博弈论完全信息静态博弈
博弈论“囚徒困境”的四种形式
博弈论中的“囚徒困境”摘要:“囚徒困境”模型是博弈论中的经典范例,它是1950年Tucker提出的,其完全信息下的静态博弈为广大博弈论的工作者和初学者所掌握,成为解释生活现象的有力工具。
其实“囚徒困境”模型随着博弈论的深入发展,具有各种不同的形式,通常分为:完全信息的静态博弈,完全信息的动态博弈,不完全信息的静态博弈及不完全信息的动态博弈四种形式。
本文将对“囚徒困境”的这四种形式作一个简单的介绍和分析。
关键词:博弈论囚徒困境经济一、完全信息静态“囚徒困境”博弈完全信息静态“囚徒困境”博弈部分地奠定了非合作博弈论的理论基础。
它的基本模型是:警察抓住了两个合伙犯罪的罪犯,由于缺乏足够的证据指证他们的罪行,所以希望这两人中至少有一人供认犯罪,就能确认罪名成立。
为此警察将这两个罪犯分别关押以防止他们串供,并告诉他们警方的政策是“坦白从宽,抗拒从严”:如果两人中只有一人坦白认罪,则坦白者立即释放,而另一人则将重判5年徒刑;如果两个同时坦白认罪,则他们将各判3年监禁。
当然罪犯知道如果他们两人都拒不认罪,则警方只能以较轻的妨碍公务罪判处他们1 年徒刑。
用矩阵表示两个罪犯的得益如下(得益向量的第一个数字是囚徒1的得益,第二个数字是囚徒2的得益) :囚徒2囚徒1(表1)假定两个罪犯熟悉彼此,这便是一个同时行动的完全信息静态博弈。
容易看出,由于对于每个囚徒而言,无论对方选择什么策略,坦白都是自己的最优策略,所以(坦白,坦白) 是博弈的Nash均衡。
二、完全信息动态“囚徒困境”博弈——重复“囚徒困境”博弈研究重复博弈的意义在于基本博弈会重复进行,比如犯罪团伙会被警方多次审讯,日常生活中买卖会重复进行,国际间的战争此伏彼起。
而且人们也发现基本博弈的重复进行并非基本博弈的简单累加,比如商业中的回头客问题。
下面继续以表1所示的“囚徒困境”模型为例对多重博弈进行探讨。
首先观察“囚徒困境”的有限博弈,以T记基本博弈的重复次数。
完全信息静态博弈
博弈论的发展前景
无论是从社会经济发展的客观要求,还是从经济学理论发展本身的规律来看,博弈论都有很大的发展前途。 1)博弈论本身具有优美深刻的本质魅力,新的分析工具和应用领域的不断发现,以及博弈论价值得到越来越充分 的认识,不断吸引大量学者加入学习、研究和应用博弈论的队伍。这是博弈论继续向前发展的根本基础和保证。 2)在博弈规则的来源、博弈方的行为模式和理性等基础理论方面,博弈论还存在不少没有很好解决的问题,有待 进一步研究和解决。这正是博弈论未来发展的动力。 3)当前合作博弈理论发展相对落后,这个领域有很大的发展潜力,很可能孕育出引发经济学新革命的重大成果。 非合作博弈和合作博弈理论的重新组合也可能给博弈论的发展提出新的方向和课题。
1)决策者考虑短期利益、个人或者小集团利益更多,决策者确实缺乏理智和理性; 2)局部地区或特定时期战争的利益比上述博弈中所假设的要大; 3)其他国家选择战争时还击比不还击损失小,先发制人则更能使自己相对有利;
以上因素都是导致发生战争机会增大的重要原因。
2)风险上策均衡法
风险上策均衡:如果所有博弈方在预计其他博弈方采用两种纳什均衡的策略的概率相同时,都偏爱其中某 一个纳什均衡,则该纳什均衡就是一个“风险上策均衡”。
博弈论在我国经济中的应用
企业经营者的启示:
1)在我国经济体制改革和国有企业管理体制改革中,委托人—代理人理论和激励机制设计原理有很大的应用价 值。如,对“监督困难的委托人—代理人理论”的研究,找到可以调整各方面的利益关系和调动职工和经营者 的积极性和责任心的依据和方法。 2)博弈论领域中“囚徒困境”,“激励悖论”等众多模型和命题为企业经营者揭示了众多经济、经营活动中的 内在规律,企业决策者利用这些工具可以大大提高在价格和产量决策、经济合作和经贸谈判,参与投标拍卖, 处理劳资关系等问题的决策效率。
