(小学奥数讲座)分数应用题常见方法

合集下载

小学奥数讲义:分数、百分数应用题

小学奥数讲义:分数、百分数应用题

分数、百分数应用题1【知识要点】分数、百分数应用题是日常生活和生产实践中应用最广泛的一类数学问题,并且这类知识与生活有着紧密的联系。

如何掌握此类问题的特征,并能熟练、灵活地加以运用,是研究此类问题所要思考的。

在解题过程中要着重解决以下几个方面的问题:1、准确地确定单位“1”的量。

2、确定类型。

单位“1”的量×分率=分率对应量 分率对应量÷分率=单位“1”的量 分率对应量÷单位“1”的量=分率 3、确定好对应关系。

4、设单位“1”的量为x ,列方程解决问题。

复杂类型题可以通过画线段图帮助了解“量率对应”关系。

【例题精讲】 一、量率对应1、小林买了一支圆珠笔和一支钢笔共用去12元,圆珠笔的价钱是钢笔的15 。

一支圆珠笔和一支钢笔各多少元?2、一桶油,第一次用去25 ,第二次用去10千克,这时剩下的油的质量正好是整桶油的一半,这桶油有多少千克?3、要修一条路,已修了全长的53少2千米,还剩下12千米没修,求这条路有多少千米?4、仓库里有一批化肥,第一次取出总数的52,第二次取出总数的31少12袋,这时仓库里还剩24袋,两次共取出多少袋?5、王师傅要加工一批零件,第一天加工的零件比这批零件的81还多21个,第二天加工的零件比这批零件的61少6个,还剩下172个没加工。

王师傅一共要加工多少个零件?二、转化单位“1”1、阿呆三天看完一本书,第一天看了全书的31,第二天看了余下的72,第一天比第二天多看了15页,这本书共有多少页?2、甲、乙、丙三人合做一批玩具,甲所做玩具的个数是其余两人的21,乙所做玩具的个数是其余两人的31。

已知丙做了60个,求甲、乙各做了多少个?3、2008年北京奥运会进行到第13天时,金牌榜上排名前三名的分别是中国、美国和英国,共86枚金牌,其中英国占美国的138,美国占中国的2213,中国、美国、英国这时各得几枚金牌?4、某厂男职工比全厂职工总人数的53多60人,女职工人数是男职工的31,这个厂共有职工多少人?三、抓不变量解分数应用题1、今年妈妈54岁,女儿26岁,当女儿的年龄是妈妈的239时,妈妈多少岁?2、有甲、乙两袋小球,甲袋小球占甲、乙两袋小球总个数的52,如果从乙袋中取8个小球放到甲袋中,那么甲袋小球占甲、乙两袋小球总个数的209,这时乙袋中有多少个小球?3、甲、乙两人原有钱的比是3:4,后来甲又给乙50元,这时甲钱是乙的21,原来两人各有多少元钱?4、一堆棋子中,黑子颗数是白子的52,后来又放进了14颗黑子,这时黑子占全部棋子的73,这堆棋子原来有多少颗?5、甲、乙两人各带一些钱去超市,甲和乙带的钱数的比是13:9,两人都花了30元,甲剩下的钱是乙剩下的钱的2倍,原来甲、乙带的钱各是多少元?【练习】1、五年级参加数学竞赛的学生中,女生有18人,相当于男生参赛人数的32。

六个技巧解决小学六年级数学难题——分数应用题

六个技巧解决小学六年级数学难题——分数应用题

本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载,另外祝您生活愉快,工作顺利,万事如意!六个技巧解决小学六年级数学难题——分数应用题分数应用题是小学数学应用题中的重点难点,由于抽象程度比较高,很多孩子都难以把握,致使失分率也比较高。

其实,分数应用题的解题是有规律可循的,家长在辅导孩子时,就要教孩子抓住规律,得出解题方法。

总的来说,帮助孩子攻克分数应用题,家长从以下六个解题技巧入手。

一、字斟句酌分数应用题很多时候容易产生“歧义”,所以家长要特别提醒孩子在审题时抓住关键句,找准比较的对象。

分数应用题中都有说明两个量之间关系的句子,这些句子是应用题的题眼、解题的突破点。

比如:汽车在公路上行驶,先把速度提高20%,再把速度降低20%,现在的速度是原来的百分之几?分析:设定原来的速度为100%,提高20%后为120%,当再次降低时,是在120%的基础上降低,此时的20%是120%×0.2=24%。

所以降低后是120%-24%=96%。

二、抓不变量有些分数应用题数量变化多,分析难度大,不易列式计算。

但是,仔细分析就会发现,变来变去,总有一个量是不变的,这就是我们所说的不变量。

对于这类分数应用题,家长辅导孩子解答时,要专注“不变量”,以静制动,使问题迎刃而解。

比如:有两桶水,第一桶水的重量是第二桶水的6倍,从第一桶取出12千克水加入第二桶,这时第一桶水的重量是第二桶的4倍,问第一桶原来有水多少千克?分析:两桶水的总重量总是不变的,但又未知,我们把它看作单位“1”的量。

则“取前”第一桶占两桶水总重量的1/(1+6)=1/7,“取后”第一桶占两桶水总重量的1/(1+4)=1/5。

第一桶取前取后差12千克占两桶总重量的1/5-1/7=2/35,故两桶水总重量为12÷2/35=210(千克),由此可求出原来第一桶水的重量为:210÷1/7=30(千克)三、找准单位“1”的量不管是简单分数应用题还是复杂的分数应用题,题中都有关键句,关键句中都有单位“1”的量,准确找出单位“1”的量是解答分数应用题的前提条件。

(小学奥数讲座)分数应用题常见方法

(小学奥数讲座)分数应用题常见方法

分数应用题常见方法在比较复杂的分数应用题中,“四步法”只是基础的分析思维,还需要借助一些方法来解题。

除了画图法外,还有以下几种解题方法(一)对应法小学四年级奥数中有专门的章节介绍对应法解应用题。

对应法的核心思维是:不仅数字可以列竖式进行加减,算式也可以列竖式加减例:学校安排一批学生到图书馆借书,如果男生增加1/5,人数将达到52人,如果女生减少1/5,人数是42人。

