(三)立体几何与空间向量
高中数学立体几何与空间向量知识点归纳总结
高中数学立体几何与空间向量知识点归纳总结立体几何与空间向量知识点归纳总结一、立体几何知识点1、柱、锥、台、球的结构特征1) 棱柱的定义:有两个面是对应边平行的全等多边形,其余各面都是四边形,且相邻四边形的公共边都平行,由这些面围成的几何体叫棱柱。
棱柱的侧面都是平行四边形,侧棱平行且长度相等。
若侧棱垂直于底面,则为直棱柱;若底面是正多边形,则为正棱柱。
2) 棱锥的定义:有一个面是多边形,其余各面都是三角形,由这些面围成的几何体叫棱锥。
平行于底面的截面与底面相似,其相似比等于顶点到截面的距离与高的比。
3) 棱台的定义:用平行于底面的平面截棱锥,截面与底面的部分叫棱台。
上下底面平行且是相似的多边形,侧面是梯形,侧棱交于原棱锥的顶点。
4) 圆柱的定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所围成的几何体叫圆柱。
底面是全等的圆,母线与轴平行,轴与底面圆的半径垂直,侧面展开图是一个矩形。
5) 圆锥的定义:以直角三角形的一条直角边为旋转轴,旋转一周所围成的几何体叫圆锥。
底面是一个圆,母线交于圆锥的顶点,侧面展开图是一个扇形。
6) 圆台的定义:以直角梯形的垂直于底边的腰为旋转轴,旋转一周所围成的几何体叫圆台。
上下底面是两个圆,侧面母线交于原圆锥的顶点,侧面展开图是一个扇环形。
7) 球体的定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形围成的几何体叫球。
球的截面是圆,球面上任意一点到球心的距离等于半径。
2、柱体、锥体、台体的表面积与体积1) 几何体的表面积为各个面的面积之和。
2) 特殊几何体表面积公式:直棱柱侧面积=底面周长×高圆锥侧面积=π×底面半径×母线正棱台侧面积=(上底+下底+侧棱)×高/2圆柱侧面积=2π×底面半径×高正棱锥侧面积=(底面周长1+底面周长2+侧棱)×高/2圆台侧面积=(上底半径+下底半径)×母线×π/2圆柱表面积=2π×底面半径×(底面半径+高)圆锥表面积=π×底面半径×(底面半径+母线)圆台表面积=π×(上底半径²+下底半径²+上底半径×下底半径×(上底半径-下底半径)/母线)3) 柱体、锥体、台体的体积公式:直棱柱体积=底面积×高圆柱体积=底面积×高=π×底面半径²×高圆锥体积=底面积×高/3=π×底面半径²×高/3圆台体积=底面积×高/3=(上底半径²+下底半径²+上底半径×下底半径)×高/3圆台的体积公式为V=(S+S'+√(SS'))h/3,其中S和S'分别为圆台的上下底面积,h为圆台的高。
2023年高考之立体几何和空间向量考点解读
3
=
2
1
1
|AB|·|BC|=
×2×
2
2
1
所 以 VP-ABC = S△ABC ·|PM|=
2 2=2 2,
3
1
26
。
×2 2× 3=
3
3
考查,
一是空间线面关系 的 命 题 真 假 的 判 断,
以选填题的形式考查,
属 于 基 础 题;
二是空间
线线、
线面、
面面平行和垂 直 关 系 交 汇 的 综 合
命题,
(
2)若 ∠POF =1
2
0
°,求 三 棱 锥 PABC
|A1A| -|AM| =
2
6
。
2
2
1
2=
2
解 析:(
1)连 接 DE ,
OF ,设 |AF|=
→
→
→
则 B→
t|AC|,
F =BA + AF = (
1-t)
BA +
→
→
所求体积 V =
76
。
=
6
1
6
×(
4+1+ 4×1)
×
3
2
考点解读:空 间 几 何 体 的 结 构 特 征 是 立
则该圆锥的
1
2
0
°,
4
体积为(
胡银伟
33
2
=
2
-
3
2
2
|PC| -|OC|
2
2
=
= 6。所以圆锥的体积 V
1
1
2
2
π×|OA| ×|PO|= π× (3)× 6=
2023年高考数学三轮复习立体几何与空间向量(解析版)
查补易混易错点05立体几何与空间向量1.混淆“点A在直线a上”与“直线a在平面α内”的数学符号关系,应表示为A∈a,a⊂α. 2.易混淆几何体的表面积与侧面积的区别,几何体的表面积是几何体的侧面积与所有底面面.积之和,易漏掉几何体的底面积;求锥体体积时,易漏掉体积公式中的系数133.作几何体的三视图的过程中,可见的边界轮廓线用实线表示,不可见的边界轮廓线用虚线表示.这一点不能忽视,否则易出错.4.不清楚空间线面平行与垂直关系中的判定定理和性质定理,忽视判定定理和性质定理中的条件,导致判断出错.如由α⊥β,α∩β=l,m⊥l,易误得出m⊥β的结论,就是因为忽视面面垂直的性质定理中m⊂α的限制条件.5.注意图形的翻折与展开前后变与不变的量以及位置关系.对照前后图形,弄清楚变与不变的元素后,再立足于不变的元素的位置关系与数量关系去探求变化后的元素在空间中的位置关系与数量关系.6.几种角的范围两条异面直线所成的角:0°<θ≤90°;直线与平面所成的角:0°≤θ≤90°;平面与平面夹角:0°≤θ≤90°.7.用空间向量求角时易忽视向量的夹角与所求角之间的关系,如求直线与平面所成的角时,易把直线的方向向量与平面的法向量所成角的余弦值当成线面角的余弦值,导致出错.1.(2023·黑龙江哈尔滨·哈尔滨三中校考一模)苏轼是北宋著名的文学家、书法家、画家,在诗词文书画等方面都有很深的造诣.《蝶恋花春景》是苏轼一首描写春景的清新婉丽之作,表达了对春光流逝的叹息词的下阙写到:A.秋千绳与墙面始终平行A.6π【答案】D【解析】由三视图可知几何体为圆锥与半球的组合体,半球表面积圆锥母线长23l=所以该几何体表面积为5.(2023·河南·校联考模拟预测)已知空间四条直线a ,b ,m ,n 和两个平面α,β满足,a b α⊂,,m n β⊂,a b P = ,m n Q = ,则下列结论正确的是()A .若a m ,则a β∥B .若a β∥且m α ,则αβ∥C .若a β∥且b β∥,则m αD .若a m ⊥且b n ⊥,则αβ⊥【答案】C【解析】对于A :a 可能在平面β内,所以A 错误;对于B :a 与m 可能平行,从而α与β可能相交,所以B 错误;对于C :a β ∥且b β∥,,a b α⊂,a b P = ,βα∴∥,m β⊂ ,m α∴∥,所以C 正确;对于D :如图,由正方形沿一条对角线折叠形成,其中形成的两个平面设为,αβ,折痕设为b ,在平面α的对角线设为a ,在β内的对角线设为n ,同时作m n ⊥,此时//m b ,易知b a ⊥,则m a ⊥,但此时α与β不垂直,所以D 错误.故选:C.6.(2023·甘肃定西·统考一模)攒尖是中国古代建筑中屋顶的一种结构形式,宋代称为撮尖,清代称攒尖.通常有圆形攒尖、三角攒尖、四角攒尖、八角攒尖,也有单檐和重檐之分,多见于亭阁式建筑、园林建筑.如图所示的建筑屋顶是圆形攒尖,可近似看作一个圆锥,已知其轴截面(过圆锥旋转轴的截面)是底边长为6m ,腰长为5m 的等腰三角形,则该屋顶的体积约为()A .38πmB .39πmC .310πmD .312πm由题知该圆锥的底面半径为所以该屋顶的体积约为1 3故选:D.7.(2023·北京·统考模拟预测)臑.已知鳖臑ABCD的四个顶点均在表面积为A.23B.4又POD∽PBC可得两边平方得22(416r r R R-=+将①代人②化简整理得则1r=,故选B9.(2023·安徽安庆·统考二模)图),O为底面圆的中心,距离为1,B为截面图形弧上的一点,且A.74B【答案】C【解析】圆柱半径为10.(2023·山东聊城·统考模拟预测)在三棱锥二面角P AB C--的大小为3π4.若三棱锥-P ABC的体积最大时,球O的体积为(A.3π2B.6π【答案】D【解析】设点P在平面ABC内的射影为考虑到二面角P-AB-C的大小为3π因为PH⊥平面ABC,AB⊂平面ABC所以PH AB⊥,又PA AB⊥,PA所以AB⊥平面PAH,AH⊂平面PAH所以PAH∠为二面角P AB C--的平面角的补角,11.(多选题)(2023·江苏南通·统考模拟预测)含边界)上一点,下列说法正确的是(A.存在唯一一点P,使得DP//B.存在唯一一点P,使得AP//面C.存在唯一一点P,使得1A P⊥D .存在唯一一点P ,使得1D P ⊥面11AC D【答案】AD【解析】如图建系,令()1,,1,AD P x z =,则()()()()()()()11111,0,0,1,0,1,0,1,1,0,0,0,1,1,0,0,0,1,1,1,1A A C D B D B ,对于A ,()()1,1,,0,1,1DP x z AB == ,若1//DP AB ,则01x z λλλ=⋅⎧⎪=⎨⎪=⎩,解得:0,1x z ==故()0,1,1P 满足要求,与1C 重合,存在唯一一点P ,使得DP //1AB ,A 对.对于B ,因为()()1111,1,11,1,0110B A C D ⋅=--⋅-=-= ,()()111,1,11,0,1110BD A D ⋅=--⋅--=-= ,因为1111AC A D A ⋂=,111,AC A D ⊂平面11ACD ,所以1BD ⊥ 平面11AC D ,又AP //平面11AC D ,则10AP BD ⋅= ,()()1,1,11,1,110x z x z --⋅-=--+=,解得:x z =,故P 点轨迹为线段1B C ,满足条件的P 有无数个,B 错,对于C ,()()11111,1,1,1,1,1,11110A P x z DB A P DB x z x z =--=⋅=-++-=+-= ,P 在线段1BC 上,满足条件的P 有无数个,C 错.对于D ,由B 选项可知:1BD ⊥ 平面11AC D ,而1D P ⊥ 面11AC D ,又1D P 与1BD共线,故,P B 重合,D 对.故选:AD.12.(多选题)(2023·山东济宁二模)已知长方体1111ABCD A B C D -中,点P ,Q ,M ,N 分别是棱AB ,BC ,1CC ,11B C 的中点,则下列结论不正确的是()B 选项:如图2,连接AC ,因为点所以//AC PQ ,AC ⊄平面1B PQ ,PQ 所以//AC 平面1B PQ ,若//AM 平面1B PQ ,则平面//AMC 平面又平面AMC 平面111BCC B CC =,平面所以11//B Q CC ,显然不正确,故B 不正确;C 选项:如图3,若1D M ⊥平面1B PQ 则11MD B Q ⊥,又易知11C D ⊥平面BCC 则111C D B Q ⊥,又1111C D MD D = ,所以1B Q ⊥平面11C MD ,1CC ⊂平面1C 显然不正确,故C 不正确;D 选项:如图4,连接AC ,CN ,因为点所以//AC PQ ,AC ⊄平面1B PQ ,PQ ⊂平面所以//AC 平面1B PQ ,因为Q ,N 分别是BC ,11B C 的中点,所以所以四边形1B NCQ 是平行四边形,则CN NC ⊄平面1B PQ ,1B Q ⊂平面1B PQ ,所以NC //平面1B PQ ,且AC NC C = ,因此平面//ACN 平面1B PQ ,AN ⊂平面所以//AN 平面1B PQ ,故D 正确.