最新人教版九年级数学下册26.1.1反比例函数课件
合集下载
26.1.1反比例函数(教学课件)-九年级数学下册同步教学精品课件(人教版)

典例小结
3. 反比例关系与反比例函数
(1)反比例关系:如果 = (k是常数, ≠ 0),那么
与这两个变量成反比例关系,这里的, 可以表示
多项式或者单项式;
2
如果 与 成反比例,则 =
或者 ∙ 2 = (k 为常数,k≠0)
2
(k 为常数,k≠0)
新知讲解
典例小结
人教版·九年级·下册·第二十六章·反比例函数
第二十六章 反比例函数
26.1.1
反比例函数
学习目标
1
理解反比例函数的概念和意义,并会判断一个给定的函数
是不是反比例函数;
2
能根据实际问题和已知条件用待定系数法求出反比例函数
的解析式;理解反比例关系与反比例函数的区别与联系;
3
通过对反比例函数的研究和对一次函数(正比例函
所以,这两个变量之间具有函数关系;
. ×
函数解析式为: =
小结:
问题1 中得到的函数1: =
问题2 中得到的函数2: =
. ×
问题3 中得到的函数3: =
请问以上三个函数有什么共同点?
都是分式的形式
且分子上都是非零常数
= (k是非零常数)
(1)写出关于的函数解析式;
(2)当 = 4时,求的值;
解: 1 ∵ 是 的反比例函数
则设 关于的函数解析式为 = ( ≠ 0)
将 = 2, = 6 代入 = 中得 6 =
2
∴ = 12
12
∴ 关于的函数解析式为 =
(2)将 = 4 代入 =
3. 反比例关系与反比例函数
(1)反比例关系:如果 = (k是常数, ≠ 0),那么
与这两个变量成反比例关系,这里的, 可以表示
多项式或者单项式;
2
如果 与 成反比例,则 =
或者 ∙ 2 = (k 为常数,k≠0)
2
(k 为常数,k≠0)
新知讲解
典例小结
人教版·九年级·下册·第二十六章·反比例函数
第二十六章 反比例函数
26.1.1
反比例函数
学习目标
1
理解反比例函数的概念和意义,并会判断一个给定的函数
是不是反比例函数;
2
能根据实际问题和已知条件用待定系数法求出反比例函数
的解析式;理解反比例关系与反比例函数的区别与联系;
3
通过对反比例函数的研究和对一次函数(正比例函
所以,这两个变量之间具有函数关系;
. ×
函数解析式为: =
小结:
问题1 中得到的函数1: =
问题2 中得到的函数2: =
. ×
问题3 中得到的函数3: =
请问以上三个函数有什么共同点?
都是分式的形式
且分子上都是非零常数
= (k是非零常数)
(1)写出关于的函数解析式;
(2)当 = 4时,求的值;
解: 1 ∵ 是 的反比例函数
则设 关于的函数解析式为 = ( ≠ 0)
将 = 2, = 6 代入 = 中得 6 =
2
∴ = 12
12
∴ 关于的函数解析式为 =
(2)将 = 4 代入 =
人教版数学九年级下《26.1.1反比例函数》ppt课件

变窄. 当车速为 50km/h 时,视野为 80 度,如果视野 f
(度) 是车速 v (km/h) 的反比例函数,求 f 关于 v 的函数
解析式,并计算当车速为100km/h 时视野的度数.
解:设 f
k v
. 由题意知,当 v =50时,f =80,
所以 8 0 k . 解得 k =4000. 因此 f 4 0 0 0 .
x
k 必须满足 k≠2 且 k≠-1 .
二 确定反比例函数的解析式
例2 已知 y 是 x 的反比例函数,并且当 x=2时,y=6.
(1) 写出 y 关于 x 的函数解析式;
提示:因为 y 是 x 的反比例函数,所以设 y
k x
.
把 x=2 和 y=6 代入上式,就可求出常数 k 的值.
解:设 y
k x
1xy180. 2
B
D
所以变量 y与 x 之间的关系式为 y 3 6 0 , x
它是反比例函数.
C
当堂练习
1. 下列函数中,y 是 x 的反比例函数的是
(A)
A. y 1
2x
B. y 1
x2
C. y 1
2 x
D. y 1 1
x
2. 生活中有许多反比例函数的例子,在下面的实例中,
x 和 y 成反比例函数关系的有
第二十六章 反比例函数
26.1 反比例函数
26.1.1 反比例函数
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1. 理解并掌握反比例函数的概念. (重点) 2. 从实际问题中抽象出反比例函数的概念,能根据已知
条件确定反比例函数的解析式. (重点、难点)
人教版九年级数学 下册 26.1 反比例函数 课件(共24张PPT)

(2)位于第二、四象限的是 ① ③ .
