110千伏变电站设计

合集下载

110kV变电站初步设计报告1

110kV变电站初步设计报告1

110kV变电站初步设计报告110kV变电站初步设计报告普雄110kV输变电新建工程初步设计第二卷技术部分第三册变电工程二〇一一年九月普雄110kV输变电新建工程初步设计第二卷技术部分第三册变电工程批准:审核:校核:编写:二〇一一年九月第二卷第三册变电工程目录变电站设计技术 (4)1 概述 (4)1.1 主要设计原则 (4)1.2气象条件 (5)2 建设规模 (6)3.变电站主体专业工程设计 (6)3.1接入系统 (6)3.2电气主接线 (7)3.3 各电压等级配电装置型式及设备选择 (7)3.3.1短路电流计算 (7)1)计算依据及参数 (7)2)计算结果 (7)3.3.2.电气设备选择 (8)3.4 电气总平面 (8)3.5 防雷接地、照明及站用电 (9)3.5.1 过电压保护 (9)3.5.2 防雷 (9)3.5.3 接地 (9)3.5.4 站用电 (9)3.5.5 照明 (9)3.5.6 检修、通风 (10)3.5.7 电缆设施及电缆防火 (10)3.5.8 电气一次设备工程量表 (10)3.6 电气二次 (12)3.6.1.全站控制监测系统(1套) (12) 3.6.2.继电保护 (13)3.6.3 调度自动化 (15)1)调度关系 (15)2)远动系统 (16)3)网架现状 (17)4)调度数据网 (17)5)调度端接口 (18)3.6.4.电能量采集管理系统 (18)1)电能计量关口设置 (18)3.6.5 一体化电源系统 (19)3.6.6.微机五防 (20)3.6.7.图像监视及安全警卫系统 (20) (1)安全、防盗监控 (21)(2)设备监视 (21)(3)电网应急指挥及演习 (21)3.6.8火灾探测报警系统 (22)3.6.9设备状态检测 (22)3.6.10设备清单 (22)3.7 站内通信及自动化 (23)3.7.1概述 (23)3.7.2系统通信 (25)3.7.3站内通信 (32)3.7.4设备材料表 (33)3.7.5投资估算 (35)4 节能、抗灾措施分析 (35)(2) 基坑开挖 (37)(3) 塔基排水 (37)5土建部分 (37)5.1概述 (38)5.2站区总布置与交通运输 (38)5.3建筑 (39)5.4结构 (40)5.5采暖、通风 (41)5.6给水、排水 (42)5.7围墙、大门 (43)6 消防 (44)6.1 化学灭火器的配置 (44)6.2 建筑消防 (45)6.3 主变压器消防 (45)普雄110kV输变电新建工程变电站设计1 概述1.1 主要设计原则本工程设计执行现行国家及行业的相关设计规程、规范(技术标准),主要设计技术标准如下:GB50059-92 35—110千伏变电所设计规范GB50060-92 35—110kV高压配电装置设计规范DL/T5056-1996 变电所总布置设计技术规程GB50052-95 供配电系统设计规范GB11022 高压断路器通用技术条件GB311.1 高压输变电设备的绝缘配合GB/T 15544-1995 三相交流系统短路电流计算GB50062-92 电力装置的继电保护和自动装置设计规范GB50229-1996 火力发电厂与变电站设计防火规范GB50217-94 电力工程电缆设计规范GB11032-2000 交流无间隙金属氧化物避雷器GB311.1-1997 高压输变电设备的绝缘配合GB50062-1992 电力装置的继电保护和自动装置设计规范GB50227-1995 并联电容器装置设计规范GB50260-1996 电力设施抗震设计规范GB50011-2001 建筑物抗震设计规范GBJ 16-1987 建筑设计防火规范(修订本)(2001年版)DL/T 620-1997 交流电气装置的过电压保护和绝缘配合DL/T 621-1997 交流电气装置的接地DL/T 5136-2001 火力发电厂、变电所二次接线设计技术规定DL/T 5147-2001 电力系统安全自动装置设计技术规定DL/T 667-1999 远动设备及系统DL 5103-1999 35kV~110kV无人值班变电所设计规程DL 5134-2002 变电所给水排水设计规程DL/T 5222-2005 导体和电器选择设计技术规程DL/T 5137-2001 电测量及电能计量装置设计技术规程DL/T 5044-1995 火力发电厂、变电所直流系统设计技术规定NDGJ 96-1992 变电所建筑结构设计技术规定建筑、消防、环保等其它现行行业标准1.2气象条件根据本线路调查资料,结合全国典型气象区的划分,确定本工程线路设计用气象条件如下表:表1 工程沿线参证气象站一般气候条件统计表项目单位越西站观测场标高m 1659.0年平均气压hpa 832.2气温年平均气温℃13.2 极端最高气温℃34.5 极端最低气温℃-8.5 最冷月平均气温℃ 4.1湿度平均相对湿度%74 冬季平均相对湿度%68风速年平均风速m/s 1.4 最大风速m/s 17.0降雨年平均降雨量mm 1118.3 一日最大降雨量mm 160.1天气年平均雨日数 d 162.5日数年平均雾日数 d 1.2 年平均积雪日数 d 5.2年平均冰雹日数 d 1.1年平均大风日数 d 10.4年平均雨凇日数 d /年平均雷暴日数 d 75.9年最多雷暴日数 d 98其它最大积雪深度cm 16 最大冻土深度cm /2 建设规模本站110kV侧终期采用单母线接线、35kV终期采用单母线分段接线、10kV终期采用单母线分段接线,建设规模如下:主变容量:最终2×25MVA,采用三相三绕组有载调变压器。

110kv变电站设计

110kv变电站设计

一、绪论1.1 变电站发展的历史与现状1.1.1 概况变电站是电力系统中不可缺少的重要环节,对电网的安全和经济运行起着举足轻重的作用,如果仍然依靠原来的人工抄表、记录、人工操作为主,将无法满足现代电力系统管理模式的需求;同时用于变电站的监视、控制、保护,包括故障录波、紧急控制装置,不能充分利用微机数据处理的大功能和速度,经济上也是一种资源浪费。

而且社会经济的发展,依赖高质量和高可靠性的电能供应,建国以来,我国的电力事业已经获得了长足的发展。

随着电网规模的不断扩大、电力分配的日益复杂和用户对电能的质量的要求进一不提高,电网自动化就显得极为重要;近年来我国计算机和通信技术的发展及自动化技术的成熟,发展配电网调度与管理自动化以具备了条件。

变电站在配电网中的地位十分重要,它担负着电能转换和电能重新分配的繁重任务,对电网的安全和经济运行起着举足轻重的作用。

因此,变电站自动化既是实现自动化的重要基础之一,也是满足现代化供用电的实时,可靠,安全,经济运行管理的需要,更是电力系统自动化EMS和DMS的基础。

变电站综合自动化是将变电站二次设备(包括控制、信号、测量、保护、自动装置及远动装置等)利用计算机技术和现代通信技术,经过功能组合和优化设计,对变电站执行自动监视、测量、控制和调节的一种综合性的自动化系统。