完全信息静态博弈及其纳什均衡解
第三章完全信息静态博弈及其纳什均衡解1.完全信息静态博弈定义 3.1.完全信息静态博弈。
完全信息静态是指,博弈中的参与人同时采取行动,或者尽管参与人行动的采取有先后顺序,但后行动的人在行动时不知道先采取行动的人采取的是什么行动;同时博弈参与人的策略空间及策略组合下的支付是博弈中所有参与人的“公共知识”。
两个特点:(1)静态;(2)完全信息。
完全信息静态博弈例子。
例1:锤子-剪刀-布例2:交通行驶非“完全信息静态博弈”例子:英式拍卖——动态博弈;第一密封价格及第二密封价格拍卖——不完全信息博弈。
2.纳什均衡及其判定定义3.2 纳什均衡。
在一个n人博弈的标准式G={S1,S2,…,S n; u1,u2,…,u n}中,一个策略组合{s1*,s2*,…,s n*},若满足u i(s1*,…,s i*,…s n*)≥u i(s1*,…s i,…,s n*)(i=1…n),则称这个策略组合为{s1*,s2*,…,s n*}为该博弈G的一个纳什均衡。
某策略组合是纳什均衡指的是,在该策略组合上任何一个参与人的收益在其他人策略不改变的情况下都至少是弱优的。
特点:(1)每个人没有单独改变策略的动机;(2)局部最优。
纳什均衡判定方法:用定义来判定:某点是均衡看它是否符合纳什均衡的定义。
求解纳什均衡的方法:(2)用定义来求解(3)对于策略空间为连续的博弈,用求极值的方法来求得。
3.纳什均衡存在定理:(纳什)定理3.1.在一个n人博弈的标准式G={S1,S2,…,S n; u1,u2,…,u n}中,如果n是有限的,且对每个i, S i是有限的,则博弈至少存在一个纳什均衡。
这里的均衡可能包含混合策略均衡。
证明:略例子3:囚徒困境的均衡例1:“锤子-剪刀-布”的均衡?4.混合策略与混合策略的均衡纯策略与混合策略概念。
定义.3.3.一个策略是纯策略指的是参与人策略空间中的某个确定策略;而一个混合策略是参与人策略空间上的一个概率分布,一般地,某个人i的策略空间为{s i1,s i2,…,s ik},则参与人i在策略空间上的一个概率分布p i=(p i1,p i2,…,p ik)构成他的一个混合策略,其中p i1+p i2+…+p ik=1。
2 完全信息静态博弈--博弈论
Then 1 should choose “a”.
– Player 1’s best response to “B” is “a”.
Strategy a b c
A
12,11 11,10 10,15
Player 2
B
11,12 10,11 10,13
C
14,13 12,12 13,14
Player 1
2.1.3 上策均衡
上策
– 在某个博弈中,不管其他博弈方选择什么策 略,一博弈方的某个策略给他带来的得益始 终高于其它策略,至少不低于其它策略。
上策均衡
– 一个博弈的某个组和策略中的所有策略都是 各个博弈方各自的上策。这样的策略组合为 该博弈的一个“上策均衡”。
智猪博弈(boxed pig game)
Exercise: 田忌赛马
每次双方各出三匹马,一对一比赛三场,每一 场的输方要赔一千斤铜给赢方。
齐王的上、中、下三匹马分别比田忌的上、中、 下马略胜一筹。但田忌的上马比齐王的中马和 下马好,中马比齐王的下马好。
扩展成一个博弈问题,写出支付矩阵。
田忌
上中下 上下中 中上下 中下上 下上中 下中上 上中下 3,-3 1,-1 1,-1 1,-1 -1,1 1,-1
Scenario Analysis
Similarly, if 1 thinks 2 will choose C…
– Player 1’s best response to “C” is “a”.