想一想:
(1)上述四个函数中,k 值分别是多少?
① 2
②1 3
③ 10 ④ 3
7
100
(2)当 k>0 时,反比例函数图象的两个分支位于第几象限?
(3)当 k<0 时,反比例函数图象的两个分支位于第几象限?
例题探究(三)
问题2 在反比例函数① y 2 ; ② y 1 ;
下列问题中,变量间具有函数关系吗?如果有,请 直接写出解析式. 问题2 某住宅小区要种植一块面积为 1 000 m2的矩 形草坪,草坪的长 y(单位:m)随宽 x(单位:m) 的变化而变化. 问题3 已知北京市的总面积为 1.68×104 km2 ,人 均占有面积 S(单位: km2 /人)随全市总人口 n(单 位:人)的变化而变化.
2.函数图象经过原点吗?为什么? 3.当自变量从小到大变化时,图象如何变化?与问 题 3 中的有什么不同?为什么会有这样的变化? 4.如何描述函数的性质?
例题探究(二)
问题5 反比例函数 y 6 与 y 6 的图象有什么
x
x
共同特征?有什么不同点?不同点是由什么决定的?
问题6 k 取不同的值时,上述结论是否适用于所有 反比例函数?
例题探究(二)
问题2 画出反比例函数 y 6 和 y 12 的图象.
x
x
函数图象画法 描点法
列 表
描 点
连 线
x … -12 -6 -4 -3 -2 -1 1 2
y6 x
…
-0.5
-1
-1.5 -2
-3
-6
6
3
y 12 … x
-1
-2 -3
26.1.1 反比例函数 课件-人教版数学九年级下册

感悟新知
知1-练
1-1.[月考·成都锦江区]下列函数中,y是x的反比例函数的 是( B )
A. y=x-4 1 C. y=32x
B. y=25x D. y=x12
感悟新知
知2-讲
知识点 2 反比例关系与反比例函数的区别与联系
1. 如果xy=k(k为常数,k ≠ 0),那么x与y这两个量成反比例 关系,这里的x和y既可以是单项式,也可以是多项式.
学习目标
第二十六章 反比例函数
26.1 反比例函数
26.1.1 反比例函数
学习目标
1 课时讲解 反比例函数的定义
反比例关系与反比例函数的区别与联系 求反比例函数的解析式 在实际问题中建立反比例函数模型
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
感悟新知
知识点 1 反比例函数的定义
知1-讲
0),整理,得y=x-k 5-2,显然,y不是x的反比例函数.
感悟新知
知2-练
例 2 已知y=y1+y2,y1与x成正比例,y2与x成反比例,并 且当x=2时,y=-4;当x=-1 时,y=5,求y关于x 的函数解析式.
思路引导:
感悟新知
解:∵ y1与x成正比例,∴设y1=k1x(k1≠0).
知2-练
感悟新知
(2)求当x=8时的函数值y. 【解】当 x=8 时,y=2×(8-1)+68=1434.
知2-练
感悟新知
知识点 3 求反比例函数的解析式
知3-讲
1. 确定反比例函数解析式的方法是待定系数法,由于在反
比例函数y=,即可求出k的值,从而确 定其解析式.
综合应用创新
把x=3代入y=-2x,得y=-2x. 所以y是x的反比例函数,函数解析式为y=-2x. 补全表格如下:
人教版九年级数学下册第26章反比例函数 26.1.1 反比例函数 课件

(((((((((((453534434254))))))))))))-yyxyyx3yyxxyyyxyyy121x+1x1212=2xx11x0x21xx
(5)
y
2
x
不具备 y k 的形式,所以y不是x的反
比例函数。 x
可以改写成
y
2 3x
,所以y是x的反
比例函数,比例系数k= 2
否
是
是
是
⑨ y 1
x2
否
⑩ y ( 2 3)x1 ⑾
是
1000 y 0 x
是
“聚焦”自变量
对于反比例函数 y 1000
x
①当x=50时,y=__2_0__ ②当x=-100时,y=__-_1_0_
③X的值能不能取0?为什么? 函数 y k(k≠0)中,自变量x的取值范围是不为0的一 切实数。x ④某住宅小区要种植一个面积为1000m2的矩形草坪,草 坪的长y(单位:m)随宽x(单位:m)的变化而变化。
4
变式2、已知函数 y = y1 + y2,y1与x 成正比例,y2与x成
反比例,且当x=1时,y=3;当x=2时,y=3。
解((12:))(1求 当)设yx与=y41x时的,k函1xy数,的关y值2 系。式kx2;方将求法两出:组函先值数分代的别入值设所。设y1,的y2函与数x的关关系系式式中,,
x
4.反比例函数 y k 中,当x的值由4增加
x
到6时,y的值减小3,求这个反比例函数的
解析式. y 36 x
“极限”大挑战
5.(1)已知y与z成正比例,z与x成正比例。问y是x
的什么函数?