它是变电站的一种现代化技术装备,是自动化和计算机、通信技术在变电站领域的综合应用,它可以收集较齐全的数据和信息。

它具有功能综合化、,设备、操作、监视微机化,结构分布分层化,通信网络光缆化及运输管理智能化等特征。

变电站的综合自动化为变电站小型化、智能化、扩大监视范围及变电站的安全、可靠、优质、经济地运行提供了现代化手段和基础保证。

1.1.2 变电站综合自动化系统的设计原则1.在保证可靠性的前提下,合理和设置网络和功能终端。

采用分布式分层结构,不须人工干预的尽量下放,有合理的冗余但尽量避免硬件不必要的重复。

2.采用开放式系统,保证可用性(Interoperability)和可扩充性(Expandability)。

110kv变电站设计

110kv变电站设计

第二部分 110KV 变电所初步设计计算书
第七章 第八章 第九章 第十章 第十一章 短路电流计算………………………………………………… 19 计算各回路最大持续工作电流……………………………… 22 高压断路器选择和校验……………………………………… 23 隔离开关的选择和校验……………………………………… 31 母线的选择和校验………………………………………… 33 38
第十二章 电压互感器的选择………………………………………… 第十三章
电流互感器的选择………………………………………… 39
第十四章.配置全所的继电保护……………………………………… 42 参考文献……………………………………………………………………… 45 附 110kV 地方变电所电气主接线图
-1-
参数 连接组标号 额定电压( kV ) 阻 抗 电 压 (%) 高压 低压 空载电流 (%) 损耗( kW ) 空载 负载
Y,y
n0
10
0.4
4.0
1.9
0.2
1.04
第二章 主接线选择
一、主接线选择要求: 1.可靠性 2..灵活性 3.经济性 二、对变电所电气主接线的具体要求: 1 按变电所在电力系统的地位和作用选择。 2.考虑变电所近期和远期的发展规划。
I K ——短路电流周期分量有效值 I ——稳态短路电流有效值 ib ——短路全电流最大瞬时冲击值 I B ——短路全电流最大有效值 S K ——短路容量
2.短路的危害及预防: 短路的原因:主要是电气设备载流部分之间的绝缘被损坏,引起绝缘损坏的原因有过电 压,绝缘的自然老化和污秽,运行人员维护不同及机械损伤。 危害: 1.)电力系统发生短路时,短路回路的电流急剧增大这个急剧增大的电流称为

110kv 变电站设计

110kv 变电站设计

目录前言第一章电气主接线设计1.1 110Kv电气主接线1.2 35Kv电气主接线1.3 10Kv电气主接线1.4 站用电接线1.5 变电站电气主接线最终方案第二章主变压器选择第三章变电所所用变压器及自用电接线的选择3.1 变电所所用变压器的选择3.2 变电所自用电接线的选择第四章短路电流的计算第五章导体及主要主要电气设备选择5.1 各侧导体的选择5.2 断路器及隔离开关的选择5.3 高压熔断器的选择5.4 电压互感器的选择5.5 电流互感器的选择5.6 仪表及继电保护的规划5.7 变电所防雷保护及接地装置第六章110Kv变电所设计计算书6.1 短路电流计算6.2 导体和电气设备的选择设计6.3 断路器和隔离开关的选择设计结束语参考文献附录1变电所电气主接线图附录2变电所所用电接线图前言本文首先根据任务书上所给系统与线路及所有负荷的参数,分析负荷发展趋势。

从负荷增长方面阐明了建站的必要性,然后通过对拟建变电站的概括以及出线方向来考虑,并通过对负荷资料的分析,安全,经济及可靠性方面考虑,确定了110Kv,35Kv,10Kv以及站用电的主接线,然后又通过负荷计算及供电范围确定了主变压器台数,容量及型号,同时也确定了站用变压器的容量及型号,最后,根据最大持续工作电流及短路计算的计算结果,对高压熔断器,隔离开关,母线,绝缘子和穿墙套管,电压互感器,电流互感器进行了选型,从而完成了110Kv电气一次部分的设计。

关键词:变电站变压器接线第一章电气主接线设计现代电力系统是一个巨大的、严密的整体。

各类发电厂、变电站分工完成整个电力系统的发电、变电和配电的任务。

其主接线的好坏不仅影响到发电厂、变电站和电力系统本身,同时也影响到工农业生产和人民日常生活。

因此,发电厂、变电站主接线必须满足以下基本要求。

1 运行的可靠断路器检修时是否影响供电;设备和线路故障检修时,停电数目的多少和停电时间的长短,以及能否保证对重要用户的供电。

110kv变电站电气设计_secret

110kv变电站电气设计_secret

110kv变电站电气设计_secret第一部分.设计说明书第一章:毕业设计内容一、设计内容110KV降压变电站部分的设计一、所址概况1、地理位置及地理条件的简述变电所位于某城市,地势平坦,交通便利,空气污染轻微,区平均海拔200米,最高气温40℃,最低气温-18℃,年平均气温14℃,最热月平均最高气温30℃,土壤温度25℃。

三、系统情况如下图注:括号内为最小运行方式五、设计任务1、负荷分析及主变压器的选择。

2、电气主接线的设计。

3、变压器的运行方式以及中性点的接地方式。

4、无功补偿装置的形式及容量确定。

5、短路电流计算(包括三相、两相、单相短路)6、各级电压配电装置设计。

7、各种电气设备选择。

8、继电保护规划。

9、主变压器的继电保护整定计算。

第二章:负荷分析一、负荷分类及定义1、一级负荷:中断供电将造成人身伤亡或重大设计损坏,且难以挽回,带来极大的政治、经济损失者属于一级负荷。

一级负荷要求有两个独立电源供电。

2、二级负荷:中断供电将造成设计局部破坏或生产流程紊乱,且较长时间才能修复或大量产品报废,重要产品大量减产,属于二级负荷。

二级负荷应由两回线供电。

但当两回线路有困难时(如边远地区),允许有一回专用架空线路供电。

3、三级负荷:不属于一级和二级的一般电力负荷。

三级负荷对供电无特殊要求,允许较长时间停电,可用单回线路供电。

二、本设计中的负荷分析市镇变1、2:市镇变担负着对所辖区的电力供应,若中断供电将会带来大面积停电,所以应属于一级负荷。

煤矿变:煤矿变负责向煤矿供电,煤矿大部分是井下作业,例如:煤矿工人从矿井中的进出等等,若煤矿变一旦停电就可能造成人身死亡,所以应属一级负荷。

化肥厂:化肥厂的生产过程伴随着许多化学反应过程,一旦电力供应中止了就会造成产品报废,造成极大的经济损失,所以应属于一级负荷。

砖厂:砖厂的生产过程与电的联系不是非常紧密,若终止电力供应,只会造成局部破坏,生产流程混乱,所以应属于三级负荷。

110kv变电站标准设计

110kv变电站标准设计

110kv变电站标准设计
110kV变电站的标准设计主要包括以下几个方面:
1. 建筑布局:按照一定的标准进行布置,通常包括主变压器室、GIS室、低压配电室、控制室、办公室等功能区域,并考虑到
建筑的结构安全、通风、防火和抗震要求。

