第一节 定义新运算

合集下载

小学数学定义新运算

小学数学定义新运算

小学数学定义新运算一.什么是定义新运算我们已经学过了加、减、乘、除运算。

在有些情况下,常把「有多步含加、减、乘、除的运算」用某种新的符号表示,这就是定义了新的运算。

见到了这种用新的符号所定义的运算后,就按它所规定的「运算程序」进行运算,直到得出最后结果。

例如,设A、B表示自然数,如果定义符号「※」表示的运算如下:A※B=3×A+4×B那么,根据新运算「※」的定义,就可以计算6※7如下:6※7=3×6+4×7=46。

如果定义符号「※」表示的运算为:A※B=A÷B×2+3×A-2,那么,按此定义去计算4※2的话,就有:4※2=4÷2×2+3×4-2=2×2+12-2=14。

二.定义新运算需要注意的几个问题按照新定义的运算求某个算式的结果,关键是要正确理解这种新运算的意义,如上面举例中的运算符号「※」所表示的运算并不是一种固定的算法,而是因题而异,不同的题目有不同的规定,我们应当严格按不同的规定进行运算。

需要注意的是:(1)有括号时,应当先算括号里的;(2)新定义的运算往往不一定具备交换律和结合律,不能随便套用这些运算定律来解题。

(3)上面例举中所定义的运算使用了符号「※」来定义,但并不是说只有「※」才是规定运算的符号,可能用△,#,…等符号。

符号的种类是次要的,符号所定义的运算按照怎样的程序来进行才是主要的。

三.典型例题例1设a,b表示整数(包括0),规定「*」的运算为a*b=a÷b×2+3×a-b,计算:169*13。

分析与解答动手算之前,先让我们弄清「*」是怎么一种运算程序,按规定,a*b的值是用a除以b,把商数乘2之后,再加上a的3倍,最后减去b,这些运算有两个特点:(1)各步运算都是大家熟悉的四则运算;(2)各步运算的先后次序要按规定的顺序办。

那么,根据「*」的规定,我们可以计算得到:169*13=169÷13×2+3×169-13=520。

第1讲:定义新运算讲义

第1讲:定义新运算讲义

定义新运算(★★)(迎春杯试题)规定n※b=3×n-b÷2。

例如:1※2=1×3-2÷2=2。

根据以上的规定,10※6=()(★★)两个不相等的自然数a、b(b≠0),较大的数除以较小的数商为a△b,余数记为a◇b,如3△11=3、3◇11=2,那么6◇(2△7)=()。

⑴(★★★)(“从小爱数学”邀请赛)设a※b表示a的3倍减去b的2倍,即a※b=3a-2b,例如,当a=6,b=5时,6※5=3×6-2×5=8。

①计算:(8※7)※9;②已知:x※(4※1)=7,求:x。

⑵(★★★)规定a○b=(3a-2b),例如4○5=3×4-2×5=2,那么当x○5比5○x大5时,x等于几?⑴(★★)规定a⊗b=a×3+b÷2,其中a、b都是自然数。

①6⊗8的值;②8⊗6的值。

⑵(★★★)定义运算※为a ※b =a ×b -(a +b ),①求12※(3※4),(12※3)※4;②这个运算“※”有结合律吗?③如果3※(5※x )=3,求x 。

⑴(★★★)(“祖冲之杯”数学邀请赛)如图是一个运算器的示意图,A 、B 是输入的两个数据,C 是输出的结果,右下表是输入A 、B 数据后,运算器输出C 的对应值,请你据此判断,当输入A 值是1999,输入B 值是9时,运算器输出的C 值是_____。

⑵(★★★★)(中环杯试题)已知A *B =A ×B +A +B则101*9*9*9**9*9 共次运算=__________。

(★★★★★)定义a *b 为a 与b 之间(包含a 、b )所有与a 奇偶性相同的自然数的平均数,例如:7*14=(7+9+11+13)÷4=10,18*10=(18+16+14+12+10)÷5=14。

在算式□*(19*99)=80的方格中填入恰当的自然数后可使等式成立,那么所填的数是多少?在线测试题温馨提示:请在线作答,以便及时反馈孩子的薄弱环节。

(完整版)小学五年级奥数第一讲__定义新运算及作业

(完整版)小学五年级奥数第一讲__定义新运算及作业

第一讲定义新运算一、a、b是自然数,规定a※b=(a+b)÷2,求:3※(4※6)的值。

二、对于任意两个自然数a、b,定义一种新运算“*”:a*b=ab+a÷b,求75*5=?,12*4=?三、定义运算符“◎”:a◎b=3a+4b-5,求6◎9=?9◎6=?四、定义两种运算“○+”和“○×”,对于任意两个整数a、b规定:a○+b=a+b-1,a○×b=a×b-1,那么8○× [(6○+10)○+(5○×3)]等于多少?五、定义运算“○+”=(a+b)÷3,那么(3○+6)○+12与3○+(6○+12)哪一个大?大的比小的大多少?六、a、b是自然数,规定a⊙b= ab-a-b-10,求8⊙8=?七、如果1*2=1+2,2*3=2+3+4,3*4=3+4+5+6,……,请按照此规则计算3*7=?八、规定运算a@b=(a+b)÷2,且3@(x@2)=2,求x=?九、规定a△b=ab+2a, a▽b=2b-a,求(8△3)▽(9△5)的值。