y与x成正比例
人教版初三数学9年级下册 第26章(反比例函数)26.1.1 反比例函数 课件(共17张ppt)

复习回顾
➢什么是函数?
一般地,在一个变化过程中,如果有两个 变量x与y ,并且对于x的每个确定的值,y 都有唯一确定的值与其对应,那么我们就
说x是自变量,y是x的函数。
复习回顾
➢我们学习过的函数有哪些?它们的一般形式是什么?
一次函数: y=kx+b (k,b是常数,k≠0)
正比例函数(特殊的一次函数):y=kx (k是常 数,k≠0),其中k为比例系数
v
1463
(3)你能写出 v 关于 t 的解析
t
式吗?
思考: 下列问题中,变量间具有函数关系吗?如
果有,请直接写出解析式.
问题2 某住宅小区要种植一块面积为 1 000 m2的矩形 草坪,草坪的长 y(单位:m)随宽 x(单位:m)的
变化而变化.
y 1 000 x
x y
问题3 已知北京市的总面积为 1.68×104 km2 ,人 均占有面积 S(单位: km2 /人)随全市总人口 n(单 位:人)的变化而变化.
(1)写出 y 关于 x 的函数解析式;
(2)当 x = 4 时,求 y 的值.
(3)当 y =8时,求x的值.
变式训练
已知 y 与 x2 成反比例,并且当 x=3 时,y=4.
(1)写出 y 关于 x 的函数解析式; (2)当 x=1.5 时,求 y 的值;
(3)当 y=6 时,求 x 的值.
规律提炼
课堂小结 反比例函数的定义 一般形式 如何求解析式
拓展提高
1、如果y是z的反比例函数,z是x的反比例函数,那 么y与x具有怎样的函数关系? 2、如果y是z的反比例函数,z是x的正比例函数,且 x≠0,那么y与x具有怎样的函数关系?
二次函数:y ax2 bx c (a≠0,且a,b,c均
➢什么是函数?
一般地,在一个变化过程中,如果有两个 变量x与y ,并且对于x的每个确定的值,y 都有唯一确定的值与其对应,那么我们就
说x是自变量,y是x的函数。
复习回顾
➢我们学习过的函数有哪些?它们的一般形式是什么?
一次函数: y=kx+b (k,b是常数,k≠0)
正比例函数(特殊的一次函数):y=kx (k是常 数,k≠0),其中k为比例系数
v
1463
(3)你能写出 v 关于 t 的解析
t
式吗?
思考: 下列问题中,变量间具有函数关系吗?如
果有,请直接写出解析式.
问题2 某住宅小区要种植一块面积为 1 000 m2的矩形 草坪,草坪的长 y(单位:m)随宽 x(单位:m)的
变化而变化.
y 1 000 x
x y
问题3 已知北京市的总面积为 1.68×104 km2 ,人 均占有面积 S(单位: km2 /人)随全市总人口 n(单 位:人)的变化而变化.
(1)写出 y 关于 x 的函数解析式;
(2)当 x = 4 时,求 y 的值.
(3)当 y =8时,求x的值.
变式训练
已知 y 与 x2 成反比例,并且当 x=3 时,y=4.
(1)写出 y 关于 x 的函数解析式; (2)当 x=1.5 时,求 y 的值;
(3)当 y=6 时,求 x 的值.
规律提炼
课堂小结 反比例函数的定义 一般形式 如何求解析式
拓展提高
1、如果y是z的反比例函数,z是x的反比例函数,那 么y与x具有怎样的函数关系? 2、如果y是z的反比例函数,z是x的正比例函数,且 x≠0,那么y与x具有怎样的函数关系?