故选:ABC.13.(多选题)(2023·山东泰安·统考模拟预测)如图,若113A B =,4AB =,12AA =则下列说法正确的是(A .11//AB EC B .EC ⊥平面1ADD C .1//AA 平面1CED对于C 选项,设AD 与EC 交于点所以6AM =,即11A D AM =1CED ,1AA ⊄平面1CED ,所以1//AA 平面1CED ,故C 对于D 选项,11//,A N OO OO 1A AN ∠为侧棱与底面所成的角,在所以160A AN ∠= ,故D 正确故选:BCD14.(2023·辽宁·鞍山一中校联考模拟预测)上有两个动点E 、F ,且EFA .AC BE⊥C .三棱锥A BEF -的体积为定值【答案】ABC【解析】对于A 选项,连接因为四边形ABCD 为正方形,则1BB ⊥ 平面ABCD ,AC 11,,BD BB B BD BB = 所以AC ⊥平面11BB D D ,因为BE ⊂平面11BB D D ,因此对于B 选项,因为平面所以//EF 平面ABCD ,对于C 选项,因为△点A 到平面BEF 的距离为定值,故三棱锥对于D 选项,设AC 由A 选项可知,AC ⊥11B D ⊂Q 平面11BB D D ,则因为11//BB DD 且1BB DD =则11//BD B D 且1BD B D =因为M 、O 分别为1B D DD MO故选:ABC.15.(2023·广东·统考一模)在四棱锥若SD AD=,则()A.AC SD⊥B.AC与SB所成角为60︒C.BD与平面SCD所成角为D.BD与平面SAB所成角的正切值为【答案】ACD【解析】选项A,因为SD⊥因为四边形ABCD是正方形,所以面SBD,又SB⊂面SBD,所以AC SB⊥选项B,因为AC⊥平面SBD选项C,因为SD⊥底面ABCD因为四边形ABCD是正方形,所以所以BC⊥平面SCD,所以BD与平面SCD所成角为选项D,如图,取SA中点K故选:ACD16.(2023·广东江门·统考一模)则坐标原点O 到直线l 的距离【答案】3【解析】由题知,直线l 过点所以()1,2,0AO =--,所以点()0,0,0O 到l 的距离为()225AO m d AO m ⎛⎫⋅⎛ ⎪=-=- ⎪⎝⎝⎭17.(2023·广东广州·广州市第二中学校考模拟预测)设某几何体的三视图如下(尺寸的长度单位为m ),则该几何体的体积为【答案】4【解析】由三视图可得该几何体为三棱锥,如图所示,其中棱锥的高为2m ,底面三角形的底边长为则该几何体的体积为114332⨯⨯⨯⨯18.(2023·河北衡水中学预测)冰激凌是以饮用水、牛乳、奶粉、奶油(或植物油脂)等为主要原料,加入适量食品添加剂,经混合、灭菌、均质、老化、凝冻、硬化等工艺制成的体积膨胀的冷冻食品.如图所示的冰激凌的下半部分可以看作一个圆台,上半部分可以近似看作一个圆锥,若圆台的上底面半径、圆台的高与圆锥的高都为3.6cm ,则此圆锥的体积与圆台的体积的比值为【答案】100271【解析】圆锥的体积214π43V ⨯=,根据圆台的体积公式(13V S =+上h 为台体的高),得圆台的体积(224π44 3.63V =+⨯+(1)证明:平面QAD(2)若点P为四棱锥积为43,求BP与平面【解析】(1)取AD因为QA QD=,OA而2AD=,5QA=在正方形ABCD中,因为因为3QC=,故QC因为OC AD O=,且故QO⊥平面ABCD因为QO⊂平面QAD (2)在平面ABCD(1)证明:PB AC⊥;(2)再从条件①、条件到平面BPC的距离.①22AC=;②PO⊥【解析】(1)证明:连接因为AB BC =,所以OB 又因为PO OB O = ,PO 所以AC ⊥平面POB ,因为所以AC PB ⊥.(2)选择①,由题222AB BC AC +=,所以则2OP OB ==,2PO +所以OB ,OC ,OP 两两垂直,建立如图所示坐标系,则(2,0,0)B ,(0,2,0)C 设平面PBC 的一个法向量为则1100PB n PC n ⎧⋅=⎪⎨⋅=⎪⎩,即22x y ⎧-⎪⎨-⎪⎩平面PAC 的一个法向量所以二面角B PC A --的余弦值为(0,2,0)A -,(0,2,PA =-- 所以A 到平面BPC 的距离为选择②由(1)得,PO AC ⊥,PO ⊥则(2,0,0)B ,(0,2,0)C 设平面PBC 的一个法向量为则1100PB n PC n ⎧⋅=⎪⎨⋅=⎪⎩,即22x y ⎧-⎪⎨-⎪⎩平面PAC 的一个法向量所以二面角B PC A --的余弦值为(0,2,0)A -,(0,2,PA =--所以A 到平面BPC 的距离为。
空间向量与立体几何PPT课件
(4)对于不共线的三点 A、B 、C 和平面 ABC 外的一点 O , 空间一点 P 满足关系式 OP xOA yOB zOC ,则点 P 在平 面 ABC 内的充要条件是 x y z 1 .
则 D(0,0,0),B
⑴ CD 0, 2,0
2,0,0
,PB
,C 2 2
0, 2,0 ,0, 2
2
,P ,
2 2
,0,
2 2
CD PB 0,CD PB,CD PB
⑵取平面 BDx,y,z)
PB
2021
6
4、两个向量的数量积
注:①两个向量的数量积是数量,而不是向量. ②规定:零向量与任意向量的数量积等于零.
空间两个向量的数量积的性质
注:空间向量的数量积具有和平面202向1 量的数量积完全相同的性质7 .
(三)空间向量的理论
1.共线向量定理:对空间任意两个向量
a,b(b0),a//b的充要条件是存在实数 使
17
例 1.一副三角板 ABC 和 ABD 如图摆成直二面角, 若 BC=a,求 AB 和 CD 的夹角的余弦值.
分析:用几何法求两异面直 线所成的角关键在于巧妙地利 用平行线构造角,且能通过解三 角形的知识求出该角的大小.
若在异面直线上选取两个非零向量 a 和 b ,借助向量的夹角 公式计算出这两个向量的夹角的大小就可得出两异面直线所
VD PBC
1 3
1 2
PB
PD
DC
1 3
1 2
数学:第三章《空间向量与立体几何》教案(人教版选修2-1)
高二数学选修2-1 第三章 第1节 空间向量及其运算人教实验B 版(理)【本讲教育信息】一、教学内容:选修2—1 空间向量及其运算二、教学目标:1.理解空间向量的概念,掌握其表示方法;会用图形说明空间向量加法、减法、数乘向量及它们的运算律。
2.理解共线向量定理和共面向量定理及其意义。
3.掌握空间向量的数量积的计算,掌握空间向量的线性运算,掌握空间向量平行、垂直的充要条件及向量的坐标与点的坐标的关系;掌握夹角和距离公式。
三、知识要点分析: 1.空间向量的概念:在空间,我们把具有大小和方向的量叫做向量注:向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量2.空间向量的运算定义:与平面向量运算一样,空间向量的加法、减法与数乘向量运算如下(如图)b a AB OA OB+=+=b a-=-=)(R a OP ∈=λλ运算律:(1)加法交换律:a b b a+=+(2)加法结合律:)()(c b a c b a++=++(3)数乘分配律:b a b aλλλ+=+)(3.共线向量定理:对于空间任意两个向量a 、b (b ≠0 ),a //b的充要条件是存在实数λ,使a=λb .4.共面向量定理:如果两个向量b a ,不共线,那么向量p 与向量b a ,共面的充要条件是存在有序实数组),(y x ,使得b y a x p +=。
5.空间向量基本定理:如果三个向量c ,b ,a 不共面,那么对空间任一向量p ,存在唯一的有序实数组(x ,y ,z ),使c z b y a x p ++= 6.夹角定义:b a ,是空间两个非零向量,过空间任意一点O ,作b OB a OA ==,,则AOB ∠叫做向量a 与向量b 的夹角,记作><b a , 规定:π>≤≤<b a ,0特别地,如果0,>=<b a ,那么a 与b 同向;如果π>=<b a ,,那么a 与b 反向;如果90b ,a >=<,那么a 与b 垂直,记作b a ⊥。
立体几何与空间向量知识梳理
立体几何与空间向量知识梳理
立体几何与空间向量是数学中的两个重要分支,它们都涉及到三维空间的计算和处理。
下面是它们的知识梳理:
一、立体几何
1. 立体几何基本概念:点、线、面、立体、平行、垂直、角度、投影等。
2. 立体图形的性质:体积、表面积、对称性、切割等。
3. 立体几何基本公式:立方体、长方体、正方体、圆柱、圆锥、球等的体积和表面积公式。
4. 立体几何运用:解决物体体积和表面积的计算问题,如容器的容积、房间的面积等。
二、空间向量
1. 空间向量定义及表示:三维空间中的有向线段,可以用起点坐标和终点坐标表示。
2. 空间向量的运算:加、减、数乘、点乘、叉乘等。
3. 空间向量的性质:模长、模长计算公式、向量方向,空间向量的平行性、垂直性等。
4. 空间向量的应用:用向量来表示物理量,如力、速度、加速
度等。
总结
立体几何和空间向量是数学中两个重要的分支,它们在三维空间中进行计算和处理。
在应用方面,立体几何可以解决物体的体积和表面积计算问题,而空间向量则可以用来表示和处理物理量。
在学习过程中,要注意掌握基本概念和公式,熟练掌握基本运算和性质,逐渐深入到应用层面。
高中数学第三章空间向量与立体几何3空间向量基本定理及空间向量运算的坐标表示3-1空间向量基本定理北师
答案:3a+3b-5c
解析:如图所示,取BC的中点G,连接EG,FG,则
1
1
1
1
1
EF=GF − GE= CD − BA= CD + AB= (5a+6b-
2
2
1
8c)+ (a-2c)=3a+3b-5c.
2
2
2
2
易错辨析 对基理解不清致误
例3 在平行六面体 ABCDA1B1C1D1 中,M为AC与BD的交点.若
的值分别是(
)
1
1
1
1
1
1
A.x= ,y= ,z= B.z= ,y= ,z=
3
3
3
1
1
1
C.x= ,y= ,z=
3
6
3
答案:D
3
3
6
1
1
1
D.x= ,y= ,z=
6
3
3
(2)在平行六面体ABCDA′B′C′D′中,设AB=a,AD=b,AA′ =c,P是
CA′的中点,M是CD′的中点,N是C′D′的中点,点Q是CA′上的点,且
A1 B1 =a,A1 D1 =b,A1 =c,试用基{a,b,c}表示向量C1 .