这批学生原有多少人?解析:根据题意,我们可以找出下面两个数量关系式:男生人数+1/5的男生人数+女生人数 = 52男生人数+女生人数-1/5的女生人数 = 42 这两个式子对应相减(竖式相减),得:1/5的男生人数+1/5的女生人数 = 10即1/5 ×(男生人数+女生人数)=10男生人数+女生人数=10÷1/5=50(人)(二)转化法当题中出现多个单位“1”时,我们可以把不同的单位“1”转化成统一的单位“1”例:小明、小英、小丽和小华四人爱好集邮,小明的邮票数是小英的1/2,小英的邮票数是小丽的1/3,小丽的邮票数是小华的1/4,已知四人共集邮132张,小明集邮多少张?解析:按照“四步法”,题中有三个不带单位的分率,它们的单位“1”分别是小英、小丽和小华;肯定用除法;题中只有一个带单位的数量:132张,列式一定是用132去除;132是指四人集邮总数,应除以四人的分率总和,题目最关键就是要把四人的分率表示出来,由于存在不同的单位“1”,首先必须把不同的单位“1”统一成一个单位“1”。

有正确的思路,才知道该做什么。

把题中三个单位“1”,统一转化成以小华的集邮数做单位“1”。

小华是单位“1”,根据“小丽的邮票数是小华的1/4”,小丽就是1/4;根据“小英的邮票数是小丽的1/3”,小英就是:1/3 × 1/4= 1/12;根据“小明的邮票数是小英的1/2”,小明就是:1/2× 1/12=1/24,现在四人的分率都表示出来了,可以除了。

小学奥数之分数的应用题

小学奥数之分数的应用题

小学奥数之分数的应用题1. 分析题目确定单位“1”2. 准确找到量所对应的率,利用量÷对应率=单位“1”解题3. 抓住不变量,统一单位“1”一、知识点概述:分数应用题是研究数量之间份数关系的典型应用题,一方面它是在整数应用题上的延续和深化,另一方面,它有其自身的特点和解题规律.在解这类问题时,分析中数量之间的关系,准确找出“量”与“率”之间的对应是解题的关键.关键:分数应用题经常要涉及到两个或两个以上的量,我们往往把其中的一个量看作是标准量.也称为:单位“1”,进行对比分析。

在几个量中,关键也是要找准单位“1”和对应的百分率,以及对应量三者的关系 例如:(1)a 是b 的几分之几,就把数b 看作单位“1”.(2)甲比乙多18,乙比甲少几分之几?方法一:可设乙为单位“1”,则甲为19188+=,因此乙比甲少191889÷=.方法二:可设乙为8份,则甲为9份,因此乙比甲少1199÷=.二、怎样找准分数应用题中单位“1” (一)、部分数和总数在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。

例如:我国人口约占世界人口的几分之几?——世界人口是总数,我国人口是部分数,世界人口就是单位“1”。

解答题关键:只要找准总数和部分数,确定单位“1”就很容易了。

(二)、两种数量比较分数应用题中,两种数量相比的关键句非常多。

有的是“比”字句,有的则没有“比”字,而是带有指向性特征的“占”、“是”、“相当于”。

在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。

例如:六(2)班男生比女生多——就是以女生人数为标准(单位“1”),解题关键:在另外一种没有比字的两种量相比的时候,我们通常找到分率,看“占”谁的,“相当于”谁的,“是”谁的几分之几。

这个“占”,“相当于”,“是”后面的数量——谁就是单位“!”。

(三)、原数量与现数量有的关键句中不是很明显地带有一些指向性特征的词语,也不是部分数和总数的关系。

小学六年级上奥数教程:第六讲 分数应用题(一)--学生版

小学六年级上奥数教程:第六讲  分数应用题(一)--学生版

第6讲 分数应用题(一)【解题秘钥】把不同的数量当作单位“1”,得到的分率可以在一定的条件下转化。

如果甲是乙的a b ,乙是丙的c d ,则甲是丙的ac bd ;如果甲是乙的a b ,则乙是甲的b a;如果甲的a b 等于乙的c d ,则甲是乙的c d ÷a b =bc ad ,乙是甲的a b ÷a b =ad bc。

【经典例题】例题1:乙数是甲数的23 ,丙数是乙数的45,丙数是甲数的几分之几?练习11. 乙数是甲数的34 ,丙数是乙数的35,丙数是甲数的几分之几?2. 一根管子,第一次截去全长的14 ,第二次截去余下的12,两次共截去全长的几分之几?例题2:修一条8000米的水渠,第一周修了全长的14 ,第二周修的相当于第一周的45,第二周修了多少米?练习2用两种方法解答下面各题:1.一堆黄沙30吨,第一次用去总数的15,第二次用去的是第一次的114倍,第二次用去黄沙多少吨?2.大象可活80年,马的寿命是大象的12,长颈鹿的寿命是马的78,长颈鹿可活多少年?例题3:晶晶三天看完一本书,第一天看了全书的14,第二天看了余下的25,第二天比第一天多看了15页,这本书共有多少页?练习31.有一批货物,第一天运了这批货物的14,第二天运的是第一天的35,还剩90吨没有运。

这批货物有多少吨?2. 修路队在一条公路上施工。

第一天修了这条公路的14 ,第二天修了余下的23,已知这两天共修路1200米,这条公路全长多少米?例题4、男生人数是女生人数的45,女生人数是男生人数的几分之几?练习41. 停车场里有小汽车的辆数是大汽车的34,大汽车的辆数是小汽车的几分之几?2. 如果山羊的只数是绵羊的67,那么绵羊的只数是山羊的几分之几?例题5、甲数的13 等于乙数的14,甲数是乙数的几分之几,乙数是甲数的几倍?练习51. 甲数的34 等于乙数的25,甲数是乙数的几分之几?乙数是甲数的几分之几?2. 甲数的123 倍等于乙数的56,甲数是乙数的几分之几?乙数是甲乙两数和的几分之几?【作业】1.一个旅客从甲城坐火车到乙城,火车行了全程的一半时旅客睡着了。