2. 变压器选型和布置:根据变电站的负荷需求和电力系统的架构设计主变压器的规格和容量,并考虑到变压器的散热和通风条件,在设计中合理布置主变压器。

3. GIS布置:针对110kV的电力系统通常采用GIS技术实现
集成布置,并确保GIS设备的运行和维护的便捷性,提高变
电站的紧凑性和占地面积的利用效率。

4. 绝缘配合:根据变电站的设备间距、设备安装高度、线路设计要求等综合因素,进行合理的绝缘设计,确保变电站的安全运行。

5. 地线布置:根据变电站的地质和土地利用情况,设计合理的电力系统的接地设施和接地电阻,确保变电站的接地效果达到标准要求。

6. 安全工程设计:根据国家相关的电力安全标准和规范,设计变电站的安全设施和防护措施,确保变电站的安全运行。

7. 污染控制措施:考虑到变电站的运行对周边环境的影响,设
计合理的污染控制措施,保护周边环境。

8. 建筑材料和设备选用:选择合适的建筑材料和设备,满足变电站的使用寿命和耐久性要求。

以上仅为110kV变电站的标准设计的一些主要方面,具体的标准设计还需根据实际情况和相关的规范、标准来确定。

(完整版)110KV变电站设计_本科毕业设计

(完整版)110KV变电站设计_本科毕业设计

毕业设计(论文)110KV变电站设计110KV Substation Design院系名称:电气工程与自动化学院摘要本文主要进行110KV变电站设计。

首先根据任务书所给系统及线路和所有负荷的有关技术参数,通过对所建变电站及出线的考虑和对负荷资料分析,满足安全性、经济性及可靠性的要求确定了110KV、35KV、10KV 侧主接线的形式,然后又通过负荷计算及供电范围确定了主变压器台数、容量及型号,从而得出各元件的参数,进行等值网络化简,然后选择短路点进行短路计算,根据短路电流计算结果及最大持续工作电流,对包括母线、断路器、隔离开关、电压互感器、电流互感器在内的电气设备做了选择和校验,并确定配电装置。

根据负荷及短路计算为线路、变压器、母线配置继电保护并进行整定计算。

本文同时对防雷接地及补偿装置进行了简单的分析,最后给出了电气主接线图。

关键词:电气主接线短路计算电气设备变电所设计第1章引言1.1 变电站的作用一、变电站在电力系统中的地位电力系统是由变压器、输电线路、用电设备组成的网络,它包括通过电的或机械的方式连接在网络中的所有设备。

电力系统中的这些互联元件可以分为两类,一类是电力元件,它们对电能进行生产、变换、输送和分配,消费称之为电力系统一次部分;另一类是控制元件,它们改变系统的运行状态,如同步发电机的励磁调节器,调速器以及继电器等称之为电力系统二次部分。

变电站是联系发电厂和用户的中间环节,起着变换和分配电能的作用。

变电所根据它在系统中的地位,可分为下列几类:(1)枢纽变电站;位于电力系统的枢纽点,连接电力系统高压和中压的几个部分,汇集多个电源,电压为330—500kV的变电站,成为枢纽,全所停电后,将引起系统解列,甚至出项瘫痪。

(2)中间变电站:高压侧以交换潮流为主,起系统变换功率的作用。

或使长距离输电线路分段,一般汇聚2—3个电源,电压为220—330kV,同时又降压供当地供电,这样的变电站起中间环节的作用,所以叫中间变电站。

110千伏变电站设计与实现

110千伏变电站设计与实现

110千伏变电站设计与实现随着现代电力系统的不断发展,110千伏变电站的设计与实现成为了电力系统的重要组成部分。

110千伏变电站作为高压输电与低压配电网之间的桥梁,具有至关重要的作用。

它能够将高压输电网络与低压用电设备连接起来,确保电力资源的合理分配和有效利用。

在设计110千伏变电站时,需要考虑以下关键指标:可靠性:变电站应当具有高度的可靠性和稳定性,确保电力资源的稳定供应。

安全性:变电站的设计应当考虑到人员和设备的安全,采取必要的安全措施。

效率:变电站的设计应当考虑到能源效率,减少电力损耗。

扩展性:变电站的设计应当考虑到未来扩展的需求,方便后期增加设备或扩大规模。

110千伏变电站的设计思路一般可以分为以下步骤:设计流程:首先明确设计任务和目标,进行需求分析和市场调研,制定设计方案,进行初步设计、技术设计、施工图设计等环节,最终完成设计。

关键技术:110千伏变电站的设计涉及到多个关键技术,包括电气一次设计、电气二次设计、通信与自动化设计等。

电气一次设计主要包括主变压器、断路器、隔离开关、电流互感器、电压互感器等设备的选型和配置;电气二次设计主要包括继电保护、自动化控制、测量、信号等系统的设计;通信与自动化设计主要包括数据通信、网络构建、监控系统等方面的设计。

110千伏变电站设计与实现的具体方法如下:电路设计:根据任务书要求,进行主电路设计,包括电源电路、驱动电路、保护电路等的设计。

设备选型:根据设计要求,选择合适的设备,包括变压器、断路器、隔离开关、电流互感器、电压互感器等。

同时需要考虑设备的技术参数、性能指标等是否满足要求。

电气二次设计:进行继电保护、自动化控制、测量、信号等系统的设计,以实现对变压站的有效控制和保护。

通信与自动化设计:设计数据通信、网络构建、监控系统等,实现对变压站的远程监控和管理。

安全性措施:采取多种安全性措施,包括防雷击、防电磁辐射、防小动物入侵等,以确保变压站的安全运行。

浅谈110kV变电站电气设计

浅谈110kV变电站电气设计

浅谈110kV变电站电气设计110kV变电站是电力系统中重要的组成部分,它承担着将输送来的电能进行分级配送的重要任务。

110kV变电站的电气设计是变电站建设中非常重要的一个环节,其设计的合理与否直接关系到变电站的运行效率和安全可靠性。

下面将从110kV变电站的电气设计原则、主要设备设计考虑、保护控制系统设计等方面进行浅谈。

110kV变电站的电气设计需要遵循一些基本原则,以确保变电站的安全、可靠、经济和环保,其中主要包括以下几点:1. 安全可靠性:变电站作为电力系统中的重要环节,其安全可靠性是至关重要的。

