经济数学,平时作业2020秋华工答案

合集下载

经济学原理·平时作业2020春华南理工大学网络教育答案

经济学原理·平时作业2020春华南理工大学网络教育答案

1. 观看纪录片《大自然在说话》,影片中有哪些话触动你?人与自然是什么关系?人类要进行生产活动,需要哪些经济资源?答:触动我的话:“大自然不需要人类而人类却需要大自然。

”“都将回到我的怀抱地球上所有的生物都将离开我”人与自然的关系:人依赖于自然,又能动地作用于自然,既是自然的一部分,又是自然演化发展的新因素、新力量。

在人与自然的关系中,人类一步步由被动变为主动,如今成为改造自然的主体。

但是,人们改造自然的行为越来越多的违背自然规律,对自然资源的消耗已经超过自然的承载能力。

人类在利用自然获取生存的同时,也在破坏自然的美好,为了满足自己的私欲,不断地伤害着大自然,就将导致人与自然关系的失衡,造成人与自然的不和谐。

大自然就像妈妈一样无私而慷慨地哺育我们。

我们习惯了索取,但是我们忘了大自然是有限的,总有一天她会无法承担给我们满足人类最基本需求的资源。

我们对大自然的无止境的贪婪已经激怒了她,她要给我们颜色瞧瞧。

那我们的下场只有是灭亡。

如果人类不及时改变发展模式,实现人与自然的和谐发展,长此下去,地球也有可能成为不再适合人类居住的星球。

需要的经济资源:物质资源人类社会经济活动用以依托的客观存在物。

物质资源是人类社会生存和发展的基础,其万千形态、特征和用途,源自何方与去向何处,用于生产或用于消费都不改变这一根本属性,因为“人们首先必须吃、喝、住、穿,然后才能从事政治、科学、艺术、宗教等等”,而“人并没有创造物质本身,甚至创造物质的这种或那种能力”,只能立足于最初由自然界所提供的物质资源。

能量资源“能源是一个包括所有燃料、流水、阳光和风的术语,人类用适当的转换手段便可让它为自己提供所需能量”,能量是以物质为载体,因而能量资源可被理解为用以驱动人类社会经济活动的载能物质。

信息资源“信息本身不是物质,不具有能量,但信息的传输却依靠物质、能量……信息蕴涵于信号之中,信息依靠信号而传输”,信息是以信号为载体,因而信息资源可被理解为用以指引人类社会经济活动的载信物质或载信能量。

经济数学2020年秋华南理工网络教育平时作业答案(供参考)

经济数学2020年秋华南理工网络教育平时作业答案(供参考)

2017年秋《经济数学》平时作业第一部分 单项选择题1.某产品每日的产量是x 件,产品的总售价是217011002x x ++元,每一件的成本为1(30)3x +元,则每天的利润为多少?( A )A .214011006x x ++元B .213011006x x ++元C .254011006x x ++元D .253011006x x ++元2.已知()f x 的定义域是[0,1],求()f x a ++ ()f x a -,102a <<的定义域是?(C )A .[,1]a a --B .[,1]a a +C .[,1]a a -D .[,1]a a -+3.计算0sin limx kxx→=?( B )A .0B .kC .1kD .∞4.计算2lim(1)x x x→∞+=?( C )A .eB .1eC .2eD .21e5.求,a b 的取值,使得函数2,2()1,23,2ax b x f x x bx x ⎧+ <⎪= =⎨⎪+ >⎩在2x =处连续。

( A )A .1,12a b ==- B .3,12a b == C .1,22a b == D .3,22a b ==6.试求32y x =+x 在1x =的导数值为( B ) A .32 B .52 C .12 D .12-7.设某产品的总成本函数为:21()40032C x x x =++,需求函数P =,其中x 为产量(假定等于需求量),P 为价格,则边际成本为?( B )A .3B .3x +C .23x +D .132x +8.试计算2(24)?x x x e dx -+=⎰( D )A .2(48)x x x e --B .2(48)x x x e c --+C .2(48)x x x e -+D .2(48)x x x e c -++ 9.计算10x =⎰( D )A .2π B .4π C .8πD .16π10.计算11221212x x x x ++=++( A )A .12x x -B .12x x +C .21x x -D .212x x -11.计算行列式1214012110130131D -==?( B )A .-8B .-7C .-6D .-512.行列式yx x y x x y y x yyx+++=?( B )A .332()x y +B .332()x y -+C .332()x y -D .332()x y --13.齐次线性方程组123123123000x x x x x x x x x λλ++=⎧⎪++=⎨⎪++=⎩有非零解,则λ=?( C )A .-1B .0C .1D .214.设⎪⎪⎭⎫ ⎝⎛=50906791A ,⎪⎪⎪⎪⎪⎭⎫⎝⎛=67356300B ,求AB =?( D ) A .1041106084⎛⎫⎪⎝⎭B .1041116280⎛⎫ ⎪⎝⎭C .1041116084⎛⎫ ⎪⎝⎭D .1041116284⎛⎫ ⎪⎝⎭15.设⎪⎪⎪⎭⎫⎝⎛=343122321A ,求1-A =?( D ) A .13235322111⎛⎫ ⎪ ⎪-- ⎪⎪-⎝⎭ B .132********-⎛⎫ ⎪⎪- ⎪ ⎪-⎝⎭ C .13235322111-⎛⎫ ⎪⎪- ⎪ ⎪-⎝⎭ D .13235322111-⎛⎫⎪ ⎪-- ⎪ ⎪-⎝⎭ 16.向指定的目标连续射击四枪,用i A 表示“第i 次射中目标”,试用i A 表示前两枪都射中目标,后两枪都没有射中目标。

