2020届江苏省苏锡常镇四市2017级高三一调考试数学试题(含附加题)及答案
【数学】江苏省苏锡常镇四市2020届高三第一次教学情况调研试题(解析版)
【解析】由题意,可得所得到的几何体是由一个圆柱挖去两个半球而成;其中,圆柱的底面半径为1,母线长为2;体积为 ;两个半球的半径都为1,则两个半球的体积为 ;则所求几何体的体积为
.
12.在△ABC中,( )⊥ ( >1),若角A的最大值为 ,则实数 的值是_______.
【答案】3
【解析】
,解得 =3.
故答案为:3.
13.若函数 (a>0且a≠1)在定义域[m,n]上的值域是[m2,n2](1<m<n),则a的取值范围是_______.
【答案】(1, )
【解析】由题意知: 与 的图像在(1, )上恰有两个交点
考查临界情形: 与 切于 ,
.
故答案为: .
14.如图,在△ABC中,AB=4,D是AB的中点,E在边AC上,AE=2EC,CD与BE交于点O,若OB= OC,则△ABC面积的最大值为_______.
(1)求A;
(2)已知a=2 ,B= ,求△ABC的面积.
解:(1)∵bcosA﹣ asinB=0.
∴由正弦定理可得:sinBcosA﹣ sinAsinB=0,
∵sinB>0,
∴cosA= sinA,
∴tanA= ,
∵A∈(0,π),
∴A= ;
(2)∵a=2 ,B= ,A= ,
∴C= ,根据正弦定理得到
【解析】由题意A B中有且只有一个元素,所以 ,即 .
故答案为: .
3.已知一组数据1.6,1.8,2,2.2,2.4,则该组数据的方差是_______.
【答案】0.08
【解析】首先求得 ,
.ቤተ መጻሕፍቲ ባይዱ
故答案为:0.08.
4.在平面直角坐标系xOy中,已知双曲线 (a>0)的一条渐近线方程为 ,则a=_______.
江苏省苏锡常镇四市2020届高三数学第一次教学情况调研试卷
江苏省苏锡常镇四市2020届高三数学第一次教学情况调研试卷一、填空题(共14题;共14分)1.已知i为虚数单位,复数,则=________.2.已知集合A=,B=,若A B中有且只有一个元素,则实数a的值为________.3.已知一组数据1.6,1.8,2,2.2,2.4,则该组数据的方差是________.4.在平面直角坐标系xOy中,已知双曲线(a>0)的一条渐近线方程为,则a=________.5.甲、乙两人下棋,两人下成和棋的概率是,乙获胜的概率是,则乙不输的概率是________.6.下图是一个算法的流程图,则输出的x的值为________.7.“直线l1:与直线l2:平行”是“a=2”的________条件(填“充分不必要”、“必要不充分”、“充分必要”或“既不充分又不必要”).8.已知等差数列的前n项和为,,,则=________.9.已知点M是曲线y=2lnx+x2﹣3x上一动点,当曲线在M处的切线斜率取得最小值时,该切线的方程为________.10.已知,( ,),则=________.11.如图,在矩形ABCD中,E为边AD的中点,,,分别以、为圆心,为半径作圆弧、(在线段上).由两圆弧、及边BC所围成的平面图形绕直线AD旋转一周,则所形成的几何体的体积为________.12.在△ABC中,( )⊥( >1),若角A的最大值为,则实数的值是________.13.若函数(a>0且a≠1)在定义域[m,n]上的值域是[m2,n2](1<m<n),则a的取值范围是________.14.如图,在△ABC中,AB=4,D是AB的中点,E在边AC上,AE=2EC,CD与BE交于点O,若OB=OC,则△ABC面积的最大值为________.二、解答题(共11题;共100分)15.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足bcosA﹣asinB=0.(1)求A;(2)已知a=2 ,B=,求△ABC的面积.16.如图,在四棱锥P—ABCD中,四边形ABCD为平行四边形,BD⊥DC,△PCD为正三角形,平面PCD⊥平面ABCD,E为PC的中点.(1)证明:AP∥平面EBD;(2)证明:BE⊥PC.17.某地为改善旅游环境进行景点改造.如图,将两条平行观光道l1和l2通过一段抛物线形状的栈道AB连通(道路不计宽度),l1和l2所在直线的距离为0.5(百米),对岸堤岸线l3平行于观光道且与l2相距1.5(百米)(其中A为抛物线的顶点,抛物线的对称轴垂直于l3,且交l3于M),在堤岸线l3上的E,F两处建造建筑物,其中E,F到M的距离为1 (百米),且F恰在B的正对岸(即BF⊥l3).(1)在图②中建立适当的平面直角坐标系,并求栈道AB的方程;(2)游客(视为点P)在栈道AB的何处时,观测EF的视角(∠EPF)最大?请在(1)的坐标系中,写出观测点P的坐标.18.如图,在平面直角坐标系xOy中,已知椭圆C:(a>b>0)的离心率为.且经过点(1,),A,B分别为椭圆C的左、右顶点,过左焦点F的直线l交椭圆C于D,E两点(其中D在x轴上方).(1)求椭圆C的标准方程;(2)若△AEF与△BDF的面积之比为1:7,求直线l的方程.19.已知函数(m R)的导函数为.(1)若函数存在极值,求m的取值范围;(2)设函数(其中e为自然对数的底数),对任意m R,若关于x的不等式在(0,)上恒成立,求正整数k的取值集合.20.已知数列,,数列满足,n.(1)若,,求数列的前2n项和;(2)若数列为等差数列,且对任意n,恒成立.①当数列为等差数列时,求证:数列,的公差相等;②数列能否为等比数列?若能,请写出所有满足条件的数列;若不能,请说明理由.21.已知矩阵,且二阶矩阵M满足AM=B,求M的特征值及属于各特征值的一个特征向量.22.在平面直角坐标系xOy中,曲线l的参数方程为(为参数),以原点O为极点,x轴非负半轴为极轴建立极坐标系,曲线C的极坐标方程为r=4sin q.(1)求曲线C的普通方程;(2)求曲线l和曲线C的公共点的极坐标.23.已知正数x,y,z满足x+y+z=t(t为常数),且的最小值为,求实数t的值.24.某商店举行促销反馈活动,顾客购物每满200元,有一次抽奖机会(即满200元可以抽奖一次,满400元可以抽奖两次,依次类推).抽奖的规则如下:在一个不透明口袋中装有编号分别为1,2,3,4,5的5个完全相同的小球,顾客每次从口袋中摸出一个小球,共摸三次,每次摸出的小球均不放回口袋,若摸得的小球编号一次比一次大(如1,2,5),则获得一等奖,奖金40元;若摸得的小球编号一次比一次小(如5,3,1),则获得二等奖,奖金20元;其余情况获得三等奖,奖金10元.(1)某人抽奖一次,求其获奖金额X的概率分布和数学期望;(2)赵四购物恰好满600元,假设他不放弃每次抽奖机会,求他获得的奖金恰好为60元的概率.25.已知抛物线C:x2=4py(p为大于2的质数)的焦点为F,过点F且斜率为k(k¹0)的直线交C于A,B 两点,线段AB的垂直平分线交y轴于点E,抛物线C在点A,B处的切线相交于点G.记四边形AEBG 的面积为S.(1)求点G的轨迹方程;(2)当点G的横坐标为整数时,S是否为整数?若是,请求出所有满足条件的S的值;若不是,请说明理由.答案解析部分一、填空题1.【答案】2.【答案】23.【答案】0.084.【答案】35.【答案】6.【答案】67.【答案】必要不充分8.【答案】-2n+19.【答案】y=x-310.【答案】11.【答案】12.【答案】313.【答案】(1,)14.【答案】二、解答题15.【答案】(1)解:∵b cos A﹣a sin B=0.∴由正弦定理可得:sin B cos A﹣sin A sin B=0,∵sin B>0,∴cos A=sin A,∴tan A=,∵A∈(0,π),∴A=(2)解:∵a=2 ,B=,A=,∴C=,根据正弦定理得到∴b=6,∴S△ABC=ab==616.【答案】(1)证明:连结AC交BD于点O,连结OE因为四边形ABCD为平行四边形∴O为AC中点,又E为PC中点,故AP∥OE,又AP平面EBD,OE平面EBD所以AP∥平面EBD(2)证明:∵△PCD为正三角形,E为PC中点所以PC⊥DE因为平面PCD⊥平面ABCD,平面PCD平面ABCD=CD,又BD平面ABCD,BD⊥CD∴BD⊥平面PCD又PC平面PCD,故PC⊥BD又BD DE=D,BD平面BDE,DE平面BDE故PC⊥平面BDE又BE平面BDE,所以BE⊥PC17.【答案】(1)解:以A为原点,l1为x轴,抛物线的对称轴为y轴建系由题意知:B(1,0.5),设抛物线方程为代入点B得:p=1,故方程为,x[0,1](2)解:设P( ,),t[0,],作PQ⊥l3于Q,记∠EPQ=,∠FPQ=,,令,,则:,当且仅当即,即,即时取等号;故P( ,)时视角∠EPF最大,答:P( ,)时,视角∠EPF最大18.【答案】(1)解:设焦距为2c,由题意知:;解得,所以椭圆的方程为(2)解:由(1)知:F(﹣1,0),设l:,D( ,),E( ,),<0<①,,,②;③;由①②得:,,代入③得:,又,故,因此,直线l的方程为19.【答案】(1)解:因为,所以,所以,则,由题意可知,解得(2)解:由(1)可知,,所以因为整理得,设,则,所以单调递增,又因为,所以存在,使得,设,是关于开口向上的二次函数,则,设,则,令,则,所以单调递增,因为,所以存在,使得,即,当时,,当时,,所以在上单调递减,在上单调递增,所以,因为,所以,又由题意可知,所以,解得,所以正整数k的取值集合为{1,2}20.【答案】(1)解:因为,,所以,且,由题意可知,数列是以1为首项,2为公差的等差数列,数列是首项和公比均为4的等比数列,所以(2)解:①证明:设数列的公差为,数列的公差为,当n为奇数时,,若,则当时,,即,与题意不符,所以,当n为偶数时,,,若,则当时,,即,与题意不符,所以,综上,,原命题得证;②假设可以为等比数列,设公比为q,因为,所以,所以,,因为当时,,所以当n为偶数,且时,,即当n为偶数,且时,不成立,与题意矛盾,所以数列不能为等比数列21.【答案】解:设矩阵M=,则AM=,所以,解得,所以M=,则矩阵M的特征方程为,解得,即特征值为1,设特征值的特征向量为,则,即,解得x=0,所以属于特征值的的一个特征向量为22.【答案】(1)解:∵曲线C的极坐标方程为,∴,则,即(2)解:,∴,联立可得,(舍)或,公共点( ,3),化为极坐标(2 ,)23.【答案】解:因为即,当且仅当,,时,上述等号成立,所以,即,又x,y,z>0,所以x+y+z=t=424.【答案】(1)解:由题意知,随机变量X的可能取值为10,20,40且,,所以,即随机变量X的概率分布为X10 20 40P所以随机变量X的数学期望(2)解:由题意知,赵四有三次抽奖机会,设恰好获得60元为事件A,因为60=20×3=40+10+10,所以25.【答案】(1)解:设,则,抛物线C的方程可化为,则,所以曲线C在点A处的切线方程为,在点B处的切线方程为,因为两切线均过点G,所以,所以A,B两点均在直线上,所以直线AB的方程为,又因为直线AB过点F(0,p),所以,即G点轨迹方程为(2)解:设点G( ,),由(1)可知,直线AB的方程为,即,将直线AB的方程与抛物线联立,,整理得,所以,,解得,因为直线AB的斜率,所以,且,线段AB的中点为M ,所以直线EM的方程为:,所以E点坐标为(0,),直线AB的方程整理得,则G到AB的距离,则E到AB的距离,所以,设,因为p是质数,且为整数,所以或,当时,,是无理数,不符题意,当时,,因为当时,,即是无理数,所以不符题意,当时,是无理数,不符题意,综上,当G点横坐标为整数时,S不是整数.11 / 11。
2020届江苏省苏锡常镇四市高三第一次教学情况调研数学试题(带答案解析)
(2)赵四购物恰好满600元,假设他不放弃每次抽奖机会,求他获得的奖金恰好为60元的概率.
25.已知抛物线C:x24py(p为大于2的质数)的焦点为F,过点F且斜率为k(k0)的直线交C于A,B两点,线段AB的垂直平分线交y轴于点E,抛物线C在点A,B处的切线相交于点G.记四边形AEBG的面积为S.
评卷人
得分
二、解答题
15.在ቤተ መጻሕፍቲ ባይዱABC中,角A,B,C所对的边分别为a,b,c,且满足bcosA﹣ asinB=0.
(1)求A;
(2)已知a=2 ,B= ,求△ABC的面积.
16.如图,在四棱锥P—ABCD中,四边形ABCD为平行四边形,BD⊥DC,△PCD为正三角形,平面PCD⊥平面ABCD,E为PC的中点.
2020届江苏省苏锡常镇四市高三第一次教学情况调研
数学试题
第II卷(非选择题)
评卷人
得分
一、填空题
1.已知i为虚数单位,复数 ,则 =_______.
2.已知集合A= ,B= ,若A B中有且只有一个元素,则实数a的值为_______.
3.已知一组数据1.6,1.8,2,2.2,2.4,则该组数据的方差是_______.
(1)求椭圆C的标准方程;
(2)若△AEF与△BDF的面积之比为1:7,求直线l的方程.
19.已知函数 (m R)的导函数为 .
(1)若函数 存在极值,求m的取值范围;
(2)设函数 (其中e为自然对数的底数),对任意m R,若关于x的不等式 在(0, )上恒成立,求正整数k的取值集合.
20.已知数列 , ,数列 满足 ,n .