设计人员应当充分考虑设备的选型、布置和系统的互锁保护等,保证设备在运行过程中能够稳定、可靠地运行。

2. 经济性:在110kV变电站的电气设计中,应当综合考虑设备的投资和运行成本,力求在保证安全可靠的前提下尽量节约成本,提高设备的利用率。

3. 环保性:110kV变电站的电气设计应当积极响应国家的节能减排政策,采用先进的环保设备,减少对环境的污染。

主要设备设计考虑110kV变电站作为电力系统的重要枢纽,其主要设备的设计显得尤为重要。

主要设备包括变压器、断路器、隔离开关、电缆和继电保护设备等。

1. 变压器设计:110kV变电站的变压器应当满足输电所需的额定容量和变比,同时还要考虑到设备的安全可靠性和运行成本。

2. 断路器和隔离开关设计:110kV变电站的断路器和隔离开关是用来控制和保护电路的重要设备,设计时需考虑设备的分断能力、操作可靠性和运行维护便捷性。

3. 电缆设计:110kV变电站的电缆设计需要考虑电缆的选型及敷设方式,以保证输电线路的安全可靠运行。

4. 继电保护设备设计:110kV变电站的继电保护设备需要根据系统的复杂程度和负荷特性进行合理的选型和配置,以保护电力系统的安全运行。

保护控制系统设计110kV变电站的保护控制系统是保证设备和电路安全运行的重要保障,其设计需要具备高度的技术含量和可靠性。

浅谈110kV变电站电气设计

浅谈110kV变电站电气设计

浅谈110kV变电站电气设计1. 引言1.1 背景介绍110kV变电站是电力系统中的重要环节,承担着电能输送、变换和配电等重要任务。

随着电力需求的不断增长和电网的不断完善,110kV变电站作为中压等级电气设备的重要组成部分,具有较大的发展空间和建设需求。

背景介绍部分将从110kV变电站在电力系统中的地位和作用入手,介绍其重要性和必要性。

随着现代工业的发展和生活用电的增加,对电力系统的要求也越来越高,110kV变电站作为连接输送和分配电能的关键设施,扮演着至关重要的角色。

110kV变电站的建设和设计必须充分考虑到运行的安全性、稳定性和经济性,提高供电可靠性和稳定性,同时要适应电力系统不断发展的需求。

110kV变电站电气设计是一个复杂而重要的工作,需要综合考虑多个方面的因素,确保设计方案的合理性和可行性。

通过对110kV变电站电气设计的深入研究和探讨,能够有效提高变电站的运行效率和安全性,为电力系统的稳定运行提供有力支持。

1.2 问题提出在进行110kV变电站电气设计过程中,往往会面临一些问题。

设计中需要考虑如何合理选型主要电气设备,以确保变电站的正常运行和安全稳定。

设计人员需要对接线图进行合理设计,以确保设备之间的连接合理可靠。

设备布置也是一个重要问题,需要根据实际情况进行布置,以确保设备之间的通风散热和维护作业的便利性。

保护措施也是一个关键问题,需要设计合理的保护系统来保障变电站设备和人员的安全。

在进行110kV变电站电气设计时,这些问题是设计人员必须要考虑和解决的。

1.3 目的110kV变电站电气设计的目的主要包括以下几个方面:1.确保变电站的安全稳定运行:电气设计是变电站建设的重要环节,通过合理的设计可以保证变电站设备运行稳定,减少故障发生的可能性,提高供电可靠性,保障电网的安全运行。

2.优化能源利用和节能减排:在电气设计中结合能源管理理念,采用先进的设备和技术,可以实现对能源的有效利用,降低能耗,减少浪费,达到节能减排的目的,符合可持续发展的要求。