解析:如图,连接A1M,A1C1 ,则C1 =A1 -
1
A1 C1 =A1 +AM-(A1 B1 +A1 D1 )=A1 + (A1 B1
1
+A1 D1 )-(A1 B1 +A1 D1 )=A1A-
2
1
1
b构成基的向量是(
)
A.a
B.b
C.a+2b
D.a+2c
高考数学(理)之立体几何与空间向量 专题03 空间点、线、面的位置关系(解析版)
立体几何与空间向量03 空间点、线、面的位置关系一、具体目标:1.理解空间直线、平面位置关系的定义,并了解可以作为推理依据的公理和定理;2.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理;3.能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.二、知识概述:1.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内(即直线在平面内).(2)公理2:经过不在同一条直线上的三点,有且只有一个平面(即可以确定一个平面).(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条通过这个点的公共直线. 推论1:经过一条直线和这条直线外一点,有且只有一个平面.推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面.2. 空间两直线的位置关系直线与直线的位置关系的分类⎩⎨⎧ 共面直线⎩⎪⎨⎪⎧ 平行相交异面直线:不同在任何一个平面内直线与平面的位置关系有平行、相交、在平面内三种情况.平面与平面的位置关系有平行、相交两种情况.平行公理:平行于同一条直线的两条直线互相平行.等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.3.异面直线所成的角①定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角或直角叫作异面直线a ,b 所成的角(或夹角).②范围:.4.异面直线的判定方法: ]2,0(π【考点讲解】判定定理:平面外一点A与平面内一点B的连线和平面内不经过该点的直线是异面直线;反证法:证明两线不可能平行、相交或证明两线不可能共面,从而可得两线异面.5.求异面直线所成的角常采用“平移线段法”,平移的方法一般有三种类型:利用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移.计算异面直线所成的角通常放在三角形中进行.平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角;②认定:证明作出的角就是所求异面直线所成的角;③计算:求该角的值,常利用解三角形;④取舍:由异面直线所成的角的取值范围是,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.求异面直线所成的角要特别注意异面直线之间所成角的范围.【温馨提示】平面的基本性质,点、直线、平面之间的位置关系是高考试题主要考查知识点,题型除了选择题或填空题外,往往在大题中结合平行关系、垂直关系或角的计算间接考查.1.【2019年高考全国Ⅲ卷】如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线【解析】本题主要考查的空间两条直线的位置关系问题,要求会构造三角形,讨论两直线是否共面,并通过相应的计算确定两条直线的大小关系.如图所示,作EO CD⊥于O,连接ON,BD,易得直线BM,EN是三角形EBD的中线,是相交直线.过M作MF OD⊥于F,连接BF,Q平面CDE⊥平面ABCD,,EO CD EO⊥⊂平面CDE,EO∴⊥平面ABCD,MF⊥平面ABCD,MFB∴△与EON△均为直角三角形.设正方形边长为2,易知12EO ON EN===,,5,2MF BF BM==∴=,BM EN∴≠,故选B.] 2 ,0(π【真题分析】【答案】B2.【2018年高考全国Ⅱ卷理数】在长方体1111ABCD A B C D -中,1AB BC ==,1AA =1AD 与1DB 所成角的余弦值为( )A .15 BCD【解析】方法一:用一个与原长方体相同的长方体拼到原长方体的前面,如图,则11B P AD ∥,连接DP ,易求得1DB DP =,12B P =,则1DB P ∠是异面直线1AD 与1DB 所成的角,由余弦定理可得22211111cos 2DB B P DP DB P DB PB +-∠===⋅.故选C.方法二:以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 轴建立空间直角坐标系,则()()((110,0,0,1,0,0,,D A B D ,所以((11,AD DB =-=u u u u r u u u u r ,因为111111cos ,5AD DB AD DB AD DB ⋅===u u u u r u u u u r u u u u r u u u u r u u u u r u u u u r , 所以异面直线1AD 与1DB所成角的余弦值为5,故选C. 【答案】C3. 【2018年高考全国Ⅱ卷文数】在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为( )A.2 BCD【解析】如图,在正方体1111ABCD A B C D -中,CD AB ∥,所以异面直线AE 与CD 所成角为EAB ∠,设正方体边长为2a ,则由E 为棱1CC 的中点,可得CE a =,所以BE =,则tan BE EAB AB ∠===.故选C .【答案】C4.【2017年高考全国Ⅱ卷理数】已知直三棱柱111ABC A B C -中,120ABC ∠=︒,2AB =,11BC CC ==,则异面直线1AB 与1BC 所成角的余弦值为( )A.2 B.5 C.5D.3 【解析】如图所示,补成直四棱柱1111ABCD A B C D -,则所求角为1111,BC D BC BD C D AB ∠=====Q易得22211C D BD BC =+,因此111cos 5BC BC D C D ∠===,故选C . 【答案】C5.【2017年高考全国Ⅲ卷文数】在正方体1111ABCD A B C D -中,E 为棱CD 的中点,则( )A .11A E DC ⊥B .1A E BD ⊥C .11A E BC ⊥D .1AE AC ⊥【解析】根据三垂线定理的逆定理,可知平面内的线垂直于平面的斜线,则也垂直于斜线在平面内的射影.A.若11A E DC ⊥,那么11D E DC ⊥,很显然不成立;B.若1A E BD ⊥,那么BD AE ⊥,显然不成立;C.若11A E BC ⊥,那么11BC B C ⊥,成立,反过来11BC B C ⊥时,也能推出11BC A E ⊥,所以C 成立;D.若1A E AC ⊥,则AE AC ⊥,显然不成立,故选C.【答案】C6.【2019年高考北京卷理数】已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l ⊥m ; ②m ∥α; ③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.【解析】将所给论断,分别作为条件、结论,得到如下三个命题:(1)如果l ⊥α,m ∥α,则l ⊥m ,正确;(2)如果l ⊥α,l ⊥m ,则m ∥α,不正确,有可能m 在平面α内;(3)如果l ⊥m ,m ∥α,则l ⊥α,不正确,有可能l 与α斜交、l ∥α.故答案为:如果l ⊥α,m ∥α,则l ⊥m.【答案】如果l ⊥α,m ∥α,则l ⊥m .7.【2017年高考全国Ⅲ卷理数】a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论:①当直线AB 与a 成60°角时,AB 与b 成30°角;②当直线AB 与a 成60°角时,AB 与b 成60°角;③直线AB 与a 所成角的最小值为45°;④直线AB 与a 所成角的最大值为60°. 其中正确的是________.(填写所有正确结论的编号)【解析】设1AC BC ==.由题意,AB 是以AC 为轴,BC 为底面半径的圆锥的母线,由,AC a AC b ⊥⊥,又AC ⊥圆锥底面,所以在底面内可以过点B ,作BD a ∥,交底面圆C 于点D ,如图所示,连接DE ,则DE ⊥BD ,DE b ∴∥,连接AD ,等腰ABD △中,AB AD ==当直线AB 与a 成60°角时,60ABD ∠=o ,故BD =Rt BDE △中,2,BE DE =∴=B 作BF ∥DE ,交圆C 于点F ,连接AF ,由圆的对称性可知BF DE ==ABF ∴△为等边三角形,60ABF ∴∠=o ,即AB 与b 成60°角,②正确,①错误.由图可知③正确;很明显,可以满足平面ABC ⊥直线a ,则直线AB 与a 所成角的最大值为90°,④错误.故正确的是②③.【答案】②③8.【2016高考浙江文数】如图,已知平面四边形ABCD ,AB =BC =3,CD =1,ADADC =90°.沿直线AC 将△ACD 翻折成△ACD ',直线AC 与BD '所成角的余弦的最大值是______.【解析】设直线AC 与'BD 所成角为θ.设O 是AC 中点,由已知得AC =如图,以OB 为x 轴,OA 为y 轴,过O 与平面ABC 垂直的直线为z轴,建立空间直角坐标系,由(0,2A,(2B,(0,2C -,作DH AC ⊥于H ,翻折过程中,'D H 始终与AC 垂直,26CD CH CA ===,则3OH =,DH =='(,sin )636D αα-,则'sin )6236BD αα=--uuu r ,与CA uu r 平行的单位向量为(0,1,0)n =r , 所以cos cos ',BD n θ=<>uuu r r ''BD n BD n⋅=uuu r r uuu r rcos 1α=时,cos θ取最大值9.9.【2017天津,文17】如图,在四棱锥P ABCD -中,AD ⊥平面PDC ,AD BC ∥,PD PB ⊥,1AD =,3BC =,4CD =,2PD =.(I )求异面直线AP 与BC 所成角的余弦值;(II )求证:PD ⊥平面PBC ;(Ⅲ)求直线AB 与平面PBC 所成角的正弦值.【分析】(Ⅰ)异面直线所成的角一般都转化为相交线所成的角,//AD BC ,所以PAD ∠即为所求,根据余弦定理求得,但本题可证明AD PD ⊥,所以cosAD PAD AP ∠=;(Ⅱ)要证明线面垂直,根据判断定理,证明线与平面内的两条相交直线垂直,则线与面垂直,即证明,PD BC PD PB ⊥⊥;(Ⅲ)根据(Ⅱ)的结论,做//DF AB ,连结PF ,DFP ∠即为所求【解析】(Ⅰ)解:如图,由已知AD //BC ,故DAP ∠或其补角即为异面直线AP 与BC 所成的角.因为AD ⊥平面PDC ,所以AD ⊥PD .在Rt △PDA 中,由已知,得225AP AD PD =+=,故5cos AD DAP AP ∠==. 所以,异面直线AP 与BC C(Ⅱ)证明:因为AD ⊥平面PDC ,直线PD ⊂平面PDC ,所以AD ⊥PD .