(1)若 , ,求数列 的前2n项和 ;
苏锡常镇四市2017年高考数学一模试卷 含解析
2017年江苏省苏锡常镇四市高考数学一模试卷一.填空题:本大題共14小败,每小題5分,共70分。
不需要写出解答过程1.已知集合U={1,2,3,4,5,6,7},M={x|x2﹣6x+5≤0,x∈Z},则∁U M= .2.若复数z满足z+i=,其中i为虚数单位,则|z|= .3.函数f(x)=的定义域为.4.如图是给出的一种算法,则该算法输出的结果是5.某高级中学共有900名学生,现用分层抽样的方法从该校学生中抽取1个容量为45的样本,其中高一年级抽20人,高三年级抽10人,则该校高二年级学生人数为.6.已知正四棱锥的底面边长是2,侧棱长是,则该正四棱锥的体积为.7.从集合{1,2,3,4}中任取两个不同的数,则这两个数的和为3的倍数的槪率为.8.在平面直角坐标系xOy中,已知抛物线y2=8x的焦点恰好是双曲线﹣=l的右焦点,则双曲线的离心率为.9.设等比数列{a n}的前n项和为S n,若S3,S9,S6成等差数列.且a2+a5=4,则a8的值为.10.在平面直角坐标系xOy中,过点M(1,0)的直线l与圆x2+y2=5交于A,B两点,其中A点在第一象限,且=2,则直线l的方程为.11.在△ABC中,已知AB=1,AC=2,∠A=60°,若点P满足=+,且•=1,则实数λ的值为.12.已知sinα=3sin(α+),则tan(α+)= .13.若函数f(x)=,则函数y=|f(x)|﹣的零点个数为.14.若正数x,y满足15x﹣y=22,则x3+y3﹣x2﹣y2的最小值为.二.解答题:本大题共6小题,共计90分15.(14分)在△ABC中,a,b,c分别为角A,B,C的对边.若acosB=3,bcosA=l,且A﹣B=(1)求边c的长;(2)求角B的大小.16.(14分)如图,在斜三梭柱ABC﹣A1B1C1中,侧面AA1C1C是菱形,AC1与A1C交于点O,E是棱AB上一点,且OE∥平面BCC1B1(1)求证:E是AB中点;(2)若AC1⊥A1B,求证:AC1⊥BC.17.(14分)某单位将举办庆典活动,要在广场上竖立一形状为等腰梯形的彩门BADC (如图),设计要求彩门的面积为S (单位:m2)•高为h(单位:m)(S,h为常数),彩门的下底BC固定在广场地面上,上底和两腰由不锈钢支架构成,设腰和下底的夹角为α,不锈钢支架的长度和记为l.(1)请将l表示成关于α的函数l=f(α);(2)问当α为何值时l最小?并求最小值.18.(16分)在平面直角坐标系xOy中,已知椭圆+=l (a>b >0)的焦距为2,离心率为,椭圆的右顶点为A.(1)求该椭圆的方程:(2)过点D(,﹣)作直线PQ交椭圆于两个不同点P,Q,求证:直线AP,AQ的斜率之和为定值.。
江苏省苏锡常镇四市2020~2021学年度第二学期高三一模数学试卷(含答案)
A.辛酉年
B.辛戊年
C.壬酉年
D.壬戊年
1/15
【答案】A 【考点】文化题:等差数列的应用 【解析】由题意天干是公差为 10 的等差数列,地支为公差为 12 的等差数列,则 100 年前可 得到为辛酉年,故答案选 A. 4.(3-2x)(x+1)5 式中 x3 的系数为 A.错误!未定义书签。-15 B.-10 C.10 错误!未定义书签。D.15 【答案】C 【考点】二项式定理展开式的应用
9.函数 f (x) = sin 2x + π ,则
4
A.函数 y=f(x)的图象可由函数 y=sin2x 的图象向右平移 π4个单位得到 B.函数 y=f(x)的图象关于直线 x=π8轴对称
2/6
C.函数 y=f(x)的图象关于点 (-π8,0)中心对称
D.函数 y=x2+f(x)在 0,π 上为增函数 8
A.辛酉年
B.辛戊年
C.壬酉年
D.壬戊年
4.(3-2x)(x+1)5 式中 x3 的系数为
A.错误!未定义书签。-15 B.-10 C.10 错误!未定义书签。D.15
( ) 5.函数 f (x) = sin x ln x2 +1 − x 的图象大致是
1/6
6.过抛物线 y2=2x上一点 P 作圆 C:x2 + (y − 6)2 = 1的切线,切点为 A,B,则当四边形
(2)设数列{an}的前 n 项和为 Sn ,证明:数列{sn}中的任意连续三项按适当顺序排列后,可
以成等差数列.
4/6
19.(12 分) 如图,在四棱锥 P-ABCD 中,△PAD 是以 AD 为斜边的等腰直角三角形,BC//AD,AB⊥ AD,AD=2AB=2BC=2,PC= 2,E 为 PD 的中点. (1)求直线 PB 与平面 PAC 所成角的正弦值; (2)设 F 是 BE 的中点,判断点 F 是否在平面 PAC 内,并请证明你的结论.
2020届江苏省苏锡常镇四市高三第一次教学情况调研数学试题(学生版)
2019—2020学年度苏、锡、常、镇四市高三教学情况调查(一)数学I一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上.)1.已知i 为虚数单位,复数11i z =+,则z =_______.2.已知集合A ={}01x x ≤≤,B ={}13x a x -≤≤,若A I B 中有且只有一个元素,则实数a 的值为_______.3.已知一组数据1.6,1.8,2,2.2,2.4,则该组数据的方差是_______.4.在平面直角坐标系xOy 中,已知双曲线22214x y a -=(a >0)的一条渐近线方程为23y x =,则a =_______. 5.甲、乙两人下棋,两人下成和棋的概率是12,乙获胜的概率是13,则乙不输的概率是_____. 6.下图是一个算法的流程图,则输出的x 的值为_______.7.“直线l 1:10ax y ++=与直线l 2:430x ay ++=平行”是“a =2”的_______条件(填“充分不必要”、“必要不充分”、“充分必要”或“既不充分又不必要”).8.已知等差数列{}n a 的前n 项和为n S ,19a =,95495S S -=-,则n a =_______. 9.已知点M 是曲线y =2lnx +x 2﹣3x 上一动点,当曲线在M 处的切线斜率取得最小值时,该切线的方程为_______.10.已知3cos 24sin()4παα=-,α∈(4π,π),则sin 2α=_______.11.如图,在矩形中,为边的中点,1AB =,2BC =,分别以A 、D 为圆心,1为半径作圆弧EB 、EC (在线段AD 上).由两圆弧EB 、EC 及边所围成的平面图形绕直线旋转一周,则所形成的几何体的体积为 .12.在△ABC 中,(AB AC λ-u u u r u u u r )⊥BC uuu r (λ>1),若角A 的最大值为6π,则实数λ的值是_______. 13.若函数()x f x a =(a >0且a ≠1)在定义域[m ,n ]上的值域是[m 2,n 2](1<m <n ),则a 的取值范围是_______.14.如图,在△ABC 中,AB =4,D 是AB 的中点,E 在边AC 上,AE =2EC ,CD 与BE 交于点O ,若OB =2OC ,则△ABC 面积的最大值为_______.二、解答题(本大题共6小题,共计90分,请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.)15.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足bcosA 3=0.(1)求A ;(2)已知a =3B =3π,求△ABC 的面积. 16.如图,在四棱锥P —ABCD 中,四边形ABCD 为平行四边形,BD ⊥DC ,△PCD 为正三角形,平面PCD ⊥平面ABCD ,E 为PC 的中点.(1)证明:AP ∥平面EBD ;(2)证明:BE ⊥PC .17.某地为改善旅游环境进行景点改造.如图,将两条平行观光道l 1和l 2通过一段抛物线形状的栈道AB 连通(道路不计宽度),l 1和l 2所在直线的距离为0.5(百米),对岸堤岸线l 3平行于观光道且与l 2相距1.5(百米)(其中A 为抛物线的顶点,抛物线的对称轴垂直于l 3,且交l 3于M ),在堤岸线l 3上的E ,F 两处建造建筑物,其中E ,F 到M 的距离为1 (百米),且F 恰在B 的正对岸(即BF ⊥l 3).(1)在图②中建立适当的平面直角坐标系,并求栈道AB 的方程;(2)游客(视为点P )在栈道AB 的何处时,观测EF 的视角(∠EPF )最大?请在(1)的坐标系中,写出观测点P 的坐标.18.如图,在平面直角坐标系xOy 中,已知椭圆C :22221x y a b+=(a >b >0)的离心率为12.且经过点(1,32),A ,B 分别为椭圆C 的左、右顶点,过左焦点F 的直线l 交椭圆C 于D ,E 两点(其中D 在x 轴上方).(1)求椭圆C 的标准方程;(2)若△AEF 与△BDF 的面积之比为1:7,求直线l 的方程.19.已知函数3222()3f x x mx m x =-+(m ∈R )的导函数为()f x '. (1)若函数()()()g x f x f x =-'存在极值,求m 的取值范围;(2)设函数()(e )(ln )x h x f f x ='+'(其中e 为自然对数的底数),对任意m ∈R ,若关于x 的不等式22()h x m k ≥+在(0,+∞)上恒成立,求正整数k 的取值集合.20.已知数列{}n a ,{}n b ,数列{}n c 满足n n n a n c b n ⎧=⎨⎩,为奇数,为偶数,n N *∈.(1)若n a n =,2n n b =,求数列{}n c 的前2n 项和2n T ;(2)若数列{}n a 为等差数列,且对任意n N *∈,1n n c c +>恒成立.①当数列{}n b 为等差数列时,求证:数列{}n a ,{}n b 的公差相等;②数列{}n b 能否为等比数列?若能,请写出所有满足条件的数列{}n b ;若不能,请说明理由.第II 卷(附加题,共40分)【选做题】本题包括三小题,请选定其中两题作答,每小题10分共计20分,解答时应写出文字说明,证明过程或演算步骤.选修4—2:矩阵与变换21.已知矩阵1323,2111A B -⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦,且二阶矩阵M 满足AM =B ,求M 的特征值及属于各特征值的一个特征向量.选修4—4:坐标系与参数方程22.在平面直角坐标系xOy 中,曲线l的参数方程为22cos 2x y θθ=+⎧⎪⎨=⎪⎩(θ为参数),以原点O 为极点,x 轴非负半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=4sin θ.(1)求曲线C 的普通方程;(2)求曲线l 和曲线C 公共点的极坐标.选修4—5:不等式选讲23.已知正数x ,y ,z 满足x +y +z =t (t 为常数),且22249x y z ++的最小值为87,求实数t 的值.【必做题】第22题、第23题,每题10分,共计20分,解答时应写出文字说明,证明过程或演算步骤.24.某商店举行促销反馈活动,顾客购物每满200元,有一次抽奖机会(即满200元可以抽奖一次,满400元可以抽奖两次,依次类推).抽奖的规则如下:在一个不透明口袋中装有编号分别为1,2,3,4,5的5个完全相同的小球,顾客每次从口袋中摸出一个小球,共摸三次,每次摸出的小球均不放回口袋,若摸得的小球编号一次比一次大(如1,2,5),则获得一等奖,奖金40元;若摸得的小球编号一次比一次小(如5,3,1),则获得二等奖,奖金20元;其余情况获得三等奖,奖金10元.(1)某人抽奖一次,求其获奖金额X的概率分布和数学期望;(2)赵四购物恰好满600元,假设他不放弃每次抽奖机会,求他获得的奖金恰好为60元的概率.25.已知抛物线C:x2=4py(p为大于2的质数)的焦点为F,过点F且斜率为k(k≠0)的直线交C于A,B两点,.线段AB的垂直平分线交y轴于点E,抛物线C在点A,B处的切线相交于点G.记四边形AEBG的面积为S(2)当点G由.的横坐标为整数时,S是否为整数?若是,请求出所有满足条件的S的值;若不是,请说明理。
苏 苏锡常镇四市2020届高三教学情况调研(一)含答案
苏锡常镇四市2020届高三教学情况调研(一)数学Ⅰ试题参考公式:样本数据12n x x x L ,,,的方差2211()n i i s x x n ==-∑,其中11n i i x x n ==∑. 球的体积34π3V R =,其中R 表示球的半径. 柱体的体积V Sh =,其中S 表示柱体的底面积,h 表示柱体的高.一、填空题:本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请把答案直接填写在答题卡相应位置上. 1.已知i 为虚数单位,复数11z i=+,则|z |= . 2.已知集合A ={x |0≤x ≤1},B ={x |a -1≤x ≤3},若A ⋂B 中有且只有一个元素,则实数a 的值为 .3.已知一组数据1.6,1.8,2,2.2,2.4,则该组数据的方差是 .4.在平面直角坐标系xOy 中,已知双曲线2221(0)4x y a a -=>的一条渐近线方程为23y x =,则a = . 5.甲乙两人下棋,两人下成和棋的概率是12,乙获胜的概率是13,则乙不输的概率是 . 6.右图是一个算法的流程图,则输出的x 的值为 .7.“直线l 1:ax +y +1=0与直线l 2:4x +ay +3=0平行”是“a =2”的 条件.(填“充分不必要”、“必要不充分”、“充分必要”或“既不充分又不必要”) 8.已知等差数列{a n }的前n 项和为S n ,a 1=9,9595S S -=-4,则a n = .9.已知点M 是曲线y =2ln x +x 2-3x 上一动点,当曲线在M 处的切线斜率取得最小值时,该切线的方程为 .10.已知3cos2α=4sin(π4-α),α∈(π,π4),则sin2α= . 11.如图在矩形ABCD 中,E 为边AD 的中点,AB =1,BC =2.分别以A ,D 为圆心,1为半径作圆弧EB ,EC ,将两圆弧EB ,EC 及边BC 所围成的平面图形(阴影部分)绕直线AD 旋转一周,所形成的几何体的体积为 .ED CBA (第6题图) (第11题图)12.在∆ABC 中,()AB AC BC λ-⊥u u u r u u u r u u u r(1λ>),若角A 的最大值为π6,则实数λ的值是 .13.若函数f (x )=a x (a >0且a ≠1)在定义域[m ,n ]上的值域是[m 2,n 2](1<m <n ),则a 的取值范围是 . 14.如图,在∆ABC 中,AB =4,D 是AB 的中点,E 在边AC 上,AE =2EC ,CD 与BE 交于点O ,若OB=OC ,则∆ABC 面积的最大值为 .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域作答,解答时应写出文字说明、证明过程或演算步骤。