Player 2
Player 1
Strategy a b c
A
12,11 11,10 10,15
B
11,12 10,11 10,13
1博弈论概述2完全信息静态博弈3完全信息动态博弈4
②从局中人行动的先后顺序可划分为静 态博弈(Static game)和动态博弈 (dynamic game)。静态博弈是指在博弈中, 局中人同时选择行动或虽非同时行动但后行 动者并不知道先行动者采取了什么具体行动。 动态博弈是指局中人的行动有先后顺序,且 后行动者能够观察到先行动者所选择的行动。
③从局中人是否具有有关其他参与人 (对手)的特征、策略空间及支付函数方面 的知识的角度,可划分为完全信息博弈
合作博弈和非合作博弈的区别在于人们的行动为相互 作用时,当事人能否达成一个具有约束力(binding agreement)的协议。若有,就是合作博弈;否则就是非合 作博弈。例如,两个寡头企业,如果他们之间达成一个协议, 联合最大化垄断利润,且各自按该协议生产,即是合作博弈。 其面临的问题是如何分享合作带来的剩余。但若两个企业间 的协议不具有约束力,即没有哪一方能强制另一方遵守该协 议,每个企业都只选择自己的最优产量(或价格),则是非 合作博弈。另外,合作博弈强调的是团体理性、效率、公正 和公平。非合作博弈强调的是个人理性、个人最优决策,其 结果可能是有效率的,也可能是无效率的。
一、占优策略均衡
通常情况下,每个局中人的支付是博弈中所有参与 人策略的函数,故每个局中人的最优策略选择依赖于所 有其他参与人的策略选择。但在一些特殊博弈中,一个 参与人的最优策略选择可能并不依赖于其他参与人的策 略选择,即无论其他参与人选择什么策略,他的最优策 略是唯一的,这种最优策略被称为“占优策略” (dominant strategy)。 例:“囚徒困境” 囚徒困境是博弈论中的经典案例。该故事讲的是,两 个嫌疑犯作案后被警察抓住,分别被关在不同的房间里 进行审讯。警察知道两人有罪,但缺乏有力的证据,除 非两人之中有一个坦白。警察告诉每个人,他们的可选 择的策略与支付如下表:
经济博弈论 02 完全信息静态博弈(Park)
都成立,则称 {S1*, ...Sn*}为G的一个纳什均衡
YBU
Economics department
Cont.
二、纳什均衡的一致预测性质 一致预测:如果所有博弈方都预测一个特定博弈结果会
妻(囚徒 2 )
坦白
不坦白
-5, -5
0, -8
-8, 0
-1, -1
Payoff
YBU
Economics department
2.1 Cont.
二、下策均衡
严格下策(dominate str.):不管其它博弈方的策略
如何变化,给一个博弈方带来的收益总是比另一种
策略给他带来的收益小的策略,
ui (Si’ , S-i) ≥,> ui (Si*, S-i ) ,分别称为弱下策、严格下
Cont.
二、混合策略、混合策略博弈和混合策略纳什均衡 混合策略:在博弈 G={S1, ...Sn; u1, ...un} 中,博弈方 i 的 策略空间 {Si1, ...Sik} ,则博弈方 i 以概率分布{pi1, ...pik}随 机在其k个可选策略中选择的“策略”,称为一个“混合策 略”,其中0< pij <1 , 对 1< j <k,都成立, pi1+ ...pik=1 混合策略扩展博弈:博弈方在混合策略的策略空间(概率 分布空间)的选择看作一个博弈,就是原博弈的“混合策略 扩展博弈)。
Strategy:[0 ,p1max], [0 ,p2max] Payoff: q1(p1, p2)=28- p1-0.5p2 , q2(p1, p2)=28- p2-0.5p1 , c1=c2=2; ➢ u1=(p1-2)(28- p1-0.5p2); u2=(p2-2)(28- p2-0.5p1); Howe to find the equilibrium?
博弈论 完全信息静态博弈
max u1 max(6q1 q1q2 q12 )
q1
1 q1 R1 (q2 ) (6 q2 ) 2
同样有: 2 max u1 max(6q2 q1q2 q2 )
q2
1 q2 R2 (q1 ) (6 q1 ) 2