又因为BC //AD ,所以PD ⊥BC ,又PD ⊥PB ,所以PD ⊥平面PB C.10.【2019年高考浙江卷】如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是AC ,A 1B 1的中点. (1)证明:EF BC ⊥;(2)求直线EF 与平面A 1BC 所成角的余弦值.【解析】方法一:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC .又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC ,则A 1E ⊥BC .又因为A 1F ∥AB ,∠ABC =90°,故BC ⊥A 1F .所以BC ⊥平面A 1EF .因此EF ⊥BC .(2)取BC 中点G ,连接EG ,GF ,则EGFA 1是平行四边形.由于A 1E ⊥平面ABC ,故A 1E ⊥EG ,所以平行四边形EGFA 1为矩形.由(1)得BC ⊥平面EGFA 1,则平面A 1BC ⊥平面EGFA 1,所以EF 在平面A 1BC 上的射影在直线A 1G 上.连接A 1G 交EF 于O ,则∠EOG 是直线EF 与平面A 1BC 所成的角(或其补角).不妨设AC =4,则在Rt △A 1EG 中,A 1E ,EG O 为A 1G 的中点,故12A G EO OG ===, 所以2223cos 25EO OG EG EOG EO OG +-∠==⋅.因此,直线EF 与平面A 1BC 所成角的余弦值是35. 方法二:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC .又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1,平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC .如图,以点E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系E –xyz .不妨设AC =4,则A 1(0,0,B 1,0),1B ,3,2F ,C (0,2,0).因此,3,2EF =u u u r ,(BC =u u u r .由0EF BC ⋅=u u u r u u u r 得EF BC ⊥. (2)设直线EF 与平面A 1BC 所成角为θ.由(1)可得1=(310)=(0223)BC A C --u u u r u u u u r ,,,,,.设平面A 1BC 的法向量为n ()x y z =,,,由100BC A C ⎧⋅=⎪⎨⋅=⎪⎩u u u r n n,得00y y ⎧+=⎪⎨=⎪⎩, 取n (11)=,故||4sin |cos |=5|||EF EF EF θ⋅==⋅u u u r u u u r u u u r ,n n n |, 因此,直线EF 与平面A 1BC 所成的角的余弦值为35.2.【2017课标1,文6】如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是( ) A . B .C .D .【解析】本题考点是线面平行的判断问题,由题意可知:第二个选项中AB ∥MQ ,在直线AB ∥平面MNQ ,第三个选项同样可得AB ∥MQ ,直线AB ∥平面MNQ ,第四个选项有AB ∥NQ ,直线AB ∥平面MNQ ,只有选项A 不符合要求【答案】A2.空间中,可以确定一个平面的条件是( )A .两条直线B .一点和一条直线C .一个三角形D .三个点【解析】不共线的三点确定一个平面,C 正确;A 选项,只有这两条直线相交或平行才能确定一个平面;B 选项,一条直线和直线外一点才能确定一个平面;D 选项,不共线的三点确定一个平面.【答案】C3.在三棱锥A -BCD 的棱AB 、BC 、CD 、DA 上分别取E 、F 、G 、H 四点,如果EF ∩HG =P ,则点P ( )A .一定在直线BD 上B .一定在直线AC 上 【模拟考场】C .在直线AC 或BD 上 D .不在直线AC 上,也不在直线BD 上【解析】如图所示,∵EF ⊂平面ABC ,HG ⊂平面ACD ,EF ∩HG =P ,∴P ∈平面ABC ,P ∈平面ACD .又∵平面ABC ∩平面ACD =AC ,∴P ∈AC ,故选B .【答案】B4.已知平面α和直线l ,则在平面α内至少有一条直线与直线l ( )A.平行B.垂直C.相交D.以上都有可能【解析】本题的考点是直线与平面的位置关系,直线与直线的位置关系,若直线l 与平面α相交,则在平面α内不存在直线与直线l 平行,故A 错误;若直线l ∥平面α,则在平面α内不存在直线与l 相交,故C 错误;对于直线l 与平面α相交,直线l 与平面α平行,直线l 在平面α内三种位置关系,在平面α内至少有一条直线与直线l 垂直,故选B.【答案】B5.如图,四棱锥P ABCD -中,90ABC BAD ∠=∠=︒,2BC AD =,PAB ∆和PAD ∆都是等边三角形,则异面直线CD 和PB 所成角的大小为( )A .90︒B .75︒C .60︒D .45︒【解析】设1AD =,则2BC =,过A 作//AE CD 交BC 于E ,则AD CE =,过E 作//EF PB 交PC于F ,则AEF ∠即为为所求,如图所示,过F 作//FG CD 交PD 于G ,连接AG ,则四边形AEFG 是梯形,其中//FG AE ,12EF =G 作//GH EF 交AE 于H ,则GHA AEF ∠=∠,在GHA ∆中,1,,222GH EF AH AE FG AG ===-===则 222AG GH AH =+,所以90AEF ∠=︒,故选A.【答案】A6.不在同一条直线上的三点A 、B 、C 到平面α的距离相等,且A ∉α,给出以下三个命题:①△ABC 中至少 有一条边平行于α;②△ABC 中至多有两边平行于α;③△ABC 中只可能有一条边与α相交.其中真命题是_____________.【解析】直线与平面的位置关系,平面与平面的位置关系,如图,三点A 、B 、C 可能在α的同侧,也可能在α两侧,其中真命题是①.【答案】①7.已知A 是△BCD 所在平面外的一点,E ,F 分别是BC ,AD 的中点,(1)求证:直线EF 与BD 是异面直线;(2)若AC ⊥BD ,AC =BD ,求EF 与BD 所成的角.【解析】本题考点反证法证明异面直线,异面直线所成的角.(1)证明:假设EF 与BD 不是异面直线,则EF 与BD 共面,从而DF 与BE 共面,即AD 与BC 共面,所以A 、B 、C 、D 在同一平面内,这与A 是△BCD 所在平面外的一点相矛盾.故直线EF 与BD 是异面直线.(2)取CD 的中点G ,连接EG 、FG ,则EG ∥BD ,所以直线EF 与EG 所成的角即为异面直线EF 与BD 所成的角.在Rt △EGF 中,由EG =FG =12AC ,可得∠FEG =45°,即异面直线EF 与BD 所成的角为45°.8.如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为3,M ,N 分别是棱AA 1,AB 上的点,且AM =AN =1.(1)证明:M ,N ,C ,D 1四点共面;(2)平面MNCD 1将此正方体分为两部分,求这两部分的体积之比.【解析】本题考点是多点共面的证明,平面分几何体的体积之比.(1)证明:连接A 1B ,在四边形A 1BCD 1中,A 1D 1∥BC 且A 1D 1=BC ,所以四边形A 1BCD 1是平行四边形.所以A 1B ∥D 1C. 在△ABA 1中,AM =AN =1,AA 1=AB =3,所以1AM AN AA AB, 所以MN ∥A 1B ,所以MN ∥D 1C.所以M ,N ,C ,D 1四点共面.(2)记平面MNCD 1将正方体分成两部分的下部分体积为V 1,上部分体积为V 2,连接D 1A ,D 1N ,DN ,则几何体D 1-AMN ,D 1-ADN ,D 1-CDN 均为三棱锥,所以V 1=111D AMN D ADN D CDN V V V ---++=13S △AMN ·D 1A 1+13S △ADN ·D 1D +13S △CDN ·D 1D =13×12×3+13×32×3+13×92×3=132. 从而V 2=1111ABCD A B C D V --V 1=27-132=412,所以121341V V =, 所以平面MNCD 1分此正方体的两部分体积的比为1341.。
高中数学第三章空间向量与立体几何3.1.1空间向量及其加减运算3.1.2空间向量的数乘运算a21
解析:(2)①( AB + BC )+ CC1 = AC + CC1 = AC1 ; ②( AA1 + A1D1 )+ D1C1 = AD1 + D1C1 = AC1 ; ③( AB + BB1 )+ B1C1 = AB1 + B1C1 = AC1 ; ④( AA1 + A1B1 )+ B1C1 = AB1 + B1C1 = AC1 .
3.1.1 空间向量及其加减运算 3.1.2 空间向量的数乘运算
课标要求:1.经历向量及其运算由平面到空间推广的过程,了解空间向量的 概念.2.掌握空间向量的加法、减法和数乘运算.3.理解空间共线向量和共 面向量定理及推论.
自主学习 课堂探究
知识探究
自主学习
1.空间向量及其长度的定义 与平面向量一样,在空间,我们把 具有大小和方向的量 叫做空间向量,
解析:容易判断D是假命题,共线的单位向量是相等向量或相反向量.故
选D.
2.空间两向量a,b互为相反向量,已知向量|b|=3,则下列结论正确的是
(D)
(A)a=b
(B)a+b为实数0
(C)a与b方向相同
(D)|a|=3
3.在下列条件中,使 M 与 A,B,C 一定共面的是( C )
(A) OM =3 OA -2 OB - OC (B) OM + OA + OB + OC =0
二轮复习通用版专题3第3讲立体几何与空间向量课件(72张)
返回导航
专题三 立体几何
高考二轮总复习 • 数学
设平面 ABD 的一个法向量为 n=(x,y,z),
则nn··AA→→BD==--xx++z=3y0=,0, 取 y= 3,
则 n=(3, 3,3),
又因为
C(-1,0,0),F0,
43,34,
所以C→F=1,
43,34,
返回导航
专题三 立体几何
4 .(2022·全国乙卷 ) 如图,四面体ABCD 中,AD⊥CD,AD=CD,∠ADB=∠BDC,E 为AC的中点.
(1)证明:平面BED⊥平面ACD; (2)设AB=BD=2,∠ACB=60°,点F在 BD 上 , 当 △AFC 的 面 积 最 小 时 , 求 CF 与 平 面 ABD所成的角的正弦值.
专题三 立体几何
高考二轮总复习 • 数学
所以BC,BA,BB1两两垂直,以B为原 点,建立空间直角坐标系,如图,
由(1)得 AE= 2,所以 AA1=AB=2,A1B =2 2,
所以 BC=2, 则 A(0,2,0),A1(0,2,2),B(0,0,0), C(2,0,0), 所以 A1C 的中点 D(1,1,1),
(1)证明:FN⊥AD; (2)求直线BM与平面ADE所成角的正弦值.
专题三 立体几何
高考二轮总复习 • 数学
返回导航
【解析】 (1)过点E、D分别做直线DC、AB的垂线EG、DH并分别 交于点G、H.