2017年江苏省苏锡常镇四市高三一模数学试卷
2017年江苏省苏锡常镇四市高三一模数学试卷一、填空题(共14小题;共70分) 1. 已知集合 U ={1,2,3,4,5,6,7},M ={x∣ x 2−6x +5≤0,x ∈Z },则 ∁U M = ______. 2. 若复数 z 满足 z +i =2+i i,其中 i 为虚数单位,则 ∣z∣= ______.3. 函数 f (x )=1ln (4x−3) 的定义域为______.4. 下面是给出的一种算法,则该算法输出的结果是______. t←1 i←2While i≤4 t←t×i i←i+1 End WhilePrint t5. 某高级中学共有 900 名学生,现用分层抽样的方法从该校学生中抽取 1 个容量为 45 的样本,其中高一年级抽 20 人,高三年级抽 10 人,则该校高二年级学生人数为______. 6. 已知正四棱锥的底面边长是 2,侧棱长是 √3,则该正四棱锥的体积为______. 7. 从集合 {1,2,3,4} 中任取两个不同的数,则这两个数的和为 3 的倍数的概率为______.8. 在平面直角坐标系 xOy 中,已知抛物线 y 2=8x 的焦点恰好是双曲线 x 2a 2−y 23=1 的右焦点,则双曲线的离心率为______.9. 设等比数列 {a n } 的前 n 项和为 S n ,若 S 3,S 9,S 6 成等差数列.且 a 2+a 5=4,则 a 8 的值为 ______.10. 在平面直角坐标系 xOy 中,过点 M (1,0) 的直线 l 与圆 x 2+y 2=5 交于 A ,B 两点,其中 A 点在第一象限,且 BM ⃗⃗⃗⃗⃗⃗ =2MA⃗⃗⃗⃗⃗⃗ ,则直线 l 的方程为______. 11. 在 △ABC 中,已知 AB =1,AC =2,∠A =60∘,若点 P 满足 AP ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +λAC ⃗⃗⃗⃗⃗ ,且 BP ⃗⃗⃗⃗⃗ ⋅CP⃗⃗⃗⃗⃗ =1,则实数 λ 的值为______.12. 已知 sinα=3sin (α+π6),则 tan (α+π12)= ______.13. 若函数 f (x )={12x−1,x <1lnxx 2,x ≥1,则函数 y =∣f (x )∣−18的零点个数为______.14. 若正数 x ,y 满足 15x −y =22,则 x 3+y 3−x 2−y 2 的最小值为______.二、解答题(共12小题;共156分)15. 在 △ABC 中,a ,b ,c 分别为角 A ,B ,C 的对边.若 acosB =3,bcosA =1,且 A −B =π6.(1)求边 c 的长; (2)求角 B 的大小.16. 如图,在斜三梭柱 ABC −A 1B 1C 1 中,侧面 AA 1C 1C 是菱形,AC 1 与 A 1C 交于点 O ,E 是棱 AB上一点,且 OE ∥平面BCC 1B 1.(1)求证:E 是 AB 中点;(2)若 AC 1⊥A 1B ,求证:AC 1⊥BC .17. 某单位将举办庆典活动,要在广场上竖立一形状为等腰梯形的彩门 BADC (如图),设计要求彩门的面积为 S (单位:m 2),高为 ℎ(单位:m )(S ,ℎ 为常数),彩门的下底 BC 固定在广场地面上,上底和两腰由不锈钢支架构成,设腰和下底的夹角为 α,不锈钢支架的长度和记为 l .(1)请将 l 表示成关于 α 的函数 l =f (α); (2)问当 α 为何值时 l 最小?并求最小值.18. 在平面直角坐标系 xOy 中,已知椭圆 x 2a 2+y 2b 2=1(a >b >0) 的焦距为 2,离心率为 √22,椭圆的右顶点为 A .(1)求该椭圆的方程:(2)过点 D(√2,−√2) 直线 PQ 交椭圆于两个不同点 P ,Q ,求证:直线 AP ,AQ 的斜率之和为定值.19. 已知函数 f (x )=(x +1)lnx −ax +a (a 为正实数,且为常数).(1)若 f (x ) 在 (0,+∞) 上单调递增,求 a 的取值范围; (2)若不等式 (x −1)f (x )≥0 恒成立,求 a 的取值范围.20. 已知 n 为正整数,数列 {a n } 满足 a n >0,4(n +1)a n 2−na n+12=0,设数列 {b n } 满足 b n =a n2t n.(1)求证:数列 {n√n } 为等比数列;(2)若数列 {b n } 是等差数列,求实数 t 的值;(3)若数列 {b n } 是等差数列,前 n 项和为 S n ,对任意的 n ∈N ∗,均存在 m ∈N ∗,使得 8a 12S n −a 14n 2=16b m 成立,求满足条件的所有整数 a 1 的值.21. 如图,圆O的直径AB=6,C为圆周上一点,BC=3,过C作圆的切线l,过A作l的垂线AD,AD分别与直线l,圆交于点D,E.求∠DAC的度数与线段AE的长.22. 已知二阶矩阵M有特征值λ=8及对应的一个特征向量e1⃗⃗⃗ =[11],并且矩阵M对应的变换将点(−1,2)变换成(−2,4).(1)求矩阵M;(2)求矩阵M的另一个特征值.23. 已知圆O1和圆O2的极坐标方程分别为ρ=2,ρ2−2√2ρcos(θ−π4)=2.(1)把圆O1和圆O2的极坐标方程化为直角坐标方程;(2)求经过两圆交点的直线的极坐标方程.24. 已知a,b,c为正数,且a+b+c=3,求√3a+1+√3b+1+√3c+1的最大值.25. 如图,已知正四棱锥P−ABCD中,PA=AB=2,点M,N分别在PA,BD上,且PMPA =BNBD=13.(1)求异面直线MN与PC所成角的大小;(2)求二面角N−PC−B的余弦值.26. 设∣θ∣<π2,n为正整数,数列{a n}的通项公式a n=sin nπ2tan nθ,其前n项和为S n.(1)求证:当n为偶函数时,a n=0;当n为奇函数时,a n=(−1)n−12tan nθ;(2)求证:对任何正整数n,S2n=12sin2θ⋅[1+(−1)n+1tan2nθ].答案第一部分1. {6,7}2. √103. {x∣∣ x>34且x≠1}4. 245. 3006. 437. 138. 29. 210. x−y−1=011. −14或112. 2√3−413. 414. 1第二部分15. (1)因为acosB=3,bcosA=1,所以a×a 2+c2−b22ac=3,b×b2+c2−a22bc=1,化为:a2+c2−b2=6c,b2+c2−a2=2c.相加可得:2c2=8c,解得c=4.(2)由(1)可得:a2−b2=8.由正弦定理可得:asinA =bsinB=4sinC,又A−B=π6,所以A=B+π6,C=π−(A+B)=π−(2B+π6),可得sinC=sin(2B+π6).所以a=4sin(B+π6)sin(2B+π6),b=4sinBsin(2B+π6).所以16sin2(B+π6)−16sin2B=8sin2(2B+π6),所以1−cos(2B+π3)−(1−cos2B)=sin2(2B+π6),即cos2B−cos(2B+π3)=sin2(2B+π6),所以−2sin(2B+π6)sin(−π6)=sin2(2B+π6),所以sin(2B+π6)=0或sin(2B+π6)=1,B∈(0,5π12).解得:B=π6.16. (1) 连接 BC 1,取 AB 中点 Eʹ, AA 1C 1C 是菱形,AC 1 与 A 1C 交于点 O , 所以 O 为 AC 1 的中点, 因为 Eʹ 是 AB 的中点, 所以 OEʹ∥BC 1;因为 OEʹ⊄平面BCC 1B 1,BC 1⊂平面BCC 1B 1, 所以 OEʹ∥平面BCC 1B 1, 因为 OE ∥平面BCC 1B 1, 所以 E ,Eʹ 重合, 所以 E 是 AB 中点.(2) 因为侧面 AA 1C 1C 是菱形, 所以 AC 1⊥A 1C ,因为 AC 1⊥A 1B ,A 1C ∩A 1B =A 1,A 1C ⊂平面A 1BC ,A 1B ⊂平面A 1BC , 所以 AC 1⊥平面A 1BC , 因为 BC ⊂平面A 1BC , 所以 AC 1⊥BC .17. (1) 设上底长为 a ,则 S =(a+a+2ℎtanα)ℎ2,所以 a =Sℎ−ℎtanα, 所以 l =Sℎ−ℎtanα+2ℎsinα(0<α<π2). (2) lʹ=ℎ⋅1−2cosαsin 2α,所以 0<α<π3,lʹ<0,π3<α<π2,lʹ>0, 所以 α=π3 时,l 取得最小值 Sℎ+√3ℎ m .18. (1) 由题意可知:椭圆 x 2a 2+y 2b 2=1(a >b >0),焦点在 x 轴上,2c =1,c =1, 椭圆的离心率 e =c a=√22,则 a =√2,b 2=a 2−c 2=1,则椭圆的标准方程:x 22+y 2=1.(2) 设 P (x 1,y 1),Q (x 2,y 2),A(√2,0), 由题意 PQ 的方程:y =k(x −√2)−√2, 则 {y =k(x −√2)−√2,x 22+y 2=1,整理得:(2k 2+1)x 2−(4√2k 2+4√2k)x +4k 2+8k +2=0, 由韦达定理可知:x 1+x 2=4√2k 2+4√2k2k 2+1,x 1x 2=4k 2+8k+22k 2+1,则 y 1+y 2=k (x 1+x 2)−2√2k −2√2=−2√2−2√2k2k 2+1,则 k AP +k AQ =1x−√2+2x −√2=1221√2(12x x −√2(x +x )+2,由y 1x 2+y 2x 1=[k(x 1−√2)−√2]x 2+[k(x 2−√2)−√2]x 1=2kx 1x 2−(√2k +√2)(x 1+x 2)=−4k2k 2+1,k AP +k AQ =1221√2(12x x −√2(x +x )+2=−4k 2k 2+1−√2×−2√2−2√2k2k 2+14k 2+8k+22k 2+1−√2×4√2k 2+4√2k2k 2+1+2=1,所以直线 AP ,AQ 的斜率之和为定值 1.19. (1) f (x )=(x +1)lnx −ax +a ,fʹ(x )=lnx +1x +1−a ,若 f (x ) 在 (0,+∞) 上单调递增,则 a ≤lnx +1x +1 在 (0,+∞) 恒成立,(a >0), 令 g (x )=lnx +1x +1,(x >0),gʹ(x )=x−1x 2,令 gʹ(x )>0,解得:x >1,令 gʹ(x )<0,解得:0<x <1,故 g (x ) 在 (0,1) 递减,在 (1,+∞) 递增,故 g (x )min =g (1)=2,故 0<a ≤2. (2) 若不等式 (x −1)f (x )≥0 恒成立,即 (x −1)[(x +1)lnx −a ]≥0 恒成立,① x ≥1 时,只需 a ≤(x +1)lnx 恒成立,令 m (x )=(x +1)lnx ,(x ≥1),则 mʹ(x )=lnx +1x +1, 由(1)得:mʹ(x )≥2,故 m (x ) 在 [1,+∞) 递增,m (x )≥m (1)=0, 故 a ≤0,而 a 为正实数,故 a ≤0 不合题意; ② 0<x <1 时,只需 a ≥(x +1)lnx ,令 n (x )=(x +1)lnx ,(0<x <1),则 nʹ(x )=lnx +1x +1,由(1)nʹ(x ) 在 (0,1) 递减,故 nʹ(x )>n (1)=2,故 n (x ) 在 (0,1) 递增,故 n (x )<n (1)=0,故 a ≥0, 而 a 为正实数,故 a >0.20. (1) 数列 {a n } 满足 a n >0,4(n +1)a n 2−na n+12=0,所以 2√n +1a n =√na n+1n+1√n+1=n √n,所以数列 {n √n} 是以 a 1 为首项,以 2 为公比的等比数列. (2) 由(1)可得:n√n=a 1×2n−1, 所以 a n 2=na 12⋅4n−1.因为 b n =a n2t n,所以 b 1=a 12t,b 2=a 22t 2,b 3=a 32t 3,因为数列 {b n } 是等差数列, 所以 2×a 22t 2=a 12t+a 32t 3, 所以2×2a 12×4t=a 12+3a 12×42t 2,化为:16t =t 2+48,解得 t =12或4.(3) 数列 {b n } 是等差数列,由(2)可得:t =12或4. ① t =12 时,b n =na 12⋅4n−112n=na 124×3n,S n =n(a 1212+na 124×3n)2,因为对任意的 n ∈N ∗,均存在 m ∈N ∗,使得 8a 12S n −a 14n 2=16b m 成立,所以 8a 12×n(a 1212+na 124×3n)2−a 14n 2=16×ma 124×3m,所以 a 12(n 3+n 23n −n 2)=4m3m ,n =1 时,化为:−13a 12=4m 3m>0,无解,舍去.② t =4 时,b n =na 12⋅4n−14n=na 124,S n =n(a 124+na 124)2,对任意的 n ∈N ∗,均存在 m ∈N ∗,使得 8a 12S n−a 14n 2=16bm 成立,所以 8a 12×n(a 124+na 124)2−a 14n2=16×ma 124,所以 na 12=4m ,所以 a 1=2√mn . 因为 a 1 为正整数, 所以 √mn=12k ,k ∈N ∗.所以满足条件的所有整数 a 1 的值为 {a 1∣ a 1=2√m n ,n ∈N ∗,m ∈N ∗,且√m n =12k,k ∈N ∗}.21. 如图,连接 OC , BC =OB =OC =3, 因此 ∠CBO =60∘. 由于 ∠DCA =∠CBO ,所以 ∠DCA =60∘,又 AD ⊥DC 得 ∠DAC =30∘. 又因为 ∠ACB =90∘,得 ∠CAB =30∘,那么 ∠EAB =60∘,从而 ∠ABE =30∘, 于是 AE =12AB =3.22. (1) 设矩阵 A =[a bc d ],这里 a,b,c,d ∈R ,则 [a b c d ][11]=8[11]=[88],故 {a +b =8,c +d =8,由于矩阵 M 对应的变换将点 (−1,2) 换成 (−2,4). 