《经济数学》练习题库参考答案

《经济数学》练习题库参考答案

华中师范大学网络教育《经济数学》练习测试题库参考答案一. 选择题1——10 ABABD CCDAA 11——20 ABABB CAADC 21——30 DCDAA BCCCA 31——40 BABDD CCAAD 41——50 ABCDD CACCA 51——55 DDCCA 56——61 CCBDD A二. 填空题 1.2 2.3/4 3.04.e -15.e -16.(31/2+1)/2 7.42(1+2π)8.9/25 9.2π-1或1-2π 10.2 11.-1,0 12.-2 13.1/5 14.0 15.0,1 16. C + 2 x 3/2/5 17. F(x)+C 18. 2xe x2(1+x) 19.0 20.0 21.21/8 22.271/6 23. π/3a 24. π/6 25.026. 2(31/2-1) 27. π/2 28. 2/3 29. 4/330. 21/2 31. 0 32. 3π/2 33. (1,3) 34. 14 35. π36. 7/6 37. 32/3 38. 8a39. 等腰直角40. 4x+4y+10z-63=0 41. 3x-7y+5z-4=0 42. (1,-1,3) 43. y+5=0 44. x+3y=0 45. 9x-2y-2=046、(-1,1)47、2x-y+1=0 48、y=x2+1 149、──arctgx2+c 2 50、1三.解答题1. 当X=1/5时,有最大值1/52. X=-3时,函数有最小值273. R=1/24. 在点(22,-22ln )处曲率半径有最小值3×31/2/2 5. 7/66. e+1/e-27. x-3y-2z=08. (x-4)/2=(y+1)/1=(z-3)/5 9. (-5/3,2/3,2/3)10. 2(21/2-1)11. 32/3 12. 4×21/2/3 13. 9/414.42a (a π2-e π2-)15. e/216. 8a 2/3 17. 3л/10 18.⎥⎦⎤⎢⎣⎡-+-)(224222e e a a a π 19. 160л220. 2л2 a 2b 21.π3616 22. 7л2a 323. 1+1/2㏑3/2 24.23-4/325.⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛125982326.p y p y p p y p y 2222ln22++++ 27.ψa e aa 21+28.ln3/2+5/1229. 8a 30. 5×21/231. (0,1,-2) 32. 5a-11b+7c33. 4x+4y+10z-63=034. y 2+z 2=5x35. x+y 2+z 2=936. x 轴: 4x 2-9(y 2+z 2)=36 y 轴:4(x 2+z 2)-9y 2=3637. x 2+y 2(1-x)2=9 z=038. x 2+y 2+(1-x)2≤9 z=0 39. 3x-7y+5z-4=0 40. 2x+9y-6z-121=041. x-3y-2z=0 42. x+y-3z-4=0 43.33144. 24-x =11+y =53-z 45. 43--x =22+y =11-z46. 2-x =32-y =14-z47. 8x-9y-22z-59=0 48. (-5/3,2/3,2/3)49.223 50. ⎩⎨⎧=-+-=--+0140117373117z y x z y x51、解:原式=lim ────────────────x →4/3 318(4/3)cos[9(4/3)2-16]= ────────────────────── =8 352、解:所求直线的方向数为{1,0,-3} (3分) x-1 y-1 z-2所求直线方程为 ────=────=──── 1 0 -3 __ __53、解:du=ex +√y + sinz d(x+√y +sinx) __ dy =ex + √y + sinz [(1+cosx)dx+ ─────] 2√y π asin θ 1 π54、解:原积分=∫ sinθdθ ∫ rdr= ──a2 ∫ sin3θdθ 0 0 2 0 π/2 2=a2 ∫ sin3θd θ = ── a2四.证明题1.证明不等式:⎰-≤+≤1143812dx x证明:令[]1,1,1)(4-∈+=x x x f 则434312124)(xx xx x f +=+=',令,0)(='x f 得x=0 f(-1)=f(1)=2,f(0)=1 则2)(1≤≤x f上式两边对x 在[]1,1-上积分,得不出右边要证的结果,因此必须对f(x)进行分析,显然有,1)1(211)(222424x x x x x x f +=+=++≤+=于是⎰⎰⎰---+≤+≤11211411,)1(1dx x dx x dx 故⎰-≤+≤1143812dx x2.证明不等式⎰>≤-≤210)2(,6121n x dx n π证明:显然当⎥⎦⎤⎢⎣⎡∈21,0x 时,(n>2)有⎰⎰==-≤-≤⇒-≤-≤210210226021arcsin 112111111πx x dx x dx x x n n即,⎰>≤-≤210)2(,6121n x dx n π3.设)(x f ,g(x)区间[])0(,>-a a a 上连续,g(x)为偶函数,且)(x f 满足条件 。

2020《经济数学》华南理工大学平时作业

2020《经济数学》华南理工大学平时作业
10.设矩阵 ,求 .
解:依题意可解得
所以|AB| = -5
11.设 , ,求矩阵 的多项式 .
解:将矩阵A代入可得答案f(A)= - + =
12. 设 ,求逆矩阵 .
解:依题意可解得
13.甲、乙二人依次从装有7个白球,3个红球的袋中随机地摸1个球,求甲、乙摸到不同颜色球的概率.
解:由题目可得甲、乙摸到不同颜色球的概率P= 。
解:依题意可得
5.求不定积分
解:依题意可得
=
6.设 ,求b.
解:依题意可得

进一步可化为
7.求不定积分 .
解: =
8.设函数 在 连续,试确定 的值.
解:x趋于4的f(x)极限是8,所以a=8.
9.求抛物线 与直线 所围成的平面图形的面积.
解:首先将两个曲线联立得到y的两个取值y1=-2,y2=4
X1=2,x2=8 =-12+30=18
《经济数学》
作业题
一、
1.某厂生产某产品,每批生产 台得费用为 ,得到的收入为 ,求利润.
解:依题意可知,利润=收入-费用,设利润为Q(x),则有
2.求 .
知,原式可化为:
因为 x趋于-1时,x+1趋等于0,所以x2+(a-2)x+1趋等于0,解得a=4。
4.设 ,其中 为可导函数,求 .
二、
14.某煤矿每班产煤量 (千吨)与每班的作业人数 的函数关系是 ( ),求生产条件不变的情况下,每班多少人时产煤量最高?
解: ,令 ,于是
得 ,

由于 ,所以,每班24人产煤量最高。
即 .
15.甲、乙两工人在一天的生产中,出现次品的数量分别为随机变量 ,且分布列分别为:

2020华工网络教育 会计学原理-平时作业

2020华工网络教育 会计学原理-平时作业

(一)、判断下列经济业务的性质,并与右边的对应答案连接起来(20分)①支付货币资金3000元购买设备。

—————— C一项资产减少,另一项资产增加②为顾客提供服务并收到现金680元。

—————— D资产增加,所有者权益增加③开支票支付房屋未来半年的租金1000元。

—————— A资产减少,所有者权益减少④收到顾客偿还前欠的部分服务费1000元。

—————— B资产增加,负债增加⑤用银行存款交纳营业税100元。

—————— E资产减少,负债减少(二)华信公司进货采用总价法核算。

2000年3月16日,该公司向S公司赊购一批商品,共计100000元(内含增值税),付款条件为“2/10、n/30”。

3月25日,该公司支付采购款.要求:为以上各项业务编制会计分录。

(20分)答:货款100000,增值税100000*0.17%=17000,总计117000。

因为是10天付款优惠100000*0.02=2000 ,所以银行存款=117000-2000=115000 会计分录是借:银行存款 115000 财务费用 2000 贷:应收帐款 117000(三)、简答题:(1)我国会计制度规定固定资产折旧方法有哪几种,各种方法有何特点?(15分)答:我国会计制度规定固定资产折旧方法有:年限平均法、工作量法、双倍余额递减法和年数总和法。

①从财务会计的角度来说,选择计算折旧的方法主要是为了正确计量收益,选择标准应根据企业会计原则中的收入与费用相互配合的原则,当设备正常使用时,直线法提供每年相等的折旧额,所以,在这种情况下,应当选择直线法计提折旧,优势企业某种专用设备并不经常正常使用,而与产品的生产的工作量有联系,那么选择工作量法计算折旧就比较合适,有些资产生产能力再早起具有较大生产能力或盈利能力是多计提一些折旧,而在后期生产能力减弱时少计提一些折旧,此时选择加速折旧法就比较适宜,因此,从财务会计的角度来说,上述各种折旧方法在各自的使用前提下都是恰当的,合适的。

《经济数学》(专)平时作业

《经济数学》(专)平时作业

江苏广播电视大学转业军人学历教育专科各专业(2004年春) 《经济数学》平时作业平时作业一一、单项选择题1.下列各对函数中,( )中的两个函数相等。

A .x x g x x f ==)(,)(2B .x x x g x x x x x f 1ln )(,ln )(2-=-=C .x x g x x f ln 2)(,ln )(2==D .1)(,11)(2+=--=x x g x x x f2.若函数)(x f 的定义域为[0,1],则函数)(ln x f 的定义域是( ) A .[0,1] B .[1,e] C .[0,e] D .(1,e)3.若函数)(x f 是定义在),(+∞-∞内的任意函数,则下列函数中( )是偶函数。

A .)(x f B .)(x f C .[]2)(x f D .)()(x f x f --4.下列函数中为奇函数的是( )A .1sin 2+=x x y B .()21ln x x y ++= C .xx e e y -+= D .x x y cos sin +=5.下列函数中,( )是偶函数。