∵四边形ABCD和EFCD都是直角梯形,AB∥DC,CD∥EF,AB= 5,DC=3,EF=1,∠BAD=∠CDE=60°,由平面几何知识易知,
则
VA
-
A1BC
=
1 3
S△A1BC·h
高中数学 第3章 空间向量与立体几何 3.2.2 空间线面关系的判定1数学教案
3.2.2 空间线面关系的判定设空间两条直线l 1,l 2的方向向量分别为e 1,e 2,两个平面α1,α2的法向量分别为n 1,n 2,则有下表:思考:否垂直?[提示] 垂直1.若直线l 的方向向量a =(1,0,2),平面α的法向量为n =(-2,0,-4),则( )A .l ∥αB .l ⊥αC .l ⊂αD .l 与α斜交B [∵n =(-2,0,-4)=-2(1,0,2)=-2a , ∴n ∥a ,∴l ⊥α.]2.已知不重合的平面α,β的法向量分别为n 1=⎝ ⎛⎭⎪⎫12,3,-1,n 2=⎝ ⎛⎭⎪⎫-16,-1,13,则平面α与β的位置关系是________.平行 [∵n 1=-3n 2,∴n 1∥n 2,故α∥β.]3.设直线l 1的方向向量为a =(3,1,-2),l 2的方向向量为b =(-1,3,0),则直线l 1与l 2的位置关系是________.垂直 [∵a·b =(3,1,-2)·(-1,3,0)=-3+3+0=0,∴a⊥b ,∴l 1⊥l 2.] 4.若直线l 的方向向量为a =(-1,2,3),平面α的法向量为n =(2,-4,-6),则直线l 与平面α的位置关系是________.垂直 [∵n =-2a ,∴n ∥a ,又n 是平面α的法向量,所以l ⊥α.]利用空间向量证明线线平行【例1】 如图所示,在正方体ABCD A 1B 1C 1D 1中,E ,F 分别为DD 1和BB 1的中点.求证:四边形AEC 1F 是平行四边形.[证明] 以点D 为坐标原点,分别以DA →,DC →,DD 1→为正交基底建立空间直角坐标系,不妨设正方体的棱长为1,则A (1,0,0),E ⎝⎛⎭⎪⎫0,0,12,C 1(0,1,1),F ⎝⎛⎭⎪⎫1,1,12,∴AE →=⎝ ⎛⎭⎪⎫-1,0,12,FC 1→=⎝ ⎛⎭⎪⎫-1,0,12,EC 1→=⎝ ⎛⎭⎪⎫0,1,12,AF→=⎝ ⎛⎭⎪⎫0,1,12, ∵AE →=FC 1→,EC 1→=AF →, ∴AE →∥FC 1→,EC 1→∥AF →,又∵F ∉AE ,F ∉EC 1,∴AE ∥FC 1,EC 1∥AF , ∴四边形AEC 1F 是平行四边形.1.两直线的方向向量共线(垂直)时,两直线平行(垂直);否则两直线相交或异面. 2.直线的方向向量与平面的法向量共线时,直线和平面垂直;直线的方向向量与平面的法向量垂直时,直线在平面内或线面平行;否则直线与平面相交但不垂直.3.两个平面的法向量共线(垂直)时,两平面平行(垂直);否则两平面相交但不垂直. 1.长方体ABCD A 1B 1C 1D 1中,E ,F 分别是面对角线B 1D 1,A 1B 上的点,且D 1E =2EB 1,BF =2FA 1.求证:EF ∥AC 1.[证明] 如图所示,分别以DA ,DC ,DD 1所在的直线为x 轴、y 轴、z 轴建立空间直角坐标系,设DA =a ,DC =b ,DD 1=c ,则得下列各点的坐标:A (a ,0,0),C 1(0,b ,c ),E ⎝ ⎛⎭⎪⎫23a ,23b ,c ,F ⎝⎛⎭⎪⎫a ,b 3,23c . ∴FE →=⎝ ⎛⎭⎪⎫-a 3,b 3,c 3,AC 1→=(-a ,b ,c ),∴FE →=13AC 1→.又FE 与AC 1不共线,∴直线EF ∥AC 1.利用空间向量证明线面、面面平行[探究问题]在用向量法处理问题时,若几何体的棱长未确定,应如何处理? 提示:可设几何体的棱长为1或a ,再求点的坐标.【例2】 在正方体ABCD A 1B 1C 1D 1中,M ,N 分别是CC 1,B 1C 1的中点.求证:MN ∥平面A 1BD .[思路探究][证明] 法一:如图,以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,设正方体的棱长为1,则D (0,0,0),A 1(1,0,1),B (1,1,0),M ⎝ ⎛⎭⎪⎫0,1,12,N ⎝ ⎛⎭⎪⎫12,1,1,于是DA 1→=(1,0,1),DB →=(1,1,0),MN →=⎝ ⎛⎭⎪⎫12,0,12.设平面A 1BD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ⊥DA 1→,n ⊥DB →,即⎩⎪⎨⎪⎧n ·DA 1→=x +z =0,n ·DB →=x +y =0,取x =1,则y =-1,z =-1,∴平面A 1BD 的一个法向量为n =(1,-1,-1).又MN →·n =⎝ ⎛⎭⎪⎫12,0,12·(1,-1,-1)=0,∴MN →⊥n .∴MN ∥平面A 1BD .法二:MN →=C 1N →-C 1M →=12C 1B 1→-12C 1C →=12(D 1A 1→-D 1D →)=12DA 1→,∴MN →∥DA 1→,∴MN ∥平面A 1BD .法三:MN →=C 1N →-C 1M →=12C 1B 1→-12C 1C →=12DA →-12A 1A →=12()DB →+BA→-12()A 1B →+BA →=12DB →-12A 1B →.即MN →可用A 1B →与DB →线性表示,故MN →与A 1B →,DB →是共面向量,故MN ∥平面A 1BD . 1.本例中条件不变,试证明平面A 1BD ∥平面CB 1D 1.[证明] 由例题解析知,C (0,1,0),D 1(0,0,1),B 1(1,1,1), 则CD 1→=(0,-1,1),D 1B 1→=(1,1,0), 设平面CB 1D 1的法向量为m =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧m ⊥CD 1→m ⊥D 1B 1→,即⎩⎪⎨⎪⎧m ·CD 1→=-y 1+z 1=0,m ·D 1B 1→=x 1+y 1=0,令y 1=1,可得平面CB 1D 1的一个法向量为m =(-1,1,1),又平面A 1BD 的一个法向量为n =(1,-1,-1). 所以m =-n ,所以m ∥n ,故平面A 1BD ∥平面CB 1D 1.2.若本例换为:在如图所示的多面体中,EF ⊥平面AEB ,AE ⊥EB ,AD ∥EF ,EF ∥BC ,BC =2AD =4,EF =3,AE =BE =2,G 是BC 的中点,求证:AB ∥平面DEG .[证明] ∵EF ⊥平面AEB ,AE ⊂平面AEB ,BE ⊂平面AEB , ∴EF ⊥AE ,EF ⊥BE .又∵AE ⊥EB ,∴EB ,EF ,EA 两两垂直.以点E 为坐标原点,EB ,EF ,EA 分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系.由已知得,A (0,0,2),B (2,0,0),C (2,4,0),F (0,3,0),D (0,2,2),G (2,2,0),∴ED →=(0,2,2),EG →=(2,2,0),AB →=(2,0,-2).设平面DEG 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧ED →·n =0,EG →·n =0,即⎩⎪⎨⎪⎧2y +2z =0,2x +2y =0,令y =1,得z =-1,x =-1,则n =(-1,1,-1), ∴AB →·n =-2+0+2=0,即AB →⊥n . ∵AB ⊄平面DEG , ∴AB ∥平面DEG .1.向量法证明线面平行的三个思路(1)设直线l 的方向向量是a ,平面α的法向量是u ,则要证明l ∥α,只需证明a ⊥u ,即a ·u =0.(2)根据线面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行,要证明一条直线和一个平面平行,在平面内找一个向量与已知直线的方向向量是共线向量即可.(3)根据共面向量定理可知,如果一个向量和两个不共线的向量是共面向量,那么这个向量与这两个不共线的向量确定的平面必定平行,因此要证明一条直线和一个平面平行,只要证明这条直线的方向向量能够用平面内两个不共线向量线性表示即可.2.证明面面平行的方法设平面α的法向量为μ,平面β的法向量为v ,则α∥β⇔μ∥v .向量法证明垂直问题【例3】 如图所示,在四棱锥P ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC =60°,PA =AB =BC ,E 是PC 的中点.证明:(1)AE ⊥CD ; (2)PD ⊥平面ABE . [思路探究] 建系→求相关点的坐标→求相关向量的坐标→判断向量的关系→确定线线、线面关系[证明] AB ,AD ,AP 两两垂直,建立如图所示的空间直角坐标系,设PA =AB =BC =1, 则P (0,0,1). (1)∵∠ABC =60°, ∴△ABC 为正三角形,∴C ⎝ ⎛⎭⎪⎫12,32,0,E ⎝ ⎛⎭⎪⎫14,34,12. 设D (0,y,0),由AC ⊥CD ,得AC →·CD →=0, 即y =233,则D ⎝ ⎛⎭⎪⎫0,233,0,∴CD →=⎝ ⎛⎭⎪⎫-12,36,0.又AE →=⎝ ⎛⎭⎪⎫14,34,12,∴AE →·CD →=-12×14+36×34=0,∴AE →⊥CD →,即AE ⊥CD .(2)法一:∵P (0,0,1),∴PD →=⎝ ⎛⎭⎪⎫0,233,-1.又AE →·PD →=34×233+12×(-1)=0,∴PD →⊥AE →,即PD ⊥AE . ∵AB →=(1,0,0),∴PD →·AB →=0.∴PD ⊥AB ,又AB ∩AE =A ,∴PD ⊥平面ABE .法二:AB →=(1,0,0),AE →=⎝ ⎛⎭⎪⎫14,34,12,设平面ABE 的一个法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧x =0,14x +34y +12z =0,令y =2,则z =-3,∴n =(0,2,-3).∵PD →=⎝ ⎛⎭⎪⎫0,233,-1,显然PD →=33n .∴PD →∥n ,∴PD →⊥平面ABE ,即PD ⊥平面ABE . 1.证明线线垂直常用的方法证明这两条直线的方向向量互相垂直. 2.证明线面垂直常用的方法(1)证明直线的方向向量与平面的法向量是共线向量; (2)证明直线与平面内的两个不共线的向量互相垂直. 3.证明面面垂直常用的方法 (1)转化为线线垂直、线面垂直处理; (2)证明两个平面的法向量互相垂直.2.在例3中,平面ABE 与平面PDC 是否垂直,若垂直,请证明;若不垂直,请说明理由.[解] 由例3,可知CD →=⎝ ⎛⎭⎪⎫-12,36,0,PD →=⎝ ⎛⎭⎪⎫0,233,-1,设平面PDC 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·CD →=-12x +36y =0,m ·PD →=233y -z =0,令y =3,则x =1,z =2,即m =(1,3,2),由例3知,平面ABE 的法向量为n =(0,2,-3), ∴m·n =0+23-23=0,∴m⊥n . 所以平面ABE ⊥平面PDC .1.应用向量法证明线面平行问题的方法 (1)证明直线的方向向量与平面的法向量垂直.(2)证明直线的方向向量与平面内的某一直线的方向向量共线.(3)证明直线的方向向量可用平面内的任两个不共线的向量表示.即用平面向量基本定理证明线面平行.2.证明面面平行的方法设平面α的法向量为n 1=(a 1,b 1,c 1),平面β的法向量为n 2=(a 2,b 2,c 2),则α∥β⇔n 1∥n 2⇔(a 1,b 1,c 1)=k (a 2,b 2,c 2)(k ∈R ).3.