拟电路和数字技术的结合。
如下图所示,函数信号发生器的主要部件包括信号发生器主控板、波形发生控制板、数字信号处理器(DSP)和高精度数字模拟转换器(DAC)等。
其中波形发生控制板控制信号发生器主控板的输出电压幅值、频率、相位等参数,主控板再将这些参数转换成数字信号通过DSP和DAC产生电压波形输出到信号输出端。
2、函数信号发生器的基本组成(1)信号发生器主控板信号发生器主控板是函数信号发生器的核心控制板,它负责启动、控制和调节函数信号发生器的各种功能。
主控板内包含高速时钟电路、微控制器、输出放大器等部件,通过接收波形控制板发来的指令从而产生需要的波形输出并控制其电压幅值、频率、相位等参数。
(2)波形发生控制板波形发生控制板负责产生波形控制信号,这些信号包括电压幅值、频率、相位等参数。
它和信号发生器主控板通过数字接口连接,主控板根据波形控制板的指令产生相应的波形信号输出。
(3)数字信号处理器(DSP)数字信号处理器(DSP)是函数信号发生器中的重要部件,它用于实现任意波形信号的产生和输出。
DSP通过高精度滤波器将输入的数字信号处理成需要的波形信号,再将这些信号通过DAC转换成模拟信号输出到信号输出端。
函数信号发生器实训报告
一、实训目的本实训旨在通过设计制作一个可输出方波、三角波、正弦波信号的函数信号发生器,掌握函数信号发生器的设计原理、电路组成、工作过程以及调试方法。
通过本次实训,提高学生对电子电路设计和调试能力的培养,为今后从事相关领域工作打下坚实基础。
二、实训内容1. 设计要求(1)通过集成运算放大器和晶体管查分放大电路设计一个函数信号发生器。
(2)输出波形:方波、三角波、正弦波。
(3)输出频率:1—10KHz范围内连续可调,无明显失真。
(4)方波输出电压Uopp:12V,上升、下降沿小于10us(误差<20%)。
(5)三角波Uopp:8V(误差<20%)。
(6)正弦波Uopp:1V。
2. 设计思路(1)原理框图:函数信号发生器主要由振荡器、频率调节电路、波形变换电路和输出电路组成。
(2)系统的组成框图:① 振荡器:产生稳定的振荡信号。
② 频率调节电路:实现输出频率的连续可调。
③ 波形变换电路:将振荡信号转换为所需的波形。
④ 输出电路:放大输出信号。
(3)分块电路和总体电路的设计:① 振荡器:采用正弦波振荡电路,利用晶体管构成正反馈回路,产生正弦波信号。
② 频率调节电路:采用可变电阻器或电位器,调节振荡频率。
③ 波形变换电路:采用比较器和积分器,将正弦波信号转换为方波信号;利用积分器将方波信号转换为三角波信号。
④ 输出电路:采用差分放大器,提高输出信号的幅度和抗干扰能力。
三、实训过程1. 电路搭建根据设计要求,搭建函数信号发生器的电路。
主要包括振荡器、频率调节电路、波形变换电路和输出电路。
2. 电路调试(1)检查电路连接是否正确,确保无短路、断路等故障。
(2)调整频率调节电路,使输出频率达到设计要求。
(3)观察波形变换电路输出波形,确保输出波形符合设计要求。
(4)调整输出电路,使输出信号幅度达到设计要求。
3. 测试与验证(1)使用示波器观察输出波形,确保输出波形符合设计要求。
(2)使用频率计测量输出频率,确保输出频率达到设计要求。
基于LM324的方波、三角波、正弦波发生器(含原理图)综述
课程设计(论文)说明书题目:方波、三角波、正弦波发生器院(系):专业:学生姓名:学号:指导教师:职称:2012年12 月 5 日摘要本文通过介绍一种电路的连接,实现函数发生器的基本功能。
将其接入电源,并通过在显示器上观察波形及数据,得到结果。
电压比较器实现方波的输出,又连接积分器得到三角波,并通过差分放大器电路得到正弦波,得到想要的信号。
NI Multisim 软件结合了直观的捕捉和功能强大的仿真,能过快速、轻松、高效地对电路进行设计和验证。
凭借NI Multisim ,你可以立即创建具有完整组件库的电路图,并利用0工业标准SPICE模拟器模仿电路行为。
本设计就是利用Multisim软件进行电路图的绘制并进行仿真。
