2019-2020高考数学第一次模拟试题(含答案)

合集下载

2019年高考数学模拟试卷(一)

2019年高考数学模拟试卷(一)

2019年高考数学模拟试卷(一)作者:本刊编辑部试题研究中心
来源:《中学生数理化·高考使用》2019年第08期
一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题日要求的。

18.(本小题满分12分)
某篮球运动员通过选秀进入美国NBA赛场,通过一年的锻炼,技术日渐成熟,下面统计了他进入NBA赛场的第2年到第6年的成绩,其第x年与其年平均每场得分y(单位:分)之间的数据如表1所示。

19.(本小题满分12分)
如圖6,在四棱锥P-ABCD中,顶点P在底面ABCD内的射影恰好落在AB的中点O上,底面直角梯形ABCD中,AB⊥AD,BC//AD,且AD =AB =2BC。

高考数学模拟试题含答案详解

高考数学模拟试题含答案详解

高考数学模拟试题含答案详解一、选择题1. 已知函数 $ f(x) = x^2 4x + 3 $,求 $ f(2) $ 的值。

答案:将 $ x = 2 $ 代入函数 $ f(x) $,得 $ f(2) = 2^2 4\times 2 + 3 = 1 $。

2. 已知等差数列 $\{a_n\}$ 的首项为 $a_1 = 3$,公差为 $d = 2$,求第 $n$ 项 $a_n$ 的表达式。

答案:等差数列的通项公式为 $a_n = a_1 + (n 1)d$,代入$a_1 = 3$ 和 $d = 2$,得 $a_n = 3 + (n 1) \times 2 = 2n + 1$。

3. 已知等比数列 $\{b_n\}$ 的首项为 $b_1 = 2$,公比为 $q = 3$,求第 $n$ 项 $b_n$ 的表达式。

答案:等比数列的通项公式为 $b_n = b_1 \times q^{n1}$,代入 $b_1 = 2$ 和 $q = 3$,得 $b_n = 2 \times 3^{n1}$。

4. 已知三角形的两边长分别为 $a = 5$ 和 $b = 8$,夹角为$60^\circ$,求第三边长 $c$。

答案:利用余弦定理 $c^2 = a^2 + b^2 2ab \cos C$,代入 $a = 5$,$b = 8$,$C = 60^\circ$,得 $c^2 = 5^2 + 8^2 2 \times5 \times 8 \times \cos 60^\circ = 49$,所以 $c = 7$。

5. 已知函数 $ g(x) = \frac{1}{x} $,求 $ g(x) $ 的定义域。

答案:由于 $x$ 不能为 $0$,所以 $g(x)$ 的定义域为 $x \neq 0$。

二、填空题1. 已知函数 $ h(x) = \sqrt{4 x^2} $,求 $ h(x) $ 的定义域。

答案:由于根号内的值不能为负,所以 $4 x^2 \geq 0$,解得$2 \leq x \leq 2$。

2020年四川省宜宾市高考数学一诊试卷(理科)试题及答案(解析版)

2020年四川省宜宾市高考数学一诊试卷(理科)试题及答案(解析版)
③a>0时, 在(0, )上是减函数,在( ,+∞)上是增函数,
∴ 时,g(x)取得最小值 ,
解 得,a≥4,显然a<4和a>4时,都不满足f(x)在(0,2)上是减函数,只有a=4时满足f(x)在(0,2)上是减函数,
∴满足条件的a的集合是{4}.
故答案为:{4}.
三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.
2020年四川省宜宾市高考数学一诊试卷(理科)
参考答案与试题解析
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合要求的.
1.已知集合U={1,2,3,4,5,6},A={1,3,4},则∁UA=( )
A.{5,6}B.{1,2,3,4}C.{2,5,6}D.{2,3,4,5,6}
(1)讨论f(x)在其定义域内的单调性;
(2)若a=1,且f(x1)=f(x2),其中0<x1<x2,求证:x1+x2+x1x2>3.
(二)选考题:共10分.请考生在第22、23题中选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]
22.如图所示,“8”是在极坐标系Ox中分别以 和 为圆心,外切于点O的两个圆.过O作两条夹角为 的射线分别交⊙C1于O、A两点,交⊙C2于O、B两点.
∴cos∠AOB= ,即∠AOB=60°.
(1)若λ>0,μ>0,
设 =2 , =2 ,则 = + ,
∵|λ|+|μ|=λ+μ≤2,故当λ+μ=2时,E,F,P三点共线,
故点P表示的区域为△OEF,

