电力系统自动控制技术(电力系统电压与无功)
第四章电力系统电压调整和无功功率控制技术
2020/4/8
电力系统自动化
21
解:最大负荷归到高压侧
U' 2max
89.37(KV)
最小负荷归到高压侧
U' 2min
105.61(KV)
P.111
① 选择变比 最小负荷
Ut
U' 2min
U2min
U2N
105.6111 110.69(KV) 10.5
规格化
取110+0%抽头
K
110 10
)
补偿前后相同 U1,可得
XC
U2c Q
U2c
U2
PR QX U2c
PR QX U2
有多种(串并联组成)
补偿度
Kc
xC xL
一般1-4
2020/4/8
m
n
电力系统自动化
有例题 P.113
24
“串补”与“并补” “四”与“三”都可以提高 U2,减小有功损耗
“串补”: 直接减小U 提高U2
过激运行:向系统提供感性无功功率 欠激运行:从系统吸收感性无功功率
大小 改变励磁 →平滑改变无功 方向
实现调压
输出无功功率随端压的下降而增加
同步电动机:过激运行时向系统提供感性无功
2020/4/8
电力系统自动化
9
⑶ 并联电容器 (吸收容性无功,即发出感性无功)
Qc
U2
Xc
U 2C
➢集中使用,分散使用; ➢分相补偿; ➢随时投入(切除);
2020/4/8
电力系统自动化
7
电力系统的无功功率电源
⑴ 同步发电机 (唯一的有功电源,也是基本的无功电源)
发电机的P-Q曲线:输出P与Q的关系 P(MW)
电力系统电压和无功功率控制
以负荷侧电压Ub表示,线路的电压降落(折 算到高压侧) :
S P jQ Ub * I* Ub * (IY jIW )
U I *Z
(IY jI W ) * (R jX )
P jQ * (R jX ) Ub
PR QX j PX QR
Ub
Ub
Ub jUb
其中,Ub
PR QX Ub
/
K2
• 从上述分析可得,影响负荷端电压的因素有: ➢ 发电机端电压UG 或 Eq ➢ 变压器变比K1,K2 ➢ 负荷节点的有功、无功负荷P+jQ
➢ 电力系统网络中的参数R+jX
因此,为了有效控制电力系统中的电压,就可以针对 上述因素进行。其中,根据前面推导过程得出的结论,无 功功率的分布起着决定性的作用。
异步电动机的转矩 Md U 2 电炉的功率 P U 2
照明设备发光和亮度大幅度下降。 电压过高时:
电气设备绝缘受损、铁心饱和、铁损增加、 温度升高、寿命缩短。
电压闪变对用户产生不良影响。
1、电压控制的必要性
(2)电压偏移对电力系统的影响 电厂,特别是火电厂,很多辅机由电动机
驱动,电压降低会使它们的出力下降,从而影 响发电厂出力,严重时可能造成“电压崩溃”。
异步电动机负荷在电力系统无功负荷中占很大的比重, 故电力系统的无功负荷与电压的静态特性主要由异步电 动机决定。异步电动机的无功消耗为:
ห้องสมุดไป่ตู้
QL
Qm
Q
U2 Xm
I 2 X
Qm— 异步电动机激磁功率,与异步电动机的电压平方成 正比。
Qσ—异步电动机漏抗Xσ的无功损耗,与负荷电流平方成 正比。
曲线1、2的交点确定了 节 点 的 电 压 值 UA , 电 力 系统在此电压水平下达 到无功功率平衡。
《电力系统电压和无功电力技术导则》(SD-325-1989)
电力系统电压和无功电力技术导则(试行)SD325-891 总则2 名词、术语3 基本要求4 电压允许偏差值5 无功电力平衡和补偿6 无功补偿设备的选用7 网络结构8 变压器调压方式及调压范围的选择9 电力系统电压的调整和监测1 总则1.1 电压是电能质量的重要指标。
电压质量对电力系统的安全与经济运行,对保证用户安全生产和产品质量以及电器设备的安全与寿命,有重要的影响。
本导则规定了电力系统各母线和用户受电端电压的允许偏差值以及电压与无功调整的技术措施。
1.2 电力系统的无功补偿与无功平衡,是保证电压质量的基本条件。
有效的电压控制合理的无功补偿,不仅能保证电压质量,而且提高了电力系统运行的稳定性和安全性,充分发挥了经济效益。
1.3 电力系统各部门(包括自备电厂和用电单位)在进行规划、设计、基建、运行及用途管理等主面的工作时,应遵守本导则。
2 名词、术语2.1 系统额定电压电力系统各级电压网络的标称电压值。
系统额定电压值是:220v、380v、3kv、6kv、10kv、35kv、63kv、110kv、220kv、330kv、500kv。