第二讲定义新运算作业十、定义新运算“*”:a*b=3a+4b-2,求(1)10*11;(2)11*10。

十一、定义新运算“△”:a△b= a÷b×3,求(1)24△6;(2)36△9。

十二、规定a○+b,表示自然数a到b的各个数之和,例如:3 ○+10=3+4+5+6+7+8+9+10=52,求1○+200的值。

十三、定义新运算“○×”,a○×b=10a+20b,求(3○×7)+(4○×8)。

十四、定义新运算“△”:a△b=6a+3b+7,那么5△6和6△5哪个大?大的比小的大多少?十五、规定a*b=(a+b)÷2,求[(1*9)*9]*3的值。

十六、规定a☆b=3a-2b,如果x☆(4☆1)=7,求x的值。

十七、规定X○+Y=(X+Y)÷4求:(1)2○+(3○+5),(2)如果X○+16=10,求X的值。

第一讲 定义新运算

第一讲 定义新运算

五年级春季第一讲定义新运算对于+、-、×、÷四则运算,我们已经熟知它们的运算规则和计算方法,还学会了四则混合运算,以及速算与巧算。

这一讲我们要学习一种新的运算,简称为定义新运算。

所谓定义新运算就是用一种新的符号来自主定义或规定一种运算规则,然后按照这一规则进行计算。

典例精讲例1 设a、b都表示数,规定a△b=3×a-2×b,①求3△2,2△3。

②这个运算“△”有交换律吗?③求(17△6)△2, 17△(6△2)。

④这个运算“△”有结合律吗?⑤如果已知4△b=2,求b。

【思路点拨】解定义新运算这类题的关键是抓住定义的本质,本题规定的运算的本质是:用运算符号前面的数的3倍减去符号后面数的2倍。

【详细解答】例2 对于任意两个整数a、b,定义两种运算“☆”“☉”:a☆b=a+b-1,a☉b=a×b-1,计算4☉[(6☆8)☆(3☆5)]的值。

【思路点拨】这题是两种新运算的混合运算,首先要弄清楚每一种运算的运算规则,再确定运算顺序;在新运算中,也是按照先算括号内再算括号外的运算顺序进行计算,先将定义的新运算符号前后运算好后再进行新运算,计算时可以分步进行。

【详细解答】例3 定义x☉y=a×x+2×y,并且已知5☉6=6☉5,求a是几?【思路点拨】先根据对新运算的定义,把等式5☉6=6☉5转化成含有未知数的等式,然后,再求出未知数a的值。

【详细解答】例4 有一个数学运算符号“◎”使下列算式成立:2◎4=8,5◎3=13,3◎5=11,9◎7=25,求7◎3=?【思路点拨】题目没有明确告知对新运算进行定义,该如何进行运算呢?我们可以通过对题目提供的算式进行观察、分析,找出规律,从而确定新运算的运算规则。

可以看出“◎”表示前面的数的2倍加上后一个数。

【详细解答】达标练习1.定义一种新的运算“△”,规定:a△b=a×b+a+b。

5△8是多少?2.定义新运算“□”为x□y等于2xy-(x+y)。

第一节定义新运算

第一节定义新运算

第一节定义新运算第1讲定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。

解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。

定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。

新定义的算式中有括号的,要先算括号里面的。

但它在没有转化前,是不适合于各种运算定律的。

二、精讲精练【例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。

【思路导航】这题的新运算被定义为:a*b等于a和b两数之和加上两数之差。

这里的“*”就代表一种新运算。

在定义新运算中同样规定了要先算小括号里的。

因此,在13*(5*4)中,就要先算小括号里的(5*4)。

练习1:1、将新运算“*”定义为:a*b=(a+b)×(a-b).求27*9。

2、设a*b=a2+2b,那么求10*6和5*(2*8)。

3、设a*b=3a-b×1/2,求(25*12)*(10*5)。

【例题2】设p、q是两个数,规定:p△q=4×q-(p+q)÷2。

求3△(4△6)。

【思路导航】根据定义先算4△6。

在这里“△”是新的运算符号。

练习2:1、设p、q是两个数,规定p△q=4×q-(p+q)÷2,求5△(6△4)。

2、设p、q是两个数,规定p△q=p2+(p-q)×2。

求30△(5△3)。

3、设M、N是两个数,规定M*N=M/N+N/M,求10*20-1/4。

【例题3】如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么7*4=________;210*2=________。