关键词:电源、波形、比较器、积分器、MultisimAbstractThis paper introduces a circuit connection, to achieve the basic functions of function generator. Their access to power, and through the display of waveform and data, and get the result.A voltage comparator to achieve a square wave output, in turn connected integrator triangle wave, and through the triangle wave - sine wave conversion circuit to see the sine wave, the desired signal.NI Multisim software combines intuitive capture and powerful simulation, an quickly, easily, efficiently for circuit design and verification. With NI Multisim, you can immediately create a complete component library circuitdiagram, and the use of 0 industry standard SPICE simulator to mimic circuit behavior. This design is the use of Multisim software in circuit diagram and carry out simulationKey words: power, waveform, comparator, an integrator, a converter circuit, Multisim目录1 设计任务---------------------------------------11.1 电路设计任务------------------------------11.2 电路设计要求------------------------------12正弦波、方波发生器的组成------------------------12.1 原理框图----------------------------------12.2 原理分析----------------------------------12.3 放大器功能及管脚图------------------------23 系统中各模块设计--------------------------------23.1方波-三角波-正弦波-------------------------23.1.1方波形仿真图-----------------------------43.1.2三角波仿真电路图以及仿真图---------------43.1.3正弦波仿真图-----------------------------63.1.4实验设计电路图---------------------------63.1.5实验电路PCB图---------------------------73.1.6参数设计---------------------------------73.2元器件型号---------------------------------94 电路调试---------------------------------------104.1 安装正弦波、方波发生器- ------------------134.2调试正弦波、方波发生器---------------------134.3调试结果展示------------------------------134.3.1方波实验波形图--------------------------114.3.2三角波实验波形图------------------------114.3.3正弦波实验波形图------------------------124.3.4实际电路图及实物图展示------------------124.4性能指标测量与误差分析--------------------135 实验总结--------------------------------------13谢辞、参考文献-----------------------------------14一设计任务1.1 任务设计制作一个方波-三角波-正弦波发生器。
函数信号发生器解读
函数信号发生器本实验室采用EE1651型函数信号发生器。
一、主要特征EE1651型函数信号发生器能直接产生正弦波,三角波,方波,锯齿波和脉冲波。
TTL / CMOS与OUTPUT同步输出。