其中,220v为单相交流值,其余均为三相交流值。
2.2 电压偏差由于电力系统运行状态的缓慢变化,使电压发生偏移。
其电压变化率小于每秒1%时,实际电压值与系统额定电压值之差。
2.3 无功电源发电机实际可调无功出力、线路充电功率、以及包括电业部门及电力用户无功补偿设备在内的全部容性无功容量。
2.4 自然无功负荷电力用户补偿前的无功负荷、发电厂(变电所)厂用无功负荷、以及各级电压网各变压器和电抗器及线路的无功消耗之总和。
电力系统无功、电压调整与控制技术综述
电力系统无功、电压调整与控制技术综述摘要文中针对近年来国内外典型的电压/无功控制策略进行总结与评述,如九区图法、五区图法和模糊控制、专家系统、神经网络等智能优化控制方法等。
另外对无功电压就地控制等方法进行介绍。
全面分析比较了其设计思想、调节判据及各自的优缺点;并结合电力系统通信、电压稳定性、自动电压控制技术的最新发展,就电压无功控制最新成果进行了综述;最后对未来电压无功控制在电网运行中有待于研究的问题提出了几点展望。
关键词:无功,智能优化,综述,展望0 引言保证频率和电压的稳定是电力系统最基本的控制目标。
电压是衡量电能质量的重要技术指标,对电力系统的安全经济运行、保证用户安全生产和产品质量以及电气设备的安全和寿命具有重要影响。
19世纪70、80年代法国、美国、瑞典、巴西、日本等国家相继发生电压崩溃性事故,这些以电压崩溃特征的电网瓦解事故每次均带来巨大的经济损失,同时也引起了社会的极大混乱。
而电压崩溃是由系统运行中的电压偏移未能良好的进行调整演变而成。
任何电压偏移都会带来经济和安全方面的不利影响,例如:用电设备工作在额定电压以外的电压情况下效率会下降;电压过高会大大缩短白炽灯一类照明设备的寿命,并且对设备的绝缘产生不利的影响;电压过低会严重影响异步电动机的工作性能,由此工业产品中会产生大量的次品废品,甚至会损坏电动机。
当系统出现故障时,电压会降低,如果不及时地采用合理有效的措施对电压进行调整,就会引起电压崩溃进而电网瓦解等重大灾难性事故。
因此,电压调整是保证电网安全可靠运行的重要方面之一。
保证用户处的电压接近额定值是电力系统运行调整的基本任务之一。
由于高压输电系统具有X/R高比值的特点,频率/有功功率和电压/无功功率通常可以解耦来考虑。
对于大区电网和省网,对于频率/有功功率控制采用自动发电控制(AGC),对于电压/无功功率则采用自动电压控制(A VC)。
但对于大多数地区电网调度而言,电网频率控制一般不作为其主要职责,而电压/无功控制(VQC)则作为其主要任务而倍受重视。
(整理)电力系统电压和无功电力技术导则
电力系统电压和无功电力技术导则电力系统电压和无功电力技术导则(试行)1 总则1.1 电压是电能质量的重要指标。
电压质量对电力系统的安全与经济运行,对保证用户安全生产和产品质量以及电器设备的安全与寿命,有重要的影响。
本导则规定了电力系统各母线和用户受电端电压的允许偏差值以及电压与无功调整的技术措施。
1.2 电力系统的无功补偿与无功平衡,是保证电压质量的基本条件。
有效的电压控制合理的无功补偿,不仅能保证电压质量,而且提高了电力系统运行的稳定性和安全性,充分发挥了经济效益。
1.3 电力系统各部门(包括自备电厂和用电单位)在进行规划、设计、基建、运行及用途管理等主面的工作时,应遵守本导则。
2 名词、术语2.1 系统额定电压电力系统各级电压网络的标称电压值。
系统额定电压值是:220V、380V、3kV、6kV、10kV、35kV、63kV、110kV、220kV、330kV、500kV。
其中,220V为单相交流值,其余均为三相交流值。
2.2 电压偏差由于电力系统运行状态的缓慢变化,使电压发生偏移。
其电压变化率小于每秒1%时,实际电压值与系统额定电压值之差。
2.3 无功电源发电机实际可调无功出力、线路充电功率、以及包括电业部门及电力用户无功补偿设备在内的全部容性无功容量。
2.4 自然无功负荷电力用户补偿前的无功负荷、发电厂(变电所)厂用无功负荷、以及各级电压网各变压器和电抗器及线路的无功消耗之总和。
2.5 无功补偿设备包括电业及电力用户网络中的并联电容器、串联电容器、并联电抗器、同期调相机和静止型动态无功补偿装置。
2.6 无功补偿容量电业部门及电力用户无功补偿设备的全部容性无功和感性无功容量。