定义新运算 教案(详)公开课

定义新运算 教案(详)公开课

定义新运算教案(详)公开课第一章:引言1.1 课程目标让学生了解并掌握新运算的基本概念,通过实例理解新运算的运算规则,培养学生的逻辑思维能力和创新意识。

1.2 教学内容新运算的定义、新运算的运算规则、新运算的应用。

1.3 教学方法采用讲授法、案例分析法、小组讨论法,引导学生主动探究,培养学生的创新能力和团队合作精神。

第二章:新运算的定义2.1 课程目标让学生了解新运算的定义,理解新运算的基本概念。

2.2 教学内容新运算的定义、新运算的基本概念。

2.3 教学方法采用讲授法,通过讲解新运算的定义,使学生掌握新运算的基本概念。

第三章:新运算的运算规则3.1 课程目标让学生掌握新运算的运算规则,能够运用新运算进行简单的计算。

3.2 教学内容新运算的运算规则、新运算的计算方法。

采用案例分析法,通过分析新运算的运算规则,使学生掌握新运算的计算方法。

第四章:新运算的应用4.1 课程目标让学生能够运用新运算解决实际问题,培养学生的应用能力。

4.2 教学内容新运算在实际问题中的应用、新运算的计算技巧。

4.3 教学方法采用小组讨论法,让学生通过合作解决实际问题,培养学生的团队合作精神。

第五章:总结与展望5.1 课程目标使学生对新运算有一个全面的认识,激发学生对新运算的兴趣和进一步学习的动力。

5.2 教学内容本章对新运算的学习进行总结,对新运算的未来发展进行展望。

5.3 教学方法采用讲授法,通过总结和展望,使学生对新运算有一个全面的认识。

第六章:新运算的数学原理6.1 课程目标让学生理解新运算背后的数学原理,培养学生的理性思维和问题解决能力。

6.2 教学内容新运算与传统运算的差异、新运算的数学基础、新运算的运算逻辑。

采用讲解法,通过分析新运算与传统运算的差异,引导学生理解新运算的数学原理。

第七章:新运算的编程实现7.1 课程目标让学生能够通过编程实现新运算,提高学生的编程能力和创新实践能力。

7.2 教学内容新运算的编程方法、新运算的算法实现、新运算的编程实践。

定义新运算

定义新运算

戴氏教育中高考名校冲刺教育中心【知识和能力是一点一点积累起来的,要留意有扎实的基础,要留意温习和巩固,不能急于求成。

】第1讲 定义新运算一、 考点、热点回顾定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。

解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。

定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。

新定义的算式中有括号的,要先算括号里面的。

但它在没有转化前,是不适合于各种运算定律的。

二、 典型例题例题1假设)()(b a b a b a -++=*,求513*和)45(13**例题2设p 、q 是两个数,规定:p △q=2)(4÷+-⨯q p q ,求)64(3∆∆。

例题3如果11111111111111151++++=*,222222222242+++=*,33333333++=*,44424+=*,那么47*= ,2210*= 。

例题4规定:②321⨯⨯=,③=432⨯⨯,④543⨯⨯=,⑤=654⨯⨯,...,如果1/⑥-1/⑦=1/⑦×A 。

那么A 是几?例题5设a ⊙b =ab b a 2124+-,求x ⊙(4⊙1)=34中的未知数x 。

三、 实战训练1、设)()(b a b a b a -⨯+=*,求927*。

2、设b a b a 22+=*,求610*和)82(5**。

3、设p 、q 是两个数,规定:p △q=2)(4÷+-⨯q p q ,求)46(5∆∆。

4、设p 、q 是两个数,规定:p △q=2)(2⨯-+q p p ,求)35(30∆∆。

5、如果11111111111111151++++=*,222222222242+++=*,33333333++=*,....那么44*= 。

定义新运算

定义新运算

第一讲定义新运算一、教学目标:1、知识与技能:理解新定义符号的含义,严格按新的规则操作。

2、过程与方法:经历新定义运算算式转化成一般的+、-、×、÷数学式子的过程,培养学生运用数学转化思想指导思维活动的能力。

3、情意目标:通过将新定义运算转化成一般运算的过程,使学生感受数学中转化的思想方法;体验学习与运用数学法则、规定解决数学问题的成功.二、教学重难点:1、教学重点:理解新定义,按照新定义的式子代入数值。

2、教学难点:把定义的新运算转化成我们所熟悉的四则运算。

三、教学方法:引导发现法四、教学过程:(一)导入:1、看图大比拼(准备几张生活中常见标志的图片)。

2、我做指挥官(用手势代替语言指挥)。

3、在下面的括号内填入适当的运算符号,使得等式成立。

5()2=7 6()3=3 100()2=50 13( )3=394、趣味引导:生活中我们都知道羊和狼在一起时,狼要吃掉羊,所以当狼和羊在一起时,我们用△符号表示狼战胜羊:狼△羊= 羊△狼= 羊△羊= 狼△狼=在动画片《喜洋洋与灰太狼》中,羊群总是能化险为夷战胜狼,因此我们用☆符号表示羊战胜狼:羊☆狼= 狼☆羊= 羊☆羊= 狼☆狼=5、已知符号“#”表示a#b=a+b,求:3#5、5#9、88#13的值?(体现对应思想和解题的三个步骤)加强认识:已知符号“*”表示:a*b=b-a,求:3*9、60*72的值?小结:定义新运算是指运用某种特殊的符号表示的一种特定运算形式;它是人们整合旧的运算规则,利用新的符合表示出的一种运算方式;解决此类问题,关键是要正确理解新定义的算式含义,能够将新定义的运算方法转化为旧的运算规则。

一般新运算问题的解题三个步骤:(1)弄清新符号的算式意义;(2)找准问题中数字与定义算式中字母的对应;(3)将对应数字代入算式计算(二)例题引导:第一类:(直接运算型)例题引导:①表示求两个平均数的运算,则a①b=(a+b)÷2,当 a=5,b=15时,求a①b?例1:已知符号“△”表示:a△b=(a+b)×6,求:10△3, 6△9的值?练习:(1)对定义运算※为a※b=(a+b)×2。

五年级下册数学竞赛试题-第一节 定义新运算(寒假专版)-全国通用(无答案)

五年级下册数学竞赛试题-第一节  定义新运算(寒假专版)-全国通用(无答案)

第一节定义新运算【知识要点】说起运算,同学们马上就会想到我们课堂上学过的加、减、乘、除四则运算,并且还能熟练地说出这些运算的一些运算性质和运算定律。

当然,对于什么样的问题该用加法或减法、乘法还是除法计算更是烂熟于胸。

其实,在加、减、乘、除四则运算之外,还有其他多种法则的运算。

我们这一讲里将要学习的“新运算”,就是用*、△、☆、⊙等多种符号,按照一定的关系,临时规定的一种新的运算程序(新运算)。

学习“定义新运算”,关键是要深刻理解运算符号的新规定,严格按照规定的法则运算,最后达到解决问题的目的。

【典型例题】例1 设a,b都表示数,规定是a△b表示a的3倍减去b的2倍,a△b=a×3-b×2。

试计算:5△6;(7△6)△4的值。

例2 有两个数是A、B,A△B表A与B的平均数。

、(1)已知A△6=17,求A。

(2)如果已知4△B=2,求B。

例3 规定x △y =32x+y x y x ⨯+,那么3△4= 。

例4 如果2*3=2+3+4,5*4=5+6+7+8,按此规律计算:3*5;5*3例5 有一个运算符号⊗,使A ,B (A ,B 表示两个数)满足定义A ⊗B=A ×B-b,2⊗3=4,试按此规律计算(3⊗5)+(7⊗9)例6 x 、y 是两个数,x*y=ax-by,已知4*2=6;6*3=9,计算7*5-2*1=?【小试锋芒】1.设a,b都表示数,规定a△b=6×a-2×b。