小学奥数 分数应用题 倒推法 讲解

小学奥数 分数应用题 倒推法 讲解

小学奥数之倒推法例题讲解例题:商店购进一种商品来销售,第一天卖出总数的17又8个,第二天卖出余下的14又5个,第三天卖出余下的25又15个,正好卖完。

求这种商品原有多少个?分析:有时候一些应用题里面有多个单位“1”,或者说单位“1”不统一,这时候我们该怎么办呢?就像上面这题,“原来的商品个数”是一个单位“1”,第二天余下的商品是另一个单位“1”,第三天余下的商品又是另一个单位“1”。

这个时候我们就可以运用“倒推法”,从结果出发一步步往前推。

首先我们画出线段图:先推理①的数量:根据题意“第三天卖出余下的25又15个,正好卖完。

”,可知15个占了①的(1-25),因此我们用除法可以求出①的数量。

15÷(1-25)=15÷35=25(个)再推理②的数量:根据题意“第二天卖出余下的14又5个”,可知②的数量+5,就占了②的(1-14),因此我们用除法可以求出②的数量。

(25+5)÷(1-14)=40(个)最后推理③的数量:根据题意“第一天卖出总数的17又8个”,可知③的数量+8,就占了③的(1-17),因此我们用除法可以求出③的数量。

(40+8)÷(1-17)=56(个)答:这种商品原有56个。

老司机的话:这种题型虽然也可以用初中的“一元一次方程”做出来,但小学生不好理解。

我们灵活运用“线段图”和“倒推法”,可以有效率地提高小学生的思维能力,促进他们智力的开发。

“倒推法”在其他领域也有不少用处,例如名侦探查案的时候,可以根据现场的蛛丝马迹查出坏人是谁。

是一种很有趣的方法呢~。

分数应用题的方法和技巧

分数应用题的方法和技巧

分数应用题的方法和技巧
在解答分数应用题时,以下是一些常用的方法和技巧:
1. 确定未知数:首先明确问题中的未知数,并用一个变量来表示。

例如,如果问题涉及到某个人的年龄,可以用x来表示这个人的年龄。

2. 变量的分数表达式:根据问题描述,将变量表示为一个分数表达式。

例如,如果问题中提到某个人年龄的1/3等于15岁,则可以表示为x/3 = 15。

3. 解方程:将问题转化为一个方程,并求解这个方程来得到未知数的值。

在上述例子中,通过乘以3,可以得到x = 45。

4. 确认答案的合理性:将未知数的值代入原方程中,确认答案的合理性。

在上述例子中,将x = 45代入x/3 = 15,可以验证
等式成立。

5. 注意化简:在解题过程中,可能需要对分数进行化简。

例如,将2/4简化为1/2,便于计算。

6. 注意单位转换:问题中可能涉及到单位的转换。

在解题过程中,需要注意将单位转换为一致的形式,以便计算。

7. 图形辅助:对于某些问题,可以用图形进行辅助。

例如,在解决比例问题时,可以用图形表示比例关系,帮助理解和解决问题。

8. 相关知识点:对于一些特定的类型的分数应用题,掌握相关的数学知识点会有帮助。

例如,理解分数的基本运算法则、比例关系的性质等。

以上是一些常用的方法和技巧,希望对解答分数应用题有所帮助。

小学奥数-分数应用题

小学奥数-分数应用题

分数应用题【解题技巧】(1)求一个数的几分之几是多少(用乘法)(2)求一个数是另一个数的几分之几(用除法)(3)已知一个数的几分之几是多少,求这个数(用除法或列方程)【经典例题】例1 某粮库上午运走全部存粮的31又2000袋,下午又运进粮食6000袋,现在粮库中的存粮比原来少61。

若有原来粮库的存粮n 袋,那么n 等于多少?例2 某车间三个小组共做一批零件,第一小组做了总数的72,第二小组做了1600个零件,第三小组做的零件是前面两个小组总和的一半。

求这批零件共有多少个?例3 某班女生人数是男生人数的54,后又转来一名女生,结果女生人数是男生人数的65。

求现在全班学生的人数。

例4 某校男生人数的41比女生人数的31多50人,男生人数的43是女生人数的两倍。

男生、女生各多少人?例5 足球赛门票15元一张,降价后观众增加了一半,收入增加了51。

问一张门票降价了多少元?例6 食堂买来一批面粉,第一天吃了这批面粉总量的101;第二天吃了余下面粉总量的91;以后7天,每天分别吃去当天面粉总量的;21,31,,61,71,81⋅⋅⋅第10天吃了4袋,正好把所有的面粉都吃完了。