110KV变电站的设计与规划

110KV变电站的设计与规划

110KV变电站的设计与规划一、本文概述随着社会的快速发展和电力需求的日益增长,110KV变电站作为电力系统的关键环节,其设计与规划的重要性日益凸显。

本文旨在全面探讨110KV变电站的设计与规划,以确保其满足安全、经济、高效和环保等多方面的要求。

我们将首先介绍110KV变电站的基本概念、作用及其在电力系统中的地位,阐述其设计与规划的必要性和重要性。

随后,文章将详细探讨变电站的选址原则,包括地质条件、环境因素、交通运输和未来发展等方面的考量。

在设计与规划的具体内容方面,我们将重点讨论变电站的电气设计,包括电气主接线、短路电流计算、设备选择及其配置等。

还将涉及变电站的建筑设计,包括建筑造型、结构设计、防火安全以及环保节能等方面的内容。

我们还将关注变电站的自动化系统设计,以提高其运行效率和可靠性。

本文将总结110KV变电站设计与规划的关键要点,强调其在保障电力供应、促进能源转型和应对气候变化等方面的重要作用。

通过本文的阐述,希望能够为相关领域的专业人员提供有益的参考,推动110KV变电站设计与规划水平的不断提高。

二、110KV变电站设计基础在设计和规划110KV变电站时,我们需要考虑一系列基础要素,以确保变电站的高效、安全和可靠运行。

这些要素包括但不限于变电站的选址、电气设计、设备选择、自动化和智能化水平、环境保护以及安全防护等方面。

选址是变电站设计的关键一步。

理想的变电站位置应远离居民区,以减少对公众的影响,同时应便于与现有和未来的电力网络连接。

地形、地质和水文条件等也是选址时需要综合考虑的重要因素。

电气设计方面,我们需要确定变电站的电气主接线方式、设备容量和配置,以满足电力系统的运行要求。

110KV变电站通常采用双母线接线或单母线分段接线方式,以提高供电的可靠性和灵活性。

设备容量和配置则需要根据当地的电力需求和负荷预测来确定。

在设备选择方面,我们需要考虑到设备的性能、可靠性、经济性以及维护便利性。

110kv变电站设计

110kv变电站设计

110kv变电站设计1. 引言110kV变电站是电力系统中的重要组成部分,负责将电力从高压输电线路调整为适合配电网使用的低压电能。

本文旨在介绍110kV变电站的设计要点和技术要求。

2. 变电站布局设计110kV变电站的布局设计旨在确保安全、高效和可靠的运行。

以下是考虑的主要因素:•站内道路和设施布置:保证变电站内部道路宽敞,设施布置合理,以方便维护和运行工作的进行。

•主变压器室位置:将主变压器室放置在变电站的合适位置,以便方便输电线路和配电系统接入。

•高压设备布置:高压设备包括断路器、隔离开关、电流互感器等。

它们应该按照电力系统的要求合理布置,以便实现高效运行和系统可靠性。

•低压设备布置:低压设备包括配电变压器、开关设备等。

它们应该根据变电站与配电网的连接要求合理布置,以方便供电系统的运行。

3. 主要设备选型110kV变电站的主要设备选型是保证变电站运行可靠性和性能的关键环节。

以下是主要设备的选型要点:•主变压器:主变压器是变电站的核心设备,负责将高压电能变换为适合输送给配电网的低压电能。

在选型时应考虑功率容量、效率、绝缘性能和可靠性等因素。

•断路器和隔离开关:断路器和隔离开关是保护和控制电力系统的重要设备。

在选型时需要考虑电流负荷、短路能力、操作特性等因素。

•电流互感器:电流互感器用于测量高压电流的大小,为系统的保护和控制提供准确的参数。

在选型时需要考虑额定电流、准确性、绝缘性能等因素。

4. 防火与安全设计防火与安全设计是变电站设计中至关重要的一环。

以下是防火与安全设计的主要要点:•防火墙和防火隔离:在变电站的布局中,应设立适当的防火墙和防火隔离,以防止火灾蔓延和扩大。

•防雷击与接地:变电站应采用合适的防雷装置和接地措施,以保证设备和人员的安全。

•应急照明和安全出口:变电站应设有应急照明和明显的安全出口,以便在紧急情况下人员疏散和救援。

5. 环境保护设计变电站的设计应兼顾环境保护。

以下是环境保护设计的考虑因素:•噪音控制:变电站的运行可能产生噪音,应采取噪音控制措施,以避免对周边居民和环境造成影响。

110kV变电站初步设计典型方案

110kV变电站初步设计典型方案

第一章系统资料及变电站负荷情况第一节变电站型式及负荷该站为降压变电站,电压等级为110/35/10KV。

以110KV双回路与56km 外的系统相连,一回作为主电源供电,另一回作为备用联络电源供电,使该站得到可靠稳定供电电源。

系统在最大运行方式下其容量为3500MVA,其电抗为0.455;在最小运行方式下其容量为2800MVA,其电抗为0.448。

(以系统容量及电压为基准的标么值),系统以水容量为主。

1、35KV负荷35KV出线四回、容量为35.3MVA其中一类负荷两回,容量为25MVA;二类负荷两回,容量为10.3MVA2、10KV负荷10KV出线七回、容量为21.5 MVA,其中一类负荷两回、容量为6.25MVA,二类负荷三回、容量为11.25MVA二、三类负荷有一回,容量为4MVA3、同时率负荷同时率为85%线损率为5%COS书=0.8。

35KV 10K V负荷情况表表1-1第二章电气主接线方案第一节设计原则及基本要求设计原则:变电站电气主接线,应满足供电可靠性,运行灵活,结线简单清晰、操作方便,且基建投资和年运行费用经济。

因此在原始资料基础上进行综合方面因素,经过技术、经济论证比较后方可确定。

一、定各电压等级出线回路根据原始资料,本变电站为降压变电站,以两回110KV 线与系统连接,故110KV 电压等级为两回出线。

35KV 及10KV 电压等级分别为4 个和7 个,由于I类负荷的供电可靠性要比U、川类负荷要高得多,为满足供电可靠性要求,若有一类负荷,应采用双电源或双回路供电,当采用双回路供电时每回路要分接在不同的母线上。

二、确定各母线结线形式1、基本要求1)、可靠性高:断路器检修时能否不影响供电;断路器或母线故障时停电时间尽可能短和不影重要用户的供电;2)、灵活性:调度灵活、操作简便、检修安全、扩建方便;3)、经济性:投资省、占地面积小、电能损耗小。

按以上设计原则和基本要求,35KV 10K V出线均有一类负荷,应设有双电源供电;为了提高供电可靠性、同时节省投资、减少占地面积,110KV 、35KV、10K V母线均采用单母线分段;配电装置用外桥形接线。

110kV变电站设计

110kV变电站设计

110KV变电所设计前言随着我国工业的发展, 各行业对电力系统的供电可靠性和稳定性的要求日益提高。

变电站是连接电力系统的中间环节, 用以汇集电源、升降电压和分配电能。

变电站的安全运行对电力系统至关重要。

电气主接线是发电厂变电所的主要环节, 电气主接线的拟定直接关系着全所电气设备的选择、配电装置的布置、继电保护和自动装置的确定, 是变电站电气部分投资大小的决定性因素。

随着变电站综合自动化技术的不断发展与进步, 变电站综合自动化系统新的取代或更新传统的变电站二次系统, 继而实现“无人值班”变电站已成为电力系统新的发展方向和趋势。

因此, 改善电网结构, 提高供电能力与可靠性以及综合自动化程度, 以满足日益增长的社会需求是电力企业的首要目标。

这次设计题目的选让实践和理论知识相结合。

题依据山东电力集团对淄博供电公司关于《南郊110kV变电站输变电工程可行性研究报告》的批复。

而且我认为这次选题也是很好的结合了我在学校所学的发电厂电气部分这门课程。

首先介绍工厂供电设计的基本知识,包括供电设计的内容和程序,供电设计依据的主要技术基础,供电设计常用的电气图形符号和文字符号.接着依次讲述负荷计算和无功补偿,变配电所主接线方案的设计,短路计算及一次设备选择,继电保护及二次回路的选择,变配电所的布置与结构设计,供配电线路的设计计算,防雷保护和接地装置的设计。

本次设计最重要的设计原则和方法,我们认为,就是在设计中一定要遵循国家的最新标准和设计规范.因此设计中着力介绍与工厂供电设计有关的最新标准和设计规范的规定和要求.限于我们的水平,加之时间非常的紧促,因此设计书中可能有错漏和不妥之处,是很难避免的,请老师批评指正。

第一章: 负荷分析一、进出线情况(1)110kV进线: 共有两回, 均为电源线。

方向向东。

(2)10kV共有20回出线, 每回出线负荷3.5MW, 同时率为0.7, 功率因数为0.9, 10kV侧无电源;10kV出线为电缆出线。

110kV变电站设计

110kV变电站设计

110KV变电所电气设计所址选择:首先考虑变电所所址的标高,历史上有无被洪水浸淹历史;进出线走廊应便于架空线路的引入和引出,尽量少占地并考虑发展余地;其次列出变电所所在地的气象条件:年均最高、最低气温、最大风速、覆冰厚度、地震强度、年平均雷暴日、污秽等级,把这些作为设计的技术条件。

主变压器的选择:变压器台数和容量的选择直接影响主接线的形式和配电装置的结构。

它的确定除依据传递容量基本原始资料外,还应依据电力系统5-10年的发展规划、输送功率大小、馈线回路数、电压等级以及接入系统的紧密程度等因素,进行综合分析和合理选择。