试计算3△42.设a,b都表示数,规定a△b=3×a+2×b试计算:(5△6)△7;5△(6△7)3. 规定:6*2=6+66=72,2*3=2+22+222=246,1*4=1+11+111+1111=1234。

求:7*54.如果2*4=24÷(2+4),按此规律计算3*6;6*3;5.M,N是两个数,M*N=Mx-N÷2,2*4=7,计算:(6*4)-(4*6)6.a,b表示2个数,a↓b=a×b+a-b,a↑b=a×b-a+b;计算:5↑(8↓4)7.数学符号!n(读作n的阶乘)的意义规定为:从1开始n个连续自然数的乘积,也就是说,!123(1)=⨯⨯==⨯⨯⨯=。

第1讲、定义新运算

第1讲、定义新运算

一、定义新运算知识精讲一、定义新运算基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。

基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。

关键问题:正确理解定义的运算符号的意义。

注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。

②每个新定义的运算符号只能在本题中使用。

我们学过的常用运算有:+、-、×、÷等.如:2+3=5 2×3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×”,“÷”运算不相同.二定义新运算分类1.直接运算型2.反解未知数型3.观察规律型4.其他类型综合【热身准备】1、已知)()(22b a b a b a -⨯+=-,那么=22899-9992、已知222)(2b a b ab a +=++,那么2299.799.702.401.2+⨯+=3、一般我们都认为手枪指向谁,谁好像是有危险的,下面的规则同学们能看懂吗? 规定:警察小偷=警察,警察小偷=小偷.那么:(猎人小兔)(山羊白菜)= .4、6)12()1(n 432122222+⨯+⨯=+++++n n n ,所以=+++++22222508642【例题精讲】例题1:若*A B 表示()()3A B A B +⨯+,求5*7的值。

练习1:定义新运算为a△b=(a+1)÷b,求的值。

6△(3△4)练习2:M N=*表示()2,(20082010)2009M N+÷**____例2.已知a,b是任意自然数,我们规定: a⊕b= a+b-1,2⊗=-,那a b ab么[]⊗⊕⊕⊗= .4(68)(35)练习1.规定运算“☆”为:若a>b,则a☆b=a+b;若a=b,则a☆b=a -b+1;若a<b,则a☆b=a×b。

1第一讲 定义新运算

1第一讲  定义新运算

第一讲定义新运算一、知识梳理定义新运算是用某些特殊的符号表示特定的意义,从而解答某些特殊算式的运算。

在定义新运算中的※,〇,△……与+、-、×、÷是有严格区别的。

解答定义新运算问题,必须先理解定义的含义,遵循新定义的关系式把问题转化为一般的+、-、×、÷运算问题。

基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。

二、方法归纳基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。

关键问题:正确理解定义的运算符号的意义。

注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。

②每个新定义的运算符号只能在本题中使用。

三、课堂精讲【规律方法】理解新运算符号的含义是解答问题的关键。

【搭配课堂训练题】【难度分级】 A1.规定a*b=(b+a)×b,求(2*3)*5 ?2.定义运算“△”如下:对于两个自然数a和b,它们的最大公约数与最小公倍数的和记为a△b。

例如:4△6=(4,6)+[4,6]=2+12=14。

根据上面定义的运算,18△12等于几?例2.如果3*2=3+33=36 ;2*3=2+22+222=246 ;1*4=1+11+111+1111=1234,则4*5的值为多少?【规律方法】观察规律,得出运算的规则。

【搭配课堂训练题】【难度分级】 B3.如果1#5=5,2#4=4+44,3#3=3+33+333,……计算4#3的值.4.已知: 23=2×3×4,45=4×5×6×7×8,……求(44)÷(33)的值。

例3.x、y是自然数,规定x▽y=4x—3y,如果5▽a=8,那么a是几?【规律方法】根据新运算列出方程,解方程。

【搭配课堂训练题】【难度分级】 B5.如果a△b表示(a-2)×b,例如3△4=(3-2)×4=4,那么当( a△2)△3=12时, a等于几?6.规定a⊕3=a+(a+1)+(a+2),若x⊕5=45,求x的值。

小学奥数第01讲 定义新运算

小学奥数第01讲    定义新运算

第一讲定义新运算一、课程引入定义新运算,是在四则运算的基础上,用一种特殊的符号来表示某种特定的运算,在计算时必须严格按照所定义的运算格式进行代换计算二、基本理论理论点1在四则运算的基础上,用一种特殊的符号来表示某种特定的运算理论点2明确“新运算”的定义,再根据运算定义,完成计算三、例题精析【例题1】【题干】1、对于任意的两个自然数a,b,存在a*b=4a+2b。

那么4*5的值是多少?【答案】4*5=4×4+2×5=26【解析】a*b=4a+2b,规定“a*b”这种运算的形式就是4a+2b。

那么当a=4,b=5时,“a*b”就可以写作“4*5”。

【例题2】【题干】如果规定9*1=9,6*2=6+66,4*3=4+44+444,2*4=2+22+222+2222,那么2*5=?【答案】2*5=2+22+222+2222+22222=24690【解析】从前面几个算式知道运算符“*”表示的是几个数值相加,符号前面的数是第一个加数,且后一个加数都比前一个加数多一个数位,每个加数各个数位上的数字相同,都是符号前面的那个数,而符号后面的数恰好是加数的个数,根据这一规律,可以计算出2*5的值。