(1)证明线面垂直问题,可以利用直线的方向向量和平面的法向量之间的关系来证明. (2)证明面面垂直问题,常转化为线线垂直、线面垂直或两个平面的法向量垂直. 1.判断(正确的打“√”,错误的打“×”)(1)若向量n 1,n 2为平面α的法向量,则以这两个向量为方向向量的两条不重合直线一定平行.( )(2)若平面外的一条直线的方向向量与平面的法向量垂直,则该直线与平面平行.( ) (3)若一直线与平面垂直,则该直线的方向向量与平面内所有直线的方向向量的数量积为0.( )(4)两个平面垂直,则其中一个平面内的直线的方向向量与另一个平面内的直线的方向向量垂直.( )[答案] (1)√ (2)√ (3)√ (4)×2.已知向量a =(2,4,5),b =(3,x ,y ),a 与b 分别是直线l 1,l 2的方向向量,若l 1∥l 2,则( )A .x =6,y =15B .x =3,y =152C .x =3,y =15D .x =6,y =152D [∵l 1∥l 2,∴a ∥b , ∴存在λ∈R ,使a =λb , 则有2=3λ,4=λx,5=λy , ∴x =6,y =152.]3.已知平面α和平面β的法向量分别为a =(1,2,3),b =(x ,-2,3),且α⊥β,则x =________.-5 [∵α⊥β,∴a ⊥b , ∴a ·b =x -4+9=0, ∴x =-5.]4.在正方体ABCD A 1B 1C 1D 1中,E 为CC 1的中点,证明:平面B 1ED ⊥平面B 1BD . [证明] 以DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系.设正方体的棱长为1,则D (0,0,0),B 1(1,1,1),E ⎝ ⎛⎭⎪⎫0,1,12,DB 1→=(1,1,1),DE →=⎝⎛⎭⎪⎫0,1,12,设平面B 1DE 的法向量为n 1=(x ,y ,z ),则x +y +z =0且y +12z =0,令z =-2,则y =1,x =1,∴n 1=(1,1,-2).同理求得平面B1BD的法向量为n2=(1,-1,0),由n1·n2=0,知n1⊥n2,∴平面B1DE⊥平面B1BD.。
空间向量与立体几何
空间向量与立体几何
空间向量与立体几何是解决空间中点、线、面以及体的位
置关系和计算问题的数学工具,是空间几何的分支。
空间
向量是指具有大小和方向的量,可以用来表示空间中的点、线、面以及体的位置和方向。
立体几何是研究三维空间中点、线、面以及体的位置关系和性质的数学分支。
在空间向量与立体几何中,常用的概念和工具包括:
1. 空间向量的表示和运算:空间向量可以用笛卡尔坐标表示,可以进行加法、减法、数乘等运算。
2. 平面方程与空间直线:平面方程可以用一般式、法向量
式或点法式表示,空间直线可以用点向式、参数方程式或
交线式表示。
3. 空间直线与面的关系:可以判断直线与平面的位置关系,如直线与平面的交点、直线在平面上的投影等。
4. 空间几何图形的投影:可以计算点、线、面在投影面上
的投影,以及计算投影的互相关系。
5. 空间向量的点积和叉积:点积可以计算向量的夹角,叉
积可以计算两个向量之间的垂直向量。
6. 空间几何图形的距离和角度:可以计算点、线、面之间
的距离和两个向量之间的夹角。
通过应用空间向量和立体几何的理论和方法,可以解决空
间中的点、线、面以及体的位置关系、定位和运动等问题,广泛应用于物理学、工程学、计算机图形学等领域。
空间向量与立体几何的知识点总结
空间向量与立体几何空间向量及其线性运算知识点一空间向量的概念1.定义:在空间,具有大小和方向的量叫做空间向量.2.长度或模:向量的大小.3.表示方法:①几何表示法:空间向量用有向线段表示;②字母表示法:用字母a,b,c,…表示;若向量a的起点是A,终点是B,也可记作AB,其模记为|a|或|AB|.4.几类特殊的空间向量名称定义及表示零向量长度为0的向量叫做零向量,记为0单位向量模为1的向量称为单位向量相反向量与向量a长度相等而方向相反的向量,称为a的相反向量,记为 -a共线向量(平行向量)如果表示若干空间向量的有向线段所在的直线互相平行或重合,那么这些向量叫做共线向量或平行向量.规定:对于任意向量a,都有0∥a相等向量方向相同且模相等的向量称为相等向量注意:空间中的任意两个向量都可以平移到同一个平面内,成为同一平面内的两个向量.知识点二空间向量的线性运算空间向量的线性运算加法a+b=OA+AB=OB减法a-b=OA-OC=CA数乘当λ>0时,λa=λOA=PQ;当λ<0时,λa=λOA=MN;当λ=0时,λa=0运算律交换律:a+b=b+a;结合律:a+(b+c)=(a+b)+c,λ(μa)=(λμ)a;分配律:(λ+μ)a=λa+μa,λ(a+b)=λa+λb.共线向量与共面向量知识点一 共线向量1.空间两个向量共线的充要条件对于空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使a =λb . 2.直线的方向向量在直线l 上取非零向量a ,我们把与向量a 平行的非零向量称为直线l 的方向向量. 知识点二 共面向量 1.共面向量如图,如果表示向量a 的有向线段OA 所在的直线OA 与直线l 平行或重合,那么称向量a 平行于直线l .如果直线OA 平行于平面α或在平面α内,那么称向量a 平行于平面α.平行于同一个平面的向量,叫做共面向量.2.向量共面的充要条件如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使p =x a +y b .推论:1.已知空间任意一点O 和不共线的三点A ,B ,C ,存在有序实数对(x ,y ),满足关系AC y AB x OA OP ++=,则点P 与点A ,B ,C 共面。
空间向量与立体几何知识点
空间向量与立体几何知识点TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-立体几何空间向量知识点总结知识网络:知识点拨:1、空间向量的概念及其运算与平面向量类似,向量加、减法的平行四边形法则,三角形法则以及相关的运算律仍然成立.空间向量的数量积运算、共线向量定理、共面向量定理都是平面向量在空间中的推广,空间向量基本定理则是向量由二维到三维的推广.2、当a 、b 为非零向量时.0a b a b ⋅=⇔⊥是数形结合的纽带之一,这是运用空间向量研究线线、线面、面面垂直的关键,通常可以与向量的运算法则、有关运算律联系来解决垂直的论证问题.3、公式cos ,a ba b a b⋅<>=⋅是应用空间向量求空间中各种角的基础,用这个公式可以求两异面直线所成的角(但要注意两异面直线所成角与两向量的夹角在取值范围上的区别),再结合平面的法向量,可以求直线与平面所成的角和二面角等.4、直线的方向向量与平面的法向量是用来描述空间中直线和平面的相对位置的重要概念,通过研究方向向量与法向量之间的关系,可以确定直线与直线、直线与平面、平面与平面等的位置关系以及有关的计算问题.5、用空间向量判断空间中的位置关系的常用方法 (1)线线平行证明两条直线平行,只需证明两条直线的方向向量是共线向量.(2)线线垂直证明两条直线垂直,只需证明两条直线的方向向量垂直,即0a b a b ⋅=⇔⊥. (3)线面平行用向量证明线面平行的方法主要有:①证明直线的方向向量与平面的法向量垂直;②证明可在平面内找到一个向量与直线方向向量是共线向量;③利用共面向量定理,即证明可在平面内找到两不共线向量来线性表示直线的方向向量.(4)线面垂直用向量证明线面垂直的方法主要有: ①证明直线方向向量与平面法向量平行;②利用线面垂直的判定定理转化为线线垂直问题.(5)面面平行①证明两个平面的法向量平行(即是共线向量); ②转化为线面平行、线线平行问题.(6)面面垂直①证明两个平面的法向量互相垂直; ②转化为线面垂直、线线垂直问题.6、运用空间向量求空间角(1)求两异面直线所成角利用公式cos,a ba ba b⋅<>=⋅,但务必注意两异面直线所成角θ的范围是0,2π⎛⎤⎥⎝⎦,故实质上应有:cos cos,a bθ=<>.(2)求线面角求直线与平面所成角时,一种方法是先求出直线及射影直线的方向向量,通过数量积求出直线与平面所成角;另一种方法是借助平面的法向量,先求出直线方向向量与平面法向量的夹角φ,即可求出直线与平面所成的角θ,其关系是sinθ=| cosφ|.(3)求二面角用向量法求二面角也有两种方法:一种方法是利用平面角的定义,在两个面内先求出与棱垂直的两条直线对应的方向向量,然后求出这两个方向向量的夹角,由此可求出二面角的大小;另一种方法是转化为求二面角的两个面的法向量的夹角,它与二面角的大小相等或互补.7、运用空间向量求空间距离空间中的各种距离一般都可以转化为求点与点、点与线、点与面的距离.(1)点与点的距离点与点之间的距离就是这两点间线段的长度,因此也就是这两点对应向量的模.(2)点与面的距离点面距离的求解步骤是:①求出该平面的一个法向量;②求出从该点出发的平面的任一条斜线段对应的向量;③求出法向量与斜线段向量的数量积的绝对值再除以法向量的模,即得要求的点面距离.备考建议:1、空间向量的引入,把平面向量及其运算推广到空间,运用空间向量解决有关直线、平面位置关系的问题,应体会向量方法在研究几何图形中的作用,进一步发展空间想像能力和几何直观能力.2、灵活选择运用向量方法与综合方法,从不同角度解决立体几何问题.3、在解决立体几何中有关平行、垂直、夹角、距离等问题时,直线的方向向量与平面的法向量有着举足轻重的地位和作用,它的特点是用代数方法解决立体几何问题,无需进行繁、难的几何作图和推理论证,起着从抽象到具体、化难为易的作用.因此,应熟练掌握平面法向量的求法和用法.4、加强运算能力的培养,提高运算的速度和准确性.第一讲空间向量及运算一、空间向量的有关概念1、空间向量的定义在空间中,既有大小又有方向的量叫做空间向量.注意空间向量和数量的区别.数量是只有大小而没有方向的量.2、空间向量的表示方法空间向量与平面向量一样,也可以用有向线段来表示,用有向线段的长度表示向量的大小,用有向线段的方向表示向量的方向.若向量a 对应的有向线段的起点是A ,终点是B ,则向量a 可以记为AB ,其模长为a或AB.3、零向量长度为零的向量称为零向量,记为0.零向量的方向不确定,是任意的.由于零向量的这一特殊性,在解题中一定要看清题目中所指向量是“零向量”还是“非零向量”.4、单位向量模长为1的向量叫做单位向量.单位向量是一种常用的、重要的空间向量,在以后的学习中还要经常用到. 5、相等向量 长度相等且方向相同的空间向量叫做相等向量.若向量a 与向量b 相等,记为a =b .零向量与零向量相等,任意两个相等的非零向量都可以用空间中的同一条有向线段来表示,并且与有向线段的起点无关. 6、相反向量长度相等但方向相反的两个向量叫做相反向量.a 的相反向量记为-a 二、共面向量 1、定义平行于同一平面的向量叫做共面向量. 2、共面向量定理若两个向量a 、b 不共线,则向量p 与向量a 、b 共面的充要条件是存在实数对x 、y,使得p =xa yb +。
高考数学知识点总结之空间向量与立体几何
2021高考数学知识点总结之空间向量与立体几何一、考点概要:1、空间向量及其运算(1)空间向量的根本知识:①定义:空间向量的定义和平面向量一样,那些具有大小和方向的量叫做向量,并且仍用有向线段表示空间向量,且方向一样、长度相等的有向线段表示一样向量或相等的向量。
②空间向量根本定理:ⅰ定理:假如三个向量不共面,那么对于空间任一向量,存在唯一的有序实数组x、y、z,使。
且把叫做空间的一个基底,都叫基向量。
ⅱ正交基底:假如空间一个基底的三个基向量是两两互相垂直,那么这个基底叫正交基底。
ⅲ 单位正交基底:当一个正交基底的三个基向量都是单位向量时,称为单位正交基底,通常用表示。
ⅳ 空间四点共面:设O、A、B、C是不共面的四点,那么对空间中任意一点P,都存在唯一的有序实数组x、y、z,使。
③共线向量(平行向量):ⅰ定义:假如表示空间向量的有向线段所在的直线互相平行或重合,那么这些向量叫做共线向量或平行向量,记作。