2.7 逆调压方式在电压允许偏差值范围内,供电电压的调整使电网高峰负荷时的电压值高于电网低谷负荷时的电压值。
3 基本要求3.1 电力系统各级网络,必须符合电压允许偏差值的要求。
3.2 电力系统的无功电源与无功负荷,在高峰或低谷时都应采用分(电压)层和分(供电)区基本平衡的原则进行配置和运行,并应具有灵活的无功电力调节能力与检修备用。
电力系统电压与无功补偿(一)
现代生产和现代生活离不开电力。
电力部门不仅要满足用户对电力数量不断增长的需要,而且也要满足对电能质量上的要求。
所谓电能质量,主要是指所提供电能的电压、频率和波形是否合格,在合格的电能下工作,用电设备性能最好、效率最高,电压质量是电能质量的一个重要方面,同时,电压质量的高低对电网稳定、经济运行也起着至关重要的作用。
1 电压与无功补偿电压顾名思义就是电(力)的压力。
在电压的作用下电能从电源端传输到用户端,驱动用电设备工作。
交流电力系统需要电源供给两部分能量,一部分将用于作功而被消耗掉,这部分电能将转换为机械能、光能、热能或化学能,我们称为“有功功率”。
另一部分能量是用来建立磁场,用于交换能量使用的,对于外部电路它并没有作功,由电能转换为磁能,再由磁能转换为电能,周而复始,并没有消耗,这部分能量我们称为“无功功率”,无功是相对于有功而言,不能说无功是无用之功,没有这部分功率,就不能建立感应磁场,电动机、变压器等设备就不能运转。
在电力系统中,除了负荷无功功率外,变压器和线路的电抗上也需要大量无功功率。
国际电工委员会给出的无功功率的定义是:电压与无功电流的乘积为无功功率。
其物理意义是:电路中电感元件与电容元件活动所需要的功率交换称为无功功率。
我们以电感元件和电容元件的并联回路来说明这个问题,见图1a,在电压的作用下,电感回路中电流滞后电压90°,而在电容回路中电流却是超前电压90°,即在同一电压作用下,任一瞬时,I L和I C在时间轴对称。
我们将每一瞬间电感上的电压与电感电流I L相乘得到电感的功率曲线P L(图1b),同样的,将电容上的电压与电容电流IC相乘得到电容的功率曲线PC(图1c)。
如图2a所示,功率在第二个和第四个1/4周期内电感在吸收功率,并把所吸收的能量转化为磁场能量;而在第一和第三个1/4周期内电感就放出功率,储存在磁场中的能量将全部放出。
这时电感好象一个电源,把能量送回电网。
电力系统无功功率和电压的关系
电力系统无功功率和电压控制孙兵指导老师石砦论文摘要:探讨电力系统无功功率与电压稳定性的关系,无功功率的产生和吸收,无功功率的补偿,电压和频率是衡量电能质量的重要指标,无功功率是直接影响电压质量的因素。
关键词:电力系统;无功功率;电压控制0 引言电力系统能够有效和可靠的运行,就要求电压和无功功率的控制满足以下面条件:0.1系统中有所有装置的在端电压应在可接受的限制内。
0.2为保证最大限度利用输电系统,应加强系统稳定性。
0.3应使无功功率传输最小。
1 无功功率的产生和吸收电力系统的无功功率的产生除了同步电机外,还有静电电容器、静止无功补偿器以及静止无功发生器,这四种装置又称为无功补偿装置。
除电容器外,其余几种既能吸收容性无功又能吸收感性无功。
同步发电机可以产生或吸收无功功率,这取决于其励磁情况。
当过励时产生无功功率,当欠励时吸收无功功率。
架空线路产生或吸收无功功率取决于负荷电流。
当负荷低于自然负荷,线路产生纯无功功率;当高于自然负荷时,线路吸收无功功率。
地下电缆,由于它们对地电容较大,因此具有较高的自然负荷。
它们通常工作在低于自然负荷情形下,因此在所有运行条件下总发生无功功率。
变压器不管其负载如何,总是吸收无功功率。
空载时,起主要作用的是并联激励电抗;满载时,起主要作用的是串联漏抗。
负荷通常吸收无功功率。
由电力系统的供电的典型负荷节点由许多装置所组成。
这种组成随日期、随季节和气候的变化而不同。
通常负荷节点的负荷特性是吸收无功功率的,复合负荷的有功功率和无功功率都是电压幅值的函数。
具有低的滞后功率因数的负荷使传输网络有大的电压降落,因而供电也不经济,对于工业用户,无功功率通常和有功功率一样要计费,这就鼓励企业通过使用并联电容器来提高负荷功率因数。
2 无功功率的补偿2.1 无功功率不足的危害:交流电力系统需要两部分能量:一部分将用于做功而被消耗掉,这部分称为“有功功率”;另一部分能量是用来建立磁场,用于交换能量使用的,对于外部电路它并没有做功,称为“无功功率”,无功是相对于有功而言,不能说无功是无用之功,没有这部分功率,就不能建立磁场,电动机,变压器等设备就不能运转。