直流电平可连续调节,频率计可作内部频率显示,也可作外测频率,电压用LED显示。
二、工作原理函数信号发生器工作时,由V / I电压-电流变换器产生二个恒流源。
恒流源对时基电容C进行充电和放电,电容的充电和放电使电容上的电压随时间分别呈线性上升和线性下降,因而在电容两端得到三角波电压。
三角波电压经方波形成电路得到方波电压。
三角波电压经正弦波形成电路得到正弦波电压,最后经过功率放大输出。
三、主要技术参数:频率范围: 0.1Hz~1MHz 分七档波形:正弦波,三角波,方波,正向或负向脉冲波,正向或负向锯齿波TTL输出脉冲波:低电平≤0.8V,高电平≥1.8VCMOS输出脉冲波:低电平≤0.8V,高电平≥13 V连续可调输出阻抗:50Ω±10%输出幅度:≥20U P-P (空载)输出衰减:20dB,40dB直流偏置:0~±10V连续可调电源:220±10%,50±2Hz四、使用说明1、面板说明EE1651型函数信号发生器前面板布局参见图(1)显示窗口显示输出信号的频率(2)显示单位指示灯显示输出信号频率的单位指示,分“kHZ”“HZ”(3) 频段选择按键输出信号频段选择,分七档,揿下某键,输出信号为对应频段的频率。
(4)频率调节旋钮用于输出信号频率的微调,调节范围:0.2*档数——2*档数,与(3)配合使用,确定输出信号频率。
(5)波形选择按键用于选择输出函数波形,依次为正弦波、三角波、方波选择按键,揿下某键,输出函数为对应的波形。
(6)波形对称性调节旋钮调节此旋钮可改变输出信号的对称性。
当处于“关”位置时,为输出对称波形。
(7)函数输出口函数信号从此端口输出(8)外扫描输入口外扫描控制信号从此端口输入。
函数信号发生器设计实验报告
函数信号发生器的设计实验报告院系:电子工程学院班级:2012211209**:***班内序号:学号:实验目的:设计一个设计制作一个可输出方波、三角波、正弦波信号的函数信号发生器。
1,输出频率能在1—10KHz范围内连续可调,无明显失真;2,方波输出电压Uopp = 12V,上升、下降沿小于10us(误差<20%);3,三角波Uopp = 8V(误差<20%);4,正弦波Uopp≥1V。
设计思路:1,原理框图:2,系统的组成框图:分块电路和总体电路的设计:函数发生器是指能自动产生方波、三角波和正弦波的电压波形的电路或者仪器。
电路形式可以采用由运放及分离元件构成;也可以采用单片集成函数发生器。
根据用途不同,有产生三种或多种波形的函数发生器,本课题采用由集成运算放大器与晶体差分管放大器共同组成的方波—三角波、三角波—正弦波函数发生器的方法。
本课题中函数信号发生器电路组成如下:第一个电路是由比较器和积分器组成方波—三角波产生电路。
单限比较器输出的方波经积分器得到三角波;第二个电路是由差分放大器组成的三角波—正弦波变换电路。
差分放大器的特点:工作点稳定,输入阻抗高,抗干扰能力较强等。
特别是作为直流放大器时,可以有效地抑制零点漂移,因此可将频率很低的三角波变换成正弦波波形变换的原理是利用差分放大器的传输特性曲线的非线性。
传输特性曲线越对称,线性区域越窄越好;三角波的幅度Uim应正好使晶体接近饱和区域或者截至区域。
Ⅰ、方波—三角波产生电路设计方波输出幅度由稳压管的稳压值决定,即限制在(Uz+UD)之间。
方波经积分得到三角波,幅度为Uo2m=±(Uz+UD)方波和三角波的震荡频率相同,为f=1/T=āRf/4R1R2C,式中ā为电位器RW 的滑动比(即滑动头对地电阻与电位器总电阻之比)。
即调节RW可改变振荡频率。
根据两个运放的转换速率的比较,在产生方波的时候选用转换速率快的LM318,这样保证生成的方波上下长短一致,用LM741则会不均匀。
正弦波-方波-三角波发生电路设计
东华理工大学长江学院课程设计报告正弦波-方波-三角波发生电路设计学生姓名:专业:班级:指导教师:正弦波-方波-三角波发生电路设计函数发生器一般是指能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形的电路或仪器。
根据用途不同,有产生三种或多种波形的函数发生器,使用的器件可以是分立器件(如低频信号函数发生器S101全部采用晶体管),也可以采用集成电路(如单片函数发生器模块8038)。
为进一步掌握电路的基本理论及实验调试技术,本课题采用由集成运算放大器与积分电路共同组成的正弦波—方波—三角波函数发生器的设计方法。