ⅱ规定:零向量与任意向量共线;ⅲ共线向量定理:对空间任意两个向量平行的充要条件是:存在实数,使。
④共面向量:ⅰ定义:一般地,能平移到同一平面内的向量叫做共面向量;空间的任意两个向量都是共面向量。
ⅱ向量与平面平行:假如直线OA平行于平面或在内,那么说向量平行于平面,记作。
平行于同一平面的向量,也是共面向量。
ⅲ共面向量定理:假如两个向量、不共线,那么向量与向量、共面的充要条件是:存在实数对x、y,使。
ⅳ空间的三个向量共面的条件:当、、都是非零向量时,共面向量定理实际上也是、、所在的三条直线共面的充要条件,但用于断定时,还需要证明其中一条直线上有一点在另两条直线所确定的平面内。
ⅴ共面向量定理的推论:空间一点P在平面MAB内的充要条件是:存在有序实数对x、y,使得,或对于空间任意一定点O,有。
⑤空间两向量的夹角:两个非零向量、,在空间任取一点O,作, (两个向量的起点一定要一样),那么叫做向量与的夹角,记作,且。
空间向量与立体几何
向量与坐标系
在三维坐标系中,空间向量的坐标表示 可以通过三维坐标系中的点来表示,反 之亦然。
VS
向量与几何变换
通过向量的线性组合和数乘,可以实现几 何变换,如平移、旋转和缩放等。
THANKS
感谢观看
影的模长的乘积与它们夹角的余弦值的乘积。
性质
03
混合积满足交换律、结合律和分配律。
03
向量的应用
向量在物理中的应用
力与运动
向量在描述力和运动时非常有用,例如,速度和加速度是向量, 可以用它们来描述物体的运动状态和变化。
动量与冲量
动量和冲量是向量,它们在描述物体的相互作用和运动变化时具 有重要意义。
空间向量在解决实际问题中的应用
力的合成与分解
在物理和工程领域中,力的合成与分 解是常见的应用,通过空间向量的加 法、数乘和向量的模,可以表示力的 合成与分解。
速度和加速度
在运动学中,速度和加速度是重要的 物理量,通过空间向量的加法、数乘 和向量的模,可以表示物体的速度和 加速度。
空间向量与几何体的相互转化
04
立体几何的基本概念
点、直线和平面的基本性质
点
点是空间中最基本的元素,没有大小和形状,只 有位置。
直线
直线是无限长的,它通过两点或给定方向上所有 点。
平面
平面是无限大的,由直线和不在该直线上的一个 点确定。
空间几何体的表面积和体积
表面积
几何体的表面积是指其外部各面的总 面积。
体积
几何体的体积是指其内部空间所占的 区域大小。
几何意义
性质
向量积满足交换律和结合律,但不满 足分配律。
两个向量的向量积等于它们在垂直于 它们所在平面方向上的投影的模长的 乘积与它们夹角的正弦值的乘积。
立体几何与空间向量
空间几何体的结构、三视图和直观图1.空间几何体的结构特征(1)多面体①棱柱的侧棱都平行且相等,上、下底面是全等的多边形.②棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形.③棱台可由平行于底面的平面截棱锥得到,其上、下底面是相似多边形.(2)旋转体①圆柱可以由矩形绕其一边所在直线旋转得到.②圆锥可以由直角三角形绕其直角边所在直线旋转得到.③圆台可以由直角梯形绕直角腰所在直线或等腰梯形绕上、下底中点连线所在直线旋转得到,也可由平行于底面的平面截圆锥得到.④球可以由半圆或圆绕直径所在直线旋转得到.2.空间几何体的三视图空间几何体的三视图是正投影得到,这种投影下与投影面平行的平面图形留下的影子与平面图形的形状和大小是完全相同的,三视图包括正视图、侧视图、俯视图.3.空间几何体的直观图画空间几何体的直观图常用斜二测画法,其规则是:(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为45°(或135°),z′轴与x′轴、y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍分别平行于坐标轴.平行于x轴和z轴的线段在直观图中保持原长度不变,平行于y轴的线段长度在直观图中变为原来的一半.4.常用结论(1)常见旋转体的三视图①球的三视图都是半径相等的圆.②水平放置的圆锥的正视图和侧视图均为全等的等腰三角形.③水平放置的圆台的正视图和侧视图均为全等的等腰梯形.④水平放置的圆柱的正视图和侧视图均为全等的矩形.(2)斜二测画法中的“三变”与“三不变”“三变”⎩⎪⎨⎪⎧坐标轴的夹角改变,与y 轴平行的线段的长度变为原来的一半,图形改变.“三不变”⎩⎪⎨⎪⎧平行性不改变,与x ,z 轴平行的线段的长度不改变,相对位置不改变.空间几何体的表面积和体积1.多面体的表(侧)面积因为多面体的各个面都是平面,所以多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.2.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S 圆柱侧=2πrlS 圆锥侧=πrlS 圆台侧=π(r 1+r 2)l3.柱、锥、台和球的表面积和体积名称 几何体表面积体积柱体 (棱柱和圆柱)S 表面积=S 侧+2S 底 V =Sh锥体 (棱锥和圆锥)S 表面积=S 侧+S 底V =13Sh台体 (棱台和圆台)S 表面积=S 侧+S 上+S 下V =13(S 上+S 下+S 上S 下)h球S =4πR 2V =43πR 34.常用结论(1)与体积有关的几个结论①一个组合体的体积等于它的各部分体积的和或差. ②底面面积及高都相等的两个同类几何体的体积相等. (2)几个与球有关的切、接常用结论 a .正方体的棱长为a ,球的半径为R , ①若球为正方体的外接球,则2R =3a ; ②若球为正方体的内切球,则2R =a ; ③若球与正方体的各棱相切,则2R =2a .b .若长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2. c .正四面体的外接球与内切球的半径之比为3∶1.空间点、线、面位置关系1.四个公理公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内. 公理2:过不在一条直线上的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. 公理4:平行于同一条直线的两条直线平行. 2.直线与直线的位置关系 (1)位置关系的分类⎩⎨⎧共面直线⎩⎪⎨⎪⎧平行直线相交直线异面直线:不同在任何一个平面内,没有公共点(2)异面直线所成的角①定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角). ②范围:⎝⎛⎦⎤0,π2. 3.直线与平面的位置关系有平行、相交、在平面内三种情况. 4.平面与平面的位置关系有平行、相交两种情况. 5.等角定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.直线、平面平行判定与性质1.直线与平面平行的判定与性质判定性质定义定理图形条件a∩α=∅a⊂α,b⊄α,a∥b a∥αa∥α,a⊂β,α∩β=b结论a∥αb∥αa∩α=∅a∥b2.面面平行的判定与性质判定性质定义定理图形条件α∩β=∅a⊂β,b⊂β,a∩b=P,a∥α,b∥αα∥β,α∩γ=a,β∩γ=bα∥β,a⊂β结论α∥βα∥βa∥b a∥α直线、平面垂直的判定与性质1.直线与平面垂直2.平面与平面垂直(1)平面与平面垂直的定义两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.(2)判定定理与性质定理图形条件结论判定a⊥b,b⊂α(b为α内的任意一条直线)a⊥αa⊥m,a⊥n,m、n⊂α,m∩n=O a⊥αa∥b,a⊥αb⊥α性质a⊥α,b⊂αa⊥ba⊥α,b⊥αa∥b空间向量及其运算1.空间向量的有关概念名称概念表示零向量模为0的向量0单位向量长度(模)为1的向量相等向量方向相同且模相等的向量a=b相反向量方向相反且模相等的向量a的相反向量为-a 共线向量表示空间向量的有向线段所在的直线互相平行或重合的向量a∥b共面向量平行于同一个平面的向量2.空间向量中的有关定理(1)共线向量定理空间两个向量a (a ≠0)与b 共线的充要条件是存在实数λ,使得b =λa . 推论如图所示,点P 在l 上的充要条件是OP →=OA →+t a ①其中a 叫直线l 的方向向量,t ∈R ,在l 上取AB →=a ,则①可化为OP →=OA →+tAB →或OP →=(1-t )OA →+tOB →.(2)共面向量定理共面向量定理的向量表达式:p =x a +y b ,其中x ,y ∈R ,a ,b 为不共线向量,推论的表达式为MP →=xMA →+yMB →或对空间任意一点O ,有OP →=OM →+xMA →+yMB →或OP →=xOM →+yOA →+zOB →,其中x +y +z = 1 . (3)空间向量基本定理如果向量e 1,e 2,e 3是空间三个不共面的向量,a 是空间任一向量,那么存在唯一一组实数λ1,λ2,λ3,使得a =λ1e 1+λ2e 2+λ3e 3,空间中不共面的三个向量e 1,e 2,e 3叫作这个空间的一个基底.3.空间向量的数量积及运算律 (1)数量积及相关概念 ①两向量的夹角已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a 与b 的夹角,记作〈a ,b 〉,其范围是0≤〈a ,b 〉≤π,若〈a ,b 〉=π2,则称a 与b 互相垂直,记作a ⊥b . ②两向量的数量积已知空间两个非零向量a ,b ,则|a ||b |cos 〈a ,b 〉叫做向量a ,b 的数量积,记作a ·b ,即a ·b =|a ||b |cos 〈a ,b 〉. (2)空间向量数量积的运算律 ①结合律:(λa )·b =λ(a ·b ); ②交换律:a ·b =b ·a ; ③分配律:a ·(b +c )=a ·b +a ·c . 4.空间向量的坐标表示及其应用设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3).向量表示 坐标表示 数量积 a·ba 1b 1+a 2b 2+a 3b 3 共线 a =λb (b ≠0,λ∈R ) a 1=λb 1,a 2=λb 2,a 3=λb 3 垂直 a ·b =0(a ≠0,b ≠0)a 1b 1+a 2b 2+a 3b 3=0模|a |a 21+a 22+a 23夹角〈a ,b 〉(a ≠0,b ≠0)cos 〈a ,b 〉=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23立体几何中的向量方法-证明平行与垂直1.直线的方向向量与平面的法向量的确定(1)直线的方向向量:在直线上任取一非零向量作为它的方向向量.(2)平面的法向量可利用方程组求出:设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎪⎨⎪⎧n ·a =0,n ·b =0. 2.用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2.(2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔存在两个实数x ,y ,使v =x v 1+y v 2.(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u . (4)设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1 ∥u 2. 3.用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0. (2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v ∥u . (3)设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0.