【例题3】【题干】对于任意自然数a,b,如果a*b=5a-3b,已知x*(4*2)=20.求x=?【答案】x=12.4【解析】4*2=4×5-2×3=14x*14=5x-14×3=5x-42由上面两式可得5x-42=20【例题4】【题干】a表示顺时针旋转90°,b表示顺时针旋转180°,c表示逆时针旋转90°,d表示不转。

定义运算“◎”表示“接着做”。

求:a◎b;b◎c;c◎a。

【答案】a◎b=c,b◎c=a,c◎a=d【解析】a◎b表示先顺时针转90°,再顺时针转180°,等于顺时针转270°,也等于逆时针转90°,所以a◎b=c。

第一讲 定义新运算

第一讲  定义新运算

第一讲定义新运算学法指导数的运算是指给出几个数,再给出一个对应规则,从而产生出一个新的结果。

比如,给你两个数8和4,用“+”的规则就产生一个数12,用“-”的规则就产生一个数4,用“×”的规则就产生一个数32,用“÷”的规则就产生一个数2.以上的四种对应的规则只是一种人为的约定,定义了我们熟悉的四种运算“加,减,乘,除”。

我们还可以作其他不同的约定,定义一些新的运算。

按照新定义的运算计算算式的结果,一定要掌握解题的关键和注意点。

1.解题关键。

关键是要正确理解新运算的意义,并严格按新定义的要求,将数值代入新定义的式子进行计算。

2.注意点。

一是新定义的运算不一定符合交换律,结合律和分配率,二是新定义的运算所采用的符号是任意的,而不是确定的,通用的,在具体的题目中使用,到另一题中将失去原题中特定的意义。

例题 1“▽”表示一种新的运算,规定A▽B=3A+4B,求2▽3.[分析与解答]根据规定,这种新运算的意义就是:A的3倍加上B的4倍,所以 2▽3=3×2+4×3=6+12=18试一试1“▽”表示一种新的运算,定义同例1,求3▽2.比较一下,与2▽3的得数相等吗?例题2“⊕”表示一种新的运算,它是这样定义的:a⊕b=a×b-a÷b求6⊕3和(6⊕3)⊕2。

[分析与解答]根据规定,这种新运算的意义就是:求两个数的积,减去这两个数的商。

对于(6⊕3)⊕2,只要先算出括号里面的结果x,然后算出x⊕2的结果。

6⊕3=6×3-6÷3=18-2=16利用这个结果,(6⊕3)⊕2=16⊕2=16×2-16÷2=32-8=24试一试2“*”表示一种新的运算,a*b=a×b-(a+b),求4*5和(4*5)*6.例题3将新运算“⊙”定义为:a⊙b=a²-b²,求7⊙(3⊙2)。

[分析与解答] 按照新运算的意义,就是求两个数的平方差。

第一讲 定义新运算

第一讲    定义新运算

第一讲定义新运算加、减、乘、除这4种运算的意义和运算法则我们都很熟悉。

除了这四种运算之外,我们还可以人为地规定一些其他运算,也就是按照某种规定,给这种新的运算以明确的定义。

定义新运算是指运用某种特殊符号来表示特定的意义,严格按照规定的计算法则代入运算,其余的计算按我们熟悉的四则运算进行。

例题与方法例1.如果2*3=2+3+4=9 ,5*4=5+6+7+8=26。

那么(1)9*5的值是多少?(2)解方程X*3=15。

思路点拨丁丁:四年级我们学过了一种与常规运算不同的运算,运算起来要按要求进行特殊的运算。

机灵猴:对!这种运算称作定义新运算。

这里的“*”表示什么呢?小麦斯:“*”表示求连续自然数的和,“*”前的数表示第一个数(首项),“*”后的数表示连续自然数的个数。

解:按照定义,有9*5=9+10+11+12+13=55x*3=x+(x+1)+(x+2)=3x+3原方程可改写成为3x+3=15解方程,得x=4例2定义两种运算“⊕”、“⊙”,对于任意两个整数a、b,都有:a⊕b=a+b-1,a⊙b=a×b-1,若x⊕(x⊙4)=33。

求x的值。

思路点拔丁丁:在有括号时,要先算括号内再算括号外的同时,还要注意有两种运算状态下的运算。

小麦斯:是的,题中有两个“x”,定义了两种运算,这两种运算在运算时不分前后,但运算顺序还是按照四则运算的顺序进行。

有括号时,先算小括号里的,后算括号外的。

机灵猴:我知道了,此题的运算方法是:先根据符号“⊙”所表示的意义,将小括号里的式子改写成x×4-1,再根据符号“⊕”所表示的意义将x⊕(x×4-1)改写成x+(x×4-1)-1,即原式可变为:x×5-2=33,然后再求出未知数x。