问这批面粉原来共有多少袋?例7 甲、乙两班共有84人,甲班人数的85与乙班人数的43共有58人。

问两班各有多少人?例8 育才小学上学期有男女同学共750人,本学期男同学增加61,女同学减少51,共有710人。

问本学期男、女同学各有多少人?【练习、习题】1.一批零件,甲先完成41,接着乙完成剩下的31,其余的由丙、丁完成,丙完成的比丁少31。

已知甲比丁少完成15个,求这批零件共有多少个?2.一批水果,其中苹果重量比总数的31多40千克,香蕉660千克其余的是橘子。

已知橘子的重量相当于苹果和香蕉总重量的41,则苹果共有多少千克?3.游泳班共有若干人,其中女生占103。

若再增加15名女生,则女生将占总数的2511。

问这个游泳班中原有女生多少人?4.姐妹两人共养兔100只。

小学五年级奥数 第七讲 简单的分数应用题

小学五年级奥数 第七讲  简单的分数应用题

第七讲 简单的分数应用题(一)一、基础知识:1、分数应用题的一般关系式是:表示单位“1”的量(标准量)×分率=分率的对应量。

2、解题思路:①一道分数应用题中,先根据分率所在的哪个条件,找出并判断“1”。

分率是“谁的”几分之几,谁就是单位“1”(分率是一个不带单位的、不具体的分数,反映的是两个数之间的一种倍数关系。

)单位“1”的量的判断:根据分率来判断把哪个数量平均分成多少份,哪个数量就是单位“1”。

②表示单位“1”的量是已知的,则该题用“×”。

表示单位“1”的量是未知的,则该题用“÷”或方程。

③解题的关键是:寻找“与数量对应的分率”,“与分率对应的数量”。

二、例题解析:(一)基本方法例1、指出下面每组中单位“1”和对应分率。

①一只鸡的重量是鸭的。

把( )平均分为3份,把( )看作单位“1”,( )相当于这样的2份,2/3对应的数量是( )。

②甲的相当于乙。

把( )平均分为5份,把( )看作单位“1”,( )相当于这样的3份,3/5对应的数量是( )。

③现价是原价的。

把( )平均分为40份,把( )看作单位“1”,( )相当于这样的3份,3/40对应的数量是( )。

现价比原价少的部分对应的分率是( )。

④小红的书比小明少。

把( )平均分为8份,把( )看作单位“1”,( )相当于这样的7份,7/8对应的数量是( )。

小明的书对应的分率是( )。

例2、根据已知条件用“——”线标出单位“1”的量,再写出数量关系式。

(1)白兔只数的125是黑兔的只数。

(2)已经修了公路全长的2110。

(3)二班植树棵数相当于一班的2110。

(4)今年棉花产量比去年增加85。

(4)第三季度冰箱价格比第二季度便宜517。

(6)还剩这堆煤的157。

例3、小王买了一个本子和一支钢笔。

本子的价格是1 元,钢笔的价格比本子的价格多,钢笔的价格是多少元?例4、一条裤子比一件上衣便宜25元。

一条裤子是一件上衣价格的2/3,一件上衣多少元?例5、商店运来一批水果,运来苹果20筐,梨的筐数是苹果的3/4,梨的筐数同时又是桔子的3/5。

六年级奥数第8讲:分数应用题(三)

六年级奥数第8讲:分数应用题(三)

分数应用题(三)本讲介绍的分数应用题是较灵活的两种类型,要求同学们能迅速地抓住问题本质,灵活解答。

(1)通过假设来改变题目中的条件或减少未知量的个数,使得数量关系变得明朗,列式变得简单,推理变得简捷,解题变得容易,这样的解题方法叫做假设法。

(2)推理的方向与事物发展的方向相反,把事物发展的结果作为推理的起点,逐步还原,以求出最初情况,这种推理方法叫做逆推法。

例1、食堂买来一批面粉,第一天吃了这批面粉总量的101,第二天吃了余下面粉总量的91;以后7天,每天分别吃去当天面粉总量的81,71,61,…,31,21;第10天吃了4袋,正好把所有的面粉都吃完了。

问:这批面粉原来共有多少袋?做一做:山顶有棵桃树,一只猴子第一天偷吃了101,以后8天分别偷吃了当天树上桃子的91,81,…,31,21,最后树上只剩下10个桃子。

问:树上原来有多少个桃子?例2、一堆西瓜,第一次卖出总个数的41又4个,第二次卖出余下的21又2个,第三次卖出第二次余下的21又2个,还剩下2个。

问:这堆西瓜共有多少个?做一做:小贩把他所有西瓜的21又半个卖给第一个21顾客,把余下的21又半个卖给第二个顾客,就这样,他把所余西瓜的21又半个卖给以后的各个顾客,卖给第七个人以后,他已经一个西瓜也没有了。

问:这个小贩原来共有西瓜多少个?例3、今有甲、乙、丙三堆棋子98枚,先从甲堆中分棋子给另外两堆,使这两堆棋子数各增加一倍,再把乙堆棋子照这样分配一次,最后把丙堆棋子也这样分配一次,结果甲堆棋子数是丙堆棋子数的54,乙堆棋子数是丙堆棋子数的1157。

问:三堆棋子中原来最多的一堆棋子是多少枚?做一做: 有A 、B 、C 、D 、E 五筐苹果,各筐苹果的数量不等。

如果把B 筐苹果的21放入A 筐,C 筐苹果的31放入B 筐,D 筐苹果的41放入C 筐,E 筐苹果的61放入D 筐,那么最后五筐苹果都是30千克。

问:每筐苹果原来各有多少千克?例4、甲、乙两班共有84人,甲班人数的85与乙班人数的43共有58人。

六年级上册秋季奥数培优讲义——6-14-分数应用题3-讲义-学生

六年级上册秋季奥数培优讲义——6-14-分数应用题3-讲义-学生

第14讲 分数应用题【学习目标】1、进一步学习分数知识;2、掌握常见分数应用题的解题方法。

【知识梳理】1、单位“1”:分率所对应的总量看成单位“1”,被“比”“是”的,是单位”1”;2、公式:单位“1”=分率对应量÷分率;3、注意:每一个分率都对应一个总量;4、关键:寻找单位“1”,寻找量率对应。

【典例精析】 【例1】某超市水果台上放有一些水果,第一次卖出52后,超市营业员又放入60千克水果,第二次卖出水果台上水果的31后,还剩下水果180千克,问水果台上原有水果多少千克?【趁热打铁-1】一杯盐水,第一次倒出31,然后倒回杯中20克,第二次再倒出杯中盐水的52,第三次倒出60克,杯中还剩下48克,原来杯中有多少克盐水?【例2】植树节时,学校组织同学们共植杨树和柳树96棵,杨树的43和柳树的53共有66棵,同学们植的杨树和柳树各有多少棵?【趁热打铁-2】某公司向银行申请A 、B 两种贷款共60万元,每年共需付利息5万元。

