三角函数公式及常见题型
三角函数公式典型例题大全
高中三角函数公式大全以及典型例题2009年07月12日星期日 19:27三角函数公式两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinBtan(A+B) =tan(A-B) =cot(A+B) =cot(A-B) =倍角公式tan2A =Sin2A=2SinA?CosACos2A = Cos2A-Sin2A=2Cos2A-1=1-2sin2A三倍角公式sin3A = 3sinA-4(sinA)3cos3A = 4(cosA)3-3cosAtan3a = tana·tan(+a)·tan(-a)半角公式sin()=cos()=tan()=cot()=tan()==和差化积sina+sinb=2sincossina-sinb=2cossincosa+cosb = 2coscoscosa-cosb = -2sinsintana+tanb=积化和差sinasinb = -[cos(a+b)-cos(a-b)] cosacosb =[cos(a+b)+cos(a-b)]sinacosb =[sin(a+b)+sin(a-b)] cosasinb =[sin(a+b)-sin(a-b)]诱导公式sin(-a) = -sina cos(-a) = cosa.sin(-a) = cosa cos(-a) = sinasin(+a) = cosa cos(+a) = -sinasin(π-a) = sina cos(π-a) = -cosasin(π+a) = -sina cos(π+a) = -cosatgA=tanA =万能公式sina=cosa=tana=其它公式a?sina+b?cosa=×sin(a+c) [其中tanc=]a?sin(a)-b?cos(a) =×cos(a-c) [其中tan(c)=]1+sin(a) =(sin+cos)2 1-sin(a) = (sin-cos)2其他非重点三角函数csc(a) =sec(a) =公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= sinα cos(2kπ+α)= cosαtan(2kπ+α)= tanα cot(2kπ+α)= cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinα cos(π+α)= -cosαtan(π+α)= tanα cot(π+α)= cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)= -sinα cos(-α)= cosαtan(-α)= -tanα cot(-α)= -cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinα cos(π-α)= -cosαtan(π-α)= -tanα cot(π-α)= -cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinα cos(2π-α)= cosαtan(2π-α)= -tanα cot(2π-α)= -cotα公式六:±α及±α与α的三角函数值之间的关系:sin(+α)= cosα cos(+α)= -sinα tan(+α)= -cotα cot(+α)= -tanαsin(-α)= cosα cos(-α)= sinα tan(-α)= cotα cot(-α)= tanαsin(+α)= -cosα cos(+α)= sinα tan(+α)= -cotαcot(+α)= -tanα sin(-α)= -cosα cos(-α)= -sinαtan(-α)= cotα cot(-α)= tanα(以上k∈Z)正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角正切定理:[(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan(a-b)/2]}三角函数积化和差和差化积公式记不住就自己推,用两角和差的正余弦:3.三角形中的一些结论:(不要求记忆)(1)tanA+tanB+tanC=tanA·tanB·tanC(2)sinA+sinB+sinC=4cos(A/2)cos(B/2)cos(C/2)(3)cosA+cosB+cosC=4sin(A/2)·sin(B/2)·sin(C/2)+1(4)sin2A+sin2B+sin2C=4sinA·sinB·sinC(5)cos2A+cos2B+cos2C=-4cosAcosBcosC-1 ...........................已知sinα=m sin(α+2β), |m|<1,求证tan(α+β)=(1+m)/(1-m)tanβ解:sinα=m sin(α+2β)sin(a+β-β)=msin(a+β+β)sin(a+β)cosβ-cos(a+β)sinβ=msin(a+β)cosβ+mcos(a+β)sinβsin(a+β)cosβ(1-m)=cos(a+β)sinβ(m+1)tan(α+β)=(1+m)/(1-m)tanβ三角函数典型例题1 .设锐角的内角的对边分别为,.(Ⅰ)求的大小;(Ⅱ)求的取值范围.【解析】:(Ⅰ)由,根据正弦定理得,所以,由为锐角三角形得.(Ⅱ).2 .在中,角A. B.C的对边分别为a、b、c,且满足(2a-c)cosB=bcos C.(Ⅰ)求角B的大小;20070316(Ⅱ)设且的最大值是5,求k的值.【解析】:(I)∵(2a-c)cosB=bcosC,∴(2sinA-sinC)cosB=sinBcos C.即2sinAcosB=sinBcosC+sinCcosB=sin(B+C)∵A+B+C=π,∴2sinAcosB=sinA.∵0<A<π,∴sinA≠0.∴cosB=.∵0<B<π,∴B=.(II)=4ksinA+cos2A.=-2sin2A+4ksinA+1,A∈(0,)设sinA=t,则t∈.则=-2t2+4kt+1=-2(t-k)2+1+2k2,t∈.∵k>1,∴t=1时,取最大值.依题意得,-2+4k+1=5,∴k=.3 .在中,角所对的边分别为,.I.试判断△的形状;II.若△的周长为16,求面积的最大值.【解析】:I.,所以此三角形为直角三角形.II.,当且仅当时取等号,此时面积的最大值为.4 .在中,a、b、c分别是角A. B.C的对边,C=2A,,(1)求的值;(2)若,求边AC的长?【解析】:(1)(2)①又②由①②解得a=4,c=6,即AC边的长为5.5 .已知在中,,且与是方程的两个根.(Ⅰ)求的值;(Ⅱ)若AB,求BC的长.【解析】:(Ⅰ)由所给条件,方程的两根.∴(Ⅱ)∵,∴.由(Ⅰ)知,,∵为三角形的内角,∴∵,为三角形的内角,∴,由正弦定理得:∴.6 .在中,已知内角A. B.C所对的边分别为a、b、c,向量,,且?(I)求锐角B的大小;(II)如果,求的面积的最大值?【解析】:(1)2sinB(2cos2-1)=-cos2B2sinBcosB=-cos2B tan2B=-∵0<2B<π,∴2B=,∴锐角B=(2)由tan2B=-B=或①当B=时,已知b=2,由余弦定理,得:4=a2+c2-ac≥2ac-ac=ac(当且仅当a=c=2时等号成立) ∵△ABC的面积S△ABC=acsinB=ac≤∴△ABC的面积最大值为②当B=时,已知b=2,由余弦定理,得:4=a2+c2+ac≥2ac+ac=(2+)ac(当且仅当a=c=-时等号成立)∴ac≤4(2-)∵△ABC的面积S△ABC=acsinB=ac≤ 2-∴△ABC的面积最大值为2-7 .在中,角A. B.C所对的边分别是a,b,c,且(1)求的值;(2)若b=2,求△ABC面积的最大值.【解析】:(1) 由余弦定理:cosB=+cos2B=(2)由∵b=2,+=ac+4≥2ac,得ac≤, S△ABC=acsinB≤(a=c时取等号)故S△ABC的最大值为8 .已知,求的值?【解析】;。
正弦定理与余弦定理解三角形5大题型
正弦定理与余弦定理解三角形5大题型“解三角形”是每年高考常考内容,在选择题、填空题中考查较多,有时也会出现在解答题中。
对于解答题,一是考查正弦定理、余弦定理的简单应用;而是考查两个定理的综合应用,多与三角变换、平面向量等知识综合命题。
以实际生活为背景(如测量、航海、几何天体运行和物理学上的应用等)考查解三角形问题,此类问题在近几年高考中虽未涉及,但深受高考命题者的青睐,应给予关注;在高考试题中出现有关解三角形的试题大多数为容易题、中档题。
一、解三角形中常用结论及公式1、解三角形所涉及的其它知识(1)三角形内角和定理:A+B+C=π.(2)三角形边角不等关系:B A B A B A b cos cos sin sin <⇔>⇔∠>∠⇔>.2、诱导公式在ABC ∆中的应用(1)()()C B A C B A C B A tan )tan(;cos cos ;sin sin -=+-=+=+;(2)2sin 2cos ,2cos 2sin C B A C B A =+=+;3、三角形中,最大的角不小于3π,最小的角不大于3π.二、已知三边(或三边之比,或三内角正弦之比)判定三角形的形状设a 是三角形中最长的边,则(1)若0222>-+a c b ,则ABC ∆是锐角三角形;(2)若0222=-+a c b ,则ABC ∆是直角三角形;(3)若0222<-+a c b ,则ABC ∆是钝角三角形;或(1)若0sin sin sin 222>-+A C B ,则ABC ∆是锐角三角形;(2)若0sin sin sin 222=-+A C B ,则ABC ∆是直角三角形;(3)若0sin sin sin 222<-+A C B ,则ABC ∆是钝角三角形;三、利用正、余弦定理求解三角形的边角问题,实质是实现边角的转化,解题的思路是:1、选定理.(1)已知两角及一边,求其余的边或角,利用正弦定理;(2)已知两边及其一边的对角,求另一边所对的角,利用正弦定理;(3)已知两边及其夹角,求第三边,利用余弦定理;(4)已知三边求角或角的余弦值,利用余弦定理的推论;(5)已知两边及其一边的对角,求另一边,利用余弦定理;2、巧转化:化边为角后一般要结合三角形的内角和定理与三角恒等变换进行转化;若将条件转化为边之间的关系,则式子一般比较复杂,要注意根据式子结构特征灵活化简.3、得结论:利用三角函数公式,结合三角形的有关性质(如大边对大角,三角形的内角取值范围等),并注意利用数形结合求出三角形的边、角或判断出三角形的形状等。
三角函数与解三角形题型归纳及习题含详解
题型 53 终边相同的角的集合的表示与区别 思路提示
(1) 终边相同的角的集合的表示与识别可用列举归纳法和双向等差数列的方 法解决.
(2) 注意正角、第一象限角和锐角的联系与区别,正角可以是任一象限角,也 可以是坐标轴角;锐角是正角,也是第一象限角,第一象限角不包含坐标
4. 熟练运用同角三角函数函数关系式和诱导公式进行三角函数式的化简、求值
和简单恒等式的证明.
命题趋势探究
1.一般以选择题或填空题的形式进行考查.
2.角的概念考查多结合函数的基础知识.