解:因为x⊙4=4x-1而x⊕(4⊙x-1)=x+(4×x-1)-1=5x-2所以5x-2=335x=35x=7答:x的值是7。

例3:定义运算“*”,它的意义是a*b=a+aa+aaa+…+(a,b都是自然数)。

1.定义新运算

1.定义新运算

知识点:所谓定义新运算,就是根据问题制定一种新的运算规则。

解题步骤:1.代换。

即按照定义符号的运算方式,进行代换。

注意此步骤不能轻易改变原有的运算顺序。

2.计算。

准确地计算代换后的算式。

例1. a、b是两个自然数,规定a*b=a+b-1,求7*(8*9)的值例2.对于两个数a和b,定义a⊙b=2a+b÷a,那么﹙2⊙4﹚⊙12是多少?例3.已知2*3=2+22+222, 3*4=3+33+333+3333求:﹙1﹚3*3 ﹙2﹚5*4 ﹙3﹚若1*x=123,求x.例4.设a为大于1的整数,规定a*b=ab+a-b,计算:﹙4*6﹚*﹙6*4﹚例5.对于正整数a和b,规定a$b=a×﹙a+1﹚×﹙a+2﹚×…×﹙a+b-1﹚.如果﹙x$3﹚$2=3660,那么x=﹙﹚例6.设a⊿b=3a-2b,计算:﹙1﹚﹙5⊿2﹚⊿4的值。

﹙2﹚x⊿﹙4⊿1﹚=7中x的值。

例7.规定a△b=ab+2a, a▽b=2b-a,求﹙8△3﹚▽(9△5)的值例8.同学们在做这样一个数字游戏:一张带有数字的卡片在A、B、C、D四位同学间传递。

当传递给A时,A将该数字乘以5传出;当传递给B时,B将该数字除以2传出;当传递给C时,C将该数字加18再除以2传出;当传递给D 时,D将该数字减去9后交给主持人;那么一张带有18的卡片经过A、B、C、D的传递后,交到主持人手上时卡片上的数字是多少?例9.定义运算“【】”为:【a,b,c,d】=a×b-c×d.(1)计算【23,4,18,5】+【9,10,7,8】的值。

(2)若【x,4,5,8】=2,求x的值。

课后练习1、规定a☆b=ab-a-b+2001,求8☆8的值。

2、规定a△b=3a-2b. ⑴计算:(5÷3)△﹙4÷5﹚△﹙3÷4﹚。

(2)若x△(4△1)=7,求x的值。

3、定义a●b=(a+1) ÷b,那么2●(3●4)的值是多少?4、如果a⊙b=a÷b-b÷a,求2⊙(5⊙3)的值5、设P※Q=(P×Q) ÷4,已知x※(8※5)=10,求x的值。

(完整版)定义新运算

(完整版)定义新运算

第一讲定义新运算一、教学目标:1、知识与技能:理解新定义符号的含义,严格按新的规则操作。

2、过程与方法:经历新定义运算算式转化成一般的+、-、×、÷数学式子的过程,培养学生运用数学转化思想指导思维活动的能力。

3、情意目标:通过将新定义运算转化成一般运算的过程,使学生感受数学中转化的思想方法;体验学习与运用数学法则、规定解决数学问题的成功.二、教学重难点:1、教学重点:理解新定义,按照新定义的式子代入数值。

2、教学难点:把定义的新运算转化成我们所熟悉的四则运算。

三、教学方法:引导发现法四、教学过程:(一)导入:1、看图大比拼(准备几张生活中常见标志的图片)。

2、我做指挥官(用手势代替语言指挥)。

3、在下面的括号内填入适当的运算符号,使得等式成立。

5()2=7 6()3=3 100()2=50 13( )3=394、趣味引导:生活中我们都知道羊和狼在一起时,狼要吃掉羊,所以当狼和羊在一起时,我们用△符号表示狼战胜羊:狼△羊= 羊△狼= 羊△羊= 狼△狼=在动画片《喜洋洋与灰太狼》中,羊群总是能化险为夷战胜狼,因此我们用☆符号表示羊战胜狼:羊☆狼= 狼☆羊= 羊☆羊= 狼☆狼=5、已知符号“#”表示a#b=a+b,求:3#5、5#9、88#13的值?(体现对应思想和解题的三个步骤)加强认识:已知符号“*”表示:a*b=b-a,求:3*9、60*72的值?小结:定义新运算是指运用某种特殊的符号表示的一种特定运算形式;它是人们整合旧的运算规则,利用新的符合表示出的一种运算方式;解决此类问题,关键是要正确理解新定义的算式含义,能够将新定义的运算方法转化为旧的运算规则。

一般新运算问题的解题三个步骤:(1)弄清新符号的算式意义;(2)找准问题中数字与定义算式中字母的对应;(3)将对应数字代入算式计算(二)例题引导:第一类:(直接运算型)例题引导:①表示求两个平均数的运算,则a①b=(a+b)÷2,当 a=5,b=15时,求a①b?例1:已知符号“△”表示:a△b=(a+b)×6,求:10△3, 6△9的值?练习:(1)对定义运算※为a※b=(a+b)×2。

(1)定义新运算(上下)

(1)定义新运算(上下)

(一)定义新运算(上)【前言】:这里讲解的教材是南京大学出版社出版的《数学奥赛天天练》,本书共55讲,是五年级一学年的奥数内容。

本册教材一部分内容是同一版本低年级奥数内容的拓展和延伸,另一部分内容为新增的题型,重点拓展孩子的解题思路,扩大孩子的见识面,发散孩子的思维,向孩子渗透新的解题思想。