立体几何中的向量方法-求空间角和距离1.两条异面直线所成角的求法设a ,b 分别是两异面直线l 1,l 2的方向向量,则l 1与l 2所成的角θa 与b 的夹角β范围 (0,π2][0,π] 求法cos θ=|a ·b ||a ||b |cos β=a ·b|a ||b |2.直线与平面所成角的求法设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成的角为θ,a 与n 的夹角为β,则sin θ=|cos β|=|a ·n ||a ||n |. 3.求二面角的大小(1)如图①,AB ,CD 分别是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉.(2)如图②③,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos 〈n 1,n 2〉|,二面角的平面角大小是向量n 1与n 2的夹角(或其补角). 4.利用空间向量求距离(供选用) (1)两点间的距离设点A (x 1,y 1,z 1),点B (x 2,y 2,z 2),则|AB |=|AB →|=(x 1-x 2)2+(y 1-y 2)2+(z 1-z 2)2.(2)点到平面的距离如图所示,已知AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离为|BO→|=|AB →·n ||n |.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(三)立体几何与空间向量1.如图,在四棱锥P-ABCD中,四边形ABCD为正方形,P A⊥平面ABCD,P A=AB,M是PC上一点,且BM⊥PC.(1)求证:PC⊥平面MBD;(2)求直线PB与平面MBD所成角的正弦值.(1)证明连接AC,由P A⊥平面ABCD,BD⊂平面ABCD,得BD⊥P A,又BD⊥AC,P A∩AC=A,P A,AC⊂平面P AC,∴BD⊥平面P AC,又PC⊂平面P AC,∴PC⊥BD.又PC⊥BM,BD∩BM=B,BD,BM⊂平面MBD,∴PC⊥平面MBD.(2)解方法一由(1)知PC⊥平面MBD,即∠PBM是直线PB与平面MBD所成的角.不妨设P A=1,则BC=1,PC=3,PB= 2.∴PC2=PB2+BC2,∴PB⊥BC,又BM⊥PC,∴sin∠PBM=cos∠BPC=PBPC=23=63,故直线PB与平面MBD所成角的正弦值为6 3.方法二以A为原点,AB,AD,AP所在直线分别为x,y,z轴,建立空间直角坐标系A-xyz(如图所示),不妨设P A =AB =1,则P (0,0,1),B (1,0,0),C (1,1,0).由(1)知平面MBD 的一个法向量为PC →=(1,1,-1), 而PB →=(1,0,-1).∴cos 〈PB →,PC →〉=(1,0,-1)·(1,1,-1)2×3=63,故直线PB 与平面MBD 所成角的正弦值为63. 2.如图,已知△DEF 与△ABC 分别是边长为1与2的正三角形,AC ∥DF ,四边形BCDE 为直角梯形,且DE ∥BC ,BC ⊥CD ,点G 为△ABC 的重心,N 为AB 的中点,AG ⊥平面BCDE ,M 为线段AF 上靠近点F 的三等分点.(1)求证:GM ∥平面DFN ; (2)若二面角M -BC -D 的余弦值为74,试求异面直线MN 与CD 所成角的余弦值. (1)证明 延长AG 交BC 于点O ,连接ON ,OF .因为点G 为△ABC 的重心, 所以AG AO =23,且O 为BC 的中点.又由题意知,AM →=23AF →,所以AG AO =AM AF =23,所以GM ∥OF .因为点N 为AB 的中点,所以NO ∥AC . 又AC ∥DF , 所以NO ∥DF ,所以O ,D ,F ,N 四点共面, 又OF ⊂平面DFN ,GM ⊄平面DFN , 所以GM ∥平面DFN .(2)解 连接OE .由题意知,AG ⊥平面BCDE , 因为AG ⊂平面ABC , 所以平面ABC ⊥平面BCDE ,又BC ⊥CD ,平面ABC ∩平面BCDE =BC , CD ⊂平面BCDE , 所以CD ⊥平面ABC .又四边形BCDE 为直角梯形,BC =2,DE =1, 所以OE ∥CD , 所以OE ⊥平面ABC .因为BC ∥DE ,DE ⊄平面ABC , 所以DE ∥平面ABC , 同理DF ∥平面ABC ,又因为DE ∩DF =D ,DE ,DF ⊂平面DEF , 所以平面ABC ∥平面DEF ,又△DEF 与△ABC 分别是边长为1与2的正三角形,故以O 为坐标原点,OC ,OE ,OA 所在直线为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系O -xyz .设CD =m (m >0), 则C (1,0,0),D (1,m ,0), A (0,0,3),F ⎝⎛⎭⎫12,m ,32,B (-1,0,0),N ⎝⎛⎭⎫-12,0,32,因为AM →=23AF →,所以M ⎝⎛⎭⎫13,2m 3,233,BC →=(2,0,0),BM →=⎝⎛⎭⎫43,2m 3,233设平面MBC 的一个法向量为n =(x ,y ,z ),则⎩⎨⎧n ·BC →=2x =0,n ·BM →=43x +2m 3y +233z =0,得⎩⎪⎨⎪⎧x =0,y =-3m z ,令z =-m ,得n =(0,3,-m ). 又平面BCD 的法向量为v =(0,0,1). 由题意得|cos 〈v ,n 〉|=|v ·n ||v ||n |=m 3+m 2=74, 解得m =213, 又MN →=⎝⎛⎭⎫-56,-2m 3,-36,CD →=(0,m ,0),所以|cos 〈MN →,CD →〉|=|MN →·CD →||MN →||CD →|=mm 2+74=277,所以异面直线MN 与CD 所成角的余弦值为277.3.如图,在四棱锥P -ABCD 中,平面ABCD ⊥平面P AD ,AD ∥BC ,AB =BC =AP =12AD ,∠ADP =30°,∠BAD =90°,E 是PD 的中点.(1)证明:PD ⊥PB ;(2)设AD =2,点M 在线段PC 上且异面直线BM 与CE 所成角的余弦值为105,求二面角M -AB -P 的余弦值.(1)证明 ∵∠BAD =90°,∴AB ⊥AD ,∵平面ABCD ⊥平面P AD ,平面ABCD ∩平面P AD =AD ,AB ⊂平面ABCD ,∴AB ⊥平面P AD ,∴AB ⊥PD ,在△P AD 中,∵AP =12AD ,∠ADP =30°,∴由正弦定理可得,sin ∠ADP =12sin ∠APD ,∴∠APD =90°,即PD ⊥AP , 又AB ∩AP =A ,AB ,AP ⊂平面P AB , ∴PD ⊥平面P AB , ∴PD ⊥PB .(2)解 以P 为坐标原点建立如图所示的空间直角坐标系P -xyz ,则B (0,1,1),C ⎝⎛⎭⎫32,12,1,E ⎝⎛⎭⎫32,0,0,设M ⎝⎛⎭⎫32a ,12a ,a ()0≤a ≤1, 则BM →=⎝⎛⎭⎫32a ,12a -1,a -1, CE →=⎝⎛⎭⎫0,-12,-1, ∴cos 〈BM →,CE →〉=BM →·CE →|BM →||CE →|=32-54a 2a 2-3a +2×52=105,得a =23,∴BM →=⎝⎛⎭⎫33,-23,-13,而AB →=(0,0,1),设平面ABM 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·BM →=0,n ·AB →=0,即⎩⎨⎧3x -2y -z =0,z =0,令x =2,则n =(2,3,0),取平面P AB 的法向量m =(1,0,0), 则cos 〈m ,n 〉=m ·n |m ||n |=27=277,由图易知二面角M -AB -P 为锐二面角, 故二面角M -AB -P 的余弦值为277.4.如图,四棱锥S -ABCD 的底面是正方形,每条侧棱的长都是底面边长的2倍,P 为侧棱SD 上的点.(1)求证:AC ⊥SD ;(2)若SD ⊥平面P AC ,求二面角P -AC -S 的大小;(3)在(2)的条件下,侧棱SC 上是否存在一点E ,使得BE ∥平面P AC .若存在,求SC ∶SE 的值;若不存在,试说明理由.(1)证明 连接BD 交AC 于O ,由题意得,SO ⊥AC . 在正方形ABCD 中,AC ⊥BD , 又SO ∩BD =O ,SO ,BD ⊂平面SBD , 所以AC ⊥平面SBD ,所以AC ⊥SD .(2)解 由题意知SO ⊥平面ABCD .以O 为坐标原点,OB →,OC →,OS →分别为x 轴、y 轴、z 轴正方向,建立空间直角坐标系O -xyz 如图所示.设底面边长为a ,则高SO =62a . 则S ⎝⎛⎭⎫0,0,62a ,D ⎝⎛⎭⎫-22a ,0,0,C ⎝⎛⎭⎫0,22a ,0 又SD ⊥平面P AC ,则平面P AC 的一个法向量DS →=⎝⎛⎭⎫22a ,0,62a ,平面SAC 的一个法向量OD →=⎝⎛⎭⎫-22a ,0,0,则cos 〈DS →,OD →〉=DS →·OD →|DS →||OD →|=-12,又二面角P -AC -S 为锐二面角,则二面角P -AC -S 为60°. (3)解 在棱SC 上存在一点E 使BE ∥平面P AC .由(2)知DS →是平面P AC 的一个法向量,且DS →=⎝⎛⎭⎫22a ,0,62a ,CS →=⎝⎛⎭⎫0,-22a ,62a .设CE →=tCS →,t ∈[0,1], 则BE →=BC →+CE →=BC →+tCS → =⎝⎛⎭⎫-22a ,22a (1-t ),62at , 又BE ∥平面P AC ,所以BE →·DS →=0, 解得t =13.即当SC ∶SE =3∶2时,BE →⊥DS →, 而BE 不在平面P AC 内,故BE ∥平面P AC . 所以侧棱SC 上存在点E ,当SC ∶CE =3∶2时,有BE ∥平面P AC .5.已知,如图1,直角梯形ABCD ,AB ∥CD ,∠DAB =90°,AB =4,AD =CD =2,E 为AB 的中点,沿EC 将梯形ABCD 折起(如图2),使平面BED ⊥平面AECD .(1)证明:BE ⊥平面AECD ;(2)在线段CD 上是否存在点F ,使得平面F AB 与平面EBC 所成的锐二面角的余弦值为23,若存在,求出点F 的位置;若不存在,请说明理由. (1)证明 连接AC ,则AC ⊥DE ,又平面BDE ⊥平面AECD ,平面BDE ∩平面AECD =DE ,AC ⊂平面AECD , 所以AC ⊥平面BDE , 所以AC ⊥BE .又BE ⊥CE ,AC ∩CE =C ,AC ,CE ⊂平面AECD , 所以BE ⊥平面AECD .(2)解 如图,由(1)得BE ⊥平面AECD ,所以BE ⊥AE .所以EA ,EB ,EC 两两垂直,分别以EA →,EB →,EC →方向为x ,y ,z 轴正方向,建立空间直角坐标系E -xyz 如图所示,则E (0,0,0),A (2,0,0),B (0,2,0),设F (a,0,2),0≤a ≤2, 所以AF →=(a -2,0,2),BF →=(a ,-2,2), 设平面F AB 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧AF →·n =(a -2)x +2z =0,BF →·n =ax -2y +2z =0,取x =2,得n =(2,2,2-a ). 取平面EBC 的法向量为m =(1,0,0).所以cos 〈m ,n 〉=m ·n |m ||n |=2a 2-4a +12=23,所以a =1.所以线段CD 上存在点F ,且F 为CD 中点时,使得平面F AB 与平面EBC 所成的锐二面角的余弦值为23.。