3.利用同角三角函数关系式和诱导公式进行三角函数式的化简、求值是重要考点. 知识点精讲 一、基本概念
正角---逆时针旋转而成的角; (1)任意角 负角---顺时针旋转而成的角;
二、任意角的三角函数 1.定义 已 知 角 终 边 上 的 任 一 点 P(x, y) ( 非 原 点 O ), 则 P 到 原 点 O 的 距 离
r OP x2 y2 0 . sin y , cos x , tan y .
r
r
x
此定义是解直三角形内锐角三角函数的推广.类比,对 y ,邻 x ,斜 r , 如图 4-2 所示.
的终边逆时针旋转整数圈,终边位置不变.
注:弧度或 rad 可省略 (5)两制互化:一周角= 3600 2 r 2 (弧度),即 1800 .
r
1(弧度)
180
0
57.30
57018
故在进行两制互化时,只需记忆 1800 ,10 两个换算单位即可:如: 180
5 5 1800 1500 ; 360 36 .
C. 0, ,是第一、二象限角
高中数学 三角函数
高中数学:三角函数一、概述三角函数是高中数学的一个重要组成部分,是解决许多数学问题的关键工具。
它涉及的角度、边长、面积等,都是几何和代数的核心元素。
通过学习三角函数,我们可以更好地理解图形的关系,掌握数学的基本概念。
二、三角函数的定义三角函数是以角度为自变量,角度对应的边长为因变量的函数。
常用的三角函数包括正弦函数(sine)、余弦函数(cosine)和正切函数(tangent)。
这些函数的定义如下:1、正弦函数:sine(θ) = y边长 / r (其中,θ是角度,r是从原点到点的距离)2、余弦函数:cosine(θ) = x边长 / r3、正切函数:tangent(θ) = y边长 / x边长三、三角函数的基本性质1、周期性:正弦函数和余弦函数都具有周期性,周期为 2π。
正切函数的周期性稍有不同,为π。
2、振幅:三角函数的振幅随着角度的变化而变化。
例如,当角度增加时,正弦函数的值也会增加。
3、相位:不同的三角函数具有不同的相位。
例如,正弦函数的相位落后余弦函数相位π/2。
4、奇偶性:正弦函数和正切函数是奇函数,余弦函数是偶函数。
5、导数:三角函数的导数与其自身函数有关。
例如,正弦函数的导数是余弦函数,余弦函数的导数是负的正弦函数。
四、三角函数的实际应用三角函数在现实生活中有着广泛的应用,包括但不限于以下几个方面:1、物理:在物理学中,三角函数被广泛应用于描述波动、振动、电磁场等物理现象。
例如,简谐振动可以用正弦或余弦函数来描述。
2、工程:在土木工程和机械工程中,三角函数被用于计算角度、长度等物理量。
例如,在桥梁设计、建筑设计等过程中,需要使用三角函数来计算最佳的角度和长度。
3、计算机科学:在计算机图形学中,三角函数被用于生成二维和三维图形。
例如,使用正弦和余弦函数可以生成平滑的渐变效果。
4、金融:在金融学中,三角函数被用于衍生品定价和风险管理。
例如,Black-Scholes定价模型就使用了正态分布(一种特殊的三角函数)。
高考数学中的三角函数解析
高考数学中的三角函数解析在高考数学中,三角函数是一个非常重要的概念。
难度不仅仅在于其本身的计算,更在于其运用。
本文将详细探讨三角函数的解析,包括知识点、考点、实例等。
希望能为广大高中生以及准备参加高考的同学提供一些参考。
一、三角函数的定义与知识点三角函数是数学中的一类特殊函数,它们的输入是一个角度,输出是其对应的函数值。
常见的三角函数有正弦函数、余弦函数、正切函数等等。
以正弦函数为例,其定义为:$$\sin x = \frac{y}{r}$$其中,$x$ 表示角度,$y$ 表示该角度下的三角形对边的长度,$r$ 表示该角度下的三角形斜边的长度。
根据这个定义,我们可以得出一些基本的知识点:1. 正弦函数的值域为 $[-1,1]$,当 $x=90k(k\in\mathbb{Z})$ 时取到最大值 1,$x=90k+270(k\in\mathbb{Z})$ 时取到最小值 -1。
2. 正弦函数的周期为 $360^\circ$ 或 $2\pi$。
3. 正弦函数的奇偶性:$\sin(-x)=-\sin x$,正弦函数是奇函数。
其他三角函数的定义和知识点也类似,不再一一赘述。
二、三角函数的运用三角函数的应用非常广泛,下面我们将介绍几个常见的运用场景。
1. 三角函数的图像分析三角函数的图像是高考中经常会出现的题型,不仅要求我们准确地画出函数图像,还需要根据图像求出一些具体的函数值或者性质。
对此,我们可以从以下几个角度进行分析。
(1)函数的周期:通过观察函数图像,我们可以知道其周期。
这个很容易理解,因为周期是函数图像上出现的一个最小重复单元,只需要找到这个周期就可以很方便地求出其他周期的函数值或性质。
(2)函数的最大值最小值:在一些特殊的角度下,函数取到最大值或最小值,这些角度常常是某些需要求解的问题的关键。
高考中常见的一个例子就是楼梯问题,这个问题可以利用正弦函数的最大值最小值求解。
关于这个问题的具体解法,可以参考其他文章。
三角函数积分常用公式
三角函数积分常用公式三角函数是数学中常见的函数之一,它们在数学、物理、工程等领域中有广泛的应用。
在积分中,有一些常见的三角函数积分公式,它们是解决一些特定类型的积分问题时非常有用的工具。
本文将介绍一些常见的三角函数积分公式,并附带相关的推导和例题。
一、正弦和余弦的基本积分公式1. sin(x)的积分∫sin(x)dx=-cos(x)+C这个积分公式可以通过对其倒数的积分来得到:再对∫-cos(x)dx 积分一次得到∫sin(x)dx ,即得到该结果。
这个积分公式可以用于计算sin(x)函数的定积分值。
例题:计算∫sin(x)dx在区间[0, π] 的定积分。
解:由基本积分公式,∫sin(x)dx=-cos(x)+C,我们可以得到:∫sin(x)dx=-cos(x)+C将上下限代入,得到:∫[0, π]sin(x)dx=-(cos(π)-cos(0))=-(-1-1)=2所以∫sin(x)dx在区间[0, π] 的定积分为22. cos(x)的积分∫cos(x)dx=sin(x)+C这个积分公式的推导过程与第一个公式类似。
通过对sin(x)的积分得到∫cos(x)dx。
这个公式也常用于计算cos(x)函数的定积分值。
例题:计算∫cos(x)dx在区间[0, π/2] 的定积分。
解:由基本积分公式,∫cos(x)dx=sin(x)+C,我们可以得到:∫cos(x)dx=sin(x)+C将上下限代入,得到:∫[0, π/2]cos(x)dx=sin(π/2)-sin(0)=1-0=1所以∫cos(x)dx在区间[0, π/2] 的定积分为1二、正弦和余弦的倍角积分公式在三角形中,如果存在一角的正弦和余弦的值已知,我们可以通过倍角的公式得到其他任意角的正弦和余弦值,从而可以进行积分。
1. ∫sin^2(x)dx∫sin^2(x)dx=∫(1-cos^2(x))dx=x-∫cos^2(x)dx对于∫cos^2(x)dx,可以使用正弦和余弦的基本积分公式进行转化:∫cos^2(x)dx=∫(1-sin^2(x))dx=x-∫sin^2(x)dx将其代入上面的公式中,得到:∫sin^2(x)dx=x-∫(1-sin^2(x))dx=x-x+∫sin^2(x)dx将∫sin^2(x)dx移到等号的左边,得到:∫sin^2(x)dx=1/2*x+C所以∫sin^2(x)dx=1/2*x+C,其中C为积分常数。
三角函数经典题型总结
三角函数的经典题型主要包括以下几个方面:
1. 三角函数的基本性质和公式应用:
-三角函数的基本关系:sin²θ+ cos²θ= 1,tanθ= sinθ/cos θ等。
-诱导公式:sin(α±β),cos(α±β),tan(α±β)等的公式。
-二倍角公式、半角公式、和差化积、积化和差公式等。
2. 解三角形问题:
-正弦定理:a/sinA = b/sinB = c/sinC。
-余弦定理:a²= b²+ c²- 2bc cosA,同理可得其他边和角的关系。
-利用正弦定理和余弦定理解决边角关系问题。
3. 三角函数图像和性质:
-正弦函数、余弦函数、正切函数的图像及其周期性、奇偶性、单调性、对称性等性质。
-利用图像解三角函数方程和不等式。
4. 三角函数的应用问题:
-在物理中的应用,如振动问题、波动问题、光学问题等。
-在地理学中的应用,如地图上的方位角、距离计算等。
-在工程学中的应用,如结构力学、电路分析等。
5. 三角函数的复合与逆运算:
-复合三角函数的运算,如sin(cosx),cos(sinx)等。
-三角函数的反函数,如arcsin(x),arccos(x),arctan(x)等。
6. 三角恒等式的证明:
-利用三角函数的基本关系和公式进行恒等式的变形和证明。
以上就是三角函数的一些经典题型总结,掌握这些题型的解题方法和技巧,可以有效地提高解决三角函数问题的能力。
三角函数的基本公式与应用
三角函数的基本公式与应用三角函数是数学中重要的一部分,它们在各个学科领域都有广泛的应用。
本文将介绍三角函数的基本公式以及一些常见的应用。
一、三角函数的基本公式三角函数包括正弦函数(sin)、余弦函数(cos)、正切函数(tan)、余切函数(cot)、正割函数(sec)和余割函数(csc)。
1. 正弦函数(sin):在直角三角形中,正弦函数指的是对于任意一条锐角边,其对边与斜边的比值。
用符号表示为sin。
sinA = 对边/斜边2. 余弦函数(cos):在直角三角形中,余弦函数指的是对于任意一条锐角边,其邻边与斜边的比值。
用符号表示为cos。
cosA = 邻边/斜边3. 正切函数(tan):在直角三角形中,正切函数指的是对于任意一条锐角边,其对边与邻边的比值。
用符号表示为tan。
tanA = 对边/邻边根据正弦和余弦的定义,可以推导出以下基本公式:sin^2A + cos^2A = 1tanA = sinA/cosA二、三角函数的应用三角函数的应用非常广泛,以下是一些常见的应用领域:1. 几何学:三角函数可以用来解决直角三角形中的各类问题,如求解边长、角度等。
同时,它们也在平面几何和立体几何中起到重要的作用。
2. 物理学:三角函数在力学、波动学、电磁学等物理学领域中应用广泛。
例如,正弦函数可以描述振动和波动的变化规律,余弦函数可以描述交流电的变化规律。
3. 工程学:三角函数在工程学中有着广泛的应用。
例如,在建筑工程中,可以利用三角函数来计算建筑物的高度和角度,以确保结构的稳定和安全。
4. 统计学:统计学中的回归分析和相关性分析常常使用三角函数来分析数据之间的关系。
此外,通过傅里叶级数展开,三角函数还可以用来分析周期性数据。