选择主变压器型式时,应考虑以下问题:相数、绕组数与结构、绕组接线组别(在电厂和变电站中一般都选用YN,d11常规接线)、调压方式、冷却方式。

由于本变电所具有三种电压等级110KV、35KV、10KV,各侧的功率均达到变压器额定容量的15%以上,低压侧需装设无功补偿,所以主变压器采用三绕组变压器。

为保证供电质量、降低线路的损耗此变压器采用的是有载调压方式,在运行中可改变分接头开关的位置,而且调节范围大。

由于本地区的自然地理环境的特点,故冷却方式采用自然风冷却。

为保证供电的可靠性,该变电所装设两台主变压器。

当系统处于最大运行方式时两台变压器同时投入使用,最小运行方式或检修时只投入一台变压器且能满足供电要求。

所以选择的变压器为2×SFSZL7-31500/110型变压器。

变电站电气主接线:变电站主接线的设计要求,根据变电站在电力系统中的地位、负荷性质、出线回路数等条件和具体情况确定。

通常变电站主接线的高压侧,应尽可能采用短路器数目教少的接线,以节省投资,随出线数目的不同,可采用桥形、单母线、双母线及角形接线等。

如果变电站电压为超高压等级,又是重要的枢纽变电站,宜采用双母线带旁母接线或采用一台半断路器接线。

变电站的低压侧常采用单母分段接线或双母线接线,以便于扩建。

6~10KV馈线应选轻型断路器,如SN10型少油断路器或ZN13型真空断路器;若不能满足开断电流及动稳定和热稳定要求时,应采用限流措施。

110kV变电站工程典型设计

110kV变电站工程典型设计

目录第一章:总的部分1.1设计依据1.2建设规模1.3设计内容和范围1.4主要设计原则1.5设计方案概述第二章:电力系统部分2.1供电现状及负荷预测2.2无功补偿及电压调整2.3主要技术参数第三章:电气部分3.1电气主接线3.2短路电流计算及主要电气设备选择3.3电气总平面布臵3.4各级配电装臵3.5综合自动化系统3.6所用电及直流系统3.7通讯系统3.8过电压保护及接地3.9电气照明3.10电缆敷设第四章:土建部分4、土建部分4.1 概述4.2 站区总布臵与交通运输4.3 建筑4.4 结构4.5 暖通5、水工部分5.1 给水系统5.2 排水系统5.3 排油系统6、消防部分7、劳动安全卫生7.1 概述7.2 劳动安全卫生措施7.3 综合评价8、环境保护附件:1.福建省厦门电业局计划部文件“关于下达110kV西柯输变电工程初设任务的通知”(计划【2004】6号)。

2.建设项目选址意见书(【2005】厦规同选址第0031号)3.西柯变土壤电阻率试验报告(2005.04.19)第一章总的部分1-1.设计依据1.福建省厦门电业局计划部文件“关于下达110kV西柯输变电工程初设任务的通知”(计划【2004】6号)。

2.建设项目选址意见书(【2005】厦规同选址第0031号)1-2.建设规模变电站终期规模为3〓40MVA,两回110kV进线,24回10kV出线。

本期工程:两台主变(容量均为40MVA),电压等级为110〒8〓1.25%/10.5kV,三相双绕组有载调压、自冷式、低损耗、低噪音变压器,两回110kV架空进线,每台主变10kV侧配八回馈线。

每台主变设4800kvar 及5400kvar并联电容器组无功补偿装臵各一组,本期工程共4组并联电容器组。

终期工程:增加一台40MVA主变,增加八回10kV馈线柜及2组并联电容器组。

1-3. 设计内容和范围根据设计任务书要求按最终建设规模考虑进行总体布臵,主设备选型、布臵设计及相应的主辅生产建筑物构筑物及辅助生产设施,110kV部分设计至出线门型架,10kV部分设计至10kV高压开关柜底部接线铜排,站内的相关建筑物,构筑物一次建成。

110千伏变电站设计

110千伏变电站设计

110千伏变电站设计一、设计依据:随着经济改革的不断深化,工农业的发展也步入了快车道,电力负荷的需求量大大的增加,预计到2006年负荷将达到120000千伏安。

新建110千伏变电站。

110千伏线路又北侧进线,35千伏线路由南侧出线,10千伏线路向西出线。

走廊充裕,所址平坦,无洪水之忧,距公路近,交通方便,附近无污染。

系统按无穷大系统考虑,且系统至110千伏变电站的阻抗标么值X?=0.189 10千伏线路预计负荷 35千伏线路预计负荷出线 5000 出线 25000 出线 7000 出线 50000 出线 9000出线 3000出线 4000二、电气线路1. 变压器的选择(1) 选择单项变压器还是三项变压器因为单项变压器相对讲投资大、占地多,运行损耗大,同时配电装置结构复杂,增加了维修的工作量,所以在330千伏及以下电压系统中,一般都选择三项变压器。

(2) 选择双绕组还是三项绕组变压器因为变电站有110千伏、35千伏和10千伏三种电压,所以主变压器采用三绕组普通变压器。

(3) 选用具有带负荷调压分接头或具有普通分接头的调压变压器选用带负荷调压接头的变压器价格比普通分接线头的的调压变压器价格贵,且变压器只从系统接受功率,功率潮流方向固定,所以选用普通分接线头的调压变压器。

(4) 选择常规式接线组别还是全星型接线组别变压器由于全星型变压器三次谐波无通路,将会引起正弦波电压的畸变,并对通讯设备发生干扰,同时对继电器保护整定的准确度和灵敏度均有影响,所以选用常规式接线组别的变压器。

根据规划,预计电力负荷将达到120000千伏安,变压器的容量可选择为150000千伏安,所以综合以上因素,变电站的主变压器的型号选为SFPSZ9-150000/110 2. 电气主接线的选择(1) 对电气主接线的基本要求保证必要的供电可靠性和电能质量安全可靠的是电力生产的主要任务,保证供电可靠和电能质量是对主接线的最基本的要求。

110kv变电站设计

110kv变电站设计

110kv变电站设计学部:电气信息学部专业:自动化组员:指导老师2013年11目录第一章电气主接线设计 (3)第一节主接线的选择 (3)1.1.1 主接线的设计原则 (3)1.1.2主接线设计的基本要求 (3)1.1.2.1 主接线可靠性的要求 (3)1.1.2.2 主接线灵活性的要求 (4)1.1.3 电气主接线的选择和比较 (4)1.1.3.1 主接线方案的比较 (4)1.1.3.2主接线方案的初选择 (6)第二节主变压器的选择与论证 (7)1.2.1 负荷计算 (7)1.2.2主变压器容量确定的要求: (8)1.2.3变压器型号的选择 (9)1.2.4站用变压器的选择 (9)第二章短路计算 (10)第一节三相短路电流计算 (10)2.1.1在最大运行方式下对三相短路的情况进行计算。

(10)第二节线路最大长期工作电流计算 (16)2.2.1电流计算 (16)2.2.2主变进线最大长期工作电流计算 (17)第三章其它电气设备的选择 (18)第一节高压断路器选择及校验 (18)第二节隔离开关选择及校验 (20)第三节电流互感器选择及校验 (21)第四节电压互感器选择及校验 (22)第五节高压熔断器选择及校验 (23)第六节母线选择及校验 (23)3.6.1 母线选择及校验的一般规定 (23)3.6.2 本变电站母线选择及校验 (24)第四章防雷保护计算 (26)第一章电气主接线设计第一节主接线的选择1.1.1 主接线的设计原则变电站电气主接线是电力系统接线的主要组成部分。

它表明了发电机、变压器、线路、和断路器等的数量和连接方式及可能的运行方式,从而完成发电、变电、输配电的任务。

它的设计,直接关系着全站电器设备的选择、配电装置的布置、继电保护和自动装置的确定,关系着电力系统的安全、稳定、灵活和经济运行。

主接线的设计是一个综合性的问题。

必须在满足国家有关技术经济政策的前提下,力争使其技术先进、经济合理、安全可靠。

110KV变电站设计_河南理工

110KV变电站设计_河南理工

1变电所概况一、系统至110kV母线的短路容量1000MVA。

最大负荷利用小时数为5000h/年,变电所10kV出线保护最长动作时间为1.0s。

110kV架空线路两回路供电,型号LGJ185,长度为25KM,;10kV侧16回出线,功率因数为0.85:1# 、2# :负荷为900kW,长度为3KM3# 、4# :负荷为1000kW,长度为1.5KM5# 、6# :负荷为6000kW,长度为2.5KM7# 、8# :负荷为1800 kW,长度为2KM9# 、10#:负荷为 600 kW,长度为5KM11# 、12#:负荷为 1000 kW,长度为4.5KM13# 、14#:负荷为950kW,长度为3KM15# 、16# 负荷为1600kW,长度为1.5KM。