产生正弦波、方波、三角波的方案有多种,如首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波;也可以首先产生正弦波,再将正弦波变成方波-三角波或将方波变成三角波等等。
本课题采用先产生正弦波,再将方波变换成三角波的电路设计方法,本课题中函数发生器电路组成框图如下所示:由比较器和积分器组成正弦波产生电路,比较器输出的方波经积分器得到三角波,目录1、正弦波发生器 (3)2、方波发生器 (4)3、三角波发生器 (7)4、正弦波-方波-三角波发生器 (9)5、总电路图、元器件清单 (10)6、心得体会及参考文献 (11)简述:方波、正弦波、三角波是电子电路中经常用到的信号,设计一个正弦波-方波-三角波发生电路。
具体技术要求如下:(1)正弦波-方波-三角波的频率在100Hz-20KHz范围内连续可调;(2)正弦波和方波的信输出幅度为6V,三角波的输出幅度在0-2V之间连续可调;正弦波的失真度r5%;(4)设计上述电路工作所需的直流稳压电源电路。
使用仪器及测量仪表:选用元器件(1).集成运放F007(a741);(2)稳压及开关二极管;(3)电阻、电容、电位器若干。
测量仪表(1)直流稳压电源;(2)示波器;(3)万用表(4)频率计(5)交流电压表一、正弦波发生器其振荡频率为1kHz。
方波_三角波_正弦波_锯齿波发生器
电子工程设计报告目录设计要求1.前言 (2)2方波、三角波、正弦波发生器方案 (3)2.1原理框图 (3)3.各组成部分的工作原理 (4)3.1 方波发生电路的工作原理 (4)3.2 方波--三角波转换电路的工作原理 (5)3.3三角波--正弦波转换电路的工作原理 (7)3.4 方波—锯齿波转换电路的工作原理 (8)3.5总电路图 (9)方波—三角波—正弦波函数信号发生器摘要波形函数信号发生器广泛地应用于各场所。
函数信号发生器应用范围:通信、广播、电视系统中,都需要射频(高频)发射,这里的射频波就是载波。
除供通信、仪表和自动控制系统测试用外,还广泛用于其他非电测量领域,而我设计的正是多种波形发生器。
设计了多种波形发生器,该发生器通过将滞回电压比较器的输出信号通过RC电路反馈到输入端,即可组成矩形波信号发生器。
然后经过积分电路产生三角波,三角波通过低通滤波电路来实现正弦波的输出。
其优点是制作成本低,电路简单,使用方便,频率和幅值可调,具有实际的应用价值。
函数(波形)信号发生器。
能产生某些特定的周期性时间函数波形(正弦波、方波、三角波、锯齿波和脉冲波等)信号,频率范围可从几个微赫到几十兆赫函数信号发生器在电路实验和设备检测中具有十分广泛的用途而因此电子专业的学生,对函数信号发生器的设计,仿真,制作已成为最基本的一种技能,也是一个很好的锻炼机会,是一种综合能力的锻炼,它涉及基本的电路原理知识,仿真软件的使用,以及电路的搭建,既考验基础知识的掌握,又锻练动手能力。
关键词:振荡电路;电压比较器;积分电路;低通滤波电路设计要求1.设计、组装、调试方波、三角波、正弦波发生器。
2.输出波形:方波、三角波、正弦波;锯齿波3.频率范围:在0.02-20KHz范围内且连续可调;1.前言在人们认识自然、改造自然的过程中,经常需要对各种各样的电子信号进行测量,因而如何根据被测量电子信号的不同特征和测量要求,灵活、快速的选用不同特征的信号源成了现代测量技术值得深入研究的课题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
XXX学校XXX学院综合课程设计设计题目专业名称班级学号学生姓名指导教师设计时间2018.12.17~2018.1.4课程设计任务书专业:学号:学生姓名<签名):设计题目:一、设计实验条件XXX实验室Proteus软件Multisim软件二、设计任务及要求1.实现频率为10kHz,峰峰值±5v的正弦波到三角波的变换;2.整体电路由模拟器件产生;3.实现三种不同电路产生。
三、设计报告的内容1.设计题目与设计任务<设计任务书)2.前言<绪论)(设计的目的、意义等>3.设计主体<各部分设计内容、分析、结论等)4.结束语<设计的收获、体会等)5.参考资料四、设计时间与安排1、设计时间: 2周2、设计时间安排:熟悉实验设备、收集资料:天设计图纸、实验、计算、程序编写调试:天编写课程设计报告:天答辩:天1、前言函数发生器一般是指能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形的电路或仪器。