5. 导航与天文学:三角函数在导航和天文学中被广泛应用。
例如,利用三角函数可以计算地球上两个点之间的距离和方位角,用于导航和航海定位。
6. 信号处理:三角函数在信号处理中起着重要的作用。
三角函数题型总结
三角函数题型总结三角函数是学习数学中重要的一部分,也是高中数学中必修的内容,其中题型多样,考点较为难度。
一、角度制与弧度制1. 角度制与弧度制的互相转换。
角度制与弧度制的转换是最基本的内容之一,通常考查角度制转化为弧度制或弧度制转化为角度制。
其中,角度制的1圈等于360°,弧度制的1圈等于2π弧度。
角度制 $\to$ 弧度制:$rad= \dfrac{\pi}{180°}\times \theta$在解题时按照公示进行换算即可。
二、三角函数基本概念2. 正弦函数、余弦函数和正切函数的定义及其图像;正弦函数、余弦函数和正切函数是三角函数中最基本、最重要的三个函数,需要了解它们的定义和图像。
正弦函数的定义:$y=\sin{\theta}$![image.png](attachment:image.png)3. 基本三角函数间的互相转换。
基本三角函数之间有着很多性质,掌握这些性质有助于解题。
例如,正切函数和余切函数的关系是互为倒数,正弦函数和余弦函数的关系是互为余角函数。
$\sin{\theta}=\cos{\left(\dfrac{\pi}{2}-\theta\right)}$,$\cos{\theta}=\sin{\left(\dfrac{\pi}{2}-\theta\right)}$其中,$\cot{\theta}$表示余切函数,是$\tan{\theta}$的倒数。
三、三角函数的性质4. 周期函数的性质及周期的推导,平移性质的运用。
周期函数的性质是三角函数中比较重要的点,需要通过图像理解其性质,轻松解决一些与周期函数有关的题目。
正弦函数和余弦函数都是周期函数,其中,$\sin{\theta}$的周期是$2\pi$,$\cos{\theta}$的周期是$2\pi$。
周期是指函数在一个区间内重复出现的最小距离。
平移性质的运用是解决三角函数题目时比较常见的方法。
其基本公式如下:1. $y=\sin{(x+a)}$的图像向左平移a个单位;其中,$a$为正数。
高考必背公式及相关例题——三角函数
高考必背公式及相关例题——三角函数1、三角函数的概念:角α中边上任意一点P 为),(y x ,设r OP =||则:r y =αsin ,rx =αcos ,x y =αtan ,其中22y x r += 例1、已知角α的终边过点)12,5(-P ,则=αcos ,=αtan . 例2、已知角的终边上一点),3(m P -,且m 42sin =θ,求θcos 与θtan 的值.2、同角三角函数的基本关系式:22sin cos 1θθ+=,tan θ=θθcos sin . 例3、已知53)sin(-=+απ,则( ) A .54cos =α B .43tan =α C .54cos -=α D .53)sin(=-απ 例4、已知3tan =α,则=αcos . 例5、已知3tan =α,ααααsin 3cos 5cos 2sin 4+-的值为 . 例6、已知2)4tan(=+πx ,则=x 2sin .3、x x cos sin +、x x cos sin -、x x cos sin ⋅的关系:x x x x cos sin 21)cos (sin 2+=+;x x x x cos sin 21)cos (sin 2-=-例7、若81cos sin =θθ,)2,4(ππθ∈,求θθsin cos -的值.变式1、若81cos sin =θθ,)2,4(ππθ∈,求θθsin cos +的值.变式2、已知23sin cos -=-θθ, 求θθcos sin ,θθcos sin +的值.(1)x k x sin )2sin(=+π;x k x cos )2cos(=+π;x k x tan )2tan(=+π.(2)x x sin )sin(=-π;x x cos )cos(-=-π;x x tan )tan(-=-π.(3)x x sin )sin(-=-;x x cos )cos(=-;x x tan )tan(-=-.(4)x x sin )sin(-=+π;x x cos )cos(-=+π;x x tan )tan(=+π.(5)x x cos )2sin(=-π;x x sin )2cos(=-π. (6)x x cos )2sin(=+π;x x sin )2cos(-=+π. …… 口诀:奇变偶不变,符号看象限例8、︒+︒+︒+︒225cos 210sin 2135sin 150sin 222的值是( )A .41B .43C .411D .49 例9、=-⋅+︒+︒--︒⋅-︒-)sin()270(cos )90cos()180(tan )360cos()cos(22θθθθθθ .5、和角与差角公式:sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±= ;tan tan tan()1tan tan αβαβαβ±±= . 例10、已知31sin sin -=-βα,21cos cos =-βα,求)cos(βα-的值 .例11、若α是锐角,且31)6sin(=-πα,则αcos 的值是 .例12、已知πβπα<<<<20,53sin =α,54)cos(-=+βα,则βsin 等于( ) A .0 B .0或2524 C . 2425 D .0或-2425例13、已知71cos =α,1411)cos(-=+βα,且20παβ<<<,则=βcos .sin cos a b αα+=22sin()a b αϕ++(辅助角ϕ所在象限由点(,)a b 的象限决定,tan b aϕ=). 7、二倍角公式和降幂升角公式(1)αααcos sin 22sin = 对应的降幂升角公式为22sin cos sin ααα=; (2)2222cos 2cos sin 2cos 112sin ααααα=-=-=- 对应的降幂升角公式为22cos 1cos 2αα+=和22cos 1sin 2αα-= (3)22tan tan 21tan ααα=-例14、已知函数x x x f 2sin 22sin )(-=,(1)求)(x f 的最小正周期;(2)求函数)(x f 的最大值及)(x f 取最大值时x 的集合.例15、已知函数)8cos()8sin(2)8(sin 21)(2πππ+⋅+++-=x x x x f , (1)求)(x f 的最小正周期;(2)求函数)(x f 的单调递增区间.例16、已知函数18cos 2)64sin()(2+--=x x x f πππ,(1)求)(x f 的最小正周期;(2)若函数)(x g y =与)(x f y =的图象关于直线1=x 对称,求当]34,0[∈x 时,求)(x g y =的最大值.9、正弦定理:2sin sin sin a b c R A B C=== 10、余弦定理:2222cos a b c bc A =+-;2222cos b c a ca B =+-;2222cos c a b ab C =+-.11、面积定理:111sin sin sin 222S ab C bc A ca B ===例17、在ABC ∆中,a ,b ,c 分别是内角A 、B 、C 的对边,D 为边AC 的中点,23=a ,42cos =∠ABC , (1)若3=c ,求ACB ∠sin 的值;(2)若3=BD ,求ABC ∆的面积.例18、在ABC ∆中,C B A cos sin sin -==,(1)求角A ,B ,C 的大小; (2)若BC 边上的中线AM 的长为7,求ABC ∆的面积.例19、已知a ,b ,c 分别是ABC ∆的内角A ,B ,C 所对的边,且2=c ,3π=C ,(1)若ABC ∆的面积等于3,求a ,b ;(2)若A A B C 2sin 2)sin(sin =-+,求A 的值;(3)求ABC ∆面积的最大值.例20、)672sin(cos 2)(2π--=x x x f . (1)求函数)(x f 的最大值,并写出)(x f 的最大值时x 的取值集合; (2)已知ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,若23)(=A f ,2=+c b ,求实数a 的取值范围.。
三角函数常用公式公式及用法
三角函数常用公式公式及用法三角函数常用公式及用法三角函数是数学中重要的概念之一,它与三角形的角度和边长密切相关。
在解决三角形问题和推导其他数学公式时,三角函数的常用公式发挥着重要的作用。
本文将介绍三角函数的常用公式及其用法,帮助读者更好地理解和应用这些公式。
一、正弦函数正弦函数是三角函数中的一种,用符号sin表示。
它表示一个角的对边与斜边之比,即sinA = a/c,其中A为角A的度数,a为角A的对边长度,c为斜边长度。
1. 正弦函数的基本性质公式(1)sin(π/2 - A) = cosA,即正弦函数的余角关系。
(2)sin(A + B) = sinAcosB + cosAsinB,即正弦函数的和角公式。
(3)sin(A - B) = sinAcosB - cosAsinB,即正弦函数的差角公式。
2. 正弦函数的常用关系公式(1)sin^2A + cos^2A = 1,即正弦函数和余弦函数的平方和恒等于1。
(2)sin2A = 2sinAcosA,即正弦函数的双角公式。
(3)sin(A/2) = ±√[(1 - cosA)/2],即正弦函数的半角公式。
二、余弦函数余弦函数是三角函数中的一种,用符号cos表示。
它表示一个角的邻边与斜边之比,即cosA = b/c,其中A为角A的度数,b为角A的邻边长度,c为斜边长度。
1. 余弦函数的基本性质公式(1)cos(π/2 - A) = sinA,即余弦函数的余角关系。
(2)cos(A + B) = cosAcosB - sinAsinB,即余弦函数的和角公式。
(3)cos(A - B) = cosAcosB + sinAsinB,即余弦函数的差角公式。
2. 余弦函数的常用关系公式(1)sin^2A + cos^2A = 1,即余弦函数和正弦函数的平方和恒等于1。
(2)cos2A = cos^2A - sin^2A = 2cos^2A - 1 = 1 - 2sin^2A,即余弦函数的双角公式。
高中三角函数常见题型与解法
三角函数的题型和方法一、思想方法1、三角函数恒等变形的基本策略。
( 1)常值代换:特别是用“ 1”的代换,如 1=cos 2θ +sin 2 θ=tanx · cotx=tan45 °等。