对于奥数基础较好的孩子,应鼓励孩子坚持学习、勤于思考、灵活运用。

其中部分专题的一些偏题,可以选做或不做,学习的关键不是会做几道习题,而是领悟每个专题介绍的数学思想和数学方法。

奥数知识源于教材、高于教材,其学习内容与教材大致同步。

在家自学时,可结合教材学习进度,按每周一讲的速度学习,对部分内容的先后顺序也可作适当调整。

随着学习的深入,教程难度在逐步增大,建议家长让孩子在熟练掌握学校数学课程,且学有余力时,再进行奥数探究。

《奥赛天天练》第1讲《定义新运算》。

定义新运算是指人为规定用一个符号和已知运算表达式表示一种新的运算。

在三年级奥数课堂已经初步学习:user3/4092/archives/2009/58778.shtml“定义新运算”是针对已有的常规运算而言的。

例如常见的加、减、乘、除运算,有一定的运算定义,一定的运算符号,一定的运算法则,这些是约定俗成的四则运算。

而新运算的定义,是题目规定的,只在对应题目里有效,相同的符号,在不同的题目里可能有不同的定义。

新定义的运算往往由已学过的四则运算,按照一定的顺序组合而成。

解答这类习题的关键是,认真观察、分析,明确“新运算”的定义,再根据运算定义,找准要计算的习题中的数据与定义中的字母的对应关系,严格遵照定义规定代入数值,完成计算。

注意:①新定义运算中,括号的作用不变;②新定义运算都有自己的特点,不一定满足加法、乘法所满足的运算定律。

《奥赛天天练》第1讲,模仿训练,练习1【题目】:对自然数a,b,规定a※b=3a+2b-2。

求11※10。

【解析】:所求算式11※10中,11就相当于定义中的a,10就相当与定义中的b。

第01讲-定义新运算(教)

第01讲-定义新运算(教)

学科教师辅导讲义学员编号:年级:六年级课时数:3学员姓名:辅导科目:奥数学科教师:授课主题第01讲-定义新运算授课类型T同步课堂P实战演练S归纳总结教学目标①学会理解新定义的内容;②理解新定义内容的基础上能够解决用新定义给出的题目;③学会自己总结解题技巧。

授课日期及时段T(Textbook-Based)——同步课堂一、知识概念1、定义新运算是指运用某种异常的符号表示的一种特定运算形式。

注重:(1)解决此类问题,关键是要准确理解新定义的算式含义,郑重按照新定义的计算顺序,将数值代入算式中,再把它转化为普通的四则运算,然后举行计算。

(2)我们还要知道,这是一种人为的运算形式。

它是使用异常的运算符号,如:*、▲、★、◎、 、Δ、◆、■等来表示的一种运算。

(3)新定义的算式中有括号的,要先算括号里面的。

但它在没有转化前,是不相宜于各种运算定律的。

2、普通的解题步骤是:一是仔细审题,深刻理解新定义的内容;二是排除干扰,按新定义关系去掉新运算符号;三是化新为旧,转化成已有知识做旧运算。

知识梳理典例分析第1 页/共9 页第 3 页/共 9 页 计算(21⊗-31⊗)×32⊗⊗。

【解析】该题看上去比较复杂,但仔细看见,我们可以发现,该题被定义为⊗X=(X-1)×X×(X+1)。

因为把数代入算式中计算比较棘手,我们可以先化简算式后,再计算。

(21⊗-31⊗)×32⊗⊗ = 21⊗×32⊗⊗-31⊗×32⊗⊗ =31⊗-31⊗×32⊗⊗ =31⊗(1-32⊗⊗) = 4321⨯⨯×(1-432321⨯⨯⨯⨯) =4321⨯⨯×(1-41) =4321⨯⨯×43 =321 例6、规定a▲b=5a+21ab-3b 。

求(8▲5)▲X=264中的未知数。

【解析】按照新定义,应该先计算括号里面的,再计算括号外面的,然后解方程即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1讲定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。

解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。

定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。

新定义的算式中有括号的,要先算括号里面的。

但它在没有转化前,是不适合于各种运算定律的。

二、精讲精练【例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。

【思路导航】这题的新运算被定义为:a*b等于a和b两数之和加上两数之差。

这里的“*”就代表一种新运算。

在定义新运算中同样规定了要先算小括号里的。

因此,在13*(5*4)中,就要先算小括号里的(5*4)。

练习1:1、将新运算“*”定义为:a*b=(a+b)×(a-b).求27*9。

2、设a*b=a2+2b,那么求10*6和5*(2*8)。

3、设a*b=3a-b×1/2,求(25*12)*(10*5)。

【例题2】设p、q是两个数,规定:p△q=4×q-(p+q)÷2。

求3△(4△6)。

【思路导航】根据定义先算4△6。

在这里“△”是新的运算符号。

练习2:1、设p、q是两个数,规定p△q=4×q-(p+q)÷2,求5△(6△4)。

2、设p、q是两个数,规定p△q=p2+(p-q)×2。

求30△(5△3)。

3、设M、N是两个数,规定M*N=M/N+N/M,求10*20-1/4。

【例题3】如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么7*4=________;210*2=________。

练习3:1、如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,……那么4*4=________。

2、规定,那么8*5=________。

3、如果2*1=1/2,3*2=1/33,4*3=1/444,那么(6*3)÷(2*6)=________。

【例题4】规定②=1×2×3,③=2×3×4 ,④=3×4×5,⑤=4×5×6,……如果1/⑥-1/⑦ =1/⑦×A,那么,A是几练习4:1、规定:②=1×2×3,③=2×3×4,④=3×4×5,⑤=4×5×6,……如果1/⑧-1/⑨=1/⑨×A,那么A=________。

2、规定:③=2×3×4,④=3×4×5,⑤=4×5×6,⑥=5×6×7,……如果1/⑩+1/⑾=1/⑾×□,那么□=________。

3、如果1※2=1+2,2※3=2+3+4,……5※6=5+6+7+8+9+10,那么x※3=54中,x=________。

【例题5】设a⊙b=4a-2b+1/2ab,求z⊙(4⊙1)=34中的未知数x。

【思路导航】先求出小括号中的4⊙1=4×4-2×1+1/2×4×1=16,再根据x⊙16=4x-2×16+1/2×x×16 = 12x-32,然后解方程12x-32 = 34,求出x的值。