2.3.2 反应函数
古诺模型的反应函数
个博弈方的各一个策略组成的某个策略组合 (s1*,…,sn*)中,任
一博弈方 i的策略si*,都是对其余博弈方策略的组合 (s1*,…, si1 *,
si+1* ,…,sn*) 的最佳对策,也即
* * ui ( si* , si*1 , si* , si*1 ,...sn ) ui ( si* , si*1 , sij , si*1 ,...sn )
q2
(0,6)
R1 (q2 )
q1 R1 (q2 ) 1 (6 q2 ) 2 q2 R2 (q1 ) (6 q1 )
1 2
(0,3)
R2 (q1 )
(3,0) (6,0)
q1
古诺模型的反应函数图示
对一个一般的博弈,只要得益是策略的多 元连续函数,我们都可以求每个博弈方针 对其他博弈方策略的最佳反应构成的函数 ,也即反应函数,而解出的各个博弈方反 应函数的交点就是纳什均衡。 这种利用反应函数求博弈的纳什均衡的方 法称为“反应函数法”。
本部分主要内容
2.1 基本分析思路和方法
2.2 纳什均衡
2.3 无限策略博弈分析和反应函数 2.4 混合策略和混合策略纳什均衡
2.5 纳什均衡的存在性
2.6 纳什均衡的选择和分析方法扩展
2.1 基本分析思路和方法
2.1.1 上策均衡 2.1.2 严格下策反复消去法 2.1.3 划线法 2.1.4 箭头法
完全信息静态博弈论模型
完全信息静态博弈论模型引言:博弈论是研究决策制定者在不同利益冲突场景下的行为和策略选择的数学模型。
在博弈论中,静态博弈是指参与者在同一时间点做出决策的情况。
完全信息表示每个参与者对于其他参与者的行为和策略选择都有完全的了解。
本文将介绍完全信息静态博弈论模型的基本概念、解决方法以及应用领域。
一、基本概念1.1 参与者完全信息静态博弈中,有两个或多个参与者,每个参与者可以是个体、团体或国家等。
参与者通过制定决策来追求自身的利益。
1.2 策略每个参与者在博弈中可以选择的行动方案称为策略。
策略可以是纯策略,即只选择一个确定的行动;也可以是混合策略,即以一定概率选择不同的行动。
1.3 支付函数支付函数是衡量参与者在不同策略组合下所获得效用或利益的函数。
支付函数可以表示为参与者的收益、成本或效用。
1.4 纳什均衡纳什均衡是指在博弈中,每个参与者选择的策略组合使得没有参与者有动机改变自己的策略。
换言之,每个参与者都在给定其他参与者的策略下做出最优的决策。
二、解决方法2.1 支付矩阵为了描述参与者之间的策略选择和支付函数之间的关系,可以使用支付矩阵。
支付矩阵是一个二维矩阵,行表示一个参与者的策略选择,列表示其他参与者的策略选择,每个元素表示对应策略组合下的支付函数。
2.2 最优响应最优响应是指在其他参与者的策略下,参与者能够选择的最优策略。
通过计算每个参与者的最优响应,可以找到纳什均衡。
2.3 前瞻性在完全信息静态博弈中,参与者可以通过推断其他参与者的策略和支付函数来做出决策。
前瞻性是指参与者能够预测其他参与者的行为并做出相应的反应。
三、应用领域完全信息静态博弈论模型广泛应用于经济学、政治学、生物学等领域。
3.1 经济学博弈论在经济学中有广泛应用,如市场竞争、定价策略、拍卖等。
完全信息静态博弈模型可以帮助分析参与者的决策行为,预测市场的走势和结果。
3.2 政治学在政治学中,博弈论可以用于分析选举、政策制定和国际关系等问题。
博弈论与信息经济学-1完全信息静态博弈
完全信息 不完全信息
静态
动态
完全信息静态博弈 纳什均衡
纳什(1950,1951)
完全信息动态博弈 子博弈精炼纳什均衡
泽尔腾(1965)
不完全信息动态博弈
不完全信息静态博弈
精炼贝叶斯纳什均衡
贝叶斯纳什均衡
泽尔腾(1975)
海萨尼(1967-1968) Kreps和Wilson(1982)
Fudenberg和Tirole (1991)
博弈论与信息经济学
第一章 完全信息静态博弈
博弈论概述:发展历程
1838年库诺特(Cournot)寡头竞争模型(数量战) 1883年伯川德(Bertrand)寡头竞争模型(价格战) 1944年冯诺依曼和摩根斯坦发表《博弈论和经济行为》 1950年纳什(Nash)提出了纳什均衡的概念。 1965年泽尔腾(Selten)提出了子博弈精炼纳什均衡的