( 2)项的分拆与角的配凑。
如分拆项: sin 2x+2cos 2x=(sin 2x+cos 2x)+cos 2x=1+cos 2x ;配凑角:α =(α + β)-β,β =-等。
2 2( 3)降次与升次。
即倍角公式降次与半角公式升次。
( 4)化弦(切)法。
将三角函数利用同角三角函数基本关系化成弦(切)。
( 5)引入协助角。
asin θ +bcos θ = a 2 b 2 sin(θ + ),这里协助角 所在象限由 a 、b 的符号确立,角的值由 tan = b确立。
a( 6)全能代换法。
巧用全能公式可将三角函数化成 tan的有理式。
22、证明三角等式的思路和方法。
( 1)思路:利用三角公式进行假名,化角,改变运算结构,使等式两边化为同一形式。
( 2)证明方法:综合法、剖析法、比较法、代换法、相消法、数学概括法。
3、证明三角不等式的方法:比较法、配方法、反证法、剖析法,利用函数的单一性,利用正、余弦函数的有界性,利用单位圆三角函数线及鉴别法等。
4、解答三角高考题的策略。
( 1)发现差别:察看角、函数运算间的差别,即进行所谓的“差别剖析”。
( 2)找寻联系:运用有关公式,找出差别之间的内在联系。
( 3)合理转变:选择适合的公式,促进差别的转变。
二、注意事项对于三角函数进行恒等变形,是三角知识的综合应用,其题目种类多样,变化仿佛复杂,办理这种问题,注意以下几个方面:1、三角函数式化简的目标:项数尽可能少,三角函数名称尽可能少,角尽可能小和少,次数尽可能低,分母尽可能不含三角式,尽可能不带根号,能求出值的求出值。
2、三角变换的一般思想与常用方法。
注意角的关系的研究,既注意到和、差、倍、半的相对性,如1() ( ) 22 .也要注意题目中所给的各角之间的关系。
三角函数中的常考题型及其解法
三角函数中的常考题型及其解法三角函数中常考题型及解法:一、求解三角函数值1、求正弦函数值解法:使用正弦定理进行求解,总结如下:(1)正弦定理(用于直角三角形):a/sinA=b/sinB=c/sinC;(2)正弦表:常记正弦值,如15°的正弦值是0.2588;(3)半角公式:sin(x/2)=±√[(1-cosx)/2];(4)倍角公式:sin2x=2sinxcosex。
2、求余弦函数值解法:使用余弦定理进行求解,总结如下:(1)余弦定理(用于直角三角形):a²=b²+c²-2bc·cosA;(2)余弦表:常记余弦值,如45°的余弦值是0.7071;(3)化简余弦值:常用公式或知识点化简余弦值,如极限化简,勾股定理等;(4)半角公式:cos(x/2)=±√[(1+cosx)/2];(5)倍角公式:cos2x=cos²x-sin²x。
三、求解三角函数表达式1、求正弦函数表达式解法:(1)可用图像法求解,如求函数y=2sin(x+π/6)的图形,可将之前已知的普通正弦图形向右移动π/6,并放大2倍;(2)也可用公式求解,如求函数y=2sin(x+π/6),用单位正弦函数表示法,则有y=2sin(x)·cos(π/6)+2cos(x)·sin(π/6)。
2、求余弦函数表达式解法:(1)可用图像法求解,如求函数y=2cos(x+π/6)的图形,可先求出正弦函数的图像,再进行垂直翻转;(2)也可用公式求解,如求函数y=2cos(x+π/6),用单位余弦函数表示法,则有y=2cos(x)·cos(π/6)-2sin(x)·sin(π/6)。
三角函数的运算法则及公式
三角函数的运算法则及公式三角函数是数学中常见的一类函数,它们具有一些特殊的运算法则和公式,可以在解决各种实际问题中发挥重要作用。
本文将介绍三角函数的运算法则及公式,并通过实例来说明它们的应用。
一、三角函数的运算法则1. 和差化积法则:对于任意两个角A和B,有以下公式成立:sin(A ± B) = sinAcosB ± cosAsinBcos(A ± B) = cosAcosB ∓ sinAsinBtan(A ± B) = (tanA ± tanB) / (1 ∓ tanAtanB)这些公式可以将三角函数的和差化为乘积或差的形式,简化计算过程。
2. 二倍角公式:对于任意角A,有以下公式成立:sin2A = 2sinAcosAcos2A = cos^2A - sin^2A = 2cos^2A - 1 = 1 - 2sin^2Atan2A = (2tanA) / (1 - tan^2A)这些公式可以将三角函数的二倍角转化为单角的形式,便于求解和计算。
3. 三倍角公式:对于任意角A,有以下公式成立:sin3A = 3sinA - 4sin^3Acos3A = 4cos^3A - 3cosAtan3A = (3tanA - tan^3A) / (1 - 3tan^2A)这些公式可以将三角函数的三倍角转化为单角的形式,用于解决一些特殊情况下的问题。
二、三角函数的常用公式1. 正弦定理:对于任意三角形ABC,有以下公式成立:a/sinA = b/sinB = c/sinC = 2R其中,a、b、c分别为三角形ABC的边长,A、B、C分别为对应的角,R为三角形的外接圆半径。
正弦定理可以用于求解三角形的边长或角度,推导其他相关公式。
2. 余弦定理:对于任意三角形ABC,有以下公式成立:a^2 = b^2 + c^2 - 2bc*cosAb^2 = a^2 + c^2 - 2ac*cosBc^2 = a^2 + b^2 - 2ab*cosC余弦定理可以用于求解三角形的边长或角度,特别适用于已知两边和夹角的情况。
高一三角函数公式及诱导公式习题(附答案)
三角函数公式1. 同角三角函数根本关系式 sin 2α+cos 2α=1 sin αcos α=tan α tan αcot α=12. 诱导公式 (奇变偶不变,符号看象限)(一) sin(π-α)=sin α sin(π+α)=-sin αcos(π-α)=-cos α cos(π+α)=-cos α tan(π-α)=-tan α tan(π+α)=tan α sin(2π-α)=-sin α sin(2π+α)=sin α cos(2π-α)=cos α cos(2π+α)=cos α tan(2π-α)=-tan α tan(2π+α)=tan α 〔二〕 sin(π2 -α)=cos α sin(π2+α)=cos αcos(π2 -α)=sin α cos(π2 +α)=- sin αtan(π2 -α)=cot α tan(π2 +α)=-cot αsin(3π2 -α)=-cos α sin(3π2 +α)=-cos αcos(3π2 -α)=-sin α cos(3π2 +α)=sin αtan(3π2 -α)=cot α tan(3π2+α)=-cot αsin(-α)=-sin α cos(-α)=cos α tan(-α)=-tan α3. 两角和与差的三角函数cos(α+β)=cos αcos β-sin αsin β cos(α-β)=cos αcos β+sin αsin β sin (α+β)=sin αcos β+cos αsin β sin (α-β)=sin αcos β-cos αsin β tan(α+β)=tan α+tan β1-tan αtan βtan(α-β)=tan α-tan β1+tan αtan β4. 二倍角公式 sin2α=2sin αcos αcos2α=cos 2α-sin 2α=2 cos 2α-1=1-2 sin 2α tan2α=2tan α1-tan 2α5.公式的变形(1)升幂公式:1+cos2α=2cos2α1—cos2α=2sin2α(2)降幂公式:cos2α=1+cos2α2sin2α=1-cos2α2(3)正切公式变形:tanα+tanβ=tan(α+β)〔1-tanαtanβ〕tanα-tanβ=tan(α-β)〔1+tanαtanβ) (4)万能公式〔用tanα表示其他三角函数值〕sin2α=2tanα1+tan2αcos2α=1-tan2α1+tan2αtan2α=2tanα1-tan2α6.插入辅助角公式asinx+bcosx=a2+b2sin(x+φ) (tanφ= b a)特殊地:sinx±cosx= 2 sin(x±π4)7.熟悉形式的变形〔如何变形〕1±sinx±cosx 1±sinx 1±cosx tanx+cotx1-tanα1+tanα1+tanα1-tanα假设A、B是锐角,A+B=π4,那么〔1+tanA〕(1+tanB)=28.在三角形中的结论假设:A+B+C=π, A+B+C2=π2那么有tanA+tanB+tanC=tanAtanBtanCtan A2tanB2+tanB2tanC2+tanC2tanA2=1三角函数的诱导公式1一、选择题1.如果|cos x |=cos 〔x +π〕,那么x 的取值集合是〔 〕 A .-2π+2k π≤x ≤2π+2k π B .-2π+2k π≤x ≤2π3+2k πC .2π+2k π≤x ≤2π3+2k π D .〔2k +1〕π≤x ≤2〔k +1〕π〔以上k ∈Z 〕2.sin 〔-6π19〕的值是〔 〕 A .21 B .-21 C .23 D .-23 3.以下三角函数:①sin 〔n π+3π4〕;②cos 〔2n π+6π〕;③sin 〔2n π+3π〕;④cos [〔2n +1〕π-6π];⑤sin [〔2n +1〕π-3π]〔n ∈Z 〕.其中函数值与sin 3π的值相同的是〔 〕 A .①② B .①③④ C .②③⑤ D .①③⑤4.假设cos 〔π+α〕=-510,且α∈〔-2π,0〕,那么tan 〔2π3+α〕的值为〔 〕 A .-36B .36C .-26 D .26 5.设A 、B 、C 是三角形的三个内角,以下关系恒成立的是〔 〕 A .cos 〔A +B 〕=cos C B .sin 〔A +B 〕=sin C C .tan 〔A +B 〕=tan CD .sin2B A +=sin 2C6.函数f 〔x 〕=cos 3πx〔x ∈Z 〕的值域为〔 〕 A .{-1,-21,0,21,1} B .{-1,-21,21,1} C .{-1,-23,0,23,1}D .{-1,-23,23,1} 二、填空题7.假设α是第三象限角,那么)πcos()πsin(21αα---=_________. 8.sin 21°+sin 22°+sin 23°+…+sin 289°=_________. 三、解答题9.求值:sin 〔-660°〕cos420°-tan330°cot 〔-690°〕.10.证明:1)πtan(1)π9tan(sin 211cos )πsin(22++-+=--⋅+θθθθθ.11.cos α=31,cos 〔α+β〕=1,求证:cos 〔2α+β〕=31.12. 