二次函数:y ax2 bx c (a≠0,且a,b,c均
26.1.1 反比例函数课件(共22张PPT)

x
例如:
①y-1与x+1成反比例,则y-1= k ; x和y不是反比例函数
②若y与x2成反比例,则y=
k x2
x1
成反比例关系,x和y不是反比例函数
③反比例函数y= k (k≠0) 必成反比例关系
x
26.1.1 反比例函数
(5) y k (k为常数) 6 xy 123 x 解:(5)k可能为0,不是反比例函数
x1
26.1.1 反比例函数
课堂小结
形如y k (k为常数,k ≠ 0) x ,y均不等于0.
概念
x
其他形式:1. xy = k ; 2. y = kx-1;3. y k
反 比
( k 为常数,k ≠ 0)
x
例
x, y可以表示单独字母,
函
x与y成反比例 多项式或单项式
数 成反比例与反
比例函数的区别
7 y - 2 8 y 6
3x
x1
解:(6)是反比例函数,可化为 y
123 x
,自变量x≠0,因变量y≠0
2
解:(7)是反比例函数,可化为 y 3 ,自变量x≠0,因变量y≠0
x
解:(8)不是反比例函数
26.1.1 反比例函数
试一试
根据上面的练习,你能帮小唯唯总结一下反比例函数有哪些形式吗?
一般形式
(
k2
≠
0
),
则
y
k1
x
1
k2 x
1
.
∵ x = 0 时,y = -3;x = 1 时,y = -1,
∴ -3= -k1+k2
1
1 2
k2
∴k1 = 1,k2 = -2.
例如:
①y-1与x+1成反比例,则y-1= k ; x和y不是反比例函数
②若y与x2成反比例,则y=
k x2
x1
成反比例关系,x和y不是反比例函数
③反比例函数y= k (k≠0) 必成反比例关系
x
26.1.1 反比例函数
(5) y k (k为常数) 6 xy 123 x 解:(5)k可能为0,不是反比例函数
x1
26.1.1 反比例函数
课堂小结
形如y k (k为常数,k ≠ 0) x ,y均不等于0.
概念
x
其他形式:1. xy = k ; 2. y = kx-1;3. y k
反 比
( k 为常数,k ≠ 0)
x
例
x, y可以表示单独字母,
函
x与y成反比例 多项式或单项式
数 成反比例与反
比例函数的区别
7 y - 2 8 y 6
3x
x1
解:(6)是反比例函数,可化为 y
123 x
,自变量x≠0,因变量y≠0
2
解:(7)是反比例函数,可化为 y 3 ,自变量x≠0,因变量y≠0
x
解:(8)不是反比例函数
26.1.1 反比例函数
试一试
根据上面的练习,你能帮小唯唯总结一下反比例函数有哪些形式吗?
一般形式
(
k2
≠
0
),
则
y
k1
x
1
k2 x
1
.
∵ x = 0 时,y = -3;x = 1 时,y = -1,
∴ -3= -k1+k2
1
1 2
k2
∴k1 = 1,k2 = -2.
26.1.1反比例函数课件人教版数学九年级下册

(1) 京沪线铁路全程为1463 km,某次列车的平均速度v
(单位:km/h) 随此次列车的全程运行时间 t (单位:h)
的变化而变化;
v 1 463 t
(2) 某住宅小区要种植一块面积为 1000 m2 的矩形草坪, 草坪的长 y (单位:m) 随宽 x (单位:m)的变化而变化;
y 1 000 x
8.已知y与x成反比例,且当x=-3时,y=2.
当杂技演员表演滚钉板的节目时,观众们看到密密麻麻的钉子,都为他们捏一把汗,但有人却说钉子越多,演员越安全,钉子越少反而越危险,你认同吗?为什么?
(1)写出y关于x的函数解析式; (2)当x=9时,求y的值.
1.如果等腰三角形的面积为10,底边长为x,底边上的高为y,则y与x的函数关系式为( )
归纳新知
概念、三种表达方式
反
比
例
用待定系数法求反比例函数解析式
函
数
建立反比例函数模型
课堂练习
1.如果等腰三角形的面积为10,底边长为x,底边上的高为y,则y与x的 函数关系式为( C )
A.y=1x0
B.y=x5 C.y=2x0
D.y=2x0
2.已知水池的容量为50立方米,每小时灌水量为n(立方米),注满水所需 时间为t(小时),那么t与n之间的函数关系式是( C )
9.在xy+2=0中,y是x的( )
下列问题中,变量间具有函数关系吗?如果有,请写出它们的解析式.
k 6 1.如果等腰三角形的面积为10,底边长为x,底边上的高为y,则y与x的函数关系式为( ) = ,解得 k=-6,∴y 关于 x 的函数解析式为 y=- 下列问题中,变量间具有函数关系吗?如果有,请写出它们的解析式. -3 x 了解反比例函数的概念,能判断一个给定的函数是否为反比例函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y 1000 . x
(3) 已知北京市的总面积为1.68×104 km2 ,人均占有面
积 S (单位:km2/人) 随全市总人口 n (单位:人) 的变化
而变化.