则 [a b c d ][−12]=[−24],故 {−a +2b =−2,−c +2d =4,联立以上两方程组解得 a =6,b =2,c =4,d =4,故 M =[6244].(2) 由(1)知,矩阵 M 的特征多项式为 f (λ)=(λ−6)(λ−4)−8=λ2−10λ+16,故矩阵 M 的另一个特征值为 2. 23. (1) 由 ρ=2 知 ρ2=4,故圆 O 1 的直角坐标方程为 x 2+y 2=4. 因为 ρ2−2√2ρcos (θ−π4)=2,所以 ρ2−2√2ρ(cosθcos π4+sinθsin π4)=2,故圆 O 2 的直角坐标方程为 x 2+y 2−2x −2y −2=0. (2) 将两圆的直角坐标方程相减, 得经过两圆交点的直线方程为 x +y =1. 化为极坐标方程为 ρcosθ−ρsinθ=1, 即 ρsin (θ+π4)=√22. 24. 由柯西不等式可得(√3a +1+√3b +1+√3c +1)2≤[12+12+12][(√3a +1)2+(√3b +1)2+(√(3c +1))2]=3×12,所以 √3a +1+√3b +1+√3c +1≤6,当且仅当 √3a +1=√3b +1=√3c +1 时取等号. 所以 √3a +1+√3b +1+√3c +1 的最大值为 6. 25. (1) 设 AC 与 BD 的交点为 O ,AB =PA =2.以点 O 为坐标原点,DA ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ ,OP ⃗⃗⃗⃗⃗ 方向分别是 x 轴,y 轴,z 轴正方向,建立空间直角坐标系 O −xyz .A (1,−1,0),B (1,1,0),C (−1,1,0),D (−1,−1,0), 设 P (0,0,p ),则 AP ⃗⃗⃗⃗⃗ =(−1,1,p ), 又 AP =2,所以 1+1+p 2=4,所以 p =√2,因为 OM ⃗⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +AM ⃗⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +23AP ⃗⃗⃗⃗⃗ =(13,−13,2√23),ON ⃗⃗⃗⃗⃗⃗ =13OB ⃗⃗⃗⃗⃗ =(13,13,0),所以 PC ⃗⃗⃗⃗⃗ =(−1,1,−√2),MN ⃗⃗⃗⃗⃗⃗⃗ =(0,23,−2√23), 设异面直线 MN 与 PC 所成角为 θ, 则 cosθ=∣MN⃗⃗⃗⃗⃗⃗⃗ ⋅CP ⃗⃗⃗⃗⃗ ∣∣MN⃗⃗⃗⃗⃗⃗⃗ ∣⋅∣PC ⃗⃗⃗⃗⃗ ∣=23+432√49+89=√32. θ=30∘,所以异面直线 MN 与 PC 所成角为 30∘.(2) PC ⃗⃗⃗⃗⃗ =(−1,1,−√2),PB ⃗⃗⃗⃗⃗ =(1,1,−√2),PN ⃗⃗⃗⃗⃗⃗ =(13,13,−√2), 设平面 PBC 的法向量 n ⃗ =(x,y,z ), 则 {n ⃗ ⋅PB⃗⃗⃗⃗⃗ =x +y −√2z =0,n ⃗ ⋅PC ⃗⃗⃗⃗⃗ =−x +y −√2z =0,取 z =1,得 n ⃗ =(0,√2,1), 设平面 PNC 的法向量 m ⃗⃗ =(a,b,c ), 则 {m ⃗⃗ ⋅PN⃗⃗⃗⃗⃗⃗ =13a +13b −√2c =0,m ⃗⃗ ⋅PC ⃗⃗⃗⃗⃗ =−a +b −√2c =0, 取 c =1,得 m ⃗⃗ =(√2,2√2,1), 设二面角 N −PC −B 的平面角为 θ,则cosθ=∣m⃗⃗⃗ ⋅n⃗ ∣∣m⃗⃗⃗ ∣⋅∣n⃗ ∣=√3⋅√11=5√3333.所以二面角N−PC−B的余弦值为5√3333.26. (1)a n=sin nπ2tan nθ,当n=2k(k∈N∗)为偶数时,a n=sinkπ⋅tan nθ=0;当n=2k−1为奇函数时,a n=sin2k−12πtan nθ=(−1)k−1tan nθ=(−1)n−12tan nθ.(2)a2k−1+a2k=(−1)n−12tan nθ.所以奇数项成等比数列,首项为tanθ,公比为−tan2θ.所以S2n=tanθ[1−(−1)n tan2nθ]1−(−tan2θ)=12sin2θ⋅[1+(−1)n+1tan2nθ].。
江苏省苏锡常镇四市2020届高三教学情况调研 数学(含答案)z
苏锡常镇四市2020届高三教学情况调研数学Ⅰ试题一、填空题:本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请把答案直接填写在答题卡相应位置上。
1.已知i 为虚数单位,复数11z i =+,则|z |=2.已知集合A ={x |0≤x ≤1},B ={x |a -1≤x ≤3},若A ⋂B 中有且只有一个元素,则实数a 的值为3.已知一组数据1.6,1.8,2,2.2,2.4,则该组数据的方差是4.在平面直角坐标系xOy 中,已知双曲线2221(0)4x y a a -=>的一条渐近线方程为23y x=,则a = 5.甲乙两人下棋,两人下成和棋的概率是12,乙获胜的概率是13,则乙不输的概率是 6.右图是一个算法的流程图,则输出的x 的值为7.“直线l 1:ax +y +1=0与直线l 2:4x +ay +3=0平行”是“a =2”的 条件.(填“充分不必要”、“必要不充分”、“充分必要”或“既不充分又不必要”)8.已知等差数列{a n }的前n 项和为S n ,a 1=9,9595S S -=-4,则a n = 9.已知点M 是曲线y =2ln x +x 2-3x 上一动点,当曲线在M 处的切线斜率取得最小值时,该切线的方程为10.已知3cos2α=4sin(4π-α),α∈(,4ππ),则sin2α=11.如图在矩形ABCD 中,E 为边AD 的中点,AB =1,BC =2.分别以A ,D 为圆心,1为半径作圆弧EB ,EC ,将两圆弧EB ,EC 及边BC 所围成的平面图形(阴影部分)绕直线AD 旋转一周,所形成的几何体的体积为12.在∆ABC 中,,若角A 的最大值为6π,则实数λ的值是 13.若函数f (x )=a x (a >0且a ≠1)在定义域[m ,n ]上的值域是[m 2,n 2](1<m <n ),则a 的取值范围是14.如图,在∆ABC 中,AB =4,D 是AB 的中点,E 在边AC 上,AE =2EC ,CD 与BE 交于点O ,若OB =2OC ,则∆ABC 面积的最大值为二、解答题:本大题共6小题,共计90分.请在答题卡指定区域作答,解答时应写出文字说明、证明过程或演算步骤。
江苏省苏锡常镇四市2020届高三教学情况调研数学试题(一)
江苏省苏锡常镇四市2020届高三教学情况调研(一)一、填空题:本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请把[答案]直接填写在答题卡相应位置上。
1.已知i为虚数单位,复数11zi=+,则|z|=2.已知集合A={x|0≤x≤1},B={x|a-1≤x≤3},若A⋂B中有且只有一个元素,则实数a的值为3.已知一组数据1.6,1.8,2,2.2,2.4,则该组数据的方差是4.在平面直角坐标系xOy中,已知双曲线2221(0)4x yaa-=>的一条渐近线方程为23y x=,则a=5.甲乙两人下棋,两人下成和棋的概率是12,乙获胜的概率是13,则乙不输的概率是6.右图是一个算法的流程图,则输出的x的值为7.“直线l1:ax+y+1=0与直线l2:4x+ay+3=0平行”是“a=2”的条件.(填“充分不必要”、“必要不充分”、“充分必要”或“既不充分又不必要”)8.已知等差数列{a n}的前n项和为Sn,a1=9,9595S S-=-4,则a n=9.已知点M是曲线y=2ln x+x2-3x上一动点,当曲线在M处的切线斜率取得最小值时,该切线的方程为10.已知3cos2α=4sin(4π-α),α∈(,4ππ),则sin2α=11.如图在矩形ABCD 中,E 为边AD 的中点,AB =1,BC =2.分别以A ,D 为圆心,1为半径作圆弧EB ,EC ,将两圆弧EB ,EC 及边BC 所围成的平面图形(阴影部分)绕直线AD 旋转一周,所形成的几何体的体积为12.在∆ABC 中,,若角A 的最大值为6π,则实数λ的值是 13.若函数f (x )=a x (a >0且a ≠1)在定义域[m ,n ]上的值域是[m 2,n 2](1<m <n ),则a 的取值范围是14.如图,在∆ABC 中,AB =4,D 是AB 的中点,E 在边AC 上,AE =2EC ,CD 与BE 交于点O ,若OB ,则∆ABC 面积的最大值为二、解答题:本大题共6小题,共计90分.请在答题卡指定区域作答,解答时应写出文字说明、证明过程或演算步骤。
2020届江苏省苏锡常镇四市高三第一次联考数学(理)试题
2020届江苏省苏锡常镇四市高三第一次联考高三数学试题★祝考试顺利★ 注意事项:1、考试范围:高考范围。
2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。
3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。
4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
5、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
6、主观题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
7、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
8、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
一、填空题:本大题共14小题,每小题5分,计70分.不需写出解答过程,请把答案写在答题卡的指定位置上.1.已知集合{1,0,1,6}A =-,{|0,}B x x x =>∈R ,则AB = ▲ .2.命题“2000,10x x x ∃∈++<R ”的否定为 ▲ .3.已知向量()(),,6,3,4m =-=且,⊥则=m ▲ .4.若函数()⎪⎩⎪⎨⎧-≤+=)1(log 1,222x x x f x ,则()[]=0f f ▲ .5.函数y =的定义域是 ▲ . 6.已知1x >,则41x x +-的最小值为 ▲ . 7.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若()cos 3cos a B c b A =-,则=A cos ▲ . 8.已知31)6sin(=+πx ,则)3(sin )65sin(2x x -+-ππ的值是 ▲ . 9.已知函数()ln 4f x x x =+-的零点在区间()1k k +,内,则正整数k 的值为▲ .10.在△ABC 中,AB =AC =2,BC =23,点D 满足→DC =2→BD ,则→AD ·→DC 的值为▲_____. 11.已知函数 则不等式的解集为 ▲ .12.已知函数()3213f x ax x x =-+在区间()0,2上是单调增函数,则实数a 的取值范围是 ▲ .13、设函数 ⎪⎩⎪⎨⎧>≤+=0,log 0,1)(4x x x x x f ,若关于x 的方程a x f =)(有四个不同的解4321,,,x x x x ,且4321x x x x <<<,则4232131)(x x x x x ++的取值范围是 ▲ . 14.已知a ∈R ,设函数222,1()ln ,1x ax a x f x x a x x ⎧-+≤=⎨->⎩,若关于x 的不等式()0f x ≥在x ∈R上恒成立,则a 的取值范围为 ▲ .二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题卡的指定区域内.15.(本题满分14分)已知π03x ⎡⎤∈⎢⎥⎣⎦,,设向量()sin cos m x x =,,3122n ,⎛⎫= ⎪ ⎪⎝⎭. (1)若∥,求x 的值;(2)若35m n ⋅=,求πsin 12x ⎛⎫- ⎪⎝⎭的值.16.(本题满分14分)在平面直角坐标系xOy 中,已知圆C 的方程为()2214x y -+=,M 点的坐标为()3,3-.(1)求过点M 且与圆C 相切的直线方程;(2)过点M 任作一条直线l 与圆C 交于不同两点A ,B ,且圆C 交x 轴正半轴于点P ,求证:直线PA 与PB 的斜率之和为定值.17.(本小题满分14分)在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对边的长,cos cos a B A =,cos A =(1)求角B 的值; (2)若a =ABC 的面积.18.(本题满分16分)设命题p :函数21()lg()16f x ax x a =-+的定义域为R ;命题q :不等式39x x a -<对一切正实数x 均成立.(1)如果p 是真命题,求实数a 的取值范围;(2)如果命题 “q p ∨”为真命题,且“q p ∧”为假命题,求实数a 的取值范围.19、(本题满分16分)某湿地公园围了一个半圆形荷花塘如图所示,为了提升荷花池的观赏性,现计划在池塘的中轴线OC 上设计一个观景台D (点D 与点O ,C 不重合),其中AD ,BD ,CD 段建设架空木栈道,已知2AB =km ,设建设的架空木栈道的总长为y km .(1)设(rad)DAO θ∠=,将y 表示成θ的函数关系式,并写出θ的取值范围; (2)试确定观景台的位置,使三段木栈道的总长度最短.20. (本小题满分16分) 已知函数xx x g x x f 1)(,ln )(-==. (1)①、若直线1+=kx y 与x x f ln )(=的图像相切, 求实数k 的值;②、令函数|)(|)()(x g x f x h -=,求函数)(x h 在区间]1,[+a a )0(>a 上的最大值. (2)已知不等式)()(2x kg x f <对任意的),1(+∞∈x 恒成立,求实数k 的取值范围.一、填空题:本大题共14小题,每小题5分,计70分.不需写出解答过程,请把答案写在答题卡的指定位置上.1. {1,6}2. 2000,10x x x ∀∈++≥R3.【答案】8 4.答案:2 5. [1,7]- 6. 5 7.【答案】138.95 9.【答案】2 10.-4311. 【答案】12【答案】1a ≥ 13、⎥⎦⎤ ⎝⎛27,1-,14.