根据用途不同,有产生三种或多种波形的函数发生器,使用的器件可以是分立器件 (如低频信号函数发生器S101全部采用晶体管>,也可以采用集成电路(如单片函数发生器模块8038>,它是现代测试领域内应用最为广泛的通用仪器之一。
在研制、生产、测试和维修各种电子元件、部件以及整机设备时,都学要有信号源,由它产生不同频率不同波形的电压、电流信号并加到被测器件或设备上,用其他仪器观察、测量被测仪器的输出响应,以分析确定它们的性能参数。
信号发生器是电子测量领域中最基本、应用最广泛的一类电子仪器。
它可以产生多种波形信号,如正弦波,三角波,方波等,因而广泛用于通信、雷达、宇航等领域。
为进一步掌握电路的基本理论及实验调试技术,本设计报告由三种方法实现了正弦波—方波—三角波函数发生器的设计方法。
b5E2RGbCAP 现今世界中电子技术与电子产品的应用越加广泛,人们对电子技术的要求也越来越高。
因此如何根据实际要求设计出简便实用的电子技术物品便显得尤为重要。
灵活、快速的选用不同特征的信号源成了现代测量技术值得深入研究的课题。
能将简单的易获取的信号转换为自己所需的复杂信号是一项必不可少的技术。
我们有必要做好这相关方面的研究,为被测电路提供所需要的信号及各种波形,以便完成各种相关实验。
信号源在各种实验应用和实验测试处理中,仿真各种测试信号,提供给被测电路,用来满足实验的各种要求。
本文所设计的波形发生器就是信号源的一种,采用集成运算放大器、电阻和电容组成简单的电路,实现波形的产生和转换。
p1EanqFDPw作为电子专业的学生,对函数信号发生器的设计、仿真、制作是一项最基本的实践技能,也是一种很好的锻炼机会,是一种综合能力的锻炼,它涉及到基本电路原理的知识,Mutisim仿真软件的使用,以及电路的搭建,既考验了基本知识的掌握程度,又加强了实践。
DXDiTa9E3d2、设计主体我们采用了三种方法进行了波形的变换,分别为限幅器加RC积分电路构成的波形变换电路、由放大器构成的滞回比较器与积分电路构成的波形变换电路、由555定时器构成的施密特触发器与放大器构成的积分电路的波形变换电路。
RTCrpUDGiT从整体上来看,三种电路均是先将正弦波变换成方波,然后将方波积分成为三角波,下面分别介绍三种电路。
2.1方案一:限幅器加RC积分电路构成的波形变换电路输入峰峰值5v,频率10kHz的正弦波,用二极管1N4148进行限幅,然后通过RC积分电路输出三角波整体电路图如图1所示5PCzVD7HxA图1 整体电路图1N4148的正向导通电压为0.7v,根据计算,正弦曲线在在2V处的曲线斜率为4.5,可见0~2V内有很好的倾斜特性,限幅输出的波形倾斜角接近于矩形波,如图2所示。
jLBHrnAILg矩形波通过RC积分电路,输出为三角波,波形如图3所示。
积分电路的时间常数选为0.08ms。
如果将RC电路的电容两端作为输出端,电路参数满足τ>>tp的条件,则成为积分电路。
由于这种电路电容器充放电进行得很慢,因此电阻R上的电压ur(t>近似等于输入电压ui(t>,其输出电压uo(t>为: xHAQX74J0X上式表明,输出电压uo(t>与输入电压ui(t>近似地成积分关系,仿真波形如图3所示。
图2 仿真波形图RC积分电路动态过程:1>t=t1时,Vi由0->Vm,因为电容两端的电压不能突变,所以此时Vo=Vc=0。
2>t1<t>tw,电容充电非常缓慢.3>t=t2时,VI由Vm→0,相当于输入端被短路,电容原先充有左正右负电压VI<VI>tW,即充电时间很长,使得充电电压未来得及充到Vm最大电压,就开始放电了)经R缓慢放电,VO<VC)按指数规律下降。
LDAYtRyKfE这样,输出信号就是锯齿波,近似为三角形波,τ>>tW是本电路必要条件,因为他是在方波到来期间,电容只是缓慢充电,VC还未上升到Vm时,方波就消失,电容开始放电,以免电容电压出现一个稳定电压值,而且τ越大,锯齿波越接近三角波。
输出波形是对输入波形积分运算的结果,他是突出输入信号的直流及缓变分量,降低输入信号的变化量。
这样的积分电路配合施密斯触发器的应用便可以得到标准矩形波的延时电路。
Zzz6ZB2Ltk图3 仿真波形文件2.2方案二:放大器构成的滞回比较器与积分电路构成的波形变换电路输入峰峰值5v,频率10kHz的正弦波,由放大器构成的施密特触发器可将正弦波变为方波,方波输入到放大器构成的积分电路,输出为三角波,整体电路如图4所示。
dvzfvkwMI1图4 整体电路图2.2.1、滞回比较器都成电路如图5所示图5 滞回比较器电路图运放如图有两个输入端a<反相输入端),b<同相输入端)和一个输出端o。
也分别被称为倒向输入端非倒向输入端和输出端。