电力系统自动化(5电压与无功调节)
调压方程
• 负荷端电压Ub(孙莹图4-6):
PR QX U b (U G K1 U ) / K 2 U G K1 U / K2
• 由上式可见,影响负荷端电压的因素有: UG,K1(升压比),K2(降压比),R, X等线路参数,负荷功率P,Q等运行参数, 对它们实施行之有效的控制,就能达到控 制受端电压之目的。
电力电容器的电压-无功功率特性
• 电容器输出无功功率:QC=U2/XC 与其端电压的平方成正比,是一条上翘的二次曲线。 • 电容器的特点: (1)电容器具有“负调节特性”;电容器的电压-无功功率特性 曲线是上翘的,这一点与同步电机相反。这就意味着当电力系 统无功功率缺乏使电容器安装处的电压下降时,电容器输出的 无功功率反而减少,使无功功率缺额加剧;反之,当电力系统 无功功率过剩->电压升高->电容器输出无功功率增加,使无 功功率更加过剩,这种不利于无功功率平衡的调节特性称为负 调节特性; (2)电容器只能成组地投入或切除,对无功功率进行有级调节; (3)电容器是静止元件; (4)有功损耗小; (5)适合于分散安装。
QT Q0 QT U 2 BT I 2 XT
电力系统负荷的电压-无功特性
• 输电线路的无功功率损耗分为两部分,其 串联电抗中的无功功率损耗与通过线路的 功率或电流的平方成正比,而其并联电纳 中发出的无功功率与电压平方成正比:
QL Q0 QL U 2 BL I 2 X L
电力系统电压与无功功率调节手段
• 调整发电机端电压; • 改变变压器变比,以此改变无功功率潮流 分布,用无功富裕支路支援无功不足支路, 合理分配无功; • 就地进行无功补偿,提高负荷运行的功率 因数,减少无功功率传输; • 改变线路参数和结构,减小阻抗(串联电 容器)和不合理的无功流动;
电力系统电压和无功电力技术导则
电力系统电压和无功电力技术导则电力系统电压和无功电力技术导则(试行)ﻫ 1 总则ﻫ 1.1 电压是电能质量的重要指标。
电压质量对电力系统的安全与经济运行,对保证用户安全生产和产品质量以及电器设备的安全与寿命,有重要的影响。
本导则规定了电力系统各母线和用户受电端电压的允许偏差值以及电压与无功调整的技术措施。
1.2 电力系统的无功补偿与无功平衡,是保证电压质量的基本条件。
有效的电压控制合理的无功补偿,不仅能保证电压质量,而且提高了电力系统运行的稳定性和安全性,充分发挥了经济效益。
ﻫ 1.3 电力系统各部门(包括自备电厂和用电单位)在进行规划、设计、基建、运行及用途管理等主面的工作时,应遵守本导则。
ﻫ2名词、术语ﻫ2.1 系统额定电压电力系统各级电压网络的标称电压值。
ﻫ系统额定电压值是:220V、380V、3kV、6kV、10kV、35kV、63kV、110kV、220kV、330kV、500kV。
ﻫ其中,220V为单相交流值,其余均为三相交流值。
ﻫ由于电力系统运行状态的缓慢变化,使电压发生偏2.2 电压偏差ﻫ移。
其电压变化率小于每秒1%时,实际电压值与系统额定电压值之差。
ﻫ2.3无功电源ﻫ发电机实际可调无功出力、线路充电功率、以及包括电业部门及电力用户无功补偿设备在内的全部容性无功容量。
ﻫﻫ2.4 自然无功负荷电力用户补偿前的无功负荷、发电厂(变电所)厂用无功负荷、以及各级电压网各变压器和电抗器及线路的无功消耗之总和。
ﻫ2.5无功补偿设备ﻫ包括电业及电力用户网络中的并联电容器、串联电容器、并联电抗器、同期调相机和静止型动态无功补偿装置。
ﻫﻫ 2.6 无功补偿容量ﻫﻫ电业部门及电力用户无功补偿设备的全部容性无功和感性无功容量。
ﻫ2.7逆调压方式ﻫ在电压允许偏差值范围内,供电电压的调整使电网高峰负荷时的电压值高于电网低谷负荷时的电压值。
ﻫ3基本要求ﻫ 3.1 电力系统各级网络,必须符合电压允许偏差值的要求。
电力系统电压和无功电力技术导则
电力系统电压和无功电力技术导则电力系统是人类生产和生活中不可或缺的基础设施之一,而电压和无功电力技术是电力系统运行的关键。
本文将讨论电力系统电压和无功电力技术的导则。
一、电力系统电压导则电力系统中的电压是电力系统运行的关键参数之一。
电力系统电压导则是指电力系统中电压的基本规则和安排,旨在确保电力系统稳定、可靠、高效地运行。