A .x x cos 3B .x x -+1ln 2C .2xx e e -+ D .2sin 2+x x6.下列函数在指定区间),(+∞-∞上单调增加的是( ) A .x sin B .xe C .2x D .x -37.函数1)(,11)(2+=+-=x x g x xx f ,则=))((x f g ( )A .22)1()1(2x x ++B .22)1()1(x x ++ C .22)1()1(2x x +- D .22)1()1(x x +-8.极限(1sinlim =∞→x xA .1B .∞C .0D .不存在9.极限20cos 1limx xx -→=( ) A .0 B .1 C .∞ D .2110.下列极限计算正确的是( )A .e x xx =+→)11(lim 0 B .e x x x =+∞→1)1(limC .11sinlim 0=→x x x D .11sin lim =∞→x x x11.设⎩⎨⎧≥+<+=0,1sin 20,1)(x x x x x f ,则下列结论正确的是( ) A .)(x f 在X=0处连续B .)(x f 在X=0处不连续,但有极限C .)(x f 在X=0处无极限)D .)(x f 在X=0处连续,但无极限12.设⎩⎨⎧≥<+=0,20,1)(x x x e x f x ,则下列结论正确的是( ) A .f(x)在x=0处连续,有极限 B .f(x)在x=0处有极限,不连续 C .f(x)在x=0处无极限,不极限 D .f(x)在x=0处无极限,连续13.函数⎪⎩⎪⎨⎧=≠+-=0,0,211)(x k x xxx f ,在0=x 处连续,则=k ( ) A -2 B -1 C 1 D 2二、填空题1.若函数52)1(2-+=+x x x f ,则=)(x f2.函数)2ln(4--=x xy 的定义域是函数2411x x y -+-=的定义域是4.=++→152lim22x x x5.=+++-+∞→56122lim 22n n n n n6.若函数⎪⎩⎪⎨⎧≥+<-=0,0,)1()(22x k x x x x f x ,在0=x 处连续,则k= 7.=-∞→xxx x sin lim8.函数1246)(2---=x x x x f 的连续区间是 ,间断点是 。

华南理工大学-2018平时作业:《经济数学》答案

华南理工大学-2018平时作业:《经济数学》答案

华南理工大学-2018平时作业:《经济数学》答案《经济数学》作业题第一部分单项选择题1.某产品每日的产量是x件,产品的总售价是12x2+ 70x+1100 元,每一件的成本为(30 +13x) 元,则每天的利润为多少?(A )A.16x2+ 40x+1100 元B.16x2+ 30x+1100 元C.56x2+ 40x+1100 元D.56x2+ 30x+1100 元2.已知f(x)的定义域是[0,1],求f(x+a) + f (x - a),0< a <1的定义域是?2(C )A.[-a,1-a]B.[a,1+a]C.[a,1-a]D.[-a,1+a]3.计算lim sin kx=?(B )x→0x A.0 B.kC.1 kD.∞14.计算 lim(1+ 2)x= ?(C )x →∞xA . eB .1eC . e 2D .1e 2⎧2+ b , x < 2⎪ax 5.求 a , b 的取值,使得函数 f (x ) = ⎨ 1, x = 2 在 x = 2 处连续。

(A )⎪ + 3, x > 21⎩bx A . a = ,b = -12B . a = 3,b = 12C . a = 1,b = 22D . a = 3,b = 2236.试求 y = x 2 + x 在 x = 1 的导数值为(B )A .32 B . 52C . 12D . - 127.设某产品的总成本函数为: C (x ) = 400 + 3x +12 x 2 ,需求函数 P = 100x ,其中x 为产量(假定等于需求量), P 为价格,则边际成本为?(B )A . 3B . 3 + xC . 3 + x 2D . 3 +12 x28.试计算⎰(x2-2x+4)e x dx=?(D )A.(x2- 4x- 8)e xB.(x2- 4x- 8)e x+cC.(x2-4x+8)e xD.(x2- 4x+ 8)e x+c9.计算⎰01x21-x2d x =?(D)A.2B.4C.8D.1610.计算x1+1x1+2=?(A )x+1x +222A.x1-x2B.x1+x2C.x2-x1D.2x2-x1121411.计算行列式D=0-121=?(B )10130131A.-8B.-7C.-6D.-5312.行列式 yx x + y =?(B )x x + y yx + yy xA . 2(x 3 + y 3 )B . -2(x 3 + y 3 )C . 2(x 3 - y 3 )D . -2(x 3 - y 3 )⎧ x 1 + x 2 + x 3 =⎪ +x 2 + x 3 = 0 有非零解,则 =?(C ) 13.齐次线性方程组 ⎨x 1⎪x + x + x = 0⎩1 2 3A .-1B .0C .1D .2⎛ 0 0⎫⎛1 9 7 6⎫ , B = 3 6 ⎪,求 AB =?(D ) 14.设 A = ⎪ ⎪9 0 ⎪5 3 ⎪⎝ 05⎭ ⎪7 6 ⎪⎝ ⎭ ⎛104 110 ⎫A . 60 84 ⎪⎝ ⎭ ⎛104111⎫B . 62 80 ⎪⎝ ⎭ ⎛104 111⎫C . 60 84 ⎪⎝ ⎭ ⎛104 111⎫D . 62 84 ⎪⎝ ⎭4⎛ 123⎫2 2 1 ⎪ ,求 A -1=?(D ) 15.设 A = ⎪ 3 4⎪⎝ 3⎭⎛ 1 3 2 ⎫ 3 5 ⎪A . - -3 ⎪ 2 2 ⎪ 1 1 ⎪⎝ -1⎭ ⎛ 1 3 -2 ⎫ 3 5 ⎪ B . - 3 ⎪22 ⎪ 11 ⎪⎝ -1⎭ ⎛ 1 3 -2 ⎫ 3 5 ⎪ C . -3 ⎪22 ⎪11 ⎪⎝ -1⎭ ⎛ 1 3 -2 ⎫ 3 5 ⎪D .- -3 ⎪ 2 2⎪ 1 1 ⎪⎝ -1⎭16.向指定的目标连续射击四枪,用 A i 表示“第 i 次射中目标”,试用 A i 表示前两枪都射中目标,后两枪都没有射中目标。

高等数学(B)下2020年华南理工大学平时作业(1)

高等数学(B)下2020年华南理工大学平时作业(1)