A 种贷款年利率为8%,B 种贷款年利率为9%。

该公司申请了A 种贷款多少万元?【例3】某小学共有学生1200人,其中女生人数的83比男生人数的72多了80人,则女生一共有多少人?多少名?名。

本学期男、女生各有多少名?面粉共有81吨。

仓库里原来有大米、面粉各多少吨?【例5】某学校有若干名学生报名元旦晚会,其中男生人数与女生人数的比为8:5,后来又有【趁热打铁-6】某商场原有台式电脑和笔记本电脑共630台,其中台式电脑的数量占总数量的脑多少台?【例7】体育课上,老师将同学们分成4组,开展运篮球的比赛,结果第一组同学运的球数是其他三组运的总数的一半,第二组同学运的球数是其他三组运的总数的31,第三组同学运的球数是其他三组运的总数的41,第四组运了13个,同学们共运了多少个球?【趁热打铁-7】实验小学为偏远山区同学捐献图书,高年级捐献的本数是其他年级捐献本数的32,中年级捐献的本数是其他年级捐献本数的53,低年级捐的本数比中年级少72本。

小学奥数之分数问题

小学奥数之分数问题

第 一 讲 小 升 初· 竞 赛 中 的 分 数 问 题知 识 导 航在分数式的计算应用问题中,主要包括以下几个方面的题型。

①和(差)倍问题。

具体表现为“已知分数的分子与分母的和(差),和约分过后的结果,求原分数。

②变化类。

具体表现为“已知分数的分子与分母和(差)的关系,再告诉分子或分母变化后的结果,求原分数。

”③因数分解类。

具体表现为“已知最简真分数的分子与分母的积,求原分数的可能值。

” ④中间分数计算类。

具体表现为“已知某分数在两个分数之间,求该分数的分子与分母的和的最小值。

”……精 典 例 题例1:一个分数约分后是37,若约分前分子与分母的和是40,那么约分前的分数是多少?思 路 点 拨想一想:约分后是37 ,你可以想到什么?你有几种方法来解答这个问题?(友情提示:从方程与算术两个角度来思考。

)模 仿 练 习一个分数的分子与分母和是40,约分后是35,那么这个分数原来是多少?例2:一个分数的分子与分母的和是19,加上这个分数的分数单位就是14 ,这个分数是多少?(2006年成都外国语学校奖学金考试数学试题)3/16思 路 点 拨想一想:加上这个分数的分数单位实际是分数中谁发生了变化?想明白后,再结合例1方法来思考一下,相信你能自己解答的!模仿练习一个分数的分子与分母之和是37,若分子减去1,分数值是12,原分数是多少?(2007年成都外国语学校小语种数学试卷)例3:分子、分母相乘的积是2002的最简真分数共有多少个?(2005年成都七中育才东区衔接班招生考试题)思路点拨想一想:满足什么条件的分数才是最简真分数?再想一想对“分子、分母相乘的积是2002”的信息又应该怎样去理解?模仿练习一个最简真分数,分子与分母的积是24,这个真分数是多少?(成都外国语学校2011年“德瑞杯”知识竞赛数学试题)学以致用A级1.一个分数分子与分母的和是72,约分后是27,这个原分数是多少?(2005年成都七中育才东区衔接班招生考试题)2.将分数711的分子增加77后,如果要求分数的大小不变,分母应变为多少?(2010年成都七中嘉祥外国语学校6年级衔接班试题2)3.一个分数,分子、分母的和是2010,约成最简分数后是760,这个分数是多少?(嘉祥外国语学校2011年5升6招生数学试题)B 级4.某分数分子分母的和为23,若分母增加17,此分数值为14 ,原分数为多少?(成都实验外国语学校“德瑞教育发展基金会”2010年奖学金测试数学A 卷)5.分子与分母的乘积是156的最简真分数有多少个?(2008年成都嘉祥外国语衔接班招生考试题2)6. 一个分数,分子与分母的和是75,若分子加上3,则可约简成58 ,原来的分数是多少? (2007年成都七中育才东区衔接班招生考试题2)C 级7.m,n 为自然数,若34 <n m <45 ,则m+n 的最小值是多少?(2007年成都七中育才东区衔接班招生考试题2)第 二 讲 分 数 计 算 中 的 拆 分知 识 导 航分数计算中的拆分,又叫裂项计算。

奥数讲座分数应用题1

奥数讲座分数应用题1

【奥数讲座】分数应用题转化单位1转化单位1(一)【例题1】乙数是甲数的2/3,丙数是乙数的4/5,丙数是甲数的几分之几?【解答】(8/15)乙数是甲数的2/3,把甲数看作单位1,乙数就是2/3;丙数是乙数的4/5,也就是说丙数是2/3的4/5,“求一个数的几分之几是多少”用乘法,即2/3×4/5=8/15,丙数是8/15,甲数是1,所以丙数是甲数的8/15。

【练习1】乙数是甲数的3/4,丙数是乙数的6/7,丙数是甲数的几分之几?【解答】(9/14)乙数是甲数的3/4,把甲数看作单位1,乙数就是3/4;丙数是乙数的6/7,也就是说丙数是3/4的6/7,“求一个数的几分之几是多少”用乘法,即3/4×6/7=9/14,丙数是9/14,甲数是1,所以丙数是甲数的9/14。

【例题2】修一条8000米的水渠,第一周修了全长的1/4,第二周修的相当于第一周的4/5,第二周修了多少米?【解答】(1600米)思考一:第一周修了8000×1/4=2000米,第二周修了2000×4/5=1600米。

思考二:第二周占全长的1/4×4/5=1/5,第二周修了8000×1/5=1600米。

【练习2】一堆黄沙30吨,第一次用去总数的1/5,第二次用去的是第一次的2/3,第二次用去黄沙多少吨?【解答】(4吨)思考一:第一次用去30×1/5=6吨,第二次用去6×2/3=4吨。