【解析】当1x =时,(1)12210f a a =-+=>恒成立当1x <时,22()22021x f x x ax a a x =-+≥⇔≥-恒成立令2222(11)(1)2(1)1()1111x x x x x g x x x x x-----+==-=-=-----1(12)2)01x x =--+-≤-=- ∴max 2()0a g x ≥= ∴0a ≥当1x >时,()ln 0ln xf x x a x a x=-≥⇔≤恒成立 令()ln xh x x=,则221ln ln 1()(ln )(ln )x x x x h x x x -⋅-'==当x e >时,()0h x '>,()h x 递增 当1x e <<时,()0h x '<,()h x 递减 ∴x e =时,()h x 取得最小值()h e e = ∴min ()a h x e ≤= 综上a 的取值范围是[]0,e 【答案】[]0,e二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题卡的指定区域内. 15.【答案】(1)π3x =;(2)10- 【解析】试题分析:(1)通过m ∥n ,得到关于x 的方程,结合π03x ,⎡⎤∈⎢⎥⎣⎦,得到x 的值;(2)利用数量积的定义可得π3s i n 65x ⎛⎫+= ⎪⎝⎭,令π6x θ=+,则π6x θ=-,故ππs i n s i n 124x θ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭可根据诱导公式及两角差的正弦公式得最后结果.试题解析:(1)因为()sin cos m x x =,,312n ⎛⎫= ⎪ ⎪⎝⎭,,且m ∥n ,所以1sin cos 2x x ⋅=即tan x =………………………4分 又π03x ,⎡⎤∈⎢⎥⎣⎦,所以π3x =.………………………6分(2)因为()sin cos m x x =,,3122n ⎛⎫= ⎪⎪⎝⎭,,且35m n ⋅=13cos 25x x +=, 即π3sin 65x ⎛⎫+= ⎪⎝⎭, ………………………9分 令π6x θ=+,则π6x θ=-,且3sin 5θ=,因为π03x ,⎡⎤∈⎢⎥⎣⎦,故ππ62θ⎡⎤∈⎢⎥⎣⎦,,所以4cos 5θ===,………………………11分所以ππππππsin sin sin sin cos cos sin 12612444x θθθθ⎛⎫⎛⎫⎛⎫-=--=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭3455=-= ………………………14分 16.【答案】(1)3x =或512210x y ++=(2)详见解析 【解析】 【分析】(1)当直线l 的斜率不存在时,直线3x =满足题意,当直线l 的斜率存在时,设切线方程为()33y m x +=-,圆心到直线的距离等于半径,列式子求解即可求出m ,即可得到切线方程;(2)设直线AB :()33y k x +=-,代入圆C 的方程,可得到关于k 的一元二次方程,设()11,A x y ,()22,B x y ,且()3,0P ,直线PA 与PB 的斜率之和为121233PA PB y yk k x x +=+--,代入根与系数关系整理可得到所求定值。
苏锡常镇四市2017届高三教学情况调研数学试题(一)含解析
江苏省苏锡常镇四市2017届高三教学情况调研(一)数学试题一、填空题1. 已知集合,,∁________.【答案】【解析】由,得:,则,故答案为.2. 若复数满足(为虚数单位),则______________.【答案】【解析】由,得,则,故答案为.3. 函数的定义域为______________.【答案】【解析】要使函数有意义需满足,解得,故答案为.4. 下图是给出的一种算法,则该算法输出的结果是______________.【答案】【解析】由题意列出如下循环过程:;;;不满足循环条件,输出的值,故答案为.5. 某高级中学共有名学生,现用分层抽样的方法从该校学生中抽取个容量为的样本,其中高一年级抽人,高三年级抽人.则该校高二年级学生人数为_________.【答案】300【解析】由题意得高二年级应抽取人,则高二年级学生人数为,故答案为.点睛:本题考查分层抽样,抽样过程中每个个体被抽到的可能性相同,这是解决抽样问题的依据,样本容量、总体个数、每个个体被抽到的概率,这三者可以做到知二求一;用分层抽样的方法抽取一个容量为的样本,根据高一年级抽人,高三年级抽人,得到高二年级要抽取的人数,根据该高级中学共有名学生,算出高二年级学生人数.6. 已知正四棱锥的底面边长是,侧棱长是,则该正四棱锥的体积为____________.【答案】【解析】正四棱锥的底面边长是2,侧棱长为,底面对角线长为,所以棱锥的高为,所以棱锥的体积为,故答案为.7. 从集合中任取两个不同的数,则这两个数的和为的倍数的概率为_______.【答案】【解析】从中任取两个不同的数,共有6种情况,和是3的倍数的有,两种情况,所以根据古典概型公式得,故答案为.8. 在平面直角坐标系中,已知抛物线的焦点恰好是双曲线的右焦点,则双曲线的离心率为______________.【答案】2【解析】抛物线的焦点坐标为,则在双曲线中,,则离心率为,故答案为.9. 设等比数列的前项和为,若成等差数列,且,则的值为______________.【答案】2【解析】设等比数列的公比为,首项是,当时,有、、,不满足成等差数列;当时,因为成等差数列,所以,化简得,解得或(舍去),则,得,则,故答案为2.点睛:本题考查等比数列的前项和公式、通项公式,分类讨论思想,使用等比数列的前项和公式时需要对公比与1的关系进行讨论;设等比数列的公比为、首项是,根据公比与1的关系进行分类,由等比数列的前项和公式化简求值,再由等比数列的通项公式化简可得和的值,故可求得.10. 在平面直角坐标系中,过点的直线与圆交于两点,其中点在第一象限,且,则直线的方程为______________.【答案】11. 在△中,已知,若点满足,且,则实数的值为______________.【答案】或【解析】中,,点满足,∴,∴,又,整理得,解得或,故答案为或.12. 已知,则______________.【答案】【解析】由,得,即整理得:,即,而,故,故答案为.13. 若函数,则函数的零点个数为______________.【答案】4【解析】当时,,根据指数函数的性质可知,该函数单调递减且,故由两个解;当时,,,故当时,,函数单调递增,当时,,函数单调递减;,故,故由两个解,综上可得函数的零点个数为4,故答案为.点睛:本题考查分段函数的应用,函数的零点个数的求法,考查数形结合以及转化思想的应用,考查计算能力;利用分段函数,对,通过函数的零点与方程根的关系求解零点个数,当时,利用导数判断函数的单调性,利用数形结合思想求解函数的零点个数即可.14. 若正数满足,则的最小值为______________.【答案】1【解析】由正数满足,可得,则,,又,其中,即,当且仅当时取得等号,设,的导数为,当时,,递增,时,,递减.即有在处取得极小值,也为最小值,此时,则.当且仅当,时,取得最小值1,故答案为1.点睛:本题考查最值的求法,注意运用变形和导数,求得单调区间、极值和最值,考查化简整理的运算能力,属于难题;由题意可得,,又,求出,当且仅当时取得等号,设,求出导数和单调区间、极值和最值,即可得到所求最小值.二、解答题15. 在△中,分别为角的对边.若,且.(1)求边的长;(2)求角的大小.【答案】(1);(2).【解析】试题分析:(1)由,利用余弦定理化为:,,相加即可得出;(2)运用正弦定理结合题意可得:,将其代入中可解出,结合的范围可得结果.试题解析:(1)(法一)在△中,由余弦定理,,则,得;①,则,得,②①+②得:,.(法二)因为在△中,,则,由得:,,代入上式得:.(2)由正弦定理得,又,解得,,.16. 如图,在斜三棱柱中,侧面是菱形,与交于点,是棱上一点,且∥平面.(1)求证:是中点;(2)若,求证:.【答案】(1)见解析;(2)见解析.17. 某单位将举办庆典活动,要在广场上竖立一形状为等腰梯形的彩门(如图).设计要求彩门的面积为(单位:),高为(单位:)(为常数).彩门的下底固定在广场底面上,上底和两腰由不锈钢支架构成,设腰和下底的夹角为,不锈钢支架的长度和记为.(1)请将表示成关于的函数;(2)问当为何值最小,并求最小值.【答案】(1)l表示成关于的函数为 ();(2)当时,l有最小值为.【解析】试题分析:(1)求出上底,即可将表示成关于的函数;(2)求导数,取得函数的单调性,即可解决当为何值时最小,并求最小值.试题解析:(1)过作于点,则(),,设,则,,,因为S=,则;则 ();(2),令,得.所以,.答:(1)l表示成关于的函数为 ();(2)当时,l有最小值为.18. 在平面直角坐标系中,已知椭圆的焦距为,离心率为,椭圆的右顶点为.(1)求该椭圆的方程;(2)过点作直线交椭圆于两个不同点,求证:直线的斜率之和为定值.【答案】(1)(2)直线AP,AQ的斜率之和为定值1.【解析】试题分析:(1)由题意可知,,离心率,求得,则,即可求得椭圆的方程;(2)则直线的方程:,代入椭圆方程,由韦达定理及直线的斜率公式,分别求得直线,的斜率,即可证明直线,的率之和为定值.试题解析:(1)由题所以,.所以椭圆C的方程为(2)当直线PQ的斜率不存在时,不合题意;当直线PQ的斜率存在时,设直线PQ的方程为,代入得,设,,则:,,,所以,,又=1.所以直线AP,AQ的斜率之和为定值1.19. 已知函数(为正实数,且为常数).(1)若函数在区间上单调递增,求实数的取值范围;(2)若不等式恒成立,求实数的取值范围.【答案】(1).(2).【解析】试题分析:(1)对函数进行求导即,因在上单调递增,则,利用分离参数思想得恒成立,即即可;(2)分为和两种情形,当时,结合(1)很容易得到结论,当时,运用二次求导确定其单调性得解.试题解析:(1),.因在上单调递增,则,恒成立.令,则,因此,,即.(2)当时,由(1)知,当时,单调递增.又,当,;当时,.故不等式恒成立.若,,设,令,则.当时,,单调递减,则,则,所以当时,单调递减,则当时,,此时,矛盾.因此,.点睛:本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想、转化思想,考查函数恒成立问题,是一道中档题;考查恒成立问题,正确分离参数是关键,也是常用的一种手段.通过分离参数可转化为或恒成立,即或即可,利用导数知识结合单调性求出或即得解.20. 已知为正整数,数列满足,,设数列满足. (1)求证:数列为等比数列;(2)若数列是等差数列,求实数的值;(3)若数列是等差数列,前项和为,对任意的,均存在,使得成立,求满足条件的所有整数的值.【答案】(1)见解析;(2);(3)当N*,对任意的N*,均存在N*,使. 【解析】试题分析:(1)将经过移项、两边同时除以可得,故可得结论为等比数列;(2)由(1)得,代入得,由数列是等差数列易知,代入可解得,,将其进行检验得结果;(3)由(2)得,利用等差数列前项和公式代入,解出,经讨论当时符合题意,当时不符合题意.试题解析:(1)由题意得,因为数列各项均正,得,所以,因此,所以是以为首项公比为2的等比数列.(2)由(1)得,,,如果数列是等差数列,则,得:,即,则,解得,.当时,,,数列是等差数列,符合题意;当=12时,,,,,数列不是等差数列,=12不符合题意;综上,如果数列是等差数列,.(3)由(2)得,对任意的N*,均存在N*,使,则,所以.当,N*,此时,对任意的N*,符合题意;当,N*,当时,. 不合题意.综上,当N*,对任意的N*,均存在N*,使. 21. 已知二阶矩阵有特征值及对应的一个特征向量,并且矩阵对应的变换将点变换成.(1)求矩阵;(2)求矩阵的另一个特征值.【答案】(1)M=.(2)矩阵M的另一个特征值为.【解析】试题分析:(1)先设矩阵M=,由二阶矩阵有特征值及对应的一个特征向量及矩阵对应的变换将点换成,得到关于的方程组,即可求得矩阵;(2)由(1)知,矩阵的特征多项式为,从而求得另一个特征值为2.试题解析:设M=,M,M,解得即M=.(2)则令特征多项式,解得.矩阵M的另一个特征值为.22. 已知圆和圆的极坐标方程分别为.(1)把圆和圆的极坐标方程化为直角坐标方程;(2)求经过两圆交点的直线的极坐标方程.【答案】(1)圆的直角坐标方程为,①圆的直角坐标方程为,②(2)该直线的极坐标方程为.【解析】略23. 如图,已知正四棱锥中,,点分别在上,且.(1)求异面直线与所成角的大小;(2)求二面角的余弦值.【答案】(1).; (2).【解析】试题分析:(1)设,交于点,以为坐标原点,,方向分别是轴、轴正方向,建立空间直角坐标系,将异面直线所成的角转化为直线的方向向量所的角;(2)将二面角用面的法向量所成的角表示.试题解析:(1)设,交于点,在正四棱锥中,平面. 又,所以. 以为坐标原点,,方向分别是轴、轴正方向,建立空间直角坐标系,如图:则,,,,故,,所以,,,所以与所成角的大小为.(2),,.设是平面的一个法向量,则,,可得令,,,即,设是平面的一个法向量,则,,可得令,,,即,,则二面角的余弦值为.点睛:本题考查异面直线所成角的求法,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养;建立适当的空间直角坐标系,异面直线所成的角与直线的方向向量所成的角之间相等或互补,主要通过异面直线所成的角的范围为来确定,两个半平面所成的角与面的法向量之间也是相等或互补,主要是通过图形来确定范围. 24. 设,为正整数,数列的通项公式,其前项和为.(1)求证:当为偶数时,;当为奇数时,;(2)求证:对任何正整数,.【答案】(1)当n为偶数时,;当n为奇数时,;(2)见解析. 【解析】试题分析:(1)当为偶数时,易得,当为奇数,即时,分为和两种情形分别讨论;(2)利用数学归纳法证明.试题解析:(1)因为.当n为偶数时,设,,.当n为奇数时,设,.当时,,此时,. 当时,,此时,.综上,当n为偶数时,;当n为奇数时,.(2)当时,由(1)得:,=.故时,命题成立假设时命题成立,即.当时,由(1)得:====即当时命题成立.综上所述,对正整数命题成立.点睛:本题考查了三角函数的诱导公式、等比数列的通项公式与求和公式、分类讨论方法,考查了推理能力与计算能力,属于中档题;解决该题最关键是理解三角函数诱导公式中的“奇变偶不变,符号看象限”以及数学归纳法在解决关于自然数的等式中应用的基本步骤.。
江苏省2020—2021学年苏锡常镇四市高三教学情况调研(一)数学试题(word解析版)