首先,电力系统中的电压应该始终保持稳定。
这意味着,在电力系统中需要设立电压控制设备和自动调节装置,以在负荷变化或故障出现时自动调节电压。
其次,电力系统运行时,各个电压等级的电力设备需要按照相应的电压等级进行设计和安装。
例如,在输电线路中,需要选择合适的电线材料和绝缘材料,以承受特定的电压和电场强度。
此外,电力系统中电压的稳定和控制还需要考虑到电力系统的负荷特性和无功需求。
在高负荷运行状态下,电压容易下降,因此需要根据负荷特性合理设置电压控制装置。
同时,电力系统中的无功功率是电力系统稳定运行的关键因素,因此需要合理调节电力系统中的无功功率,以确保电力系统的稳定和可靠运行。
二、无功电力技术导则无功电力是指与有功电力相对应的电力类型。
有功电力是用于提供功率的电力,而无功电力则是用于提供电压和电流相位等参数的电力。
电力系统中的无功电力技术导则是指电力系统中无功功率的基本规则和安排,旨在提高电力系统的稳定性和可靠性。
首先,无功功率的稳定控制是电力系统的关键问题之一。
无功功率控制的主要手段是通过电容器和电感器等改变电路中的电感和电容性质,以改变电路的无功功率。
因此,在电力系统的设计和运行中,需要合理设置电容器和电感器等无功补偿设备,以实现电力系统中无功功率的稳定控制。
其次,电力系统中的无功电力还需要考虑到电力系统中的负荷特性和无功需求。
在高负荷运行状态下,电力系统中的无功功率会增加,因此需要根据负荷特性合理调节无功补偿设备。
同时,在电力系统中,还需要考虑到电力系统中不同类型的负荷对无功功率的需求差异,以确定无功补偿设备的设置方案。
VQC功能介绍(电力系统自动电压、无功控制系统)
VQC软件功能介绍之宇文皓月创作1.概述Sesa电压无功综合控制系统适用于电力系统中35kv~220kv变电站自动化系统,可根据电网要求对有载调压变压器分接头及并联电容器组进行最优控制,从而提高电压合格率降低线损,使电网在满足供电质量的条件下最经济地运行。
系统采取PC工控机/工控工作站作为硬件平台,PC工控机/工控工作站具有全封闭正压结构、防震、防尘、防电磁干扰等特点。
硬件按功能采取模块化设计,配置合理,因而具有很高的可靠性。
系统采取windows操纵系统,SQL Server2000数据库作为软件平台。
向用户提供最优的人机界面。
通过键盘和鼠标操纵,全中文显示,尺度windows界面,用户能够方便地进行操纵和参数整定,还可以通过液晶显示器实时显示变电站主接线图,便于用户掌握变电站运行情况,及时发现问题并加以处理,确保系统正常运行。
2.主要功能2.1基本控制功能a)本装置可控制1~3台有载调压变压器和3x 2组电容器。
b)控制方式可根据需要采取先进的十七区图控制战略或九区图控制战略,可单独控制变压器分接头或电容器,也可以进行综合优化控制。
c)可根据变电站高低压侧断路器状态和母联开关位置自动识别运行方式。
d)据据所需的无功抵偿量,选择适当的电容器组进行投切,对不克不及介入投切或故障的电容器可以单独予以闭锁。
e)从检测到被控参数越限到发出控制命令有一定的延时,必须连续落在同一区域才执行相应得战略,延时时间可整定。
f)变压器调档或电容器投切两次动作之间有一定的时间间隔,间隔时间可整定。
2.2控制方式a 电压无功综合控制,根据主变母线电压负荷以及无功功率的大小综合控制。
以电压优先为原则,执行相应的控制战略。
(方法一)b电压自动调节,根据母线电压自动调节主变档位,使母线电压始终处于规定范围之内。
电压限值可灵活设定。
(方法二) c无功自动抵偿,根据无功功率的大小自动控制并联电容器组的投切,使整个电网的无功功率维持在期望的功率范围附近。
电力系统电压和无功的自动控制ppt课件
P
P2 1
Q2 1
U2
r1
P2 2
Q2 2
U2
r2
(
P2 1
Q2 1
)0.10
( P2 2
Q22 )0.04
Q
P2 1
Q12
U2
x1
P2 2
Q22
U2
x2
(P12
Q2 1
)0.40
( P2 2
Q22 )0.08
计算各网损微增率
P Q1
0.20Q1
二 电力系统的无功功率控制
电力系统电压控制的首要任务是控制电力系统 中各种无功电源发出的无功功率总和等于负荷在额 定电压时消耗的无功功率总和,维持电力系统电压 的总体水平在额定值附近;其次是无功功率的优化 控制,优化的内容有两个:
负荷所需的无功功率让哪些无功功率电源提供 最好,即无功电源的最优分布问题;