思考二:第二次用去的占总数的1/5×2/3=2/15,第二次用去30×2/15=4吨。

【例题3】晶晶三天看完一本书,第一天看了全书的1/4,第二天看了余下的2/5,第二天比第一天多看了15页,这本书共有多少页?【解答】(300页)第一天看了后剩下1-1/4=3/4,第二天看的是余下的2/5,第二天看的占总页数的3/4×2/5=3/10,第二天比第一天多的占总页数的3/10-1/4=1/20,即总页数的1/20是15页,所以总页数是15÷1/20=300页。

小学奥数与应用题——分数应用题

小学奥数与应用题——分数应用题

小学奥数与应用题——分数应用题小学奥数与应用题——分数应用题分数应用题一般有三种类型:1.求一个数a的几分之几是多少,即a乘以n除以m等于b;2.求一个数a是另一个数的b几分之几,即a除以b等于n除以m;3.已知一个数的几分之几是多少,求这个数,即b除以n 等于a除以m。

这三种分数应用题之间有联系,解题时要搞清楚它们之间的关系。

在解答分数应用题时,关键要通过分析数量关系,把每一道题中的某个量看作单位“1”,找出解题的数量关系式,再根据分数与除法的关系或一个数乘以分数的意义列式解答。

分数应用题在工农业生产和实际生活中应用十分广泛。

虽然这类应用题的变化很多,但只要认真去探索、去思考,也不难发现其中的解题规律。

1.基本类型在解答基本的分数应用题时,要抓住题目中的关键句进行分析。

首先明确单位“1”,如果单位“1”已知,用乘法计算;如果单位“1”未知,要先求出单位“1”,用除法或列方程计算;其次在列式时要考虑具体数量和分率之间的对应关系。

例如,在求一个中剩余多少油的问题中,如果已知一桶油的容量是4升,第一次用去11分之3,第二次用去34分之11,那么我们要先求出这桶油一共多少升,再求出还剩下多少升。

根据题意可以知道,一桶油的容量是4升,可以求出这桶油的总数是:4÷3/11=14(升)然后,我们可以先求出还剩这桶油的几分之几,即:1-11/34-5/12=5(升)答案是还剩下5升。

再例如,某工厂计划生产一批零件,第一次完成计划的1/4,第二次完成计划的13/27,第三次完成计划的超过计划的1/9,那么我们要求出计划生产零件的总数。

将“计划生产的零件个数”当作“1”,根据题意,我们首先要求出450个零件占计划任务的几分之内。

实际上“450个零件”可以分为两部分:一是完成剩下的任务1-13/27,二是超过部分“1/9”。

那么450个零件的对应分率就是:1-13/27+1/9=28/274计划生产零件的总数x可以用列方程的方法来解答:x/1=28/274x=1400答案是计划生产零件1400个。

分数的应用题六种解法

分数的应用题六种解法

分数的应用题六种解法分数是数学中常见的表示比例和部分的方式,它在生活中的应用也非常广泛。

今天,我将为大家介绍六种解决分数应用题的方法。

一、画图法画图法是一种直观的解题方法。

以某个具体的例子来说明。

假设小明有2/3的巧克力,小红有1/4的巧克力,他们想将巧克力平均分配。

我们可以画两个巧克力盒,并按比例将巧克力分配给小明和小红。

这样,他们就可以直观地理解分配的过程。

二、找最小公倍数解决一些关于分数的应用题时,我们需要找到最小公倍数。

例如,小明每天按照1/5的速度走路,小红按照1/3的速度走路,他们同时从同一个地方出发,问多少天后他们会在同一个地方相遇。

我们可以找到1/5和1/3的最小公倍数,即15。

因此,他们将在15天后相遇。

三、转化为整数运算有些分数应用题可以转化为整数运算来解决。

例如,小明用1/2小时完成作业,小红用1/3小时完成同样的作业,问他们两人一起完成这个作业需要多长时间。

我们可以将1/2和1/3转化为分母的最小公倍数,即6。

因此,他们一起完成这个作业需要1/6小时。

四、比较大小在比较大小的应用题中,我们需要将两个或多个分数进行比较。

例如,小明用2/5的时间做数学题,用1/4的时间做英语题,问他用了更多的时间做数学题还是英语题。

我们可以将2/5和1/4的分母取相同的最小公倍数,即20。

然后比较分子的大小,即2和5,得出结论小明用了更多的时间做数学题。

五、分数的加减运算在分数的加减运算中,我们需要将分母相同的分数进行运算。

例如,小明走了3/5的路程,小红走了2/5的路程,问他们总共走了多少路程。

我们可以将3/5和2/5的分母取相同的最小公倍数,即5。

然后将分子相加,得到答案5/5,即1。

因此,他们总共走了1个路程。

六、分数的乘除运算在分数的乘除运算中,我们需要将分子进行运算,再将分母进行运算。

例如,小明用2/3小时做完一个作业,小红用3/4小时做同样的作业,问小红完成这个作业需要多长时间。

小学奥数 分数应用题

小学奥数 分数应用题

1、分数应用题是小学数学教学中的重点和难点。

它大体可以分成两种:(1)基本数量关系与整数应用题基本相同,只是把整数应用题中的已知数换成分数,解 答方法与整数应用题基本相同。

(2)根据分数乘除法的意义而产生的具有独特解法的分数应用题,这就是我们通常说的 分数应用题。

2、分数应用题主要讨论的是以下三者之间的关系:(1)分率:表示一个数是另一个数的几分之几,这几分之几通常称为分率。

(2)标准量:解答分数应用题时,通常把题目中作为单位“1”的那个数,称为标准量。

(3)比较量:解答分数应用题时,通常把题目中同标准量比较的那个数,称为比较量。

例1.某届“数学解题能力展示”读者评选活动初试共有12000名学生参加,分为初中、小学高年级、小学中年级三个组别。

小学的两个组共占总人数的1615,不是小学高年级组的占总人数的21.那么小学中年级组参赛的人数是多少?例2.小强和小林共有邮票400多张,如果小强给小林一些邮票,小强的邮票就比小林的少196;如果小林给小强同样多的邮票,则小林的邮票就比小强的少176,那么,小强原有______张邮票,小林原有______张邮票。