化简:︒+︒︒︒+790cos 250sin 430cos 290sin 21.13、求证:)π5sin()πcos()π6cos()π2sin()π2tan(θθθθθ+-----=tan θ.14. 求证:〔1〕sin 〔2π3-α〕=-cos α; 〔2〕cos 〔2π3+α〕=sin α.参考答案1一、选择题1.C 2.A 3.C 4.B 5.B 6.B 二、填空题7.-sin α-cos α 8.289 三、解答题 9.43+1. 10.证明:左边=θθθθ22sin cos cos sin 2-1--=-θθθθθθθθθθcos sin cos sin )sin )(cos sin (cos )cos (sin 2-+=-++,右边=θθθθθθθθcos sin cos sin tan tan tan tan -+=1-1+=1+-1--, 左边=右边,∴原等式成立.11.证明:∵cos 〔α+β〕=1,∴α+β=2k π.∴cos 〔2α+β〕=cos 〔α+α+β〕=cos 〔α+2k π〕=cos α=31.12.解:︒+︒︒︒+790cos 250sin 430cos 290sin 21=)360270cos()70180sin()36070cos()36070sin(21︒⨯+︒+︒+︒︒+︒︒+︒-+=︒-︒︒︒-70sin 70cos 70cos 70sin 21=︒-︒︒-︒70sin 70cos )70cos 70(sin 2=︒-︒︒-︒70sin 70cos 70cos 70sin =-1.13.证明:左边=θθθθθθθθθθsin cos cos )sin )(tan ()sin )(cos ()cos()sin()tan(--=-----=tan θ=右边,∴原等式成立.14证明:〔1〕sin 〔2π3-α〕=sin [π+〔2π-α〕]=-sin 〔2π-α〕=-cos α. 〔2〕cos 〔2π3+α〕=cos [π+〔2π+α〕]=-cos 〔2π+α〕=sin α.三角函数的诱导公式2一、选择题: 1.sin(4π+α)=23,那么sin(43π-α)值为〔 〕 A.21 B. —21 C. 23 D. —23 2.cos(π+α)= —21,23π<α<π2,sin(π2-α) 值为〔 〕 A.23 B. 21 C. 23± D. —233.化简:)2cos()2sin(21-•-+ππ得〔 〕A.sin2+cos2B.cos2-sin2C.sin2-cos2D.± (cos2-sin2) 4.α和β的终边关于x 轴对称,那么以下各式中正确的选项是〔 〕 A.sinα=sinβ B. sin(α-π2) =sinβ C.cosα=cosβ D. cos(π2-α) =-cosβ 5.设tanθ=-2, 2π-<θ<0,那么sin 2θ+cos(θ-π2)的值等于〔 〕, A. 51〔4+5〕 B. 51〔4-5〕 C. 51〔4±5〕 D. 51〔5-4〕二、填空题: 6.cos(π-x)=23,x ∈〔-π,π〕,那么x 的值为 . 7.tanα=m ,那么=+-+++)cos(-sin()cos(3sin(απα)απ)απ .8.|sinα|=sin 〔-π+α〕,那么α的取值范围是 . 三、解答题: 9.)cos(·3sin()cos()n(s 2sin(απα)παπα)π----+-απi .10.:sin 〔x+6π〕=41,求sin 〔)67x +π+cos 2〔65π-x 〕的值.11. 求以下三角函数值: 〔1〕sin 3π7;〔2〕cos 4π17;〔3〕tan 〔-6π23〕;12. 求以下三角函数值:〔1〕sin3π4·cos 6π25·tan 4π5; 〔2〕sin [〔2n +1〕π-3π2].13.设f 〔θ〕=)cos()π(2cos 23)2πsin()π2(sin cos 2223θθθθθ-+++-++-+,求f 〔3π〕的值.参考答案21.C 2.A 3.C 4.C 5.A 6.±65π7.11-+m m 8.[(2k-1) π,2k π]9.原式=)cos (·sin()cos()n s (sin αα)παπα--+--αi =)cos ?(sin )cos (sin 2αααα--= sinα 10.161111.解:〔1〕sin 3π7=sin 〔2π+3π〕=sin 3π=23.〔2〕cos4π17=cos 〔4π+4π〕=cos 4π=22.〔3〕tan 〔-6π23〕=cos 〔-4π+6π〕=cos 6π=23.〔4〕sin 〔-765°〕=sin [360°×〔-2〕-45°]=sin 〔-45°〕=-sin45°=-22. 注:利用公式〔1〕、公式〔2〕可以将任意角的三角函数转化为终边在第一象限和第二象限的角的三角函数,从而求值.12.解:〔1〕sin 3π4·cos 6π25·tan 4π5=sin 〔π+3π〕·cos 〔4π+6π〕·tan 〔π+4π〕 =〔-sin3π〕·cos 6π·tan 4π=〔-23〕·23·1=-43.〔2〕sin [〔2n +1〕π-3π2]=sin 〔π-3π2〕=sin 3π=23.13.解:f 〔θ〕=θθθθθcos cos 223cos sin cos 2223++-++=θθθθθcos cos 223cos cos 1cos 2223++-+-+=θθθθθcos cos 22)cos (cos 2cos 2223++---=θθθθθcos cos 22)1(cos cos )1(cos 223++---=θθθθθθθcos cos 22)1(cos cos )1cos )(cos 1(cos 222++--++-=θθθθθcos cos 22)2cos cos 2)(1(cos 22++++-=cos θ-1, ∴f 〔3π〕=cos 3π-1=21-1=-21.。
专题03 两角和与差的三角函数(知识串讲+热考题型+专题训练)(解析版)
专题3两角和与差的三角函数(一)两角和与差的余弦C(α-β):cos(α-β)=cosαcosβ+sinαsinβ;C(α+β):cos(α+β)=cosαcosβ-sinαsinβ;【点拨】①简记为:“同名相乘,符号反”.②公式本身的变用,如cos(α-β)-cosαcosβ=sinαsinβ.③公式中的α,β不仅可以是任意具体的角.角的变用,也称为角的变换,如cosα=cos[(α+β)-β],cos2β=cos[(α+β)-(α-β)].(二)两角和与差的正弦S(α+β):sin(α+β)=sinαcosβ+cosαsinβ;S(α-β):sin(α-β)=sinαcosβ-cosαsinβ;【点拨】①简记为:“异名相乘,符号同”.②公式中的α,β不仅可以是任意具体的角,还可以是任意形式的“整体”.(三)两角和与差的正切T(α+β):tan(α+β)=tanα+tanβ1-tanαtanβ;.T(α-β):tan(α-β)=tanα-tanβ1+tanαtanβ【点拨】1公式T α±β只有在α≠2π+k π,β≠2π+k π,α±β≠2π+k π(k ∈Z )时才成立,否则就不成立.②当tan α或tan β或tan(α±β)的值不存在时,不能使用T α±β处理有关问题,但可改用诱导公式或其他方法.③变形公式:tan α+tan β=tan(α+β)(1-tan αtan β),tan α-tan β=tan(α-β)(1+tan αtan β),如tan α+tan β+tan αtan βtan(α+β)=tan(α+β),tan(α+β)-tan α-tan β=tan αtan βtan(α+β),1-tan αtan β=tan tan tan()αβαβ++.1+tan αtan β=tan tan tan()αβαβ--.(四)辅助角公式函数f(α)=acos α+bsin α(a ,b 为常数),可以化为f(α)=sin(α+φ)或f(α)=-φ),其中φ可由a ,b 的值唯一确定.4sin(2cos sin πααα±=±.题型一公式的正用【典例1】【多选题】(2022春·江苏徐州·高一统考阶段练习)如图,在平面直角坐标系xOy 中,角α、β的顶点与坐标原点重合,始边与x 轴的非负半轴重合,它们的终边分别与单位圆相交于A 、B 两点,若点A 、B 的坐标分别为34,55⎛⎫ ⎪⎝⎭和43,55⎛⎫- ⎪⎝⎭,则以下结论正确的是()A .3cos 5α=B .3cos 5β=C .()cos 0αβ+=D .()cos 0αβ-=【答案】AD(0,π)β∈,则tan()αβ+的值为______.【典例3】(2023·江苏·高一专题练习)已知tan ,4αα=-是第四象限角.(1)求cos sin αα-的值;(2)求ππcos ,tan 44αα⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭的值.正用公式问题,一般属于“给角求值”、“给值求值”问题,应该通过应用公式,转化成“特殊角”的三角函数值计算问题.给角求值问题的策略:一般先要用诱导公式把角化整化小,化“切”为“弦”,统一函数名称,然后观察角的关系以及式子的结构特点,选择合适的公式进行求值.题型二公式的变用、逆用【典例4】(2022春·江苏泰州·高一江苏省姜堰第二中学校联考阶段练习)已知sin100cos100M =︒-︒,44cos 78cos 46cos12)N =︒︒+︒︒,1tan101tan10P -︒=+︒,那么M ,N ,P 之间的大小顺序是()A .M N P <<B .N M P<<C .P M N<<D .P N M<<A cos15︒︒B .2cos 15sin15cos75︒︒︒-C .2tan 301tan 30︒︒-D .1tan151tan15︒︒+-【答案】AD【分析】运用辅助角公式、诱导公式、和差角公式的逆用、特殊角的三角函数值、三角恒等变换中“1”的代换化简即可.(1)1-tan75°1+tan75°;(2)(1+tan1°)(1+tan2°)…(1+tan44°);(3)tan25°+tan35°+3tan25°tan35°.【答案】(1)3-;(2)222;(3【解析】尝试使用两角和与差的正切公式及其变形式对原式进行变形求值.详解:(1)原式=tan45°-tan75°1+tan45°tan75°tan(45°-75°)=33-.(2)因为(1+tan1°)(1+tan44°)=1+tan1°+tan44°+tan1°×tan44°=2,同理(1+tan2°)(1+tan43°)=2,…,所以原式=222.