其中1、3、5、7、9、11、13、15出线的一、二负荷约占各自总负荷40%,其余约为各自总负荷的10%左右,负荷同时率为0.9。

设计中应考虑保证扩建时,不中断原有负荷的供电,扩建后应保证功率因素为0.9,该变电所海拔高度为1000kM,历史最高温度为35摄氏度,最低温度为-7摄氏度。

最高月平均温度为27摄氏度。

该所附近地势平坦,交通便利,可不考虑环境污染影响。

2 负荷计算负荷计算直接影响着变压器的选择,计算负荷是根据变电所所带负荷的容量确定的,这个负荷是设计时作为选择变电所电力系统供电线路的导线截面,母线的选择,变压器容量,断路器,隔离开关,互感器额定参数的依据。

计算方法:根据原始材料给定的有功功率P 、功率因素cos ϕ,求出无功功率。

tan Q P ϕ=⨯,P ∑=1P +2P +3P +……+n P ,Q ∑=1Q +2Q+3Q +……+n Q根据原始资料:cos 0.85ϕ=,则tan tan(arccos0.85)0.62ϕ==,由公式可计算出21121=900,tan 9000.62558var P KW k P Q Q P ϕ===⨯=⨯= 343431000,tan 10000.62620var P P KW Q Q P k ϕ====⨯=⨯= 565656000,tan 60000.623720var P P KW Q Q P k ϕ====⨯=⨯= 787871800,tan 18000.621116var P P KW Q Q P k ϕ====⨯=⨯= 9109109600,tan 6000.62372var P P KW Q Q P k ϕ====⨯=⨯= 11121112111000,tan 10000.62620var P P KW Q Q P k ϕ====⨯=⨯= 1314131413950,tan 9500.62589var P P KW Q Q P k ϕ====⨯=⨯= 1516`1516151600,tan 16000.62992var P P KW Q Q P k ϕ====⨯=⨯=综上: 16i 1=60100iP P KW =∑=∑ 16i 1=37262k var iQ Q =∑=∑3 变压器选择由于明备用投资较大,所以选择暗备用即两台变压器同时投入运行,正常情况下每台变压器各承担负荷的50%,此时,变压器的容量应按变压器最大负荷的70%选择。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录摘要 (3)概述 (4)第一章电气主接线 (6)1.1110kv电气主接线 (7)1.235kv电气主接线 (8)1.310kv电气主接线 (10)1.4站用变接线 (12)第二章负荷计算及变压器选择 (13)2.1 负荷计算 (13)2.2 主变台数、容量和型式的确定 (14)2.3 站用变台数、容量和型式的确定 (16)第三章最大持续工作电流及短路电流的计算 (17)3.1 各回路最大持续工作电流 (17)3.2 短路电流计算点的确定和短路电流计算结果 (18)第四章主要电气设备选择 (19)4.1 高压断路器的选择 (21)4.2 隔离开关的选择 (22)4.3 母线的选择 (23)4.4 绝缘子和穿墙套管的选择 (24)4.5 电流互感器的选择 (24)4.6电压互感器的选择 (26)4.7各主要电气设备选择结果一览表 (29)附录I设计计算书 (30)附录II电气主接线图 (37)10kv配电装置配电图 (39)致谢 (40)参考文献 (41)本文首先根据任务书上所给系统与线路及所有负荷的参数,分析负荷发展趋势。

从负荷增长方面阐明了建站的必要性,然后通过对拟建变电站的概括以及出线方向来考虑,并通过对负荷资料的分析,安全,经济及可靠性方面考虑,确定了110kV,35kV,10kV以及站用电的主接线,然后又通过负荷计算及供电范围确定了主变压器台数,容量及型号,同时也确定了站用变压器的容量及型号,最后,根据最大持续工作电流及短路计算的计算结果,对高压熔断器,隔离开关,母线,绝缘子和穿墙套管,电压互感器,电流互感器进行了选型,从而完成了110kV电气一次部分的设计。

关键词:变电站变压器接线1、 待设计变电所地位及作用按照先行的原则,依据远期负荷发展,决定在本区兴建1中型110kV 变电所。

该变电所建成后,主要对本区用户供电为主,尤其对本地区大用户进行供电。

改善提高供电水平。

同时和其他地区变电所联成环网,提高了本地供电质量和可靠性。

北110kV 出线4回,2回备用 35kV 出线8回,2回备用 10kV 线路12回,另有2回备用 2、 变电站负荷情况及所址概况本变电站的电压等级为110/35/10。

变电站由两个系统供电,系统S1为600MVA,容抗为0.38, 系统S2为800MVA,容抗为0.45.线路1为30KM, 线路2为20KM, 线路3为25KM。