练习11.百货商店运到一批玩具,按原(出厂)价加上运费、营业费和利润出售,运费是原价的61,营业费与利润的和是原价的91,已知售价是161元,求出厂价是多少?2.某中学初中共780人,该校去数学奥校学习的学生中,恰好有178是初一的学生,有239是初二的学生,那么该校初中学生中,没进奥校学习的有多少人?3.有甲、乙两筐香蕉,如果从甲筐取出10千克放入乙筐,则两筐相等;如果从两筐中各取出10千克,这时甲筐余下的103比乙筐余下的31多5千克。

甲筐有香蕉多少千克?乙筐有香蕉多少千克?例3.食堂运来一批大米,第一天吃了全部的52,第二天吃了余下的31,第三天吃了这时余下的43,这时还剩下15千克。

食堂运来大米多少千克?例4小明看一本故事书,第一天看了这本书的51,第二天看了余下的31多10页,已知剩下的比第一天看的多35页,这本书共有多少页? 练习21.妈妈买了一些苹果,第一天吃去31又31个,第二天吃去剩下的41又41个,第三天吃去再剩下的31又31个,这时剩下3个苹果。

小学奥数分数应用题

小学奥数分数应用题

小学奥数分数应用题本文介绍了分数应用题的解题方法和关键点。

在解题过程中,需要找准单位“1”,即标准量,并确定对应的百分率。

找准单位“1”的方法有三种:通过部分数和总数的关系确定、通过比较关系中的比后面的数量确定、通过将原数量与现数量进行比较确定。

掌握这些方法和关键点,可以更加准确地解决分数应用题。

解析】假设原来卖出了10张门票,那么收入为150元,降价后观众增加了一半,也就是增加了1的观众,收入增加了五分之一,也就是增加了30元,所以新的观众数为2新的收入为180元,每张门票的价格为1801512元,所以降价后每张门票降价了3元。

答案】每张门票降价了3元。

解析】设原来木杆长度为x,第一次截去后长度为x/3,第二次截去后长度为2x/9,第三次截去后长度为4x/81.由题意可得:4x/81=27,解得x=243.所以原来木杆长度为243,第一次截去后长度为81,第二次截去后长度为54,第三次截去后长度为36.答案】原来木杆长度为243,第一次截去后长度为81,第二次截去后长度为54,第三次截去后长度为36.XXX有一盒巧克力饼干,他第一天吃掉了全部的七分之一;第二天吃了余下的六分之一;第三天吃了余下的五分之一;第四天吃了余下的四分之一;第五天吃了余下的三分之一;第六天吃了余下的二分之一;这时还剩下12块巧克力饼干,那么共有多少块巧克力饼干?考点】分数应用题【难度】3星【题型】解答【关键词】可逆思想方法解析】设盒中原有巧克力饼干为x块,根据可逆思想方法,倒推出每天吃掉的饼干量,得到以下表格:第几天 | 吃掉的比例 | 剩余的比例 |第一天 | 7/7=1.| 6/7.|第二天 | 6/6=1.| 5/6.|第三天 | 5/5=1.| 4/5.|第四天 | 4/4=1.| 3/4.|第五天 | 3/3=1.| 2/3.|第六天 | 2/2=1.| 1/2.|由于剩余的比例是连续的,所以可以列出方程:frac{6}{7}\times \frac{5}{6}\times \frac{4}{5}\times\frac{3}{4}\times \frac{2}{3}\times \frac{1}{2}\times x = 12$$化简得到:$x=252$,因此共有252块巧克力饼干。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分数应用题常见方法
在比较复杂的分数应用题中,“四步法”只是基础的分析思维,还需要借助一些方法来解题。

除了画图法外,还有以下几种解题方法
(一)对应法
小学四年级奥数中有专门的章节介绍对应法解应用题。

对应法的核心思维是:不仅数字可以列竖式进行加减,算式也可以列竖式加减
例:学校安排一批学生到图书馆借书,如果男生增加1/5,人数将达到52人,如果女生减少1/5,人数是42人。

这批学生原有多少人?
解析:根据题意,我们可以找出下面两个数量关系式:
男生人数+1/5的男生人数+女生人数 = 52
男生人数+女生人数-1/5的女生人数 = 42 这两个式子对应相减(竖式相减),得:
1/5的男生人数+1/5的女生人数 = 10
即1/5 ×(男生人数+女生人数)=10
男生人数+女生人数=10÷1/5=50(人)
(二)转化法
当题中出现多个单位“1”时,我们可以把不同的单位“1”转化成统一的单位“1”
例:小明、小英、小丽和小华四人爱好集邮,小明的邮票数是小英的1/2,小英的邮票数是小丽的1/3,小丽的邮票数是小华的1/4,已知四人共集邮132张,小明集邮多少张?
解析:按照“四步法”,题中有三个不带单位的分率,它们的单位“1”分别是小英、小丽和小华;肯定用除法;题中只有一个带单位的数量:132张,列式一定是用132去除;132是指四人集邮总数,应除以四人的分率总和,题目最关键就是要把四人的分率表示出来,由于存在不同的单位“1”,首先必须把不同的单位“1”统一成一个单位“1”。

有正确的思路,才知道该做什么。

把题中三个单位“1”,统一转化成以小华的集邮数做单位“1”。

小华是单位“1”,根据“小丽的邮票数是小华的1/4”,小丽就是1/4;根据“小英的邮票数是小丽的1/3”,小英就是:1/3 × 1/4= 1/12;根据“小明的邮票数是小英的1/2”,小明就是:1/2
× 1/12=1/24,现在四人的分率都表示出来了,可以除了。