列算式为练习5:1、设a⊙b=3a-2b,已知x⊙(4⊙1)=7求x。

,求2、对两个整数a和b定义新运算“△”:a△b= 2a-b(a+b)×(a-b)6△4+9△8。

(其中3、对任意两个整数x和y定于新运算,“*”:x*y=4xymx+3ym是一个确定的整数)。

如果1*2=1,那么3*12=________。

第2讲简便运算(一)一、知识要点根据算式的结构和数的特征,灵活运用运算法则、定律、性质和某些公式,可以把一些较复杂的四则混合运算化繁为简,化难为易。

二、精讲精练【例题1】计算4.75-9.63+(8.25-1.37)【思路导航】先去掉小括号,使4.75和8.25相加凑整,再运用减法的性质:a-b-c = a-(b+c),使运算过程简便。

练习1:计算下面各题。

1、 6.73-2 又8/17+(3.27-1又9/17)2. 7又5/9-(3.8+1又5/9)-1又1/53. 14.15-(7又7/8-6又17/20)-2.1254. 13又7/13-(4又1/4+3又7/13)-0.75【例题2】计算333387.75×79+790×66661.25【思路导航】利用积的变化规律和乘法分配律使计算简便。

所以:原式=333387.5×79+790×66661.25=33338.75×790+790×66661.25=(33338.75+66661.25)×790=100000×790=79000000练习2:计算下面各题:1. 3.5×1又1/4+125%+1又1/2÷4/52. 975×0.25+9又3/4×76-9.753. 9又2/5×425+4.25÷1/604. 0.9999×0.7+0.1111×2.7【例题3】计算:36×1.09+1.2×67.3【思路导航】此题表面看没有什么简便算法,仔细观察数的特征后可知:36 = 1.2×30。

这样一转化,就可以运用乘法分配律了。

所以原式=1.2×30×1.09+1.2×67.3=1.2×(30×1.09+1.2×67.3)=1.2×(32.7+67.3)=1.2×100=120练习3:计算:1. 45×2.08+1.5×37.62. 52×11.1+2.6×7783. 48×1.08+1.2×56.84.72×2.09-1.8×73.6【例题4】计算81.5×15.8+81.5×51.8+67.6×18.5【思路导航】先分组提取公因数,再第二次提取公因数,使计算简便。

所以原式=81.5×(15.8+51.8)+67.6×18.5=81.5×67.6+67.6×18.5=(81.5+18.5)×67.6=100×67.6=6760练习5:1、53.5×35.3+53.5×43.2+78.5×46.52、235×12.1++235×42.2-135×54.33、3.75×735-3/8×5730+16.2×62.5第3讲简便运算(二)一、知识要点计算过程中,我们先整体地分析算式的特点,然后进行一定的转化,创造条件运用乘法分配律来简算,这种思考方法在四则运算中用处很大。

二、精讲精练【例题1】计算:1234+2341+3412+4123【思路导航】整体观察全式,可以发现题中的4个四位数均由数1,2,3,4组成,且4个数字在每个数位上各出现一次,于是有原式=1×1111+2×1111+3×1111+4×1111=(1+2+3+4)×1111=10×1111=11110练习1:1、23456+34562+45623+56234+623452、45678+56784+67845+78456+845673、124.68+324.68+524.68+724.68+924.68【例题2】计算:2又4/5×23.4+11.1×57.6+6.54×28【思路导航】我们可以先整体地分析算式的特点,然后进行一定的转化,创造条件运用乘法分配律来简算。

所以原式=2.8×23.4+2.8×65.4+11.1×8×7.2=2.8×(23.4+65.4)+88.8× 7.2=2.8×88.8+88.8×7.2=88.8×(2.8+7.2)=88.8×10=888练习2:计算下面各题:1、99999×77778+33333×666662、34.5×76.5-345×6.42-123×1.453、77×13+255×999+510【例题3】计算(1993×1994-1)/(1993+1992×1994)【思路导航】仔细观察分子、分母中各数的特点,就会发现分子中1993×1994可变形为1992+1)×1994=1992×1994+1994,同时发现1994-1 = 1993,这样就可以把原式转化成分子与分母相同,从而简化运算。

所以原式=【(1992+1)×1994-1】/(1993+1992×1994)=(1992×1994+1994-1)/(1993+1992×1994)=1练习3:计算下面各题:1、(362+548×361)/(362×548-186)2、(1988+1989×1987)/(1988×1989-1)3、(204+584×1991)/(1992×584―380)―1/143【例题4】有一串数1,4,9,16,25,36…….它们是按一定的规律排列的,那么其中第2000个数与2001个数相差多少?练习4:计算:1、19912-199022、99992+199993、999×274+6274【例题5】计算:(9又2/7+7又2/9)÷(5/7+5/9)【思路导航】在本题中,被除数提取公因数65,除数提取公因数5,再把1/7与1/9的和作为一个数来参与运算,会使计算简便得多。

原式=(65/7+65/9)÷(5/7+5/9)=【65×(1/7+1/9)】÷【5×(1/7+1/9)】=65÷5=13练习5:计算下面各题:1、(8/9+1又3/7+6/11)÷(3/11+5/7+4/9)2、(3又7/11+1又12/13)÷(1又5/11+10/13)3、(96又63/73+36又24/25)÷(32又21/73+12又8/25)第4讲 简便运算(三)一、知识要点在进行分数运算时,除了牢记运算定律、性质外,还要仔细审题,仔细观察运算符号和数字特点,合理地把参加运算的数拆开或者合并进行重新组合,使其变成符合运算定律的模式,以便于口算,从而简化运算。

相关文档
最新文档