P Q2
0.08Q2
Q Q1
0.80Q1
Q Q2
0.16Q2
由网损微增率公式得:
P 1 P 1
Q1 1 Q Q2 1 Q
代入数据得: Q1
QG2
1
Q QG2
QGn
1
Q QGn
n
m
QGi QLj Q 0
i1
j 1
其中, P 是(有功)网损微增率, Q 是
QG1
QG1
无功损耗微增。第一式是等网损微增率准则,第
二式是无功功率平衡关系式。
调相机的容量可以做的很大,而且调节灵活方 便,是很好的无功电源。但投资很大,只有在十分 必要的场合才安装。
SD325-1989电力系统电压和无功电力技术导则
中华人民共和国能源部部标准电力系统电压和无功电力技术导则(试行)SD 325—891 总则1.1 电压是电能质量的重要指标。
电压质量对电力系统的安全与经济运行,对保证用户安全生产和产品质量以及电器设备的安全与寿命,有重要的影响。
本导则规定了电力系统各级母线和用户受电端电压的允许偏差值以及电压与无功调整的技术措施。
1.2 电力系统的无功补偿与无功平衡,是保证电压质量的基本条件。
有效的电压控制和合理的无功补偿,不仅能保证电压质量,而且提高了电力系统运行的稳定性和安全性,充分发挥了经济效益。
1.3 电力系统各部门(包括自备电厂和用电单位)在进行规划、设计、基建、运行及用电管理等方面的工作时,应遵守本导则。
2 名词、术语2.1 系统额定电压电力系统各级电压网络的标称电压值。
系统额定电压值是:220V、380V、3kV、6kV、10kV、35kV、63kV、110kV、220kV、330kV、500kV。
其中,220V为单相交流值,其余均为三相交流值。
2.2 电压偏差由于电力系统运行状态的缓慢变化,使电压发生偏移。
其电压变化率小于每秒1%时的实际电压值与系统额定电压值之差。
2.3 无功电源发电机实际可调无功出力、线路充电功率、以及包括电业部门及电力用户无功补偿设备在内的全部容性无功容量。
2.4 自然无功负荷电力用户补偿前的无功负荷、发电厂(变电所)厂用无功负荷、以及各级电压网络变压器和电抗器及线路的无功消耗之总和。
2.5 无功补偿设备包括电业及电力用户网络中的并联电容器、串联电容器、并联电抗器、同期调相机和静止型动态无功补偿装置。
2.6 无功补偿容量电业部门及电力用户无功补偿设备的全部容性无功和感性无功容量。
2.7 逆调压方式在电压允许偏差值范围内,供电电压的调整使电网高峰负荷时的电压值高于电网低谷负荷时的电压值。
3 基本要求3.1 电力系统各级网络,必须符合电压允许偏差值的要求。
3.2 电力系统的无功电源与无功负荷,在高峰或低谷时都应采用分(电压)层和分(供电)区基本平衡的原则进行配置和运行,并应具有灵活的无功电力调节能力与检修备用。
电力系统电压和无功电力技术导则
SD325-89电力系统电压和无功电力技术导则(试行)中华人民共和国能源部1989-03-20发布1998-08-01实施1总则1.1电压是电能质量的重要指标。
电压质量对电力系统的安全与经济运行,对保证用户安全生产和产品质量以及电器设备的安全与寿命,有重要的影响。
本导则规定了电力系统各级母线和用户受电端电压的允许偏差值以及电压与无功调整的技术措施。
1.2电力系统的无功补偿与无功平衡,是保证电压质量的基本条件。
有效的电压控制和合理的无功补偿,不仅能保证电压质量,而且提高了电力系统运行的稳定性和安全性,充分发挥了经济效益。
1.3电力系统各部门(包括自备电厂和用电单位)在进行规划、设计、基建、运行及用电管理等方面的工作时,应遵守本导则。
2名词、术语2.1系统额定电压电力系统各级电压网络的标称电压值。
系统额定电压值是:220V、380V、3kV、6kV、10kV、35kV、63kV、110kV、220kV、330kV、500kV。
其中,220V为单相交流值,其余均为三相交流值。
2.2电压偏差由于电力系统运行状态的缓慢变化,使电压发生偏移。
其电压变化率小于每秒1%时的实际电压值与系统额定电压值之差。
2.3无功电源发电机实际可调无功出力、线路充电功率、以及包括电业部门及电力用户无功补偿设备在内的全部容性无功容量。
2.4自然无功负荷电力用户补偿前的无功负荷、发电厂(变电所)厂用无功负荷、以及各级电压网络变压器和电抗器及线路的无功消耗之总和。