(3)∵tan60°=tan(25°+35°)=tan25°+tan35°1-tan25°tan35°=,∴tan25°+tan35°=3(1-tan25°tan35°)∴tan25°+tan35°.【规律方法】1.“1”的代换:在T α±β中如果分子中出现“1”常利用1=tan45°来代换,以达到化简求值的目的.2.若α+β=4π+k π,k ∈Z ,则有(1+tan α)(1+tan β)=2.3.若化简的式子里出现了“tan α±tan β”及“tan αtan β”两个整体,常考虑tan(α±β)的变形公式.题型三给值求值【典例7】(2023·江苏·高一专题练习)已知34sin sin ,cos cos 55+=+=αβαβ,则cos()αβ-=()A .12-B .13-C .12D .34取得最大值,则πcos 24θ⎛⎫+= ⎪⎝⎭()A .B .12-C D【典例9】(2021春·江苏南京·高一校考阶段练习)已知cos 27βα⎛⎫-=- ⎪⎝⎭,1sin 22αβ⎛⎫-= ⎪⎝⎭,2απ<<π,02βπ<<,求:(1)cos2αβ+的值;tanαβ+的值.(2)()给值求值问题的解题策略.(1)从角的关系中找解题思路:已知某些角的三角函数值,求另外一些角的三角函数值,要注意观察已知角与所求表达式中角的关系,根据需要灵活地进行拆角或凑角的变换.(2)常见角的变换.①α=(α-β)+β;②α=α+β2+α-β2;③2α=(α+β)+(α-β);④2β=(α+β)-(α-β).题型四给值求角【典例10】(2022春·江苏南通·高一金沙中学校考期末)已知()0παβ∈,,,1tan()2αβ-=,1tan 7β=-,则2αβ-=()A .5π4B .π4C .π4-D .3π4-1,0,,cos 222π2a a βαββ⎛⎫⎛⎫⎛⎫∈-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,求αβ+的值.解题的一般步骤是:(1)先确定角α的范围,且使这个范围尽量小(极易由于角的范围过大致误);(2)根据(1)所得范围来确定求tan α、sin α、cos α中哪一个的值,尽量使所选函数在(1)得到的范围内是单调函数;(3)求α的一个三角函数值;(4)写出α的大小.题型五三角函数式化简问题【典例12】(2022春·江苏镇江·高一统考期末)计算:70cos10︒︒=︒()A .1B .2C .3D .4【答案】C【分析】根据两角差的正弦公式化简求解即可.【详解】【典例13】(2022春·江苏泰州·高一校考阶段练习)已知,且()(),22k k k k ππαβπα+≠+∈≠∈Z Z ,则()tan tan αβα+=___________.1.三角公式化简求值的策略(1)使用两角和、差及倍角公式,首先要记住公式的结构特征和符号变化规律.(2)使用公式求值,应注意与同角三角函数基本关系、诱导公式的综合应用.(3)使用公式求值,应注意配方法、因式分解和整体代换思想的应用.2.注意三角函数公式逆用、变形用及“变角、变名、变号”的“三变”问题(1)公式逆用时一定要注意公式成立的条件和角之间的关系.(2)注意特殊角的应用,当式子中出现12,1,33,23入特殊角,把“值变角”构造适合公式的形式.题型六三角恒等式证明问题【典例14】(2023春·上海浦东新·高一校考阶段练习)求证:(1)22sin cos 1sin cos 1cot 1tan αααααα+=-++;(2)在非直角三角形ABC 中,tan tan tan tan tan tan A B C A B C ++=【典例15】(2023·高一课时练习)求证:(1)当18045()k k αβ+=⋅︒+︒∈Z 时,(1tan )(1tan )2αβ++=;(2)当180()k k αβγ++=⋅︒∈Z 时,tan tan tan tan tan tan αβγαβγ++=⋅⋅.【答案】(1)证明见解析(2)证明见解析【分析】(1)根据正切两角和公式求解即可.(2)根据正切两角和公式求解即可.【详解】(1)因为18045()k k αβ+=⋅︒+︒∈Z 所以(1tan )(1tan )αβ++1tan tan tan tan αβαβ=+++()()1tan 1tan tan tan tan αβαβαβ=++-+()()1tan 451801tan tan tan tan k αβαβ=++⋅-+ ()1tan 451tan tan tan tan αβαβ=+-+ 11tan tan tan tan αβαβ=+-+2=.即证:(1tan )(1tan )2αβ++=.(2)因为180()k k αβγ++=⋅︒∈Z 所以tan tan tan αβγ++()()tan 1tan tan tan αβαβγ=+-+()()tan 1801tan tan tan k γαβγ=⋅--+ ()tan 1tan tan tan γαβγ=--+tan tan tan αβγ=⋅⋅.即证:tan tan tan tan tan tan αβγαβγ++=⋅⋅.【总结提升】三角恒等式的证明方法(1)从等式的比较复杂的一边化简变形到另一边,相当于解决化简题目.(2)等式两边同时变形,变形后的结果为同一个式子.(3)先将要证明的式子进行等价变形,再证明变形后的式子成立.提醒:开平方时正负号的选取易出现错误,所以要根据已知和未知的角之间的关系,恰当地把角拆分,根据角的范围确定三角函数的符号.一、单选题1.(2023秋·江苏连云港·高一江苏省海头高级中学校考期末)5cos 12π=()A B C D2.(2023·江苏·高一专题练习)化简tan tan 44A A ⎛⎫⎛⎫+--= ⎪ ⎪⎝⎭⎝⎭()A .2tan AB .2tan A-C .2tan 2AD .2tan 2A-,,1,2b =,且a b ⊥,则()tan 45θ-︒的值是()A .1B .3-C.3D .134.(2023·江苏·高一专题练习)若1tan θ-=+,则cot 4θ⎛⎫+ ⎪⎝⎭的值为().A .12B C D .1【答案】C5.(2023·江苏·高一专题练习)在ABC 中,若cos 5A =,cos 13B =-,则cos()A B +等于()A .1665-B .3365C .5665D .6365-6.(2023·江苏·高一专题练习)若cos 5θ=-且(,π)2θ∈,则πsin 3θ⎛⎫+ ⎪⎝⎭的值为()A B.410+-C D 7.(2022春·江苏苏州·高一统考期中)已知02α<<,02β<<,且()sin 5αβ-=-,12sin 13β=,则sin α=()A .6365B .5665C .3365D .1665-合,将角α的终边绕O 点顺时针旋转π3后,经过点()3,4-,则sin α=()A B C D .9.(2022春·江苏泰州·高一校考阶段练习)对任意的锐角αβ、,下列不等关系恒成立的是()A .()sin cos cos αβαβ+<+B .()cos sin sin αβαβ+<+C .()sin cos cos αβαβ-<+D .()cos sin sin αβαβ-<+【答案】ACA .1sin15222-=-B .sin20cos10cos160sin102-C .sin1212ππ=D .sin105=11.(2023·江苏·高一专题练习)化简:πtan 3π13αα⎛⎫- ⎪⎝⎭=⎛⎫- ⎪⎝⎭______.12.(2023秋·陕西西安·高一西安市第六中学校考期末)已知α,β满足04α<<,44β<<,3cos 45πα⎛⎫+= ⎪⎝⎭,π12sin 413β⎛⎫+= ⎪⎝⎭,则()sin αβ-=______.13.(2023春·湖北黄冈·高一校考阶段练习)求sin 36sin15sin 39cos36cos15sin 39︒︒︒-︒︒+︒的值.()cos ,sin b ααβ=- ,且a b ⊥ .(1)求()cos αβ+的值;(2)若0,2πα⎛⎫∈ ⎪⎝⎭,,2πβπ⎛⎫∈ ⎪⎝⎭且tan 3α=-,求2αβ+的值.︒︒+︒︒+︒︒=,tan10tan20tan20tan60tan60tan101tan20tan30tan30tan40tan40tan201︒︒+︒︒+︒︒=,tan33tan44tan44tan13tan33tan131︒︒+︒︒+︒︒=.(1)尝试再写出一个相同规律的式子;(2)写出能反映以上式子一般规律的恒等式,并对你写出的恒等式进行证明.。
高中数学三角函数知识点归纳及常考题型分析
高中数学三角函数知识点归纳及常考题型分析三角函数知识点归纳及常考题型分析角的概念及表示角是指由两条射线(或直线段)共同围成的图形,其中一个射线为始边,另一个射线为终边。
正角、负角和零角是角的三种分类。
终边相同的角可以表示为{β|β=k·360+α,k∈Z}。
象限角是指顶点在原点,始边与x轴非负半轴重合的角,其终边落在第几象限就称这个角是第几象限的角。
轴线角是指顶点在原点,始边与x轴非负半轴重合,终边落在坐标轴上的角。
区间角是指角的量数在某个确定的区间内,由若干个区间构成的集合称为区间角的集合。
角度制与弧度制角度制和弧度制是两种常见的角度量方式。
它们之间的互换关系是1rad=180°≈57.30°=57°18ˊ,1°≈0.(rad)。
弧长公式与扇形面积公式弧长公式是指l=|α|·r,其中α是角的量数,r是半径。
扇形面积公式是指s扇形=lr=|α|·r^2/2.三角函数的定义与符号设α是一个任意角,在α的终边上任取(异于原点的)一点P(x,y)。
P与原点的距离为r,则sinα=y/r,cosα=x/r,tanα=y/x,cotα=x/y,secα=r/x,cscα=r/y。
在各象限中,正弦函数和正切函数在第一象限和第二象限中为正,余弦函数在第一象限和第四象限中为正。
三角函数的图像及基本关系式正弦线是MP,余弦线是OM,正切线是AT。
同角三角函数的基本关系式是sin^2θ+cos^2θ=1,tanθ=sinθ/cosθ。
正弦、余弦的诱导公式正弦、余弦的诱导公式是奇变偶不变,符号看象限。
其中sin(±α)和cos(±α)的值与sinα和cosα的值有关,而sin(α+π)=-sinα,cos(α+π)=-cosα。
和角与差角公式和角与差角公式是sin(α±β)=sinαcosβ±cosαsinβ,cos(α±β)=cosαcosβ∓sinαsinβ,tan(α±β)=(tanα±tanβ)/(1∓tanαtanβ),sin(α+β)sin(α-β)=sin^2α-sin^2β,cos(α+β)cos(α-β)=cos^2α-sin^2β,asinα+bcosα=a^2+b^2sin(α+φ),其中辅助角φ所在象限由点(a,b)的象限决定,tanφ=b/a。