1.68 104
S
.
n
探究新知 传授新知
【观察】这三个函数解析式有什么共同点?
1463
1000
1.68 104
v
y
S
t
x
n
都是 y = k 的形式,其中k是非零常数。
下列函数:(1)
yLeabharlann x 4,(2)y
3 x
,
(3)xy=9,(4)
y
5 x 1
,(5)y
2 3x
,
(6) y=2x-1,(7)y 3 x2 ,
5
其中是反比例函数的是_(__2_)__(_3_)__(_5_)_.
19
课堂检测
基础巩固题
2.苹果每千克x元,花10元钱可买y千克的苹果,则y与x之间
y 10
用待定系数法求反比例函数解 析式
建立反比例函数模型
yk x
.把 x=2 和 y=6
代入上式,就可求出常数 k 的值.
解:(1)设
y k. x
因为当
x=2时,y=6,所以有
6 k. 2
解得 k =12. 因此 y 12 .
x
(2)把 x=4 代入
y
12 ,得
x
y 12 3. 4
探究新知
归纳总结
用待定系数法求反比例函数解析式的一般步骤是:
(1)设,即设所求的反比例函数解析式为
k2 x 1
.
∵ x = 0 时,y =-3;x =1 时,y = -1,
∴
-3=-k1+k2 ,
1
1 2
k2
,
∴k1=1,k2=-2.
∴
y
x 1
2. x 1
课堂检测
拓广探索题
(2)
当
x1 2
时,y 的值.
解:把
x1 2
代入
(1)
中函数关系式,
得 y 11.
2
课堂小结
反 比 例 函 数
反比例函数:定义/三种表达 方式
,当x=-3时,y=
2
.
21
课堂检测
能力提升题
小明家离学校 1000 m,每天他往返于两地之间,有时 步行,有时骑车.假设小明每天上学时的平均速度为 v ( m/min ),所用的时间为 t ( min ).
(1) 求变量 v 和 t 之间的函数关系式;
解: v 1000 (t>0). t
课堂检测
乘积的一半,所以 S菱形ABCD
1 2
xy
180.
B
D
所以变量 y与 x 之间的关系式为 y 360, x
它是反比例函数.
C
巩固练习
连接中考
(2018•柳州)已知反比例函数的解析式为
y
a 2,则a的
x
取值范围是( C )
A.a≠2
B.a≠﹣2 C.a≠±2 D.a=±2
课堂检测
基础巩固题
1.
课堂检测
拓广探索题
已知 y = y1+y2,y1与 (x-1) 成正比例,y2 与 (x + 1) 成反比例,
当 x=0 时,y =-3;当 x =1 时,y = -1,求:
(1) y 关于 x 的关系式; 解:设 y1 = k1(x-1) (k1≠0),
y2
k2 x 1
(k2≠0),
则
y
k1
x
1
的函数解析式为______x___.
3.矩形的面积为4,一条边的长为x,另一条边的长为y,则y
与x的函数解析式为
y4 x
.
20
课堂检测
基础巩固题
4.若函数 y (3 m)x8m2 是反比例函数,则m的取值
是 3.
5.已知y与x成反比例,且当x=-2时,y=3,则 y与x之间的函
数解析式是
y
6 x
人教版 数学 九年级 下册
26.1 反比例函数
26.1.1 反比例函数
1
导入新知 当杂技演员表演滚钉板的节目时,观众们看到密密麻麻
的钉子,都为他们捏一把汗,但有人却说钉子越多,演员越 安全,钉子越少反而越危险,你认同吗?为什么?
2
素养目标
3. 能根据实际问题中的条件确定反比例函数 的解析式,体会函数的模型思想. 2. 能判断一个给定的函数是否为反比例函数, 并会用待定系数法求函数解析式. 1. 理解并掌握反比例函数的概念.