江苏省2020—2021学年苏锡常镇四市高三教学情况调研(一)数学试卷一、单项选择题(本大题共8小题,每小题5分,共计40分.在每小题给出的四个选项中,只有一个是符合题目要求的,请把答案添涂在答题卡相应位置上) 1.设全集U =R ,集合A =[2,4],B ={}2log 1x x >,则集合A (UB)=A .∅B .{2}C .{}02x x ≤≤D .{}2x x ≤2.“2sin 2α=”是“sin cos αα=”的 A .充分不必要条件B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.天干地支纪年法源于中国,中国自古便有十天干与十二地支,十天干即甲、乙、丙、丁、戊、己、庚、辛、王、癸;十二地支即子、丑、寅、卯、辰、已、午、未、申、酉、戌、亥.天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起,例如,第一年为“甲子”,第二年为“乙丑”,第三年为“丙寅”…,以此类推,排列到“癸酉”后,天干回到“甲”重新开始,即“甲戌”,“乙亥”,然后地支回到“子”重新开始,即“丙子”…,以此类推,今年是辛丑年,也是伟大、光荣、正确的中国共产党成立100周年,则中国共产党成立的那年是 A .辛酉年B .辛戊年C .壬酉年D .壬戊年4.5(32)(1)x x -+展开式中3x 的系数为 A .﹣15B .﹣10C .10D .155.函数2()sin ln(1)f x x x x =+-的图像大致是6.过抛物线22y x =上一点P 作圆C :22(6)1x y +-=的切线,切点为A ,B ,则当四边形PACB 的面积最小时,P 点的坐标是 A .(12.(323 C .(2,2)D .(525) 7.若随机变量X~B(3,p ),Y~N(2,2σ),若P(X ≥1)=0.657,P(0<Y <2)=p ,则P(Y >4)=A .0.2B .0.3C .0.7D .0.8 8.若316, 0()0, 0x x f x xx ⎧-≠⎪=⎨⎪=⎩,则满足(1)0xf x -≥的x 的取值范围是 A .[﹣1,1][3,+∞)B .(-∞,﹣1][0,1][3,+∞)C .[﹣1,0][1,+∞)D .(-∞,﹣3][﹣1,0][1,+∞)二、 多项选择题(本大题共4小题,每小题5分, 共计20分.在每小题给出的四个选项中,至少有两个是符合题目要求的,请把答案添涂在答题卡相应位置上) 9.函数()sin(2)4f x x π=+,则A .函数()y f x =的图象可由函数sin 2y x =的图象向右平移4π个单位得到 B .函数()y f x =的图象关于直线8x π=轴对称C .函数()y f x =的图象关于点(8π-,0)中心对称D .函数2()y x f x =+在(0,8π)上为增函数 10.已知O 为坐标系原点,F 1,F 2分别为双曲线22221x y a b-=(a >0,b >0)的左、右焦点,点P 在双曲线右支上,则下列结论正确的有 A .若PO =PF 2,则双曲线的离心率e ≥2B .若△POF 2是面积为3的正三角形,则223b =C .若A 2为双曲线的右顶点,PF 2⊥x 轴,则F 2A 2=F 2PD .若射线F 2P 与双曲线的一条渐近线交于点Q ,则12QF QF 2a ->11.1982年美国数学学会出了一道题:一个正四面体和一个正四棱锥的所有棱长都相等,将正四面体的一个面和正四棱锥的一个侧面紧贴重合在一起,得到一个新几何体.中学生丹尼尔做了一个如图所示的模型寄给美国数学学会,美国数学学会根据丹尼尔的模型修改了有关结论.对于该新几何体,则 A .AF ∥CD B .AF ⏊DEC .新几何体有7个面D .新几何体的六个顶点不能在同一个球面上 12.已知正数x ,y ,z 满足3412x y z ==,则A .634z x y <<B .121x y z+=C .4x y z +>D .24xy z <三、填空题(本大题共4小题, 每小题5分,共计20分.请把答案填写在答题卡相应位置上)13.已知向量a =(1,2),b =(0,﹣2),c =(﹣1,λ),若(2a b -)∥c ,则实数λ=. 14.已知复数z 对应的点在复平面第一象限内,甲、乙、丙、丁四人对复数z 的陈述如下(i为虚数单位):甲:2z z +=;乙:23i z z -=;丙:4z z ⋅=;丁:22z z z =.在甲、乙、丙、丁四人陈述中,有且只有两个人的陈述正确,则复数z =.15.若23sin 2cos 1x x +=,则5sin()cos(2)63x x ππ-⋅+=.16.四面体的棱长为1或2,但该四面体不是正四面体,请写出一个这样四面体的体积;这样的不同四面体的个数为.四、解答题(本大题共6小题,共计70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)在△ABC中,∠BAC=90∘,点D在边BC上,满足AB=3BD.(1)若∠BAD=30°,求∠C;(2)若CD=2BD,AD=4,求△ABC的面积.18.(本小题满分12分)已知等比数列{}n a的各项均为整数,公比为q,且q>1,数列{}n a中有连续四项在集合M={﹣96,﹣24,36,48,192}中.(1)求q,并写出数列{}n a的一个通项公式;(2)设数列{}n a的前n项和为n S,证明:数列{}n S中的任意连续三项按适当顺序排列后,可以成等差数列.19.(本小题满分12分)如图,在四棱锥P—ABCD中,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,AB⊥AD,AD=2AB=2BC=2,PC=2,E为PD的中点.(1)求直线PB与平面PAC所成角的正弦值;(2)设F是BE的中点,判断点F是否在平面PAC内,并请证明你的结论.20.(本小题满分12分)某地发现6名疑似病人中有1人感染病毒,需要通过血清检测确定该感染人员,血清检测结果呈阳性的即为感染人员,呈阴性表示没感染.拟采用两种方案检测:方案甲:将这6名疑似病人血清逐个检测,直到能确定感染人员为止;方案乙:将这6名疑似病人随机分成2组,每组3人.先将其中一组的血清混在一起检测,若结果为阳性,则表示感染人员在该组中,然后再对该组中每份血清逐个检测,直到能确定感染人员为止;若结果呈阴性,则对另一组中每份血清逐个检测,直到能确定感染人员为止.(1)求这两种方案检测次数相同的概率;(2)如果每次检测的费用相同,请预测哪种方案检测总费用较少?并说明理由.21.(本小题满分12分)已知O 为坐标系原点,椭圆C :2214x y +=的右焦点为点F ,右准线为直线n .(1)过点(4,0)的直线交椭圆C 于D ,E 两个不同点,且以线段DE 为直径的圆经过原点O ,求该直线的方程;(2)已知直线l 上有且只有一个点到F 的距离与到直线n,直线l 与直线n 交于点N ,过F 作x 轴的垂线,交直线l 于点M .求证:FMFN为定值. 22.(本小题满分12分)已知函数()1ln f x m x =+(m ∈R).(1)当m =2时,一次函数()g x 对任意x ∈(0,+∞),()f x ≤()g x ≤2x 恒成立,求()g x 的表达式;(2)讨论关于x 的方程2()1()f x x f x=解的个数.江苏省2020—2021学年苏锡常镇四市高三教学情况调研(一)数学试卷一、单项选择题(本大题共8小题,每小题5分,共计40分.在每小题给出的四个选项中,只有一个是符合题目要求的,请把答案添涂在答题卡相应位置上) 1.设全集U =R ,集合A =[2,4],B ={}2log 1x x >,则集合A (UB)=A .∅B .{2}C .{}02x x ≤≤D .{}2x x ≤ 答案:B解析:∵B ={}2log 1x x >=(2,+∞),∴UB =(-∞,2],∴A(UB)={2},选B .2.“2sin α=”是“sin cos αα=”的 A .充分不必要条件B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案:D解析:当“2sin α=”时,可得“sin cos αα=±”;而当“sin cos αα=”时,可得“sin α=2±”,故“2sin α=”是“sin cos αα=”的既不充分也不必要条件,选D . 3.天干地支纪年法源于中国,中国自古便有十天干与十二地支,十天干即甲、乙、丙、丁、戊、己、庚、辛、王、癸;十二地支即子、丑、寅、卯、辰、已、午、未、申、酉、戌、亥.天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起,例如,第一年为“甲子”,第二年为“乙丑”,第三年为“丙寅”…,以此类推,排列到“癸酉”后,天干回到“甲”重新开始,即“甲戌”,“乙亥”,然后地支回到“子”重新开始,即“丙子”…,以此类推,今年是辛丑年,也是伟大、光荣、正确的中国共产党成立100周年,则中国共产党成立的那年是 A .辛酉年B .辛戊年C .壬酉年D .壬戊年 答案:A解析:由题意可知,天干是以10为公差的等差数列,地支是以12为公差的等差数列,从共产党成立到2021经历100年,则共产党成立那年为辛酉年,选A .4.5(32)(1)x x -+展开式中3x 的系数为 A .﹣15B .﹣10 C .10D .15 答案:C解析:23553(2)10C C ⋅+-⋅=,选C . 5.函数2()sin ln(1)f x x x x =+-的图像大致是答案:A解析:首先判断出该函数为偶函数,排除B 、D ,其次函数过点(0,0),排除C ,选A . 6.过抛物线22y x =上一点P 作圆C :22(6)1x y +-=的切线,切点为A ,B ,则当四边形PACB 的面积最小时,P 点的坐标是 A .(1,2)B .(32,3) C .(2,2)D .(52,5) 答案:C解析:设点P(x ,y ),2222221()(6)()(6)2g y PC x y y y ==+-=+-,令,2()(2)(26)0g x y y y '=-++=,则当y =2时,min ()20g y =, ∴,此时点P 的坐标为(2,2),选C .7.若随机变量X~B(3,p ),Y~N(2,2σ),若P(X ≥1)=0.657,P(0<Y <2)=p ,则P(Y >4)=A .0.2B .0.3C .0.7D .0.8 答案:A 解析:则选A8.若316, 0()0, 0x x f x xx ⎧-≠⎪=⎨⎪=⎩,则满足(1)0xf x -≥的x 的取值范围是 A .[﹣1,1][3,+∞)B .(-∞,﹣1][0,1][3,+∞) C .[﹣1,0][1,+∞)D .(-∞,﹣3][﹣1,0][1,+∞)答案:B解析:不妨求(1)()0x f x +≥, ①当x =﹣1或0时显然成立;故则原不等式的解为(-∞,﹣1][0,1][3,+∞),选B .二、 多项选择题(本大题共4小题,每小题5分, 共计20分.在每小题给出的四个选项中,至少有两个是符合题目要求的,请把答案添涂在答题卡相应位置上)9.函数()sin(2)4f x x π=+,则A .函数()y f x =的图象可由函数sin 2y x =的图象向右平移4π个单位得到 B .函数()y f x =的图象关于直线8x π=轴对称C .函数()y f x =的图象关于点(8π-,0)中心对称D .函数2()y x f x =+在(0,8π)上为增函数 答案:BCD解析:作出()y f x =的图象,如图所示:显然A 错误,BC 正确, 显然()f x 在(0,8π)上递增,又2()g x x =在(0,8π)上递增,故D 正确; 因此,选ABD.10.已知O 为坐标系原点,F 1,F 2分别为双曲线22221x y a b-=(a >0,b >0)的左、右焦点,点P 在双曲线右支上,则下列结论正确的有 A .若PO =PF 2,则双曲线的离心率e ≥2B .若△POF 2是面积为3的正三角形,则223b =C .若A 2为双曲线的右顶点,PF 2⊥x 轴,则F 2A 2=F 2PD .若射线F 2P 与双曲线的一条渐近线交于点Q ,则12QF QF 2a -> 答案:ABD解析:选项A ,PO =PF 2中垂线与双曲线有交点,正确;选项B ,,则,正确;选项C ,,显然不等,错误; 选项D ,不妨设P ,Q 均在第一象限,则:,正确;因此,选ABD .11.1982年美国数学学会出了一道题:一个正四面体和一个正四棱锥的所有棱长都相等,将正四面体的一个面和正四棱锥的一个侧面紧贴重合在一起,得到一个新几何体.中学生丹尼尔做了一个如图所示的模型寄给美国数学学会,美国数学学会根据丹尼尔的模型修改了有关结论.对于该新几何体,则 A .AF ∥CD B .AF ⏊DEC .新几何体有7个面D .新几何体的六个顶点不能在同一个球面上 答案:ABD解析:新几何体有五个面,而不是七个面,故C 错误,其他选项均正确,选ABD . 12.已知正数x ,y ,z 满足3412x y z ==,则A .634z x y <<B .121x y z += C .4x y z +>D .24xy z <答案:AC 解析:令,则则显然有111x y z+=,故B 错误, 选项A ,又,故A 正确;故,故C 正确,D 错误;因此,选AC .三、填空题(本大题共4小题, 每小题5分,共计20分.请把答案填写在答题卡相应位置上)13.已知向量a =(1,2),b =(0,﹣2),c =(﹣1,λ),若(2a b -)∥c ,则实数λ=. 答案:﹣3解析:2a b -=(2,6),则2603λλ+=⇒=-.14.已知复数z 对应的点在复平面第一象限内,甲、乙、丙、丁四人对复数z 的陈述如下(i为虚数单位): 甲:2z z +=;乙:23i z z -=;丙:4z z ⋅=;丁:22z z z =.在甲、乙、丙、丁四人陈述中,有且只有两个人的陈述正确,则复数z =. 答案:z =1+i解析:设,则,显然丙丁,乙丁不同时成立,且甲乙丙可以知二推一,故甲丁正确.15.若23sin 2cos 1x x +=,则5sin()cos(2)63x x ππ-⋅+=. 答案:732解析:23sin 2cos 14sin()16x x x π+=⇒+=,∴51sin()sin[()]sin()6664x x x ππππ-=-+=+=, 27cos(2)cos[2()]12sin ()3668x x x πππ+=+=-+=,故5177sin()cos(2)634832x x ππ-⋅+=⨯=.16.四面体的棱长为1或2,但该四面体不是正四面体,请写出一个这样四面体的体积;这样的不同四面体的个数为.答案:11,3 解析:显然可以构成一个底面为边长为1正三角形,侧棱长均为2的正三棱锥,该三棱锥的高223112()33h =-=,则体积1311113123V =⨯⨯=, 1和2可以构成的三角形有:边长为1的正三角形,边长为2的正三角形,边长为1,2,2的三角形,除了已求体积的正三棱锥外,还可以是:四个1,2,2的三角形拼成的三棱锥;两个边长为2的正三角形和两个1,2,2的三角形拼成的三棱锥.