共同知识指“所有参与人知道,所有参 与人知道所有参与人知道,所有参与人 知道所有参与人知道所有参与人知 道…”。
在博弈论中,一般假定参与人的行动空 间Ai和行动顺序是共同知识。
一个关于共同知识的小游戏
A还是B? 两个人的推理过程: 我看到你身上的A,如果我身上是B的话。
因为我们俩至少有一个人身上是A,因此 你因此判断自己身上的是A。但是由于你 没有说,因此我可以断定自己身上是A。
如果n个参与人每人从自己的Si中选择一个策略si, 则向量s=( s1,s2,…,si,…, sn)是一个策略组合 (strategy profile),参与人i之外的其他参与人的策略 组合可记为s-i=( s1,s2,…,si-1 ,si+1 ,…, sn)。
注意:
1. 策略与行动是两个不同的概念,策略是行 动的规则(告诉参与者在什么情况下应该做什 么)而不是行动本身。回顾上章提到的父亲和 女儿的博弈。
博弈论_完全信息静态博弈
博 弈 论 讲 义 —— 完 全 信 息 静 态 博 弈
纳什均衡(Nash Equilibrium) 纳什均衡
纳什均衡、占优均衡、重复剔除严劣策 略均衡的关系
定理a 每一个占优均衡、重复剔除严劣策 略均衡一定是纳什均衡,但反过来不一定 成立; 定理b 纳什均衡一定不能通过重复剔除严 劣策略方法剔除。
博 弈 论 讲 义 —— 完 全 信 息 静 态 博 弈
纳什均衡应用举例: 纳什均衡应用举例:古诺模型
(q1*, q2*)是均衡产量意味着:
q1*∈argmaxπ1(q1, q2*) q2*∈argmaxπ2(q1*, q2) 根据上面两个式子可以得出反应函数(reaction function): q1*=R1(q2) q2*=R2(q1) 两个反应函数的交叉点就是纳什均衡(q1*, q2*), 见图1-9
博 弈 论 讲 义 —— 完 全 信 息 静 态 博 弈
纳什均衡应用举例: 纳什均衡应用举例:古诺模型
1 q 1 = q = (a − c) 3
* * 2
进而可以得出每个企业的纳什均衡产量下 的利润,为
π
*
1
=π
* 2
1 = (a − c)2 9
可以同垄断企业的最优决策类比
博 弈 论 讲 义 —— 完 全 信 息 静 态 博 弈
博 弈 论 讲 义 —— 完 全 信 息 静 态 博 弈
豪泰林价格竞争模型
古诺模型中,产品是同质的(homogenous); 豪泰林模型中,引入了产品的差异性;
产品的差异性可以有很多体现形式:如品牌、外 观、功能、空间差别(如房地产) 豪泰林模型中,产品的差异通过空间差别来体现 豪泰林模型的主要假设是产品的差异完全是由空 间位置的不同而造成的
博弈论(完全信息静态博弈)
一致预测性是纳什均衡的本质属性,
纳什均衡是稳定的和自我强制的.
二、纯策略NE的求法
1.反复删除严格劣策略 (iterated
elimination of strictly dominated strategies)
严格占优策略 (Strictly Dominant Strategies)
ˆ 不管其他局中人选择怎样的策略, s i 始终是局中 人i 的最优反应。
严格劣策略
局中人2
L U 3,0 1,-1 2,4 M 0,-5 -3,3 4,1 R 0,-4 -2,4 -1,8
局中人1
C D
重复剔除严格劣策略均衡
局中人2
L M R
U
3,0
1,-1 2,4
0,-5
-3,3 4,1
0,-4
-2,4 -1,8
局中人1
C D
S10 S1 {U , C, D}
a11 ... a1n b11 ... b1n A ... ... ... ,B ... ... ... am1 ... amn bm1 ... bmn
可称为双矩阵博弈。 若 A=-B,则称为零和博弈,二人有限零和博弈 可用一个矩阵表示,也称为矩阵博弈。 矩阵博弈的均衡
二、若干例子
1. 俾斯麦海之战(1943)-(p14)
日军上将木村:将日军运送到新西兰 美军上将肯尼:轰炸日军运输船
木村 北线(短) 南线(长) 肯尼 北线 南线 2,-2 1, -1 2,-2 3, -3