前半部分作业题,后半部分为作业答案各科随堂练习、平时作业(yaoyao9894)《 高等数学B (下) 》练习题2020年3月一、判断题 1. ()3420yy yy xy ''''+-=是二阶微分方程.2. (1)若12(),()y x y x 是二阶线性齐次方程()()0y p x y q x y '''++=的两个特解,则1122()()()y x C y x C y x =+是该方程的通解.(2)若12(),()y x y x 是二阶线性齐次方程()()0y p x y q x y '''++=的两个线性无关的特解, 即12()()y x y x ≠常数,则1122()()()y x C y x C y x =+是该方程的通解. 3. (1)若两个向量,a b 垂直,则a b ⨯0.=(2)若两个向量,a b 垂直,则a b ⋅0.= (3)若两个向量,a b 平行,则a b ⨯0.= (4)若两个向量,a b 平行,则a b ⋅0.=4. (1)若函数(,)f x y 在00(,)x y 点全微分存在,则(,)f x y 在00(,)x y 点偏导数也存在.(2)若函数(,)f x y 在00(,)x y 点偏导数存在,则(,)f x y 在00(,)x y 点全微分也存在. 5. (1)设连续函数(,) 0f x y ≥,,则二重积分(,)d σ⎰⎰Df x y 表示以曲面(,)f x y 为顶、以区域D 为底的曲顶柱体的体积. (2)二重积分(,)d σ⎰⎰Df x y 表示以曲面(,)f x y 为顶、以区域D 为底的曲顶柱体的体积.6. (1)若(,)f x y 在00(,)x y 处取得极大值,且(,)f x y 在00(,)x y 点偏导数存在,则00(,)x y 是函数(,)f x y 的驻点.(2)若(,)f x y 在00(,)x y 处取得极大值,则00(,)x y 是函数(,)f x y 的驻点. 7. (1)若lim 0→∞=n n u ,则数项级数1nn u∞=∑收敛.(2)若数项级数1nn u∞=∑收敛,则lim 0→∞=n n u .8. (1)若级数1||nn u∞=∑收敛,则级数1n n u ∞=∑也收敛.(2)若级数1nn u∞=∑收敛,则级数1||nn u∞=∑也收敛.9. (1)调和级数11∞=∑n n 发散. (2)p 级数11(1)pn p n∞=>∑收敛. 10. (1)若区域D 关于x 轴对称,函数(,)f x y 关于y 是偶函数,则(,)d =0.σ⎰⎰Df x y(2)若区域D 关于x 轴对称,函数(,)f x y 关于y 是奇函数,则(,)d =0.σ⎰⎰Df x y二、填空题(考试为选择题)1. 一阶微分方程22x x e y xye x '+=的类型是______________________________. 2. 已知平面与,,(3,0,0),(0,4,0),(0,0,5)x y z -轴分别交于,则该平面方程为__________. 3.函数(,)=f x y 定义域为__________.4. 222(,)(0,0)3(,)0(,)(0,0)xyx y x y f x y x y ⎧≠⎪+=⎨⎪=⎩,,在(0,0)处的两个偏导数为__________.5. z z a Ω==若是由圆锥面所围成的闭区域,则三重积分(,,)d d d f x y z x y z Ω⎰⎰⎰化为柱面坐标系下的三次积分为 __________.6. 等比级数1∞=∑nn q的敛散性为__________.三、解答题1. 求微分方程+60y y y '''-=的通解.2. 123(2,1,4),(1,3,2),(0,2,3).M M M ---求经过三点的平面方程3. 若22(+2,3)z f x y xy =,其中f 具有连续偏导数,求z 的两个偏导数.4. 求椭球面2223214++=x y z 在点()1,1,3处的切平面方程和法线方程.5. 21x y z Ω++=若是由平面与三个坐标面所围成的闭区域,计算三重积分d d d .Ω=⎰⎰⎰I x x y z以下为答案部分《 高等数学B (下) 》练习题2020年3月一、判断题1. ()3420yy y y xy ''''+-=是二阶微分方程. (×)2. (1)若12(),()y x y x 是二阶线性齐次方程()()0y p x y q x y '''++=的两个特解,则1122()()()y x C y x C y x =+是该方程的通解.(×)(2)若12(),()y x y x 是二阶线性齐次方程()()0y p x y q x y '''++=的两个线性无关的特解,即12()()y x y x ≠常数,则1122()()()y x C y x C y x =+是该方程的通解.(√)3. (1)若两个向量,a b 垂直,则a b ⨯0.=(×)(2)若两个向量,a b 垂直,则a b ⋅0.=(√)(3)若两个向量,a b 平行,则a b ⨯0.=(√)(4)若两个向量,a b 平行,则a b ⋅0.=(×)4. (1)若函数(,)f x y 在00(,)x y 点全微分存在,则(,)f x y 在00(,)x y 点偏导数也存在.(√)(2)若函数(,)f x y 在00(,)x y 点偏导数存在,则(,)f x y 在00(,)x y 点全微分也存在.(×)5. (1)设连续函数(,) 0f x y ≥,,则二重积分(,)d σ⎰⎰Df x y 表示以曲面(,)f x y 为顶、以区域D 为底的曲顶柱体的体积.(√)(2)二重积分(,)d σ⎰⎰Df x y 表示以曲面(,)f x y 为顶、以区域D 为底的曲顶柱体的体积.(×)6. (1)若(,)f x y 在00(,)x y 处取得极大值,且(,)f x y 在00(,)x y 点偏导数存在,则00(,)x y 是函数(,)f x y 的驻点.(√)(2)若(,)f x y 在00(,)x y 处取得极大值,则00(,)x y 是函数(,)f x y 的驻点.(×)7. (1)若lim 0→∞=n n u ,则数项级数1n n u ∞=∑收敛.(×) (2)若数项级数1n n u ∞=∑收敛,则lim 0→∞=n n u .(√) 8. (1)若级数1||n n u ∞=∑收敛,则级数1n n u ∞=∑也收敛.(√)(2)若级数1n n u ∞=∑收敛,则级数1||n n u ∞=∑也收敛.(×)9. (1)调和级数11∞=∑n n发散.(√)(2)p 级数11(1)pn p n∞=>∑收敛.(√)10. (1)若区域D 关于x 轴对称,函数(,)f x y 关于y 是偶函数,则(,)d =0.σ⎰⎰Df x y (×)(2)若区域D 关于x 轴对称,函数(,)f x y 关于y 是奇函数,则(,)d =0.σ⎰⎰Df x y (√)二、填空题(考试为选择题) 1. 一阶微分方程22x x e y xye x '+=的类型是可分离变量2. 已知平面与,,(3,0,0),(0,4,0),(0,0,5)x y z -轴分别交于,则该平面方程为__________.3. 函数22(,)ln(9)=+-f x y x y 定义域为__________.4. 222(,)(0,0)3(,)0(,)(0,0)xyx y x y f x y x y ⎧≠⎪+=⎨⎪=⎩,,在(0,0)处的两个偏导数为__________.5.22z x y z a Ω=+=若是由圆锥面与平面所围成的闭区域,则三重积分(,,)d d d f x y z x y z Ω⎰⎰⎰化为柱面坐标系下的三次积分为 __________.6. 等比级数1∞=∑n n q 的敛散性为__________.三、解答题 1. 求微分方程+60y y y '''-=的通解.2. 123(2,1,4),(1,3,2),(0,2,3).M M M ---求经过三点的平面方程3. 若22(+2,3)z f x y xy =,其中f 具有连续偏导数,求z 的两个偏导数.4. 求椭球面2223214++=x y z 在点()1,1,3处的切平面方程和法线方程.5.21x y z Ω++=若是由平面与三个坐标面所围成的闭区域,计算三重积分d d d .Ω=⎰⎰⎰I x x y z(密 封。

经济数学,随堂练习2020秋华工答案

经济数学,随堂练习2020秋华工答案

经济数学第一章函数与极限·第一节函数
1.(单选题)
答题: A. B. C. D. (已提交)
参考答案:B
问题解析:
2.(单选题)
答题: A. B. C. D. (已提交)
参考答案:C
问题解析:
题)
答题: A. B. C. D. (已提交)参考答案:C
问题解析:
1.(单选题)
答题: A. B. C. D. (已提交)参考答案:C
问题解析:
2.(单选题)
答题: A. B. C. D. (已提交)参考答案:A
问题解析:
4.(单选题)
答题: A. B. C. D. (已提交)参考答案:B
问题解析:
题)
答题: A. B. C. D. (已提交)参考答案:C
问题解析:
6.(单选
题)
答题: A. B. C. D. (已提交)参考答案:B
问题解析:
7.(单选题)
答题: A. B. C. D. (已提交)参考答案:C
问题解析:
9.(单选
题)
答题: A. B. C. D. (已提交)参考答案:A
问题解析:
10.(单选
题)
答题: A. B. C. D. (已提交)参考答案:C
问题解析:
第一章函数与极限·第二节初等函数和常见的经济函数11.(单选
题)
答题: A. B. C. D. (已提交)
参考答案:C
1.(单选题)
答题: A. B. C. D. (已提交)
参考答案:D
问题解析:
2.(单选题)。