所以,共3个.四、解答题(本大题共6小题,共计70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)在△ABC 中,∠BAC =90∘,点D 在边BC 上,满足AB =3BD . (1)若∠BAD =30°,求∠C ;(2)若CD =2BD ,AD =4,求△ABC 的面积.解:(1)在△ABD 中,,所以, 因为,所以,或,当时,,所以,当时,(舍)所以;(2)因为,所以,所以,所以,所以.18.(本小题满分12分)已知等比数列{}n a的各项均为整数,公比为q,且q>1,数列{}n a中有连续四项在集合M={﹣96,﹣24,36,48,192}中.(1)求q,并写出数列{}n a的一个通项公式;(2)设数列{}n a的前n项和为n S,证明:数列{}n S中的任意连续三项按适当顺序排列后,可以成等差数列.解:(1)因为,且各项均为整数,所以连续四项为,所以公比,取,则;(2),当n为奇数时,,,所以,当n为偶数时,,,所以对数列{}n S中的任意连续三项按适当顺序排列后,可以成等差数列.19.(本小题满分12分)如图,在四棱锥P—ABCD中,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,AB⊥AD,AD=2AB=2BC=2,PC2E为PD的中点.(1)求直线PB与平面PAC所成角的正弦值;(2)设F是BE的中点,判断点F是否在平面PAC内,并请证明你的结论.解:取AD的中点G,连接PG,CG,因为△APD是等腰直角三角形,所以PG⊥AD,因为AD=2,所以PG=1,因为AG=1,AD∥BC,所以AG∥BC且AG=BC=1,所以AGCB是平行四边形,所以AB//CG,又因为AB⊥AD,所以CG⊥AD,又CG=1,PC=2,PG=1,所以PG⊥CG,建立如图空间直角坐标系,则A(0,﹣1,1),P(0,0,1),C(1,0,0),B(1,﹣1,0),(1),设平面PAC法向量为则,取,则,则,所以直线PB与平面PAC所成角的正弦值为;(2),所以,所以,则,所以AF在平面PAC中,所以点F在平面PAC内.20.(本小题满分12分)某地发现6名疑似病人中有1人感染病毒,需要通过血清检测确定该感染人员,血清检测结果呈阳性的即为感染人员,呈阴性表示没感染.拟采用两种方案检测:方案甲:将这6名疑似病人血清逐个检测,直到能确定感染人员为止;方案乙:将这6名疑似病人随机分成2组,每组3人.先将其中一组的血清混在一起检测,若结果为阳性,则表示感染人员在该组中,然后再对该组中每份血清逐个检测,直到能确定感染人员为止;若结果呈阴性,则对另一组中每份血清逐个检测,直到能确定感染人员为止.(1)求这两种方案检测次数相同的概率;(2)如果每次检测的费用相同,请预测哪种方案检测总费用较少?并说明理由.解:记甲方案检测的次数是X,则X∈{1,2,3,4,5},记乙方案检测的次数是Y,则Y ∈{2,3},(1)记两种方案检测的次数相同为事件A,则,所以两种方案检测的次数相同的概率为;(2)所以,,所以采用乙方案.21.(本小题满分12分)已知O为坐标系原点,椭圆C:2214xy+=的右焦点为点F,右准线为直线n.(1)过点(4,0)的直线交椭圆C于D,E两个不同点,且以线段DE为直径的圆经过原点O,求该直线的方程;(2)已知直线l上有且只有一个点到F的距离与到直线n的距离之比为32,直线l与直线n交于点N,过F作x轴的垂线,交直线l于点M.求证:FMFN为定值.解:(1)设过点(4,0)的直线为交于椭圆,联立消去y得又因为以线段DE为直径的圆经过原点,则则所求直线方程为;(2)已知椭圆2214xy+=的离心率为32,右准线直线n的方程为,已知直线l上有且只有一个点到F的距离与到直线n的距离之比为3,可以得出直线l与椭圆相切,设直线l的方程为:,联立消去y得:,联立点N坐标为得到.22.(本小题满分12分)已知函数()1lnf x m x=+(m∈R).(1)当m =2时,一次函数()g x 对任意x ∈(0,+∞),()f x ≤()g x ≤2x 恒成立,求()g x 的表达式;(2)讨论关于x 的方程2()1()f x x f x=解的个数. 解:(1)设求导略,又 设,又∵∴在(0,+∞)上恒成立,∴在(0,+∞)上恒成立,∴又综上;(2),则,即设,则,设①当m ≥1时,在(0,+∞)上递增,又∴在(0,+∞)恒有一解,即只有一解 ②m <0时,在上递减又在(0,+∞)恒有一解,③0<m <1时,设∴在(0,+∞)上有二解,且又∵当时,∴在上恰有一根 当时,当时,∴且,解得∴在上恰有一根,在(0,+∞)上恰有三根,综上,当m ≥1或m ≤0时,2()1()f x x f x =恰有一根;当0<m <1时,2()1()f x x f x=恰有三根.。
江苏省苏锡常镇四市2020届高三教学情况调研(一)数学试题含附加题 Word版含答案
苏锡常镇四市2020届高三教学情况调研(一)数学Ⅰ试题一、填空题:本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请把答案直接填写在答题卡相应位置上。
1.已知i 为虚数单位,复数11z i =+,则|z |=2.已知集合A ={x |0≤x ≤1},B ={x |a -1≤x ≤3},若A ⋂B 中有且只有一个元素,则实数a 的值为3.已知一组数据1.6,1.8,2,2.2,2.4,则该组数据的方差是4.在平面直角坐标系xOy 中,已知双曲线2221(0)4x y a a -=>的一条渐近线 方程为23y x =,则a = 5.甲乙两人下棋,两人下成和棋的概率是12,乙获胜的概率是13,则乙不输的概率是 6.右图是一个算法的流程图,则输出的x 的值为7.“直线l 1:ax +y +1=0与直线l 2:4x +ay +3=0平行”是“a =2”的 条件.(填“充分不必要”、“必要不充分”、“充分必要”或“既不充分又不必要”)8.已知等差数列{a n }的前n 项和为S n ,a 1=9,9595S S -=-4,则a n = 9.已知点M 是曲线y =2ln x +x 2-3x 上一动点,当曲线在M 处的切线斜率取得最小值时,该切线的方程为10.已知3cos2α=4sin(4π-α),α∈(,4ππ),则sin2α= 11.如图在矩形ABCD 中,E 为边AD 的中点,AB =1,BC =2.分别以A ,D 为圆心,1为半径作圆弧EB ,EC ,将两圆弧EB ,EC 及边BC 所围成的平面图形(阴影部分)绕直线AD 旋转一周,所形成的几何体的体积为12.在∆ABC 中,,若角A 的最大值为6π,则实数λ的值是 13.若函数f (x )=a x (a >0且a ≠1)在定义域[m ,n ]上的值域是[m 2,n 2](1<m <n ),则a 的取值范围是14.如图,在∆ABC 中,AB =4,D 是AB 的中点,E 在边AC 上,AE =2EC ,CD 与BE 交于点O ,若OB =2OC ,则∆ABC 面积的最大值为二、解答题:本大题共6小题,共计90分.请在答题卡指定区域作答,解答时应写出文字说明、证明过程或演算步骤。
苏锡常镇高三数学一模试卷答案
一、填空题1、已知集合{}1,2,3,4,5,6,7U =,{}2650,Z M x x x x =-+∈≤,?U 2、若复数z 满足2i z i i++=(i 为虚数单位),则z = .3、函数1()ln(43)f x x =-的定义域为 . 4、下图是给出的一种算法,则该算法输出的结果是 .5、某高级中学共有900名学生,现用分层抽样的方法从该校学生中抽取1个容量为的样本,其中高一年级抽20人,高三年级抽10人.则该校高二年级学生人数为 . 6、已知正四棱锥的底面边长是2,则该正四棱锥的体积为 . 7、从集合{}1,2,3,4中任取两个不同的数,则这两个数的和为3的倍数的概率为 .8、在平面直角坐标系xOy 中,已知抛物线28y x =的焦点恰好是双曲线22213x y a -=的右 焦点,则双曲线的离心率为 .9、设等比数列{}n a 的前n 项和为n S ,若396,,S S S 成等差数列,且254a a +=,则8a 的 值为 .10、在平面直角坐标系xOy 中,过点(1,0)M 的直线l 与圆225x y +=交于,A B 两点,其中A 点在第一象限,且2BM MA =u u u u r u u u r,则直线l 的方程为 .11、在△ABC 中,已知1,2,60AB AC A ==∠=o,若点P 满足AP AB AC λ=+u u u r u u u r u u u r,且1BP CP ⋅=u u u r u u u r,则实数λ的值为 .12、已知sin 3sin()6παα=+,则tan()12πα+= .13、若函数211,12()ln ,1xx f x x x x ⎧-<⎪⎪=⎨⎪⎪⎩≥,则函数1()8y f x =-的零点个数为 .14、若正数,x y 满足1522x y -=,则3322x y x y +--的最小值为 .二、解答题15、在△ABC 中,,,a b c 分别为角,,A B C 的对边.若cos 3,cos 1a B b A ==,且6A B π-=.(1)求边c 的长;(2)求角B 的大小.16、如图,在斜三棱柱111ABC A B C -中,侧面11AAC C 是菱形,1AC 与1A C 交于点O ,E 是棱AB 上一点,且OE ∥平面11BCC B . (1)求证:E 是AB 中点;(2)若11AC A B ⊥,求证:1AC BC ⊥.17、某单位将举办庆典活动,要在广场上竖立一形状为等腰梯形的彩门BADC (如图).设计要求彩门的面积为S (单位:2m ),高为h (单位:m )(,S h 为常数).彩门的下底BC 固定在广场底面上,上底和两腰由不锈钢支架构成,设腰和下底的夹角为α,不锈钢 支架的长度和记为l .(1)请将l 表示成关于α的函数()l f α=; (2)问当α为何值l 最小,并求最小值.18、在平面直角坐标系xOy 中,已知椭圆22221(0)x y a b a b +=>>的焦距为2,离心率为22,椭圆的右顶点为A . (1)求该椭圆的方程;(2)过点(2,2)D -作直线PQ 交椭圆于两个不同点,P Q ,求证:直线,AP AQ 的斜 率之和为定值.19、已知函数()(1)ln f x x x ax a =+-+(a 为正实数,且为常数).(1)若函数()f x 在区间(0,)+∞上单调递增,求实数a 的取值范围; (2)若不等式(1)()0x f x -≥恒成立,求实数a 的取值范围.20、已知n 为正整数,数列{}n a 满足0n a >,2214(1)0n n n a na ++-=,设数列{}n b 满足2nn n a b t=.(1)求证:数列为等比数列; (2)若数列{}n b 是等差数列,求实数t 的值;(3)若数列{}n b 是等差数列,前n 项和为n S ,对任意的N n *∈,均存在N m *∈,使得24211816n m a S a n b -=成立,求满足条件的所有整数1a 的值.2016—2017学年度苏锡常镇四市高三教学情况调研(一)数 学 Ⅱ 试 题1、已知二阶矩阵M 有特征值8λ=及对应的一个特征向量111e ⎡⎤=⎢⎥⎣⎦u r ,并且矩阵M 对应的变换将点(1,2)-变换成(2,4)-. (1)求矩阵M ;(2)求矩阵M 的另一个特征值.2、已知圆1O 和圆2O的极坐标方程分别为22,cos()24πρρθ=--=.(1)把圆1O 和圆2O 的极坐标方程化为直角坐标方程; (2)求经过两圆交点的直线的极坐标方程.3、如图,已知正四棱锥P ABCD -中, 2PA AB ==,点,M N 分别在,PA BD 上,且13PM BN PA BD ==. (1)求异面直线MN 与PC 所成角的大小; (2)求二面角N PC B --的余弦值.4、设2πθ<,n 为正整数,数列{}n a 的通项公式sintan 2n n n a πθ=,其前n 项和为n S . (1)求证:当n 为偶数时,0n a =;当n 为奇数时,12(1)tan n n n a θ-=-;(2)求证:对任何正整数n ,1221sin 2[1(1)tan ]2n n n S θθ+=⋅+-.2016-2017学年度苏锡常镇四市高三教学情况调研(一)数学参考答案一、填空题.1.{}6,7 23.()3,1 1.4⎛⎫+∞ ⎪⎝⎭U 4.245.3006.437.138.29.2 10.1y x =- 11.1或14-12.4 13.414.1二、解答题:本大题共6小题,共计90分. 15.解:(1)(法一)在△ABC 中,由余弦定理,cos 3a B =,则22232a c b aac +-=,得2226a c b c +-=;① ……2分 cos 1b A =,则22212b c a bbc +-=,得2222b c a c +-=,② ……4分 ①+②得:228c c =,4c =. ……7分 (法二)因为在△ABC 中,πA B C ++=,则sin cos sin cos sin()sin(π)=sin A B B A A B C C +=+=-, ……2分 由sin sin sin a b c A B C ==得:sin sin a C A c =,sin sin b CB c=,代入上式得: ……4分 cos cos 314c a B b A =+=+=. ……7分(2)由正弦定理得cos sin cos tan 3cos sin cos tan a B A B Ab A B A B===, ……10分又2tan tan 2tan tan()1tan tan 13tan A B B A B A B B --===++ ……12分解得tan B ,π)(0,B ∈,π6B =. ……14分16.(1)连接1BC ,因为OE ∥平面11BCC B ,OE ⊂平面1ABC ,平面11BCC B I 平面11ABC BC =,所以OE ∥1BC . ……4分因为侧面11AA C C 是菱形,11AC AC O =I ,所以O 是1AC 中点, ……5分 所以11AE AO EB OC ==,E 是AB 中点. ……7分(2)因为侧面11AA C C 是菱形,所以1AC 1A C ⊥,……9分又11AC A B ⊥,111AC A B A =I ,11,AC A B ⊂面1A BC ,所以1AC ⊥面1A BC ,…12分 因为BC ⊂平面1A BC ,所以1AC BC ⊥. ……14分17.