例3:智猪博弈(p18)
猪圈有一头大猪、一头小猪,按一下按钮会有 10个单位的饲料,但按按钮要2个成本。
博弈论四种类型之完全信息静态博弈
博弈论四种类型之完全信息静态博弈决策需要信息,⼏乎所有需要决策的场合我们都掌握着有限信息,这使得现实中往往是有限信息博弈。
完全信息在这⾥指的是每个参与⼈对其他参与⼈的⽀付函数有着完全的了解。
⽽静态指的是同时⾏动的博弈,或者不同时但后⾏动者不知道之前⾏动者的决策。
在完全信息静态博弈中的均衡是纳什均衡。
最典型的例⼦是囚徒困境与智猪博弈。
下⾯就由这两个例⼦展开,并将在博弈论中的⼀些知识点做出介绍。
【囚徒困境】中基于收益矩阵的模型描述如下:【注】博弈中参与⼈只拥有有限个离散性的纯战略供其选择称为离散型策略。
⽽在另外⼀些博弈中,每个参与者的纯策略可以是来⾃连续范围的⼀个数,如⼚商定价,称为连续型策略。
离散型策略静态博弈可以⽤⽀付表来表⽰,如上图。
对于囚徒A与B来说,⽆论对⽅采取什么策略,⾃⼰的策略是“坦⽩”时总是⽐“抵赖”要好些,在两⼈⽆法通信的情况下,两⼈都会选择“坦⽩”。
【优势战略均衡】在这⾥,⽆论对⽅选择什么,“坦⽩”的收益是严格⼤于“抵赖”,所以“坦⽩”是⼀个严格优势策略,对应的“抵赖”则是⼀个劣势策略。
所有⼈都有⾃⼰的优势策略,由此产⽣的优势策略组合是⼀个优势战略均衡。
但是这⾥需要注意的是,双⽅各⾃的优势策略却导致了集体的利益最差,如果两⼈都选择“抵赖”收益将是各⾃-1,但是优势策略下的收益却是-8.囚徒困境反映了个⼈理性与集体理性的冲突。
个⼈的最优选择从社会⾓度看并不是最优的。
社会⽣活中有很多例⼦:公共品的给予,商家的价格战,团队⽣产中的偷懒(三个和尚没⽔喝),⼩学⽣减负越减越重,各国军备竞赛等。
【如何⾛出囚徒困境】如果有可信的承诺或者是惩罚(第三⽅实施),会使两⼈合作,促进集体利益最⾼。
【智猪博弈】智猪博弈的收益矩阵模型如下:在此处,⼩猪有优势与劣势策略,但⼤猪没有,只能根据⼩猪的策略做出最佳应对,⽽⼩猪不会选择劣势策略,因此剔除⼩猪“按”的策略,此时,⼤猪的策略只能为“等”。
【重复剔除劣势战略均衡】严格劣势策略为不管其他参与⼈怎样选择呢策略,参与⼈选择策略A时的收益严格⼩于策略B时的收益。
第2讲 完全信息静态博弈【博弈论经典】
第2讲 完全信息静态博弈
• 例2:公共产品的供给也是一个囚徒困境问题。 如果大家都出钱兴办公共事业,所有人的福利都会增加。问题是,如果我出钱你 不出钱,我得不偿失,而如果你出钱我不出钱,我就可以占你的便宜。所以,每 个人的最优战略是“不出钱”,这种情况下,使得所有人的福利都得不到提高。
例3:“军备竞赛”。 例4:经济改革本身也可能是这样,在许多改革中,改革要付出成本(包括风险), 而改革的成果大家共享,结果是:尽管人人都认为改革好,却没有人真正去改革, 大家只好在都不满意的体
第们集中讨论完全信息静态博弈。 • “完全信息”指的是每个参与人对所有其他参与人的特征(包括战略空间、支付
函数等)有完全的了解。 • “静态”指的是所有参与人同时选择行动且只选择一次。“同时行动”是一个信
息概念而非日历上的时间概念:只要每个参与人在选择自己的行动时不知道其他 参与人的选择,我们就说他们在同时行动。
的组合。 定义:在博弈的战略式表述中,如果对于所有的i,si*是i的占优
战略,那么,战略组合s* = s1*,...,s*n 称为占优战略均衡(do min ant
strategy equilibrium)
第2讲 完全信息静态博弈
• 在一个博弈里,如果所有参与人都有占优战略存在,那么,占优战略均衡是可以 预测的到惟一的均衡,因为没有一个理性的参与人会选择劣战略。
• 纳什均衡是完全信息博弈解的一般概念,也是所有其他类型博弈解的基本要求。
第2讲 完全信息静态博弈
• 1.纳什均衡 纳什对博弈论的贡献有两个方面:一是合作博弈理论中的讨价还价模型,称为纳什 讨价还价解(Nash bargaining solution); 二是非合作博弈论方面,这是他的 主要贡献所在。 纳什对非合作博弈的主要贡献是他在1950年和1951年的两篇论文中在非常一般意义 上定义了非合作博弈及其均衡解,并证明了均衡解的存在。这样就奠定了非合作 博弈论的基础。纳什所定义的均衡称为“纳什均衡”,它如同瓦尔拉斯均衡一样, 已成为经济学中的专家术语。