132÷(1+ 1/4 + 1/12 + 1/24)
=132÷ 11/8
=96(张)
算出来的是单位“1”:小华的邮票张数,小明的张数是:96× 1/24=4(张)
思考:为什么要挑小华的邮票张数做统一的单位“1”,可不可以把三个单位“1”都统一成小英的邮票总数或小丽的邮票总数?去试试!
(三)假设法
解题思维及方法,请阅博文“假设法的应用”
例:某修路队三天修完一条路,第一天修了全长的1/3多150米,第二天修了全长的2/5少100米,第三天修了1950米,这条路全长多少?
解析:按“四步法”,单位“1”是全长,用除法,题中带单位的数量有三个:150米、100米和1950米,到底用哪个去除,关键是要找到它们对应的分率。

除了画图法,我们还可以通过假设法来找相对
应的分率。

假设第一天只修了全长的1/3,没有多修150米;假设第二天修了全长的2/5,没有少修100米,那么,三天要修完全长,第三天必须要修(1950+150-100)=2000米。

很容易求出第三天的分率:1- 1/3 –2/5 = 4/15
2000÷ 4/15 =7500米,就是单位“1”全长
(四)把分数看成比的方法
分数可以转化成比,把比当份数,也是一种好的解题方法
例学校田径队有35人,其中女生人数是男生人数的3/4,女生人数是多少?
解析:“女生人数是男生人数的3/4”转化成比,就是:女生人数和男生人数之比是3:4,女生人数是3份,男生人数是4份,总共7份,总共35人,每份就是35÷7=5人,那么,女生人数就是5×3=15人
(五)抓住不变量的方法
一些较复杂的分数应用题中,会出现许多数量前后发生变化
的。

这时的解题思维是:在这些变化中抓住不变的量,将不变的量作为标准,有目的地转化数量关系。

来找到解题的线索。

不变的量可能是某一部分量不变,也可以是和、差不变,视题目具体情况而定
例1 某车间的女工人数是男工人数的1/2,若调走21个男工,那么男工人数是女工人数的1/2,这个车间的女工人数是多少?
解析:按“四步法”,题中单位“1”有两个:男工人数和女工人数,但男工人数前后发生了变化,“抓住不变量”,由题意可知,女工人数不变,把它作为单位“1”,把“女工人数是男工人数的1/2”转化成“男工人数是女工人数的2倍”,这时两个单位“1”统一了,可以除了。

21是指调走的男生,必须找出调走男工人数的分率。

原来男工人数的分率是2,现在是1/2,说明调走了(2- 1/2 )=3/2,21÷ 3/2=14(人),就是单位“1”女工的人数
例2.甲乙两个粮仓,原来甲存粮吨数是乙的5/7,如果从乙仓调6吨到甲仓,甲仓粮的吨数是乙仓的4/5,原来甲乙两仓各有粮多少吨?
解析:按“四步法”,乙仓是单位“1”,肯定用除法。

但乙仓存粮前后发生了变化,“抓住不变量”,两个仓的存粮总和不变,把它当作单位“1”,题中的条件都转化成以总存粮为单位“1”。

“原来甲存粮吨数是乙的5/7”,说明原来乙是7份,甲是5份,总共是12份,甲占5/12,乙占7/12;“甲仓粮的吨数是乙仓的4/5”说明调走了后,甲是4份,乙是5份,总共9份,甲占4/9,乙占5/9。

题中带单位的数量是6吨,是指乙调走的吨数,乙调走的分率是(7/12 – 5/9)= 1/36 相对应,可以除了。

6÷ 1/36 =216吨,就是单位“1”总的存粮
那么,原来甲仓:216× 5/12 = 90吨,乙仓存粮:216× 7/12 =126吨
例3.有两根蜡烛,一根长8厘米,另一根长6厘米。

把两根都燃烧掉同样长的部分后,短的一根剩下的长度是长的一根剩下长度的3/5,每段燃烧掉了多少厘米?
解析:依“四步法”,单位“1”是长的一根剩下的长度,用除法。

由题意可知。

这两根蜡烛长度的差没有发生变化。

燃烧前与燃烧后两根蜡烛都是相差8-6=2厘米。

现在最关键的是要找出2厘米所对应的分率,也就是两根蜡烛燃烧后相差的分率。

“短的一根剩下的长度是长的一根剩下长度的3/5”,长的一根剩下的长度为单位“1”,那么短的一根剩下的长度就是3/5,相差1- 3/5= 2/5,现在可以除了
2÷ 2/5=5厘米,就是单位“1”长的一根剩下的长度,说明燃烧掉了8-5=3厘米
(六)还原法
在三、四、五年级奥数中,都有专门的章节介绍还原法,它最核心的思维是倒推思维
例:3只猴子吃篮子的桃子,第一只猴子吃了1/3,第二只猴子吃了剩下的1/3,第三只猴子吃了第二只猴子剩下的1/4,最后篮子里剩下6只桃子。

问原来有多少只桃子?
解析:从最后剩下的6只桃子,进行倒推
6只桃子占第二只猴子吃剩下后桃子数的1- 1/4=3/4,6÷ 3/4 =8只,就是第二只猴子吃剩下的桃子数;8只桃子占第一只猴子吃剩下桃子数的1- 1/3= 2/3,8÷ 2/3=12只,就是第一只猴子吃剩下的桃子数;12只桃子占篮子桃子数的1- 1/3=2/3,12÷ 2/3 =18,就是原有桃子数了。

(七)方程法
在解任何应用题时,方程都是一种不能忽视的备用方法
例某校有学生465人,其中女生的2/3比男生4/5少20人,
男生有多少人?
解析;设男生为x人,女生就有(465-x)人
从“女生的2/3比男生4/5少20人”找题中的数量关系式:女生× 2/3+20=男生× 4/5
列方程2/3 ×(465-x)+20= 4/5 ×x 解得x=225。

相关文档
最新文档