统计学原理--平时作业2020秋华南理工大学网络教育答案

统计学原理--平时作业2020秋华南理工大学网络教育答案

2020统计学作业题一、计算题1、为估计每个网络用户每天上网的平均时间是多少,随机抽取了225个网络用户的简单随机样本,得样本均值为6.5小时,样本标准差为2.5小时。

(1)试以95%的置信水平,建立网络用户每天平均上网时间的区间估计。

(2)在所调查的225个网络用户中,年龄在20岁以下的用户为90个。

以95%的置信水平,建立年龄在20岁以下的网络用户比例的置信区间?(注:96.1025.0=z ,645.105.0=z )解:(1)、已知N=225, 1-α=95%, Z α/2=1.96, -x =6.5,Ó=2.5 网络用户每天平均上网时间的95%的置信区间为:33.05.62255.296.15.62/±=⨯±=±n s z x a =(6.17,6.83)(2)、样本比例:P=90/225=0.4;年龄20岁以下的网络用户比例的置信区间为:064.04.0225)4.01(4.096.14.0)1(2/±=-⨯±=-±n p p Z P a 即(33.6%,46.4%)2、一个汽车轮胎制造商声称,某一等级的轮胎的平均寿命在一定的汽车重量和正常行驶条件下大于40000公里,对一个由20个轮胎组成的随机样本作了试验,测得平均值为41000公里,标准差为5000公里。

已知轮胎寿命的公里数服从正态分布,制造商能否根据这些数据作出验证,产品同他所说的标准相符?(α = 0.05,t α(19)=1. 7291)解:H0: m ≥ 40000 H1: m < 40000 a = 0.05 df = 20 - 1 = 19 临界值:检验统计量:894.020500040000410000=-=-=ns x t μ决策: 在a = 0.05的水平上不能拒绝H 0结论:有证据表明轮胎使用寿命显著地大于40000公里3、拥有工商管理学士学位的大学毕业生年薪的标准差大约为2000元,假定想要估计年薪95%的置信区间,希望边际误差为400元,应抽取多大的样本容量?(已知:z α/2=1.96)答:已知σ=2000,E=400,α=1-0.95=0.05,从而z α/2=1.96。

华南理工大学经济数学作业答案

华南理工大学经济数学作业答案

华南理工大学经济数学作业答案Modified by JACK on the afternoon of December 26, 2020《经济数学》作业题及其解答第一部分 单项选择题1.某产品每日的产量是x 件,产品的总售价是217011002x x ++元,每一件的成本为1(30)3x +元,则每天的利润为多少( A )A .214011006x x ++元B .213011006x x ++元C .254011006x x ++元D .253011006x x ++元2.已知()f x 的定义域是[0,1],求()f x a ++ ()f x a -,102a <<的定义域是(C )A.[,1]a a--B.[,1]a a+ C.[,1]a a-D.[,1]a a-+3.计算0sinlim xkx x→=( B )A.0B.kC.1 kD.∞4.计算2lim(1)xx x→∞+=( C )A.eB .1eC .2eD .21e5.求,a b 的取值,使得函数2,2()1,23,2ax b x f x x bx x ⎧+ <⎪= =⎨⎪+ >⎩在2x =处连续。

(A )A .1,12a b ==-B .3,12a b ==C .1,22a b ==D .3,22a b ==6.试求32y x =+x 在1x =的导数值为(B )A .32B .52C .12D .12-7.设某产品的总成本函数为:21()40032C x x x =++,需求函数P =,其中x 为产量(假定等于需求量),P 为价格,则边际成本为(B )A .3B .3x +C .23x +D .132x +8.试计算2(24)?x x x e dx -+=⎰( D )A .2(48)x x x e --B .2(48)x x x e c --+C .2(48)x x x e -+D .2(48)x x x e c -++9.计算10x =⎰ DA .2π B .4π C .8π D .16π 10.计算11221212x x x x ++=++(A )A .12x x -B .12x x +C .21x x -D .212x x -11.计算行列式1214012110130131D -==( B )A.-8 B.-7 C.-6 D.-512.行列式y x x yx x y yx y y x+++=(B )A.332()x y+B.332()x y-+C.332()x y-D.332()x y--13.齐次线性方程组123123123x x xx x xx x xλλ++=⎧⎪++=⎨⎪++=⎩有非零解,则λ=(C )A .-1B .0C .1D .214.设⎪⎪⎭⎫ ⎝⎛=50906791A ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=67356300B ,求AB =( D )A .1041106084⎛⎫⎪⎝⎭B .1041116280⎛⎫⎪⎝⎭C .1041116084⎛⎫⎪⎝⎭D .1041116284⎛⎫⎪⎝⎭15.设⎪⎪⎪⎭⎫ ⎝⎛=343122321A ,求1-A =( D )A .13235322111⎛⎫ ⎪ ⎪-- ⎪ ⎪-⎝⎭ B .132********-⎛⎫ ⎪ ⎪- ⎪ ⎪-⎝⎭C .13235322111-⎛⎫ ⎪ ⎪- ⎪ ⎪-⎝⎭ D .132********-⎛⎫ ⎪ ⎪-- ⎪ ⎪-⎝⎭16.向指定的目标连续射击四枪,用i A 表示“第i 次射中目标”,试用i A 表示前两枪都射中目标,后两枪都没有射中目标。