该地区自然条件:年最高气温40摄氏度,年最底气温- 5摄氏度,年平均气温18摄氏度。

出线方向110kV向北,35kV向西,10kV向东。

所址概括,黄土高原,面积为100×100平方米,本地区无污秽,土壤电阻率7000Ω.cm。

本论文主要通过分析上述负荷资料,以及通过负荷计算,最大持续工作电流及短路计算,对变电站进行了设备选型和主接线选择,进而完成了变电站一次部分设计。

第一章电气主接线设计现代电力系统是一个巨大的、严密的整体。

各类发电厂、变电站分工完成整个电力系统的发电、变电和配电的任务。

其主接线的好坏不仅影响到发电厂、变电站和电力系统本身,同时也影响到工农业生产和人民日常生活。

因此,发电厂、变电站主接线必须满足以下基本要求。

1 运行的可靠断路器检修时是否影响供电;设备和线路故障检修时,停电数目的多少和停电时间的长短,以及能否保证对重要用户的供电。

2 具有一定的灵活性主接线正常运行时可以根据调度的要求灵活的改变运行方式,达到调度的目的,而且在各种事故或设备检修时,能尽快地退出设备。

切除故障停电时间最短、影响范围最小,并且再检修在检修时可以保证检修人员的安全。

3 操作应尽可能简单、方便主接线应简单清晰、操作方便,尽可能使操作步骤简单,便于运行人员掌握。

复杂的接线不仅不便于操作,还往往会造成运行人员的误操作而发生事故。

但接线过于简单,可能又不能满足运行方式的需要,而且也会给运行造成不便或造成不必要的停电。

4 经济上合理主接线在保证安全可靠、操作灵活方便的基础上,还应使投资和年运行费用小,占地面积最少,使其尽地发挥经济效益。

5应具有扩建的可能性由于我国工农业的高速发展,电力负荷增加很快。

因此,在选择主接线时还要考虑到具有扩建的可能性。

变电站电气主接线的选择,主要决定于变电站在电力系统中的地位、环境、负荷的性质、出线数目的多少、电网的结构等。

1.1 110kV电气主接线由于此变电站是为了某地区电力系统的发展和负荷增长而拟建的。

那么其负荷为地区性负荷。

变电站110kV侧和10kV侧,均为单母线分段接线。

110kV~220kV出线数目为5回及以上或者在系统中居重要地位,出线数目为4回及以上的配电装置。

在采用单母线、分段单母线或双母线的35kV~110kV系统中,当不允许停电检修断路器时,可设置旁路母线。

根据以上分析、组合,保留下面两种可能接线方案,如图1.1及图1.2所示。

图1.1单母线分段带旁母接线图1.2双母线带旁路母线接线对图1.1及图1.2所示方案Ⅰ、Ⅱ综合比较,见表1-1。

表1-1 主接线方案比较表在技术上(可靠性、灵活性)第Ⅱ种方案明显合理,在经济上则方案Ⅰ占优势。

鉴于此站为地区变电站应具有较高的可靠性和灵活性。

经综合分析,决定选第Ⅱ种方案为设计的最终方案。

1.2 35kV电气主接线电压等级为35kV~60kV,出线为4~8回,可采用单母线分段接线,也可采用双母线接线。

为保证线路检修时不中断对用户的供电,采用单母线分段接线和双母线接线时,可增设旁路母线。

但由于设置旁路母线的条件所限(35kV~60kV出线多为双回路,有可能停电检修断路器,且检修时间短,约为2~3天。

)所以,35kV~60kV采用双母线接线时,不宜设置旁路母线,有条件时可设置旁路隔离开关。

据上述分析、组合,筛选出以下两种方案。

如图1.3及图1.4所示。

图1.3单母线分段带旁母接线图1.4双母线接线对图1.3及图1.4所示方案Ⅰ、Ⅱ综合比较。

见表1-2表1-2 主接线方案比较经比较两种方案都具有易扩建这一特性。

虽然方案Ⅰ可靠性、灵活性不如方案Ⅱ,但其具有良好的经济性。

鉴于此电压等级不高,可选用投资小的方案Ⅰ。

1.3 10kV电气主接线6~10kV配电装置出线回路数目为6回及以上时,可采用单母线分段接线。

而双母线接线一般用于引出线和电源较多,输送和穿越功率较大,要求可靠性和灵活性较高的场合。

上述两种方案如图1.5及图1.6所示。

图1.5单母线分段接线图1.6双母线接线对图1.5及图1.6所示方案Ⅰ、Ⅱ综合比较,见表1-3 表1-3 主接线方案比较经过综合比较方案Ⅰ在经济性上比方案Ⅱ好,且调度灵活也可保证供电的可靠性。

所以选用方案Ⅰ。

1.4 站用电接线一般站用电接线选用接线简单且投资小的接线方式。

故提出单母线分段接线和单母线接线两种方案。

上述两种方案如图1.7及图1.8所示。

图1.7单母线分段接线图1.8单母线接线对图1.7及图1.8所示方案Ⅰ、Ⅱ综合比较,见表1-4。

表1-4 主接线方案比较经比较两种方案经济性相差不大,所以选用可靠性和灵活性较高的方案Ⅰ。

第二章负荷计算及变压器选择2.1 负荷计算要选择主变压器和站用变压器的容量,确定变压器各出线侧的最大持续工作电流。

首先必须要计算各侧的负荷,包括站用电负荷(动力负荷和照明负荷)、10kVφ负荷、35kV负荷和110kV侧负荷。

由公式()%1cos1αϕ+=∑=nitcpKS(2-1)式中sC——某电压等级的计算负荷k t——同时系数(35kV取0.9、10kV取0.85、35kV各负荷与10kV各负荷之间取0.9、站用负荷取0.85)а%——该电压等级电网的线损率,一般取5%P、cos ——各用户的负荷和功率因数2.1.1 站用负荷计算S站=0.85×(91.5/0.85)×(1+5%)=96.075KVA≈0.096MVA2.1.2 10kV负荷计算S10KV=0.85[(4+3+3.5+3.2+3.4+5.6+7.8)×0.85+3/9×4] ×(1+5%)=38.675WVA2.1.3 35kV负荷计算S35KV=0.9×[(6+6+5+3)/0.9+(2.6+3.2)/0.85]×(1+5%) =27.448MVA2.1.4 110kV负荷计算S110KV=0.9×(20/0.9+5.8/0.85+25.5/0.85+12/0.9) ×(1+5%)+ S站=68.398+0.096=68.494MVA2.2 主变台数、容量和型式的确定2.2.1变电所主变压器台数的确定主变台数确定的要求:1.对大城市郊区的一次变电站,在中、低压侧已构成环网的情况下,变电站以装设两台主变压器为宜。

2.对地区性孤立的一次变电站或大型专用变电站,在设计时应考虑装设三台主变压器的可能性。

考虑到该变电站为一重要中间变电站,与系统联系紧密,且在一次主接线中已考虑采用旁路呆主变的方式。

故选用两台主变压器,并列运行且容量相等。

2.2.2变电所主变压器容量的确定主变压器容量确定的要求:1.主变压器容量一般按变电站建成后5~10年的规划负荷选择,并适当考虑到远期10~20年的负荷发展。

2.根据变电站所带负荷的性质和电网结构来确定主变压器的容量。

对于有重要负荷的变电站,应考虑当一台主变压器停运时,其余变压器容量在设计及过负荷能力后的允许时间内,应保证用户的一级和二级负荷:对一般性变电站停运时,其余变压器=68.494MVA由于上容量就能保证全部负荷的60~70%。

S总述条件所限制。

所以,两台主变压器应各自承担34.247MVA。

当一台停运时,另一台则承担70%为47.946MVA。

故选两台50MVA的主变压器就可满足负荷需求。

2.2.3 变电站主变压器型式的选择具有三种电压等级的变电站中,如通过主变压器各侧绕组的功率均达到该变压器容量的15%以上或低压侧虽无负荷,但在变电站内需装设无功补偿设备时,主变压器采用三饶组。

而有载调压较容易稳定电压,减少电压波动所以选择有载调压方式,且规程上规定对电力系统一般要求10K V及以下变电站采用一级有载调压变压器。

故本站主变压器选用有载三圈变压器。

我国110kV 及以上电压变压器绕组都采用Y连接;35kV采用Y连接,其中性点多通过消弧线圈接地。

35kV以下电压变压器绕组都采用 连接。

故主变参数如下:2.3 站用变台数、容量和型式的确定2.3.1站用变台数的确定对大中型变电站,通常装设两台站用变压器。

因站用负荷较重要,考虑到该变电站具有两台主变压器和两段10kV母线,为提高站用电的可靠性和灵活性,所以装设两台站用变压器,并采用暗备用的方式。

2.3.2站用变容量的确定站用变压器容量选择的要求:站用变压器的容量应满足经常的负荷需要和留有10%左右的裕度,以备加接临时负荷之用。

相关文档
最新文档