中考生常用三角函数公式
中考生常用三角函数公式1、同角三角函数的差不多关系倒数关系: tan cot=1 sin csc=1 cos sec=1商的关系:sin/cos=tan=sec/csc cos/sin=cot=csc/sec平方关系:sin^2()+cos^2()=1 1+tan^2()=sec^2() 1+cot^2()=csc^2()平常针对不同条件的常用的两个公式sin +cos =1tan *cot =1一个专门公式(sina+sin)*(sina+sin)=sin(a+)*sin(a-)2、锐角三角函数公式正弦:sin =的对边/ 的斜边余弦:cos =的邻边/的斜边正切:tan =的对边/的邻边余切:cot =的邻边/的对边3、二倍角公式正弦sin2A=2sinAcosA余弦1.Cos2a=Cos^2(a)-Sin^2(a) =2Cos^2(a)-1 =1-2Sin^2(a)2.Cos2a=1-2Sin^2(a)3.Cos2a=2Cos^2(a)-1正切tan2A=(2tanA)/(1-tan^2(A))4、三倍角公式sin3=4sinsin(/3+)sin(/3-)cos3=4coscos(/3+)cos(/3-)tan3a = tan a tan(/3+a) tan(/3-a)5、n倍角公式sin(n a)=Rsina sin(a+/n)……sin(a+(n-1)/n)。
其中R=2^(n-1)6、半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA); cot(A/2)=sinA/(1-cosA)=(1+cos A)/sinA. sin^2(a/2)=(1-cos(a))/2 cos^2(a/2)=(1+cos(a))/2 tan(a/2)=(1-cos(a))/s in(a)=sin(a)/(1+cos(a))7、和差化积sin+sin = 2 sin[(+)/2] cos[(-)/2]sin-sin = 2 cos[(+)/2] sin[(-)/2]cos+cos = 2 cos[(+)/2] cos[(-)/2]cos-cos = -2 sin[(+)/2] sin[(-)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)8、两角和公式cos(+)=coscos-sinsincos(-)=coscos+sinsinsin(+)=sincos+cossinsin(-)=sincos -cossin9、积化和差sinsin = [cos(-)-cos(+)] /2 coscos = [cos(+)+cos(-)]/2 sincos = [sin(+) +sin(-)]/2 cossin = [sin(+)-sin(-)]/210、双曲函数sinh(a) = [e^a-e^(-a)]/2 cosh(a) = [e^a+e^(-a)]/2 tanh(a) = sin h(a)/cos h(a)公式一:设为任意角,终边相同的角的同一三角函数的值相等:sin(2 k+)= sin cos(2k+)= cos tan(2k+)= tan cot(2k+)= cot 公式二:设为任意角,的三角函数值与的三角函数值之间的关系:sin (+)= -sin cos(+)= -cos tan(+)= tan cot(+)= cot 公式三:任意角与-的三角函数值之间的关系:sin(-)= -sin cos(-)= cos tan(-)= -tan cot(-)= -cot公式四:利用公式二和公式三能够得到与的三角函数值之间的关系:s in()= sin cos()= -cos tan()= -tan cot()= -cot公式五:利用公式-和公式三能够得到2与的三角函数值之间的关系:s in(2)= -sin cos(2)= cos tan(2)= -tan cot(2)= -cot公式六:/2及3/2与的三角函数值之间的关系:sin(/2+)= cos cos(/ 2+)= -sin tan(/2+)= -cot cot(/2+)= -tan sin(/2-)= cos cos(/2-)=sin tan(/2-)= cot cot(/2-)= tan sin(3/2+)= -cos cos(3/2+)= sin tan(3/2+)= -cot cot(3/2+)= -tan sin(3/2-)= -cos cos(3/2-)= -sin tan(3/2-)= cot cot(3/2-)= tan (以上kZ) Asin(t+)+ Bsin(t+) = {(A +B +2ABcos(-)} sin{ t + arcsin[ (Asin+Bsin) / {A^2 +B^2; +2ABcos(-)} } 表示根号,包括{……}中的内容11、诱导公式sin(-) = -sin cos(-) = cos tan (-)=-tan sin(/2-) = cos cos(/2-) = sin si n(/2+) = cos cos(/2+) = -sin sin() = sin cos() = -cos sin() = -sin cos() = -cos tanA= sinA/cosA tan(/2+)=-cot tan(/2-)=cot tan(-)=-tan tan(+)=tan 诱导公式记背诀窍:奇变偶不变,符号12、万能公式sin=2tan(/2)/[1+(tan(/2))] cos=[1-(tan(/2))]/[1+(tan(/2))] tan=2tan(/2)/[1-(t an(/2))]13、其它公式(1) (sin)+(cos)=1(2)1+(tan)=(sec)(3)1+(cot)=(csc)(4)关于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC (5)cotA cotB+cotAcotC+cotBcotC=1 (6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)c ot(C/2)(7)(cosA)+(cosB)+(cosC)=1-2cosAcosBcosC(8)(sinA)+(sinB)+(sinC)=2+2cosAcosBcosC家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,小孩一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。
高考中常见的三角函数题型和解题方法-数学秘诀
第12讲 三角函数一、方法技巧1.三角函数恒等变形的基本策略。
(1)常值代换:特别是用“1”的代换,如1=cos 2θ+sin 2θ=tanx ·cotx=tan45°等。
(2)项的分拆与角的配凑。
如分拆项:sin 2x+2cos 2x=(sin 2x+cos 2x)+cos 2x=1+cos 2x ;配凑角:α=(α+β)-β,β=2βα+-2βα-等。
(3)降次与升次。
(4)化弦(切)法。
(4)引入辅助角。
asin θ+bcos θ=22b a +sin(θ+ϕ),这里辅助角ϕ所在象限由a 、b 的符号确定,ϕ角的值由tan ϕ=ab确定。
2.证明三角等式的思路和方法。
(1)思路:利用三角公式进行化名,化角,改变运算结构,使等式两边化为同一形式。
(2)证明方法:综合法、分析法、比较法、代换法、相消法、数学归纳法。
3.证明三角不等式的方法:比较法、配方法、反证法、分析法,利用函数的单调性,利用正、余弦函数的有界性,利用单位圆三角函数线及判别法等。
4.解答三角高考题的策略。
(1)发现差异:观察角、函数运算间的差异,即进行所谓的“差异分析”。
(2)寻找联系:运用相关公式,找出差异之间的内在联系。
(3)合理转化:选择恰当的公式,促使差异的转化。
四、例题分析例1.已知2tan =θ,求(1)θθθθsin cos sin cos -+;(2)θθθθ22cos 2cos .sin sin +-的值.解:(1)2232121tan 1tan 1cos sin 1cos sin 1sin cos sin cos --=-+=-+=-+=++θθθθθθθθθθ; (2) θ+θθ+θθ-θ=θ+θθ-θ222222cos sin cos 2cos sin sin cos 2cos sin sin324122221cos sin 2cos sin cos sin 2222-=++-=+θθ+θθ-θθ=. 说明:利用齐次式的结构特点(如果不具备,通过构造的办法得到),进行弦、切互化,就会使解题过程简化。
高中三角函数公式大全
必修四常考公式及高频考点第一部分 三角函数与三角恒等变换考点一 角的表示方法 1.终边相同角的表示方法:所有与角α终边相同的角,连同角α在内可以构成一个集合:{β|β= k ·360 °+α,k ∈Z } 2.象限角的表示方法:第一象限角的集合为{α| k ·360 °<α<k ·360 °+90 °,k ∈Z }第二象限角的集合为{α| k ·360 °+90 °<α<k ·360 °+180 °,k ∈Z } 第三象限角的集合为{α| k ·360 °+180 °<α<k ·360 °+270 °,k ∈Z } 第四象限角的集合为{α| k ·360 °+270 °<α<k ·360 °+360 °,k ∈Z } 3.终边在某条射线、某条直线或两条垂直的直线上(如轴线角)的表示方法:(1)若所求角β的终边在某条射线上,其集合表示形式为{β|β= k ·360 °+α,k ∈Z },其中α为射线与x 轴非负半轴形成的夹角(2)若所求角β的终边在某条直线上,其集合表示形式为{β|β= k ·180 °+α,k ∈Z },其中α为直线与x 轴非负半轴形成的任一夹角(3)若所求角β的终边在两条垂直的直线上,其集合表示形式为{β|β= k ·90 °+α,k ∈Z },其中α为直线与x 轴非负半轴形成的任一夹角 例:终边在y 轴非正半轴上的角的集合为{α|α= k ·360 °+270 °,k ∈Z }终边在第二、第四象限角平分线上的集合为{α|α= k ·180 °+135 °,k ∈Z } 终边在四个象限角平分线上的角的集合为{α|α= k ·90 °+45 °,k ∈Z } 易错提醒:区别锐角、小于90度的角、第一象限角、0~90、小于180度的角 考点二 弧度制有关概念与公式 1.弧度制与角度制互化π=︒180,1801π=︒,1弧度︒≈︒=3.57180π2.