解:(1)过D 作DH BC ⊥于点H ,则DCB α∠=(π02α<<), DH h =, 设AD x =, 则sin h DC α=,tan h CH α=,2tan h BC x α=+, ……3分 因为S=12()2tan h x x h α++⋅,则 tan S hx h α=-; ……5分则21()2()sin tan S l f DC AD h h ααα==+=+- (π02α<<); ……7分 (2)2222cos 112cos ()()sin sin sin f h h αααααα---'=⋅-=⋅, ……8分 令212cos ()0-'=⋅=f h αα,得π=α. ……9分所以, min π()3Sl f h ==+.……12分答:(1)l 表示成关于α的函数为21()()sin tan S l f h h ααα==+- (π02α<<); (2)当π3α=时,l Sh+. ……14分CBDA(第17题图)H……11分1(第16题图)18.解:(1)由题1c =,c e a =所以a =1b =. ……2分 所以椭圆C 的方程为22 1.2x y +=……4分(2)当直线PQ 的斜率不存在时,不合题意; ……5分当直线PQ 的斜率存在时,设直线PQ的方程为(y k x =,……6分 代入2222x y +=,得2222(12))4820k x k k x k k +-++++=, ……8分 设11(,)P x y ,22(,)Q x y ,则:4(81)0k ∆=-+>,18k <-,1,2x =, ……9分所以12x x +=212248212k k x x k ++⋅=+,……11分又AP AQ k k +=+=422k k ===1. 所以直线AP ,AQ 的斜率之和为定值1. ……16分19.解:(1)()(1)ln f x x x ax a =+-+,1()ln +x f x x a x+'=-. ……1分 因()f x 在(0,)+∞上单调递增,则()0f x '≥,1ln +1a x x+„恒成立. 令1()ln +1g x x=+,则21()x g x -'=, ……2分 因此,min ()(1)2g x g ==,即02a <„.……6分(2)当02a <„时,由(1)知,当(0,)x ∈+∞时,()f x 单调递增. ……7分又(1)0f =,当(0,1)x ∈,()0f x <;当(1,)x ∈+∞时,()0f x >. ……9分 故不等式(1)()0x f x -…恒成立. ……10分……4分若2a >,ln (1)1()x x a x f x x+-+'=,设()ln (1)1p x x x a x =+-+,令()ln 20p x x a '=+-=,则2e 1a x -=>. …12分 当2(1,e )a x -∈时,()0p x '<,()p x 单调递减,则()(1)20p x p a <=-<,则()()0p x f x x'=<,所以当2(1,e )a x -∈时,()f x 单调递减, ……14分 则当2(1,e )a x -∈时,()(1)0f x f <=,此时(1)()0x f x -<<,矛盾. ……15分 因此,02a <….……16分20.解:(1)由题意得2214(1)n n n a na ++=,因为数列{}n a 各项均正,得22141n n a a n n +=+2= ……2分2=,所以是以1a 为首项公比为2的等比数列.……4分(2)由(1112n a -=⋅,12n n a a -=,22114n n n n n a a n b t t -==, ……5分 如果数列{}n b 是等差数列,则2132b b b =+,……6分得:2212023111123244423a a a t t t --⋅⋅=+,即2316148t t t=+,则216480t t -+=, 解得 14t =,212t =. ……7分当14t =时,214n a nb =,2221111(1)444n n a n a n a b b ++-=-=,数列{}n b 是等差数列,符合题意; ……8分当2t =12时,2143n na nb =⋅,2222111241244242211434343162a a a b b a +=+==⋅⋅⋅,2132133428231b a a ==⋅⋅,2432b b b +≠,数列{}n b 不是等差数列,2t =12不符合题意;……9分 综上,如果数列{}n b 是等差数列,4t =.……10分(3)由(2)得214n a nb =,对任意的n ∈N *,均存在m ∈N *,使24211816n m a S a n b -=,则4242111(1)816424a n n a m a n +⋅-=,所以214na m =. ……12分当12a k =,k ∈N *,此时2244k n m k n ==,对任意的n ∈N *,符合题意; ……14分当121a k =-,k ∈N *,当1n =时,22441144k k m k k -+==++. 不合题意. …15分综上,当12,a k k =∈N *,对任意的n ∈N *,均存在m ∈N *,使24211816n m a S a n b -=.……16分(第Ⅱ卷 理科附加卷)21.【选做题】本题包括A ,B ,C ,D 四小题,每小题10分.A .(选修4-1 几何证明选讲). 解:连结OC ,由于l 是圆的切线,故OC l ⊥,因为AD l ⊥,所以AD ∥OC , ……2分 因为AB 是圆O 的直径,6AB =,3BC =, 所以60∠=∠=︒ABC BCO ,则DAC ∠=906030ACO ∠=︒-︒=︒. ……4分23cos30AC =⋅︒=sin30DC AC =︒=,9cos302DA AC =︒=. ……7分 由切割线定理知,2DC DA DE =⋅, ……9分所以32DE =,则3AE =. ……10分 B .(选修4—2:矩阵与变换)解:设M =a b c d ⎡⎤⎢⎥⎣⎦,M 11811a b c d +⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦⎣⎦,M 122242a b c d ---+⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥-+⎣⎦⎣⎦⎣⎦, ……3分 882224a b c d a b c d +=⎧⎪+=⎪⎨-+=-⎪⎪-+=⎩,,,,解得6244a b c d =⎧⎪=⎪⎨=⎪⎪=⎩,,,, 即M =6244⎡⎤⎢⎥⎣⎦. ……5分(2)则令特征多项式62()(6)(4)8044f λλλλλ--==---=--, ……8分ABCD Og(第21—A 题图)E解得1282λλ==,.矩阵M 的另一个特征值为2. ……10分C .(选修4—4:坐标系与参数方程)解:(1)圆1O 的直角坐标方程为224x y +=,①……3分 由2π22cos()24ρρθ--=,得22(cos sin )2-+=ρρθθ,……4分222()2x y x y +-+=,故圆2O 的直角坐标方程为222220x y x y +---=,② ……6分 (2)②-①得经过两圆交点的直线为10x y +-=, ……8分该直线的极坐标方程为cos sin 10ρθρθ+-=. ……10分D .(选修4—5:不等式选讲) 解:因为:()2313131(111)(313131)a b c a b c ++++++++++++„, ……7分由于3a b c ++=,故3131316a b c +++++„,当且仅当1a b c ===时, 313131a b c +++++取到最大值6. ……10分【必做题】第22,23题,每小题10分,计20分.22.解:(1)设AC ,BD 交于点O ,在正四棱锥P ABCD -中,OP ⊥平面ABCD . 又2PA AB ==,所以2OP =. 以O 为坐标原点,DA u u u r ,AB u u u r方向分别是x 轴、y 轴正方向,建立空间直角坐标系O xyz -,如图: ……1分 则(1,1,0)A -,(1,1,0)B ,(1,1,0)C -,(1,1,0)D --,(0,0,2).P故21122(,,)3333OM OA AM OA AP =+=+=-u u u u r u u u r u u u u r u u u r u u u r ,111(,,0)333ON OB ==u u u r u u u r , ……3分 所以222(0,,)33MN =-u u u u r ,(1,1,2)PC =--u u u r , 3cos ,2MN PC MN PC MN PC⋅<>==u u u u r u u u r u u u u r u u u r u u u u u r u u u u r ,所以MN 与PC 所成角的大小为π6. ……5分DNM C P(第Ox yz(2)(1,1,PC =-u u u r ,(2,0,0)CB =u u u r ,42(,,0)33NC =-u u u r .设(,,)x y z =m 是平面PCB 的一个法向量,则0PC ⋅=u u u r m ,0CB ⋅=u u u rm ,可得0,0,x y x ⎧-+-=⎨=⎩令0x =,y =1z =,即=m , ……7分设111(,,)x y z =n 是平面PCN 的一个法向量,则0PC ⋅=u u u r n ,0CN ⋅=u u u rn ,可得111110,20,x y x y ⎧-+-=⎨-+=⎩ 令12x =,14y =,1z ==n , …9分cos ,33⋅<>===m nm n m n ,则二面角N PC B --的余弦值为33.……10分23.证明:(1)因为πsintan 2nn n a θ=. 当n 为偶数时,设2n k =,2222πsintan sin πtan 02kk n k k a a k θθ===⋅=,0n a =.…1分 当n 为奇数时,设21n k =-,21(21)ππsintan sin(π)tan 22n n n k k a a k θθ--===-⋅. 当2k m =时,21ππsin(2π)tan sin()tan tan 22n n n n k a a m θθθ-==-⋅=-⋅=-,此时1212n m -=- ,121221tan (1)tan (1)tan n n m nn n k a a θθθ---==-=-=-.……2分 当21k m =-时,213π3πsin(2π)tan sin()tan tan 22n n n n k a a m θθθ-==-⋅=-⋅=,此时1222n m -=-, 122221tan (1)tan (1)tan n n m nn n k a a θθθ---===-=-. 综上,当n 为偶数时,0n a =;当n 为奇数时,12(1)tan n n n a θ-=-. ……3分(2)当1n =时,由(1)得:212tan S a a θ=+=,121sin21(1)tan 2n n θθ+⎡⎤+-⎣⎦=()2211sin 21tan sin cos tan 2cos θθθθθθ+=⋅⋅=.故1n =时,命题成立 ……5分假设n k =时命题成立,即1221sin21(1)tan 2k k k S θθ+⎡⎤=⋅+-⎣⎦. 当1n k =+时,由(1)得:2(1)22122221k k k k k k S S a a S a ++++=++=+=12211sin21(1)tan (1)tan 2k k k k θθθ++⎡⎤⋅+-+-⎣⎦ ……6分=122112sin 21(1)tan (1)tan 2sin 2k k k k θθθθ++⎡⎤⋅+-+-⋅⎢⎥⎣⎦ =2222112sin 21(1)tan ()2tan sin 2tan k k θθθθθ++⎡⎤⋅+-⋅-+⎢⎥⎣⎦ 2222221cos 1sin 21(1)tan ()2sin sin k k θθθθθ++⎡⎤=⋅+-⋅-+⎢⎥⎣⎦ =()2221sin21(1)tan 2k k θθ++⋅+-⋅ 即当1n k =+时命题成立. ……9分 综上所述,对正整数n 命题成立. ……10分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020届江苏省苏锡常镇四市2017级高三一调考试
数学试题
数学Ⅰ试题
一、填空题:本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请把答案直接填写在答题卡相应位置上。
1.已知i 为虚数单位,复数11z i =+,则|z |=
2.已知集合A ={x |0≤x ≤1},B ={x |a -1≤x ≤3},若A ⋂B 中有且只有一个元素,则实数a 的值为
3.已知一组数据1.6,1.8,2,2.2,2.4,则该组数据的方差是
4.在平面直角坐标系xOy 中,已知双曲线22
21(0)4x y a a -=>的一条渐近线 方程为23
y x =,则a = 5.甲乙两人下棋,两人下成和棋的概率是
12,乙获胜的概率是13,则乙不输的概率是 6.右图是一个算法的流程图,则输出的x 的值为
7.“直线l 1:ax +y +1=0与直线l 2:4x +ay +3=0平行”是“a =2”的 条件.(填“充分不必要”、“必要不充分”、“充分必要”或“既不充分又不必要”)
8.已知等差数列{a n }的前n 项和为Sn ,a 1=9,9595
S S -=-4,则a n = 9.已知点M 是曲线y =2ln x +x 2-3x 上一动点,当曲线在M 处的切线斜率取得最小值时,该切线的方程为
10.已知3cos2α=4sin(4π-α),α∈(,4ππ),则sin2α= 11.如图在矩形ABCD 中,E 为边AD 的中点,AB =1,BC =2.分别以A ,D 为圆心,1为半径作圆弧EB ,EC ,将两圆弧EB ,EC 及边BC 所围成的平面图形(阴影部分)绕直线AD 旋转一周,所形成的几何体的体积为
12.在∆ABC 中,,若角A 的最大值为6
π,则实数λ的值是 13.若函数f (x )=a x (a >0且a ≠1)在定义域[m ,n ]上的值域是[m 2,n 2](1<m <n ),则a 的取值范围是
14.如图,在∆ABC 中,AB =4,D 是AB 的中点,E 在边AC 上,AE =2EC ,CD 与BE 交于点O ,若OB =2OC ,则∆ABC 面积的最大值为
二、解答题:本大题共6小题,共计90分.请在答题卡指定区域作答,解答时应写出文字说明、证明过程或演算步骤。
15.(本小题满分14分)
在∆ABC 中,角A ,B ,C 所对应的边分别是a ,b ,c ,且满足b cos A 3sin B =0
(1)求A ;
(2)已知a =3B =
3π,求∆ABC 的面积.。