2.5无功补偿设备包括电业及电力用户网络中的并联电容器、串联电容器、并联电抗器、同期调相机和静止型动态无功补偿装置。
2.6无功补偿容量电业部门及电力用户无功补偿设备的全部容性无功和感性无功容量。
2.7逆调压方式在电压允许偏差值范围内,供电电压的调整使电网高峰负荷时的电压值高于电网低谷负荷时的电压值。
3基本要求3.1电力系统各级网络,必须符合电压允许偏差值的要求。
3.2电力系统的无功电源与无功负荷,在高峰或低谷时都应采用分(电压)层和分(电)区基本平衡的原则进行配置和运行,并应具有灵活的无功电力调节能力与检修备用。
《电力系统电压和无功电力技术导则》(SD_325-1989)
电力系统电压和无功电力技术导则(试行)SD325-891 总则2 名词、术语3 基本要求4 电压允许偏差值5 无功电力平衡和补偿6 无功补偿设备的选用7 网络结构8 变压器调压方式及调压范围的选择9 电力系统电压的调整和监测1 总则1.1 电压是电能质量的重要指标。
电压质量对电力系统的安全与经济运行,对保证用户安全生产和产品质量以及电器设备的安全与寿命,有重要的影响。
本导则规定了电力系统各母线和用户受电端电压的允许偏差值以及电压与无功调整的技术措施。
1.2 电力系统的无功补偿与无功平衡,是保证电压质量的基本条件。
有效的电压控制合理的无功补偿,不仅能保证电压质量,而且提高了电力系统运行的稳定性和安全性,充分发挥了经济效益。
1.3 电力系统各部门(包括自备电厂和用电单位)在进行规划、设计、基建、运行及用途管理等主面的工作时,应遵守本导则。
2 名词、术语2.1 系统额定电压电力系统各级电压网络的标称电压值。
系统额定电压值是:220v、380v、3kv、6kv、10kv、35kv、63kv、110kv、220kv、330kv、500kv。
其中,220v为单相交流值,其余均为三相交流值。
2.2 电压偏差由于电力系统运行状态的缓慢变化,使电压发生偏移。
其电压变化率小于每秒1%时,实际电压值与系统额定电压值之差。
2.3 无功电源发电机实际可调无功出力、线路充电功率、以及包括电业部门及电力用户无功补偿设备在内的全部容性无功容量。
2.4 自然无功负荷电力用户补偿前的无功负荷、发电厂(变电所)厂用无功负荷、以及各级电压网各变压器和电抗器及线路的无功消耗之总和。
2.5 无功补偿设备包括电业及电力用户网络中的并联电容器、串联电容器、并联电抗器、同期调相机和静止型动态无功补偿装置。
2.6 无功补偿容量电业部门及电力用户无功补偿设备的全部容性无功和感性无功容量。
2.7 逆调压方式在电压允许偏差值范围内,供电电压的调整使电网高峰负荷时的电压值高于电网低谷负荷时的电压值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
18
(4)同步调相机及同步电动机
同步调相机是特殊运行状态下的同步电动机,可视为 不带有功负荷的同步发电机或是不带机械负荷的同步 电动机。
U
•
I LC
•
o 感性
I
(c)
16
静止无功补偿器不仅用于传输网络,而且广泛用于配 电系统中。 如在大型电动机的启动中应用SVC可以降低电压跌落 值;SVC亦可应用于单相负荷入电焊机和电气化铁路 供电系统中。
17
SVC能快速、平滑的调节无功功率的大小和方向, 以满足动态无功功率补偿要求,尤其是对冲击性负荷 适应性较好。
当电压偏离额定值较大时,会对负荷的运行带来不良 影响。影响产品的质量和产量,损坏设备,甚至引起 电力系统电压崩溃,造成大面积停电。
5
A、对发电机和变压器的影响 电力系统电压降低时,为了维持恒定功率,发电机的 定子电流增大。
为了使发电机定子绕组不致过热,不得不减少发电机 所发有功功率。
类似的,电力系统电压降低后,也不得不减少变压器 所带的有功负荷。
7
C、对电热设备的影响
电炉等电热设备的发热量与电压平方成正比,电压降 低将大大降低发热量,使效率降低。
照明负荷,对电压变化反应灵敏。电压过高,白炽 灯的寿命将大为缩短;电压过低,亮度和发光效率要大 幅度下降。
D、损耗和绝缘 电压降低时,会使电网中的有功功率损耗和无功损耗 增加,过低还会危及电力系统运行的稳定性; 而电压过高,各种电气设备的绝缘会受到损坏,在超 高压输电线路中还将增加电晕损耗。
12
(2)并联电容器
基本工作原理
QC
U2 XC
U 2C
(4-6)
式中 X C —电容器的容抗; —交流电的角频率;
