智能机器人客服的关键指标与数据运营

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《智能机器人客服的关键指标与数据运营》当前人工智能技术蓬勃发展,机器学习技术逐步应用到企业的技术体系中。很多企业也都在加大这方面的投入,出现了很多新的应用和产品。就如大家感受到的,长期以来作为企业IT技术投入并不高的客服中心组织,现在却受到了更多业界的关注。

国内企业信息化大概从90年代开始,从那时开始数据作为信息的主要载体开始进入企业的运营管理,在零几年初逐步成熟,典型代表是商业智能系统成为企业重要基础设施,并为企业的经营和管理发挥重要作用,CRM开始在企业成熟应用。这个时期的数据主要以企业的订单交易数据和供应链数据为主。

企业的客服也从过去的一对一、实时沟通模式,升级成为一对多、异步沟通的服务形式,不仅可以一个平台接待全渠道客户发起的客服请求,通过客服智能机器人的接入更是成倍的提高了工作效率,节约大量的客服成本。

智能客户服务中心的运营管理主要从以下三个方面着手:

其一,客服团队管理方面:客服流动率(行业25%)、客户咨询率(行业5%)、咨询接通率(行业98%)、客服实际工作率(行业92%)这几个是核心数字化指标,首先保证客服可以在岗位上开心、持久的工作,并且不断提高自己的技能获得更好的发展空间。然后是整体业务的健康发展,保证客户的咨询数量,客户发起的咨询请求能够及时有效的被客服接起。总之,客服经理需要密切关注以上几个核心指标,以便打造一支稳定、高效、优质的智能客服团队。

其二,客服业务管理方面:客服平均日接待量(行业200次/天)、平均会话时间(行业8.5分钟)、平均会话消息条数(行业17-25条)、客服较大接待量设置(行业10个)、会话消息比(行业7:7:1)、咨询转接率(行业3%)、客户排队时间(行业150秒)、时候处理时间(行业60秒)是关键指标。其中主要以工作量、消息数量、同时接待的会话数量以及客户排队数据为主。

其三,客服质量管理方面:客服首次响应时间(行业20秒)、平均响应时间(行业30秒)、咨询好评率(行业97%)、质检合理率(行业95%)、满意度评价参评率(行业50%)、质检率(行业

30%)、一次性问题解决率(行业85%)这几个核心数据。恰当控制客服首响、平响时间非常重要。

随着互联网的发展,大概在09年前后,大数据的概念逐步成为数据的代名词。同时互联网技术对数据的技术领域的起到了重要的推动作用,在集群运算,实时计算,非结构化数据处理等方面为整个数据技术领域的提供了巨大的拓展。而在数据内容方面,由于互联网和移动互联网对C端用户行为数据的采集能力增强,使企业能够更好的了解和描述客户。

机器人智能客服几乎占据我们在线服务量的50%以上,它的质量好坏直接关系到客户对于服务评价,笔者认为用以衡量机器人客服的关键指标几乎不太可能是某一个指标,仅有一个指标你也很难通过它来很自信的判断,我们机器人服务客户是不错的!

智能机器人客服的关键指标

小编认为应该是多维的综合性指标去看待、分析和提升,我们的指标体系有五个关键指标,分别是“问题识别率”、“拨测准确

率”、“答案满意度”、“服务满足率”和“调研满意度”,下文中一一阐述具体含义和操作方法,具体指标的定义请看下表:

一、拨测准确率:更笨但更真实的问题识别率

拨测准确率采用的是一种实验的方法,即用一定的公司内部业务管理人员的人力,采取模拟客户问题的方法和机器人实际开展对话,记录结果的正确与否,人工判断机器人回答准确的数量占到总问题数的比例。

这个指标的好处在于,是人脑判断的对错,也是模拟客户的角度去看待对错,所以在样本量越大的情况下,我们认为这个指标越真实。以我们的实践来看,拨测准确率的数据比问题识别率要低3-4个点,即在90%左右的水平。

二、问题识别率:行业中普遍应用的衡量指标

问题识别率是业内主流客服机器人服务提供商或企业的工作逻辑,它指的是机器人能识别出客户的问题数与所有问题数的比例。

简单理解,智能机器人的后台逻辑是通过算法把客户的问题、知识标准问法和知识标准答案三者对应匹配关联,从而实现机器人的自动应答,在这个过程中,从客户的千奇百怪的问题或者问法,机器人可以分析语义并寻找到知识标准答案,就算是问题识别对了,也就是给问题识别率加了一分。

而我们从做服务的角度来看,常常会怀疑这个数据,因为实际经验中自己去使用机器人的时候,它们好像没有那么智能啊,所以,这也从一个侧面说明了,我们需要有另外的一整套指标来衡量,而不仅仅是单一的问题识别率。

三、答案满意度:迅速提升回答效果的基础

客户是智能机器人的较终使用者,所以只有真实的客户是否认同机器人的回答才是更真实的数据情况,普遍意义上可以有两种典型的调研方式:

1、在机器人每回答一个问题的结束都设置一个评价小尾巴,客户对逐条问题都可以选择评价,并评价是否满意这条回答。这样做

的好处是,通过大量的数据积累,可快速定位评分相对低的答案,然后回炉进行优化,以此往复,不断提升。

2、调研客户对忠仆一号的客服机器人服务的完整感知,是否满意;这样的好处是没有那么频繁的骚扰客户,且评价具有整体性,但是对于具体的提升帮助不够明显。

四、调研满意度:有丰富内涵的常规方法

设计一个调研问卷,用智能语音接听的方式,针对近期接受过机器人服务的客户开展调研,这个方法很常规,这里就不赘述。在一定样本量的基础上,这个数据应该较大概率的贴近客户的真实感知,并且通过设计问卷的细项,我们可以找到具体的客户认为机器人不满的点在哪里,同时加以提升和修正。

这个方法虽然很老土,但是很实用;行业不同,调研的内容不同,这个数据的平均参考值也不同,但一般而言,85%会是一个较为合理的衡量标准。

五、服务满足率:用脚投票的真实记录

基本上,在线客服的行业的排列模式普遍是“智能语音接听机器人+在线人工服务”,机器人在前端解决大部分简单、重复的问题,在机器人回答后则开放引导人工的入口,当客户不满意机器人的答案或者有更高的要求的时候,客户可以有两种选择:

第一,通过人工入口,点击进入人工服务。

第二,受不了了直接退出拨打同企业的人工服务热线。

“服务满足率”这个指标就是通过客户轨迹监控,客户在进入机器人服务以后,在一定时间内没有点击进入人工在线服务,且没有拨打人工热线服务的比例是多大。这个指标清晰直观的可以看到客户用脚投票的情况,也可以辅助的反映机器人的解答客户问题能力。

使用机器人较终是为了替代人力劳动,降低人工成本,因此监控客户在忠仆一号客服机器人上完整解决问题的比例,对于智能机器人客服而言,意义很重大。在业内,基本上没有相关可以参考的行业平均值,我们的情况在85%左右。

相关文档
最新文档