当电压U-加在a端和公共端<公共端是电压为零的点,它相当于电路中的参考结点。
)之间,且其实际方向从a 端高于公共端时,输出电压U实际方向则自公共端指向o端,即两者的方向正好相反。
当输入电压U+加在b端和公共端之间,U与U+两者的实际方向相对公共端恰好相同。
为了区别起见,a端和b 端分别用"-"和"+"号标出,但不要将它们误认为电压参考方向的正负极性。
电压的正负极性应另外标出或用箭头表示。
rqyn14ZNXI运放的供电方式分双电源供电与单电源供电两种。
对于双电源供电运放,其输出可在零电压两侧变化,在差动输入电压为零时输出也可置零。
采用单电源供电的运放,输出在电源与地之间的某一范围变化。
EmxvxOtOco方波输出信号的幅度发生在输入电压的两个临限值Vu及Vi的边缘上,其中Vu与Vi值得大小由下面的式子决定。
SixE2yXPq5 Vu=Vr+[R2/(R1+R2>]*(Vo-Vr>Vl=Vr-[R2/(R1+R2>]*(Vo+Vr>式中, Vo=Vz+Vd当输入信号Vi>Vu时,输出端将呈现低电平-Vo.。
当Vi<Vu时,则输出为高电平Vo =Vz+Vd。
对任意波形的输入,只要电压的幅度超过磁滞电压Vh=Vu-Vl ,即可获得方波。
最终的波形如图6所示。
6ewMyirQFL图6 仿真波形图2.2.2放大器构成的积分电路为:当输出Vo2(t>达到最大值时,作为比较器的A1,其输出电压Vo1应为负值,即为-(Vz+Vd>=-Vo因此,根据重叠定理,A1正相输入端的电压Vi为Vi=-R2/(R1+R2>*Vo1+R1/(R1+R2>*Vo2kavU42VRUs 当Vi上升到Vr时,比较器将改变状态,即Vo1=+Vo。
此时,VO2(t>也开始相对地降低。
因此,三角波的峰值Vmax发生于Vi=Vr 时,代入上面的式子,即可获得Vmax=Vr*(R1+R2>/R1+Vo*R2/R1相对地,三角波的最低电压应为Vmin=Vr*(R1+R2>/R1-Vo*R2/R1y6v3ALoS89故三角波的振幅为Vmax-Vmin=2Vo*R2/R1而其平均值很显然的处于Vr*(R1+R2>/R1的直流电平上。
若Vr=0,则波形将在+Vo*R2/R1与-Vo*R2/R1之间变动。
M2ub6vSTnP图7 放大器构成的积分电路积分结果的波形如图8所示。
图8 仿真波形图2.3、555定时器构成的施密特触发器与放大器构成的积分电路的波形变换电路由555定时器构成施密特触发器,将输入的输入峰峰值5v,频率10kHz的正弦波变成方波,然后将方波积分成为锯齿波,整体电路图如图9所示。
0YujCfmUCw图9 整体电路图其中的555定时器构成施密特触发器:它含有两个电压比较器,一个基本RS触发器,一个放电开关T,比较器的参考电压由三只5KΩ的电阻器构成分压,它们分别使高电平比较器C1同相比较端和低电平比较器C2的反相输入端的参考电平为Vcc32和Vcc31。
C1和C2的输出端控制RS触发器状态和放电管开关状态。
当输入信号输入并超过Vcc32时,触发器复位,555的输出端3脚输出低电平,同时放电,开关管导通;当输入信号自2脚输入并低于Vcc31时,触发器置位,555的3脚输出高电平,同时放电,开关管截止。
DR是复位端,当其为0时,555输出低电平。
平时该端开路或接Vcc。
Vco是控制电压端<5脚),平时输出Vcc32作为比较器A1的参考电平,当5脚外接一个输入电压,即改变了比较器的参考电平,从而实现对输出的另一种控制,在不接外加电压时,通常接一个0.01Fµ的电容器到地,起滤波作用,以消除外来的干扰,以确保参考电平的稳定。
T为放电管,当T导通时,将给接于脚7的电容器提供低阻放电电路eUts8ZQVRd图10 555定时器内部电路图如图所示,当 Vi=0时,由于V11=V12=Vi=0,电压比较器C1输出高电平,C2输出低电平;基本RS触发器被置“1”态;则Vi=1,当Vi继续上升,但在未达到2/3Vcc以前,VO=1不会变。
当Vi升高到2/3Vcc时,电压比较器C1输出低电平,C2输出高电平;基本RS触发器被置“0”态;则VO=0,此后,Vi继续上升到Vcc,然后再降低,但在降低未达到1/3Vcc以前,VO=0的状态同样也不会改变。
当Vi下降到1/3Vcc时,电压比较器C1输出高电平,C2输出低电平;基本RS触发器被置“1”态;则VO=1,此后,vi继续下降到0,然后再上升,但在未达到2/3Vcc以前,VO=1的状态不会改变。
sQsAEJkW5T仿真波形如图11所示。