C —电容器的电容量。
• 人工投入,自动切除
优点: • 提供无功功率和电压支持最廉价的方法 • 设在负荷区附近,通过提高受端负荷功率因数可以 有效地扩大其电压稳定极限
13
• 容量可大可小,既可集中使用,又可分散使用,并 且可以分相补偿,随时投入、切除部分或全部电容器 组,运行灵活。
8
我国规定在正常运行情况下各类用户允许电压偏 移为:
10kV及以下电压供电的负荷 7%
35kV及以上电压供电的负荷 5%
低压照明负荷
5% 10%
农村电网(正常) 7.5% 10%
(事故) 10% 15%
在事故后运行状态下,由于电力系统部分设备退出运行, 电压损耗比正常时大。考虑故障时间较短,电压偏移允许比正常 值再多5%,但电压的正偏移不应超过10%。
15
(3)静止无功功率补偿器(SVC)
静止无功功率补偿器(Static VAR Compensator,简称SVC)是 一种发展很快的无功功率补偿装置,其工作原理下图所示。
•
Qi U
•
U
Q LC
QD
1
UN
2
QL
QC
IL
C L
(a)IC容性Fra biblioteko 感性•
I
容性
(b) 图4-5 静止无功补偿器工作原理
•
• 电容器的有功损耗小(约占额定容量的0.3%一0.5 %),投资也节省。
• 允许附近的发电机在功率因数为1.0附近运行,增 加了系统快速响应的无功储备,对电压稳定有利。
14
缺点: • 其产生的无功功率正比于电压的平方,在系统低电 压期间无功输出反而下降,这是一个恶性循环问题。 • 一个大量应用并联电容器补偿无功的系统,电压调 节能力反而变差;
图4-4 同步发电机的P-Q 曲线
11
发电机以超前功率因数运行时,定子电流和励磁电 流大小都不再是限制条件,而此时并联运行的稳定性 或定子端部铁芯发热成了限制条件。
当电力系统中有一定备用有功电源时,可以将离负 荷中心近的发电机低于额定功率因数运行,适当降低 有功功率输出而多发一些无功功率,这样有利于提高 电力系统电压水平。
3
调整: 电力系统正常稳定运行时,全系统频率相同。频率调 整集中在发电厂,调频控制手段只有调整原动机功率 一种。 电压水平在全系统各点不同,并且电压控制可分散进 行,调节控制电压手段也多种多样。
4
2、电压控制的意义
电力系统的电压和频率一样,都是电能质量的重要 指标。
用电设备只有在额定电压下运行才能取得最佳的工作 效率。
6
B、对电动机的影响
电压降低,异步电动机的转差率将增大。因而,电动机 各绕组中的电流也将增大,温升将增加,效率将降低, 寿命会缩短。
转差增大转速下降输出功率减少影响锅炉、汽轮 机的工作最终影响发电厂所发出的功率。
电压降低电动机启动过程增加,可能在启动过程中 因温度过高而烧毁。
电压偏高将加速设备绝缘老化,影响电动机寿命。
电力系统自动控制技术
• 电力系统电压控制的意义; • 无功功率的产生、消耗与平衡
2
1、有功和无功的不同特点
产生:
有功功率电源是集中在各类发电厂中的发电机; 无功功率电源除发电机外,还有调相机、电容器和静止补偿器 等,它们分散安装在各个变电所。
运行:
有功功率电源需要消耗能源;无功功率电源工作时基本不消耗能 源; 由于电网中的线路以及变压器等设备均以感性元件为主,因此 系统中无功功率损耗远远大于有功功率损耗。
20
(5)高压输电线路
高压输电线即产生无功,又消耗无功
产生无功:
QC U 2B
变化不大
消耗无功:
QL I 2 X
随潮流而变
高压输电线路,特别是分裂导线,其充电功率相当可 观,是电力系统所固有的无功功率电源。
9
3、无功的产生
(1)同步发电机 同步发电机目前是电力系统中惟一的有功功率电
源,它又是基本的无功功率电源。 它所提供给电力系统的无功功率与同时输出的有功
功率有一定的关系,由同步发电机的P-Q曲线决定。
10
P(MW)
SN PN
cos 0.85
40 0.8
0.5 0.4
40
QN 80
Q(MVAR)
当过激运行时,它向电力系统提供感性无功功率;欠 激运行时,从电力系统中吸收感性无功功率。
因此,改变同步调相机的励磁,可以平滑地改变它的 无功功率的大小及方向,从而平滑地调节所在地区的 电压。
19
但在欠激状态下运行时,其输出功率为过激运行时 输出功率的50%~60%。
运行时产生有功损耗,满负荷时,有功损耗为额定 容量1.5%~5%,容量越小,有功损耗所占的比重越 大。