能力提升题
(2) 小明星期二步行上学用了 25 min,星期三骑自行车上 学用了 8 min,那么他星期三上学时的平均速度比星期二快 多少? 解:当 t = 25 时, v 1000 40;
25 当 t = 8 时, v 1000 125 ;
8 125-40 = 85 ( m/min ).
答:他星期三上学时的平均速度比星期二快 85 m/min.
探究新知
知识点 1 反比例函数的定义
下列问题中,变量间具有函数关系吗?如果有,请写出它 们的解析式.
(1) 京沪线铁路全程为1463 km,某次列车的平均速度v (单
位:km/h) 随此次列车的全程运行时间t (单位:h) 的变化而
变化;
v 1463 . t
探究新知
(2) 某住宅小区要种植一块面积为 1000 m2 的矩形草坪, 草坪的长 y (单位:m) 随宽 x (单位:m)的变化而变化;
k . 解得 k =4000.
50
因此
f 4000 . v
当 v=100 时,f =40.
所以当车速为100km/h 时视野为40度.
巩固练习
5. 如图,已知菱形 ABCD 的面积为180,设它的两条对角线
AC,BD的长分别为x,y. 写出变量 y与 x 之间的关系式,并
指出它是什么函数.
A
解:因为菱形的面积等于两条对角线长
A.
y
x
8
5
C. xy =5
B.
y3x 2
D.
y
2 x2
探究新知
素养考点 1 利用反比例函数的定义求字母的值
例1 已知函数 y 2m2 m 1 是反比例 x2m2 3m3
函数,求 m 的值.
解:因为 y 2m2 m 1 x2m2 3m3 是反比例函数,
所以 2m2 + 3m-3=-1 2m2 + m-1≠0
y k, x
y kx1,
xy k.
巩固练习
1.下列函数中哪些是反比例函数,并指出相应k的值?
① y =3x-1
是,k = 3
② y =2x2
不是
③ y1
x
是,k = 1
④ y 2x
3 不是
⑤ y =3x-1
不是
⑥ xy 1 3
是, k 1 3
⑦ y 3 2x
是,k 3 2
巩固练习
2.在下列函数中,y 是 x 的反比例函数的是( C )
(3)若函数 y (m 2)xm25 是反比例函数,则m的
值为__2____.
12
探究新知
素养考点 2 利用待定系数法求反比例函数的解析式
例2 已知 y 是 x 的反比例函数,并且当 x=2时,y=6.
(1) 写出 y 关于 x 的函数解析式;
(2) 当 x=4 时,求 y 的值. 分析:因为 y 是 x 的反比例函数,所以设
要根据具体情况来确定.
例如,在前面得到的第二个解析式
y 1000 x
,x的
取值范围是 x>0,且当 x 取每一个确定的值时,y 都
有唯一确定的值与其对应.
探究新知
3.形如 y kx 1 (k 0)的式子是反比例函数吗? 式子 xy k(k 0) 呢?
反比例函数的三种表达方式:(注意 k ≠ 0)
yk x
(k≠0).
(2)代,即将已知条件中对应的 x、y 值代入
于k的方程.
yk x
中得到关
(3)解,即解方程,求出 k 的值.
(4)定,即将
k 值代入 y
k x
中,确定函数解析式.
巩固练习
4.已知 y 与 x+1 成反比例,并且当 x = 3 时,y = 4.
(1) 写出 y 关于 x 的函数解析式;
(2) 当 x = 7 时,求 y 的值.
解:(1)
设
y
k x 1
,因为当
x = 3 时,y =4 ,
所以有 4 k
31
,解得
k =16,因此
y 16 x 1
.
(2)
当
x = 7 时,
y 16 2. 7 1
探究新知
知识点 2 建立反比例函数的模型解答问题
人的视觉机能受运动速度的影响很大,行驶中司机在驾驶室内观察
x
一般地,形如
yk x
(k是常数,k≠0)的函数称为
反比例函数,其中x是自变量,y是函数.
探究新知
反比例函数:形如 y kx(k为常数,且k≠0) 【思考】 1.自变量x的取值范围是什么?
因为 x 作为分母,不能等于零,因此自变量 x
的取值范围是所有非零实数.
2.在实际问题中自变量x的取值范围是什么?
前方物体是动态的,车速增加,视野变窄. 当车速为 50km/h 时,视野
为 80 度,如果视野 f (度) 是车速 v (km/h) 的反比例函数,求 f 关于 v 的
函数解析式,并计算当车速为100km/h 时视野的度数.