《经济数学》作业答案

《经济数学》作业答案

《经济数学》 作业题及其解答一、计算题1、某厂生产某产品,每批生产x 台得费用为()5200C x x =+,得到的收入为2()100.01R x x x =-,求利润.解:当边际收益=边际成本时,企业的利润最大化边际成本=C=(x+1)-C(x)=5 即R (x)=10-0.01x2=5时,利润最大,此时,x=500平方根=22个单位利润是5x-0.01x ²-200.2、求201lim x x →.解:0x →=0lim →x 1231223++x x x (=0lim →x 12313++x =233、设213lim 21xx ax x →-++=+,求常数a . 解:有题目中的信息可知,分子一定可以分出(x-1)这个因式,不然的话分母在x 趋于-1的时候是0,那么这个极限值就是正无穷的,但是这个题目的极限确实个一个正整数2,所以分子一定是含了一样的因式,分母分子抵消了, 那么也就是说分子可以分解为(x+1)(x+3)因为最后的结果是(-1-p )=2所以p=-3,那么也就是说(x+1)(x+3)=x^2+ax+3 所以a=44、设()(ln )f x y f x e =⋅,其中()f x 为可导函数,求y '. 解:y '=)('.).(ln ).(ln '1)()(x f e x f e x f xx f x f +5、求不定积分21dx x⎰.解:21dx x ⎰=(-1/x)+c6、设1ln 1bxdx =⎰,求b.解:eb b b b b b b b x xd x x b===-=----⎰1ln 0ln )1(0ln )(ln ln 17、求不定积分⎰+dx ex11. 解:c e dx exx++-=+-⎰)1ln(118.设2()21f x x x =-+,1101A ⎛⎫= ⎪⎝⎭,求矩阵A 的多项式()f A .解:将矩 阵A 代入可得答案f(A)= 751512-- -21533-⎛⎫ ⎪-⎝⎭+10301⎛⎫ ⎪⎝⎭=0000⎛⎫⎪⎝⎭9、求抛物线22y x =与直线4y x =-所围成的平面图形的面积. 解:首先将两个曲线联立得到y 的两个取值yl=-2,y2=4X1=2,x2=8183012)42y 422=+-=++⎰-dy y ( 10、设矩阵263113111,112011011A B ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦,求AB .解:AB = 81121236101--|AB| = -511.设1213A ⎛⎫= ⎪⎝⎭,1012B ⎛⎫= ⎪⎝⎭,求AB 与BA .解:(I-A)B= 54255390----12.设101111211A ⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,求逆矩阵1-A .解:(|)P A B =1/3, (|)P B A =1/2 (|)P A B =()()31()11P A P AB P B -=-13、甲、乙二人依次从装有7个白球,3个红球的袋中随机地摸1个球,求甲、乙摸到不同颜色球的概率. 解:1.要是甲先抽到红球,则乙的概率是P=6÷(6+3)=2/32.要是甲先抽到白球,则是P=7÷(2+7)=7/9二、 应用题14、某煤矿每班产煤量y (千吨)与每班的作业人数x 的函数关系是)123(252x x y -=(360≤≤x ),求生产条件不变的情况下,每班多少人时产煤量最高?解:某厂每月生产x 吨产品的总成本为4011731)(23++-=x x x x C (万元),每月销售这些产品时的总收入为3100)(x x x R -=(万元),求利润最大时的产量及最大利润值.解:利润函数为L()=R()-C()=-1/315、甲、乙两工人在一天的生产中,出现次品的数量分别为随机变量12,X X ,且解:E(X1)=0*0.4+1*0.3+2*0.2+3*0.1=1 E(X2)=0*0.3+1*0.5+2*0.2+3*0=0.9因为E(X1)>E(X2)所以甲工人的技术较好。

(参考资料)2020-华南理工大学网络教育经济数学 随堂练习及答案

(参考资料)2020-华南理工大学网络教育经济数学 随堂练习及答案
1.(单选题) 参考答案:C
2. 参考答案:A
第十章 随机变量的分布与数字特征·第四节 正态分布
1.(单选题) 参考答案:B
2.(单选题) 参考答案:B
3.(单选题) 参考答案:C
4. 参考答案:C
第十章 随机变量的分布与数字特征·第五节 数学期望
1. 参考答案:D
2.(单选题) 参考答案:B
3. 参考答案:A
参考答案:C
11.
参考答案:C 第一章 函数与极限·第三节 极限概念与性质
1.(单选题) 参考答案:D
2.(单选题) 参考答案:D 第一章 函数与极限·第四节 无穷小与无穷大 1.(单选题) 参考答案:A
2.(单选题) 参考答案:A
3.(单选题) 参考答案:B 第一章 函数与极限·第五节 极限的运算
第十章 随机变量的分布与数字特征·第六节 方差
1 参考答案:C 2.
参考答案:B
3. 参考答案:B
1.(单选题) 参考答案:A 第四章 不定积分·第三节 不定积分的分部积分法
1.(单选题) 参考答案:D 第五章 定积分及其应用·第一节 定积分的概念与性质
1.(单选题) 参考答案:C 第五章 定积分及其应用·第二节 微积分基本公式
1.(单选题) 参考答案:B
2.(单选题) 参考答案:B 第五章 定积分及其应用·第三节 定积分的换元积分法和分部积分法
1.(单选题) 参考答案:C
2.(单选题) 参考答案:A
3.(单选题) 参考答案:D
4.(单选题) 参考答案:B
5.(单选题) 参考答案:A
6.(单选题) 参考答案:B
7.(单选题) 参考答案:B
8.(单选题) 参考答案:B
9.(单选题) 参考答案:C 第一章 函数与极限·第六节 无穷小的比较

生产运作管理,平时作业2020秋华工答案

生产运作管理,平时作业2020秋华工答案

一、名词解释题1.产品-流程矩阵答:指产品特征与流程类型之间的对应关系,它可以帮助企业针对自身需求的特征选择合适的生产流程。

2.劳动定额答:是指在一定的生产技术和组织条件下,为生产一定数量的产品或完成一定量的工作所规定的劳动消耗量的标准。

劳动定额是组织现代化大工业生产的客观要求。

3. 工序平衡答:对生产的全部工序进行平均化,调整各作业负荷,以使各工作站时间尽可能相近。

4.作业计划答:企业生产计划的具体执行计划。

它把企业的年度、季度生产计划具体规定为各个车间、工段、班组、每个工作地和个人的以月、周、班以至小时计的计划。

5.对象专业化答:将加工某种产品或完成某种服务所需的设备和工人布置在一个区域内,所有生产设备和工作地按产品加工装配的工艺路线顺序排列。

在这个区域内完成产品或零部件的全部或大部分工艺。

二、简答题1.请问生产运作管理中的T、Q、C、S、F、E分别指什么?答: T:订货周期Q:订货量C:成本 S:安全F: 环境 E: 服务2.请问库存费用有哪几项?答:存储费用。

这项费用主要用于维持库存活动,包括:仓库使用费、物资保管费用、物资损坏变质损失、投资的机会成本等等,它一般和物资库存数量和时间成正比。

订货费。

向外采购物资的费用,包括两部分:一是订购费用,如手续费、差旅费等,它与订货次数有关,而和订货数量无关;二是物资进货成本,如货款、运费等,它与订货数量有关。

3.请问精益生产方式的基本特征是什么?答:1、在生产制造过程中生产指令采用后工序拉动方式;2、组织作业小组,充分发挥每位员工的积极性;3、在生产组织结构上,精益生产采用专业协作化形式;4、。

高等数学(B)下2020年华南理工大学平时作业(1)

高等数学(B)下2020年华南理工大学平时作业(1)