扇形的弧长和面积公式(分别用角度制、弧度制表示方法)弧长公式:R Rn l απ==180, 其中α为弧所对圆心角的弧度数 扇形面积公式:lR R n S 213602==π=12 R 2|α|, 其中α为弧所对圆心角的弧度数 易错提醒:利用S=12R 2|α|求解扇形面积公式时,α为弧所对圆心角的弧度数,不可用角度数规律总结:“扇形周长、面积、半径、圆心角”4个量,“知二求二”,注意公式选取技巧考点三 任意角的三角函数 1.任意角的三角函数定义设α是一个任意角,它的终边与单位圆交于点()y x P ,,那么sin y r α=,cos x r α=,tan y x α=(22||r OP x y ==+);化简为xyx y ===αααtan ,cos ,sin . 2.三角函数值符号规律总结:利用三角函数定义或“一全正、二正弦、三正切、四余弦”口诀记忆象限角或轴线角的三角函数值符号. 3.特殊角三角函数值SIN15º=SIN(60º-45º)=SIN60ºCOS45º-SIN45ºCOS60º=(√6-√2)/4 COS15º=COS(60º-45º)=COS60ºCOS45º+SIN60ºSIN45º=(√6+√2)/4除此之外,还需记住150、750的正弦、余弦、正切值 4.三角函数线经典结论: (1)若(0,)2x π∈,则sin tan x x x <<(2)若(0,)2x π∈,则1sin cos 2x x <+≤(3)|sin ||cos |1x x +≥考点四 三角函数图像与性质y OxyOxα终边yOx yOx P M A TPM A T正弦线余弦线 正切线PP MA TP MA T α终边α终边α终边sin y x =cos y x = tan y x =图象定义域R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x k ππ=+()k ∈Z 时,max 1y =;当22x k ππ=-()k ∈Z 时,min1y=-.当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =-.既无最大值也无最小值周期性 2π2ππ奇偶性奇函数偶函数奇函数单调性在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z 上是增函数; 在32,222k k ππππ⎡⎤++⎢⎥⎣⎦()k ∈Z 上是减函数.在[]()2,2k k k πππ-∈Z 上是增函数; 在[]2,2k k πππ+()k ∈Z 上是减函数.在,22k k ππππ⎛⎫-+⎪⎝⎭()k ∈Z 上是增函数.对称性对称中心()(),0k k π∈Z对称轴()2x k k ππ=+∈Z 对称中心(),02k k ππ⎛⎫+∈Z⎪⎝⎭对称轴()x k k π=∈Z对称中心(),02k k π⎛⎫∈Z⎪⎝⎭无对称轴考点五 正弦型(y=Asin(ωx +φ))、余弦型函数(y=Acos(ωx +φ))、正切性函数(y=Atan(ωx +φ))图像与性质 1.解析式求法字母 确定途径 说明A 由最值确定 A =最大值-最小值2B 由最值确定B =最大值+最小值2ω 由函数的周期确定相邻的最高点与最低点的横坐标之差的绝对值为半个周期,最高点(或最低点)的横坐标与相邻零点差的绝对值为0.25个周期φ由图象上的特殊点确定可通过认定特殊点是五点中的第几个关键点,然后列方程确定;也可通过解简单三角方程确定A 、B 通过图像易求,重点讲解φ、ω求解思路: ①φ求解思路:函数性质代入图像的确定点的坐标.如带入最高点),(11y x 或最低点坐标),(22y x ,则)(221Z k k x ∈+=+ππϕω或)(2232Z k k x ∈+=+ππϕω,求ϕ值. 易错提醒:y=Asin(ωx+φ),当ω>0,且x=0时的相位(ωx+φ=φ)称为初相.如果不满足ω>0,先利用诱导公式进行变形,使之满足上述条件,再进行计算.如y=-3sin(-2x+600)的初相是-600②ω求解思路:利用三角函数对称性与周期性的关系,解ω.相邻的对称中心之间的距离是周期的一半;相邻的对称轴之间的距离是周期的一半;相邻的对称中心与对称轴之间的距离是周期的四分之一. 2.“一图、两域、四性” “一图”:学好三角函数,图像是关键。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、在 中, , .
(Ⅰ)求 的值;(Ⅱ)设 ,求 的面积.
六、向量
1、概念:
特别提醒:
1)模:向量的长度叫向量的模,记作|a|或| |.
2)零向量:长度为零的向量叫做零向量,记作0;零向量的方向不确定.
3)单位向量:长度为1个长度单位的向量叫做单位向量.
时是偶ห้องสมุดไป่ตู้数。
时是奇函数, 时是偶函数。
时是奇函数
有界性
无界函数
最小正
周期
单
调
区
间
对称轴
无对称轴
对称
中心
最值
无最值
三、图像平移变换
1、先相位变换周期变换振幅变换(先平移后伸缩)
:把 图象上所有的点向左( )或向右( )平移 个单位。
:把 图象上各点的横坐标伸长( )或缩短( )到原来的 倍,纵坐标不变。
(坐标式)
(3)、向量垂直的判定:设 , ,则
(4).两向量夹角的余弦( )cos=
例题:
1.判断下列命题是否正确,若不正确,请简述理由.
①向量 与 是共线向量,则A、B、C、D四点必在一直线上;
②单位向量都相等;
③任一向量与它的相反向量不相等;
④四边形ABCD是平行四边形的充要条件是 =
⑤模为0是一个向量方向不确定的充要条件;
3.正弦定理:在一个三角形中,各边和它的所对角的正弦的比相等.
形式一: (解三角形的重要工具)
形式二: (边角转化的重要工具)
4.余弦定理:三角形任何一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍..
形式一:
(解三角形的重要工具)
形式二: ; ;cosC=
例题:
1、在△ABC中,bcosA= cosB,试判断三角形的形状.
⑥共线的向量,若起点不同,则终点一定不同.
2.下列命题正确的是( )
A.a与b共线,b与c共线,则a与c也共线
B.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点
C.向量a与b不共线,则a与b都是非零向量
D.有相同起点的两个非零向量不平行
3.若A(0, 1), B(1, 2), C(3, 4)则 2 =
方法1:利用余弦定理将角化为边.
∵bcosA= cosB∴
∴ ∴ ∴
故此三角形是等腰三角形.
方法2:利用正弦定理将边转化为角.
∵bcosA= cosB又b=2RsinB, =2RsinA
∴2RsinBcosA=2RsinAcosB∴sinAcosB-cosAsinB=0
∴sin(A-B)=0∵0<A,B<π,∴-π<A-B<π
(4).向量平行的充要条件的坐标表示:设 =(x1, y1), =(x2, y2)其中
∥ ( )的充要条件是 (外积等于内积)
4、平面向量数量积
(1).两个非零向量夹角的概念
已知非零向量 与 ,作 = , = ,则_∠AOB=θ(0≤θ≤π)叫 与 的夹角.
特别提醒:向量 与向量 要同起点。
(2).平面向量数量积(内积)的定义:已知两个非零向量 与 ,它们的夹角是θ,则数量| || |cos__叫 与 的数量积,记作 ,即有 = | || |cos(定义式)
(2)运算律:λ(μa)=(λμ)a,(λ+μ)a=λa+μa,λ(a+b)=λa+λb.
3.平面向量的坐标运算
(1)若 , ,则 = ,
=
两个向量和与差的坐标分别等于这两个向量相应坐标的和与差
(2)若 , ,则
一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标
(3)若 和实数 ,则
实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标
4)共线向量:方向相同或相反的向量叫共线向量,规定零向量与任何向量共线.(平行向量)
5)相等的向量:长度相等且方向相同的向量叫相等的向量.
2.向量的线性运算
①、向量的加法:(首尾相接,起点指向终点)
(1)定义:求两个向量和的运算,叫做向量的加法.
(2)法则:____三角形法则_______,_____平行四边形法则______
②、向量的减法:(起点相同,连接终点,箭头指向被减向量)
(1)定义:求两个向量差的运算,叫做向量的减法.
(2)法则:____三角形法则_______
③、实数与向量的积:
(1)定义:实数λ与向量a的积是一个向量,记作λa,规定:|λa|=|λ||a|.当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;当λ=0时,λa与a平行.
:把 图象上各点的纵坐标伸长( )或缩短( )到原来的A倍,横坐标不变。
2、先周期变换相位变换振幅变换(先伸缩后平移)
:把 图象上各点的横坐标伸长( )或缩短( )到原来的 倍,纵坐标不变。
:把 图象上所有的点向左( )或向右( )平移 个单位.
:把 图象上各点的纵坐标伸长( )或缩短( )到原来的A倍,横坐标不变。
4.已知 为 的三个内角 的对边,向量 .若 ,且 ,则角 的大小分别为( )
A. B. C. D.
5、
;
6、已知:A、B、C是 的内角, 分别是其对边长,向量 , , .求角A的大小;
三角函数背诵
一、基本公式
1、角度与弧度、三角函数值
角度
0°
30°
45°
60°
90°
弧度
0
0
1
1
0
0
1
不存在
2.三角函数在各象限内的正负
口诀“一全正,二正弦,三正切,四余弦.”
( )
3.同角三角函数基本关系式
平方关系: 商的关系:
例题:1、已知 ,并且 是第二象限角,求
2、已知 ,求(1)
4.诱导公式
口诀:“奇变偶不变,符号看象限。”
例:1.化简:
3.若cosα= ,α是第四象限角,求 的值.
二、三角函数的性质
(1)三角函数的图象及性质
函数
图 象
定义域
R
R
值域
R
奇偶性
奇函数
偶函数
奇函数
有界性
无界函数
最小正
周期
单
调
区
间
对称轴
无对称轴
对称
中心
最值
无最值
(2)其它变换:
函数
定义域
R
R
值域
R
奇偶性
时是奇函数,
例:
四、三角恒等变换
1、两角和与差的三角函数公式:
, , 。
2、二倍角公式
;
;
3、降幂公式
4.化一公式(辅助角公式)
其中:
例:1设函数 ,求 的最小正周期和单调递增区间
2.已知函数 的最小正周期是
(1)求 的解析式
(2)当 时,求 的最值
五、解三角形
1.内角和定理:
在 中, ; ;
2.面积公式: =