博弈论四种博弈类型
华为在阿根廷电信设备市场上的竞争博弈华为技术有限公司是一家总部位于中国广东省深圳市的生产销售电信设备的员工持股的民营科技公司,经过数十年的发展,成为全球最大的电信网络解决方案提供商,全球第二大电信基站设备供应商,同时也是全球第六大手机厂商,其海外市场的利润占到其总利润的75%。
在华为进入阿根廷电信设备市场之前,阿根廷的电信设备市场由爱立信、阿尔卡特-朗讯以及阿根廷本土设备供应商三家共同分享市场份额,接下来,我们将分析其不同条件下的博弈结果:1、完全信息情况下的静态博弈A 、纳什均衡:我们将上述三家公司统称为原有垄断者,华为称为虎视眈眈的潜在进入者,原有垄断者想要保住自己现有的垄断地位,就会想要阻止潜在进入者进入,在这个博弈中,原有垄断者有两种选择:一是进行斗争,打价格战;二是不斗争,默许其进入从而共同竞争,具体的支付矩阵结果表示如下:原有垄断者潜在进入者 进入 不进入根据纳什均衡的定义:各个参与者所做的是在给定其他参与者的策略是所能够做出的最好的一组策略。
当潜在进入者选择进入时,原有垄断者的最优选择是不斗争,获得70单位的利润;同样的,原有垄断者选择不斗争的情况下,潜在进入者的最优选择是进入,获得20单位的利润,从而获得一个要求纳什均衡的均衡(进入,不斗争),同理可以得出另一个纳什均衡(不进入,斗争)。
B 、占优策略:现假设华为公司已经获得了阿根廷电信集团的经营许可证,在严格管制情况下二者都不能以低于成本的价格进行价格战,同时禁止出现单一寡头垄断的情形,(各自均有正的利润)在这两种情况下考虑两者是否进行价格战的情况,具体支付矩阵如下所示:原有垄断者 低价 高价潜在进入者低价 高价对于潜在进入者而言,不论原有垄断者是否进行价格战,潜在进入者的占优策略都是进行价格战,因为在原有垄断者定低价时,潜在进入者定低价可以获得额外的20单位利润,在原有垄断者定高价时,潜在进入者定低价可以获得额外的10单位利润,从而确定华为必将进行价格战,在完全信息情况下,原有垄断者会将自己置于潜在进入者的位置进行决策,从而决定自己也要进行价格战,否则会失去更多的利润。
经济博弈论完全信息静态博弈
19
2024/9/21
2.3.2 应用
混合策略旳措施不但能够处理不存在纯策略纳什均衡旳博弈问题,一样 可应用于存在多种纯策略纳什均衡旳博弈问题。
例 夫妻之争
丈夫
该博弈与上一种博弈旳不同之处于
时装 足球
于每一方所希望对方懂得自己旳策略选
妻 时装 2,1 0,0
择以到达有利于自己旳成果。现实中,
子 足球 0,0 1,3
严格下策反复消去法与纳什均衡
严则格称下ui策(s1:,...对si ,于...,某sn )一为策u略i (s(1s,1..,.s..i*.s,.i.,.,..s.n,)sn旳),严若格u下i (s策1,..。.si ,..., sn ) ui (s1,...si*,..., sn )
命策题反复2.1消去在法n排个除博了弈方(s1*旳,..博., s弈n* )以G外 旳S1全,...,部Sn策;u1略,..组.,u合n 中,,则假(s如1*,严...格, s下n* )
9
2024/9/21
2.2.2 反应函数-古诺模型
在古诺模型中厂商1和厂商2旳反应函数分别为
q1
R1(q2 )
1 2
(6
q2
),
q2
R2 (q1)
1 2
(6
q1 )
q2 (0,6) R1(q2)
(0,3) 0
(2,2)
6
R2(q1)
(3,0) (6,0)q1
从左图能够看出,当一方旳 选择为0时,另一方旳最佳反应 为3,这正是我们前面所说过旳 实现总体最大利益旳产量,因为 一家产量为零,意味着另一家垄 断市场。当一方旳产量到达6时, 另一方则被迫选择0,因为实际 上坚持生产已无利可图。
第一课应用博弈论第二讲 完全信息静态博弈
们投入大量资金进行技术创新,开发新 产品,而中小企业是小猪,不会进行大 规模技术创新,而是等待大企业的新产 品形成新的市场后生产模仿大企业的新 产品的产品去销售。
21
例3
为什么只有大企业才会花巨额金钱打广 告?