前半部分作业题,后半部分为作业答案各科随堂练习、平时作业(yaoyao9894)《 高等数学B (下) 》练习题2020年3月一、判断题 1. ()3420yy yy xy ''''+-=是二阶微分方程.2. (1)若12(),()y x y x 是二阶线性齐次方程()()0y p x y q x y '''++=的两个特解,则1122()()()y x C y x C y x =+是该方程的通解.(2)若12(),()y x y x 是二阶线性齐次方程()()0y p x y q x y '''++=的两个线性无关的特解, 即12()()y x y x ≠常数,则1122()()()y x C y x C y x =+是该方程的通解. 3. (1)若两个向量,a b 垂直,则a b ⨯0.=(2)若两个向量,a b 垂直,则a b ⋅0.= (3)若两个向量,a b 平行,则a b ⨯0.= (4)若两个向量,a b 平行,则a b ⋅0.=4. (1)若函数(,)f x y 在00(,)x y 点全微分存在,则(,)f x y 在00(,)x y 点偏导数也存在.(2)若函数(,)f x y 在00(,)x y 点偏导数存在,则(,)f x y 在00(,)x y 点全微分也存在. 5. (1)设连续函数(,) 0f x y ≥,,则二重积分(,)d σ⎰⎰Df x y 表示以曲面(,)f x y 为顶、以区域D 为底的曲顶柱体的体积. (2)二重积分(,)d σ⎰⎰Df x y 表示以曲面(,)f x y 为顶、以区域D 为底的曲顶柱体的体积.6. (1)若(,)f x y 在00(,)x y 处取得极大值,且(,)f x y 在00(,)x y 点偏导数存在,则00(,)x y 是函数(,)f x y 的驻点.(2)若(,)f x y 在00(,)x y 处取得极大值,则00(,)x y 是函数(,)f x y 的驻点. 7. (1)若lim 0→∞=n n u ,则数项级数1nn u∞=∑收敛.(2)若数项级数1nn u∞=∑收敛,则lim 0→∞=n n u .8. (1)若级数1||nn u∞=∑收敛,则级数1n n u ∞=∑也收敛.(2)若级数1nn u∞=∑收敛,则级数1||nn u∞=∑也收敛.9. (1)调和级数11∞=∑n n 发散. (2)p 级数11(1)pn p n∞=>∑收敛. 10. (1)若区域D 关于x 轴对称,函数(,)f x y 关于y 是偶函数,则(,)d =0.σ⎰⎰Df x y(2)若区域D 关于x 轴对称,函数(,)f x y 关于y 是奇函数,则(,)d =0.σ⎰⎰Df x y二、填空题(考试为选择题) 1. 一阶微分方程22x x e y xyex '+=的类型是______________________________.2. 已知平面与,,(3,0,0),(0,4,0),(0,0,5)x y z -轴分别交于,则该平面方程为__________.3.函数(,)=f x y 定义域为__________.4. 222(,)(0,0)3(,)0(,)(0,0)xyx y x y f x y x y ⎧≠⎪+=⎨⎪=⎩,,在(0,0)处的两个偏导数为__________.5. z z a Ω==若是由圆锥面所围成的闭区域,则三重积分(,,)d d d f x y z x y z Ω⎰⎰⎰化为柱面坐标系下的三次积分为 __________.6. 等比级数1∞=∑nn q的敛散性为__________.三、解答题1. 求微分方程+60y y y '''-=的通解.2. 123(2,1,4),(1,3,2),(0,2,3).M M M ---求经过三点的平面方程3. 若22(+2,3)z f x y xy =,其中f 具有连续偏导数,求z 的两个偏导数. 4. 求椭球面2223214++=x y z 在点()1,1,3处的切平面方程和法线方程.5. 21x y z Ω++=若是由平面与三个坐标面所围成的闭区域,计算三重积分d d d .Ω=⎰⎰⎰I x x y z以下为答案部分《 高等数学B (下) 》练习题2020年3月一、判断题1. ()3420yy y y xy ''''+-=是二阶微分方程. (×)2. (1)若12(),()y x y x 是二阶线性齐次方程()()0y p x y q x y '''++=的两个特解,则1122()()()y x C y x C y x =+是该方程的通解.(×)(2)若12(),()y x y x 是二阶线性齐次方程()()0y p x y q x y '''++=的两个线性无关的特解,即12()()y x y x ≠常数,则1122()()()y x C y x C y x =+是该方程的通解.(√)3. (1)若两个向量,a b 垂直,则a b ⨯0.=(×)(2)若两个向量,a b 垂直,则a b ⋅0.=(√)(3)若两个向量,a b 平行,则a b ⨯0.=(√)(4)若两个向量,a b 平行,则a b ⋅0.=(×)4. (1)若函数(,)f x y 在00(,)x y 点全微分存在,则(,)f x y 在00(,)x y 点偏导数也存在.(√)(2)若函数(,)f x y 在00(,)x y 点偏导数存在,则(,)f x y 在00(,)x y 点全微分也存在.(×)5. (1)设连续函数(,) 0f x y ≥,,则二重积分(,)d σ⎰⎰Df x y 表示以曲面(,)f x y 为顶、以区域D 为底的曲顶柱体的体积.(√)(2)二重积分(,)d σ⎰⎰Df x y 表示以曲面(,)f x y 为顶、以区域D 为底的曲顶柱体的体积.(×)6. (1)若(,)f x y 在00(,)x y 处取得极大值,且(,)f x y 在00(,)x y 点偏导数存在,则00(,)x y 是函数(,)f x y 的驻点.(√)(2)若(,)f x y 在00(,)x y 处取得极大值,则00(,)x y 是函数(,)f x y 的驻点.(×)7. (1)若lim 0→∞=n n u ,则数项级数1n n u ∞=∑收敛.(×) (2)若数项级数1n n u ∞=∑收敛,则lim 0→∞=n n u .(√) 8. (1)若级数1||n n u ∞=∑收敛,则级数1n n u ∞=∑也收敛.(√)(2)若级数1n n u ∞=∑收敛,则级数1||n n u ∞=∑也收敛.(×)9. (1)调和级数11∞=∑n n发散.(√)(2)p 级数11(1)pn p n∞=>∑收敛.(√)10. (1)若区域D 关于x 轴对称,函数(,)f x y 关于y 是偶函数,则(,)d =0.σ⎰⎰Df x y (×)(2)若区域D 关于x 轴对称,函数(,)f x y 关于y 是奇函数,则(,)d =0.σ⎰⎰Df x y (√)二、填空题(考试为选择题) 1. 一阶微分方程22x x e y xye x '+=的类型是可分离变量2. 已知平面与,,(3,0,0),(0,4,0),(0,0,5)x y z -轴分别交于,则该平面方程为__________.3. 函数22(,)ln(9)=+-f x y x y 定义域为__________.4. 222(,)(0,0)3(,)0(,)(0,0)xyx y x y f x y x y ⎧≠⎪+=⎨⎪=⎩,,在(0,0)处的两个偏导数为__________.5.22z x y z a Ω=+=若是由圆锥面与平面所围成的闭区域,则三重积分(,,)d d d f x y z x y z Ω⎰⎰⎰化为柱面坐标系下的三次积分为 __________.6. 等比级数1∞=∑n n q 的敛散性为__________.三、解答题 1. 求微分方程+60y y y '''-=的通解.2. 123(2,1,4),(1,3,2),(0,2,3).M M M ---求经过三点的平面方程3. 若22(+2,3)z f x y xy =,其中f 具有连续偏导数,求z 的两个偏导数.4. 求椭球面2223214++=x y z 在点()1,1,3处的切平面方程和法线方程.5.21x y z Ω++=若是由平面与三个坐标面所围成的闭区域,计算三重积分d d d .Ω=⎰⎰⎰I x x y z(密 封。

华师《经济数学》在线作业.doc

华师《经济数学》在线作业.doc

1.偶函数的定义域一定是( )。

A.包含原点的区间B.关于原点对称C.(-∞,∞)D.其他选项都选【参考答案】: B2.曲线y=xlnx-x在x=e处的切线方程是()。

A.y=-x-eB.y=x-eC.y=xeD.y=x-e1【参考答案】: B3.f(x)在某点连续是f(x)在该点可微的()。

A.充分条件B.必要条件C.充分必要条件D.既非充分又非必要条件【参考答案】: B4.y=1/(x-2)有渐近线()。

A.x=2B.y=2C.x=-2D.x=0【参考答案】: A5.设y=f(sin x), f(x)为可导函数,则dy的表达式为( )。

A.f'(sin x)dxB.f'(cos x)dxC.f'(sin x)cos xD.f'(sin x)cos xdx【参考答案】: D6.函数y=x/(x+1)的水平渐近线为()。

A.y=-1B.y=0C.y=1D.y=2【参考答案】: C7.若函数f(x)在(a,b)内存在原函数,则原函数有()。

A.一个B.两个C.无穷多个D.其他选项都选【参考答案】: C8.设f(x)在(a, b)内可导,则f'(x)<0是f(x)在(a, b)内为减函数的()。

A.充分条件B.必要条件C.充分必要条件D.既非充分又非必要条件【参考答案】: A9.若f(x)是奇函数,g(x)是偶函数,且f[g(x)]有意义,则f[g(x)]是()。