大企业是大猪,中小企业是小猪。大企 业投入大量资金为产品打广告,中小企 业等大企业的广告为产品打开销路形成 市场后才生产类似产品进行销售。
经开始对日本和德国这两个法西斯轴心国展开大反 攻。
在欧洲,以艾森豪威尔为总司令的盟国远征军,准
备横渡英吉利海峡,在欧洲开辟第二战场。欧洲只
有东翼的苏德战场是两大阵营对抗的正面战场,前
苏联方面一再要求美英同盟国及早在欧洲大陆开辟
第二战场。1944年春天,英美联军在北非战场中彻
底摧毁了德国隆美尔元帅的抵抗,德军已经完全收
德军在欧洲西线的总兵力是58个师,要布防的海岸线 长达3000公里。因此,德军只能把主要兵力放在它认为 盟国最有可能渡海登陆的地方。同时,盟军在英国能够 用于渡海作战的兵力,由于受登陆舰船容量的限制,数 量也有限,只能考虑集中有限的兵力重点进攻一个地方。 因此,无论是对于盟军还是对于德军,选择和判断盟军 将在那里登陆已经成为这次跨海作战成败的关键。
生活中其实有很多相关的例子。
19
生活中的例子
例1 股市博弈 在股票市场上,大户是大猪,他们
经济博弈论02完全信息静态博弈(Park)
合策略。
02
混合策略纳什均衡
当所有参与者都选择混合策略,并且每个参与者的混合策略都是针对其
他参与者混合策略的最佳反应时,这组混合策略组合就构成了混合策略
纳什均衡。
03
混合策略纳什均衡求解
通过求解每个参与者在给定其他参与者混合策略下的期望收益最大化问
题,可以得到混合策略纳什均衡。
多重纳什均衡问题
多重纳什均衡定义
参与者、策略与收益
参与者
在完全信息静态博弈中,参与者是决策的主体,他们可以是个人、组织或国家等。每个参 与者都有各自的目标和利益诉求,通过选择不同的策略来追求自身利益最大化。
策略
策略是参与者在博弈中可选择的行动方案。在完全信息静态博弈中,每个参与者的策略空 间是已知的,包括所有可能的选择和组合。参与者需要根据自身情况和对其他参与者行为 的预期来制定最优策略。
Part
05
完全信息静态博弈实验设计与 数据分析
实验设计原则和方法
代表性原则
选择具有代表性的参与者和博弈 场景,确保实验结果具有普遍意 义。
实验方法
采用随机分组、角色扮演、问卷 调查等方法收集数据。
可控性原则
对实验条件进行严格控制,确保 实验结果不受外部因素干扰。
可重复性原则
确保实验过程可重复进行,以便 验证实验结果的稳定性和可靠性。
行为博弈论和演化博弈论发展动态
行为博弈论的研究进展
演化博弈论的研究动态
行为与演化博弈论的融 合趋势
行为博弈论将心理学、经济学等学科 的成果引入博弈论分析框架中,探讨 参与者在现实决策中的有限理性、学 习过程和情绪等因素对博弈结果的 方法来研究博弈问题,关注策略在群 体中的演化过程和稳定性分析。近年 来,演化博弈论在多个领域取得了重 要进展,如社会网络中的信息传播、 生态系统中的物种竞争等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
*理解完全信息静态博弈时要注意事项
1 Although we stated that in a normalform game the players choose their strategies simultaneously , this does not imply that the parties necessarily act simultaneously :it suffices that each choose his or her action without knowledge of the others’ choices, as would be the case “the prisoners’dilemma” if the prisoners reached decisions at arbitrary times (在任意时间)while in their separate cells.
that will follow from the actions they could take. If neither confesses then both will be convicted of a minor offense and sentenced to one year in jail. If both confess then both will be sentenced to jail five years. Finally, if one confesses but the other does not, then the confessor will be released immediately but the other will be sentenced to eight years in jail—five for the crime and a further three for obstructing justice(干扰司法)。
Definition: The normal-form representation of an-n-player game specifies the players’ strategy spaces S1 , … , Sn and their payoff functions u1 ,…, un. We denote this game by G={S1, … ,Sn;u1, … , un}. 教材 P22
Chapter 1 完全信息静态博弈 Static Games of Complete Information In this chapter we consider games of the following simple form: first, the players simultaneously choose actions; then, the players receive payoffs that depend on the combination of actions just chosen. Within the class of such static (or simultaneous-move) games,we restrict attention to games of complete information. That
招认
囚徒2 招认 沉默 –5, -5 0, -8
-8, 0 -1 , -1
囚徒1
沉默
பைடு நூலகம்
囚徒的困境
We now turn to the general case. The normal-form representation of a game specifies: (1)the players in the game;(2)the strategies available to each player;(3)the payoff received by each player for each combination of strategies that could be chosen by the players.
is each player’s payoff function (the function that determines the players payoff from the combination of actions chosen by the players) is common knowledge among all the players. 教材P21
一、Normal-Form Representation of Games and Nash Equilibrium
(一)Normal-Form Representation of Games
In the normal-form representation of a game ,each player simultaneously chooses a strategy, and the combination of strategies chosen by the players determines a payoff for each player. We illustrate the normal-form representation with a classical example—The prisoners’ Dilemma.