A.偶函数B.奇函数C.非奇非偶函数D.偶函数或奇函数【参考答案】: A10.下列各微分方程中为一阶线性方程的是()。

A.xy'y^2=xB.y'xy=sinxC.yy'=xD.y'^2xy=0【参考答案】: B11.下列函数不是周期函数的是()。

A.sin(1/x)B.cos(1/x)C.sinx*sinxD.tanx【参考答案】: AB12.下列函数中是偶函数的有()。

最新华南理工大学《经济数学》作业答案

最新华南理工大学《经济数学》作业答案

《经济数学》作业题及其解答第一部分 单项选择题1.某产品每日的产量是x 件,产品的总售价是217011002x x ++元,每一件的成本为1(30)3x +元,则每天的利润为多少?(A ) A .214011006x x ++元 B .213011006x x ++元 C .254011006x x ++元 D .253011006x x ++元2.已知()f x 的定义域是[0,1],求()f x a ++ ()f x a -,102a <<的定义域是?( C )A .[,1]a a --B .[,1]a a +C .[,1]a a -D .[,1]a a -+3.计算0sin lim x kx x→=?( B ) A .0B .kC .1kD .∞4.计算2lim(1)x x x→∞+=?( C ) A .eB .1eC .2eD .21e5.求,a b 的取值,使得函数2,2()1,23,2ax b x f x x bx x ⎧+ <⎪= =⎨⎪+ >⎩在2x =处连续。

( A )A .1,12a b ==- B .3,12a b == C .1,22a b == D .3,22a b ==6.试求32y x =+x 在1x =的导数值为(B )A .32B .52C .12D .12-7.设某产品的总成本函数为:21()40032C x x x =++,需求函数P =,其中x 为产量(假定等于需求量),P 为价格,则边际成本为?( B )A .3B .3x +C .23x +D .132x +8.试计算2(24)?x x x e dx -+=⎰( D )A .2(48)x x x e --B .2(48)x x x e c --+C .2(48)x x x e -+D .2(48)x x x e c -++9.计算10x =⎰? DA .2πB .4πC .8πD .16π10.计算11221212x x x x ++=++?(A )A .12x x -B .12x x +C .21x x -D .212x x -11.计算行列式1214012110130131D -==?(B )A .-8B .-7C .-6D .-512.行列式y xx y x x yy x y y x +++=?( B )A .332()x y +B .332()x y -+C .332()x y -D .332()x y --13.齐次线性方程组123123123000x x x x x x x x x λλ++=⎧⎪++=⎨⎪++=⎩有非零解,则λ=?( C )A .-1B .0C .1D .214.设⎪⎪⎭⎫ ⎝⎛=50906791A ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=67356300B ,求AB =?( D ) A .1041106084⎛⎫ ⎪⎝⎭B .1041116280⎛⎫ ⎪⎝⎭C .1041116084⎛⎫ ⎪⎝⎭D .1041116284⎛⎫ ⎪⎝⎭15.设⎪⎪⎪⎭⎫ ⎝⎛=343122321A ,求1-A =?( D ) A .13235322111⎛⎫ ⎪ ⎪-- ⎪ ⎪-⎝⎭ B .132********-⎛⎫ ⎪ ⎪- ⎪ ⎪-⎝⎭C .13235322111-⎛⎫ ⎪ ⎪- ⎪ ⎪-⎝⎭ D .132********-⎛⎫ ⎪ ⎪-- ⎪ ⎪-⎝⎭16.向指定的目标连续射击四枪,用i A 表示“第i 次射中目标”,试用i A 表示前两枪都射中目标,后两枪都没有射中目标。

华南理工大学《经济数学》作业答案

华南理工大学《经济数学》作业答案

华南理工大学《经济数学》作业答案1《经济数学》作业题及其解答第一部分单项选择题1.某产品每日的产量是x 件,产品的总售价是__-__2 x x ++元,每一件的成本为1(30)3x +元,则每天的利润为多少?(A )A .__-__6x x ++元B .__-__6x x ++元C .__-__6x x ++元D .__-__6x x ++元2.已知()f x 的定义域是[0,1],求()f x a ++ ()f x a -,102 a 的定义域是?(C )A .[,1]a a --B .[,1]a a +C .[,1]a a -D .[,1]a a -+3.计算0sin lim x kx x→=?(B )A .0C .1kD .∞24.计算2lim(1)x x x→∞+=?(C )A .eB .1eC .2eD .21e5.求,a b 的取值,使得函数2,2()1,23,2ax b x f x x bx x ?+ ?= =??+ ?在2x =处连续。

(A )A .1,12a b ==- B .3,12a b == C .1,22a b == D .3,22a b ==6.试求32y x =+x 在1x =的导数值为(B )A .32B .52D .12-7.设某产品的总成本函数为:21()__C x x x =++,需求函数P =x 为产量(假定等于需求量),P 为价格,则边际成本为?(B )A .3B .3x +C .23x +D .132x +38.试计算2(24)?x x x e dx -+=?(D )A .2(48)x x x e --B .2(48)x x x e c --+C .2(48)x x x e -+D .2(48)x x x e c -++9.计算10x =??DA .2πB .4πC .8π10.计算__12x x x x ++=++?(A )A .12x x -B .12x x +C .21x x -D .212x x -11.计算行列式1214 0121__-__D -==?(B )A .-8B .-7C .-6D .-5412.行列式y xx y x x yy x y y x +++=?(B )A .332()x y +B .332()x y -+C .332()x y -D .332()x y --13.齐次线性方程组__-__3000x x x x x x x x x λλ++=??++=??++=?有非零解,则λ=?(C )A .-1B .0C .1D .214.设???? ??=__-__A ,??????? ??=__-__B ,求AB =?(D )A .__-__84?? ???B .__-__80?? ???C .__-__84?? ???D .__-__84?? ???515.设????? ??=__321A ,求1-A =?(D )A .13__-__1?? ? ?-- ? ?-?? B .132__-?? ? ?- ? ?-??C .132__-?? ? ?- ? ?-?? D .132__-?? ? ?-- ? ?-??16.向指定的目标连续射击四枪,用i A 表示“第i 次射中目标”,试用i A 表示前两枪都射中目标,后两枪都没有射中目标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.设 ,其中 为可导函数,求 .
5.求不定积分 .
6.设 ,求b.
7.求不定积分 .
8.设函数 在 连续,试确定 的值.
9.求抛物线 与直线 所围成的平面图形的面积.
10.设矩阵 ,求 .
11.设 , ,求矩阵 的多项式 .
12.设 ,求逆矩阵 .
13.甲、乙二人依次从装有7个白球,3个红球的袋中随机地摸1个球,求甲、乙摸到不同颜色球的概率.
二、应用题
14.某煤矿每班产煤量 (千吨)与每班的作业人数 的函数关系是 ( ),求生产条件不变的情况下,每班多少人时产煤量最高?
15.甲、乙两工人在一天的生产中,出现次品的数量分别为随机变量 ,且分布列分别为:
0
1
2
3
0
1
2
3
0.4
0.3
0.2
0.1
0.3
0.5
0.2
0
若两人日产量相等,试问哪个工人的技术好?
《经济数学》
作业题
一、计算题
1.某厂生产某产品,每批生产 台得费用为 ,得到的收入为 ,求利润.
解:利润=收益-费用
利润=R(X)-C(X)=10 -0.01 ^2-5X-2030=-0.01 ^2+5X-200
然后在求导:
F(X)=-0.02X-5
令F(X)=0,
相关文档
最新文档