新高考数学第一次模拟试题(及答案)

新高考数学第一次模拟试题(及答案)
解析:
【解析】
【分析】
【详解】
设AB=2,作CO⊥面ABDE
OH⊥AB,则CH⊥AB,∠CHO为二面角C−AB−D的平面角,
CH=3√,OH=CHcos∠CHO=1,
结合等边三角形ABC与正方形ABDE可知此四棱锥为正四棱锥,
故EM,AN所成角的余弦值 ,
18.1:8【解析】考查类比的方法所以体积比为1∶8
C. D.
二、填空题
13.设 是等差数列 的前 项和,且 ,则
14.若x,y满足约束条件 ,则 的最小值为______.
15.已知复数z=1+2i(i是虚数单位),则|z|=_________.
16. ________________.
17.等边三角形 与正方形 有一公共边 ,二面角 的余弦值为 , 分别是 的中点,则 所成角的余弦值等于.
18.在平面上,若两个正三角形的边长的比为1:2,则它们的面积比为1:4,类似地,在空间内,若两个正四面体的棱长的比为1:2,则它们的体积比为▲
19.若 , 满足约束条件 ,则 的最大值为_____________.
20.设等比数列 满足a1+a3=10,a2+a4=5,则a1a2…an的最大值为.二、填Leabharlann 题13.25【解析】由可得所以
解析:25
【解析】
由 可得 ,所以 .
14.-1【解析】【分析】画出约束条件表示的平面区域由图形求出最优解再计算目标函数的最小值【详解】画出约束条件表示的平面区域如图所示由图形知当目标函数过点A时取得最小值由解得代入计算所以的最小值为故答案为
解析:-1
【解析】
【分析】
【详解】
根据题中所给的约束条件,画出其对应的可行域,如图所示:

高考数学(理科)模拟试题含答案(一)精编版

高考数学(理科)模拟试题含答案(一)精编版

高考数学(理科)模拟试题含答案(一)精编版高考理科数学模拟试题精编(一)注意事项:1.作答选择题时,在答题卡上涂黑对应选项的答案信息点。

如需改动,先擦干净再涂其他答案。

不得在试卷上作答。

2.非选择题用黑色钢笔或签字笔作答,写在答题卡指定区域内。

如需改动,先划掉原答案再写新答案。

不得用铅笔或涂改液。

不按要求作答无效。

3.答题卡需整洁无误。

考试结束后,交回试卷和答题卡。

第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项符合题目要求。

)1.设全集Q={x|2x²-5x≤0,x∈N},且P⊆Q,则满足条件的集合P的个数是()A。

3B。

4C。

7D。

82.若复数z=m(m-1)+(m-1)i是纯虚数,其中m是实数,则z=()A。

iB。

-iC。

2iD。

-2i3.已知等差数列{an}的公差为5,前n项和为Sn,且a1,a2,a5成等比数列,则S6=()A。

80B。

85C。

90D。

954.XXX每天上学都需要经过一个有交通信号灯的十字路口。

已知十字路口的交通信号灯绿灯亮的时间为40秒,黄灯5秒,红灯45秒。

如果XXX每天到路口的时间是随机的,则XXX上学时到十字路口需要等待的时间不少于20秒的概率是()A。

4/5B。

3/4C。

2/3D。

3/56.已知p:a=±1,q:函数f(x)=ln(x+a²+x²)为奇函数,则p 是q成立的()A。

充分不必要条件B。

必要不充分条件C。

充分必要条件D。

既不充分也不必要条件7.(省略了一个选项) 327.(1+x²+4x)²的常数项为()A。

120B。

160C。

200D。

2408.我们可以用随机模拟的方法估计π的值,如图所示的程序框图表示其基本步骤(函数RAND是产生随机数的函数,它能随机产生(0,1)内的任何一个实数),若输出的结果为521,则由此可估计π的近似值为()A。

3.119B。

2020年四川省南充市高考数学一诊试卷1 (含答案解析)

2020年四川省南充市高考数学一诊试卷1 (含答案解析)

2020年四川省南充市高考数学一诊试卷1一、选择题(本大题共12小题,共60.0分)1. 已知集合A ={1,2,3,4},B ={y|y =3x −5,x ∈A},则A ∩B =( )A. {1,2}B. {1,4}C. {2,4}D. {3,4} 2. i(2+3i)=( )A. 3−2iB. 3+2iC. −3−2iD. −3+2i3. 下列命题中的假命题是( )A. ∀x ∈R ,2−x +1>1B. ∀x ∈[1,2],x 2−1≥0C. ∃x ∈R ,sinx +cosx =32D. ∃x ∈R ,x 2+1x 2+1≤14. α为第四象限角,,则sin α=( )A. 15 B. −15 C. 513 D. −513 5. 在区间(0,100)上任取一数x ,则lg x >1的概率是( )A. 0.1B. 0.5C. 0.8D. 0.96. 若函数f (x )=sin (ωx +π3)−1(ω>0)的最小正周期为2π3,则f (x )图象的一条对称轴为( )A. x =−π18B. x =−5π2C. x =7π18D. x =π27. 已知函数f(x)是定义在R 上的偶函数,且f(0)=−1,且对任意x ∈R ,有f(x)=−f(2−x)成立,则f(2015)的值为( )A. 1B. −1C. 0D. 2 8. 已知圆x 2+y 2−2x +my −4=0上两点M 、N 关于直线2x +y =0对称,则圆的半径为( )A. 9B. 3C. 2√3D. 29. 函数f(x)=ln(x 2+2)的图象大致是( )A.B.C.D.10. 在平行四边形ABCD 中,AB ⃗⃗⃗⃗⃗ ⋅BD⃗⃗⃗⃗⃗⃗ =0,|AB ⃗⃗⃗⃗⃗ |=1,|AD ⃗⃗⃗⃗⃗⃗ |=√3,若将其沿BD 折成直二面角A −BD −C ,则三棱锥A −BDC 的外接球的表面积为( )A. 16πB. 8πC. 4πD. 2π11. 在△ABC 中,a ,b ,c 分别为角A 、B 、C 的对边,已知∠A =60°,b =1,面积S =√3,则asinA 等于( )A. 2√393B. 8√33C. 26√33D. √392612. 过双曲线x 2a2−y 2b 2=1(a >0,b >0)的左焦点F 作圆x 2+y 2=a 2的切线,切点为E ,延长FE 交双曲线于点P ,O 为坐标原点,若OE ⃗⃗⃗⃗⃗ =12(OF ⃗⃗⃗⃗⃗ +OP ⃗⃗⃗⃗⃗ ),则双曲线的离心率为( ) A. 1+√52B. √52C. √5D. 1+√32二、填空题(本大题共4小题,共20.0分)13. 已知函数f(x)=a 2x−4+n(a >0且a ≠1)的图像恒过定点P(m,2),则m +n =____.14. 某班共有36人,编号分别为1,2, 3,…,36.现用系统抽样的方法,抽取一个容量为4的样本,已知编号3、12、30在样本中,那么样本中还有一个编号是__________. 15. 若变量x ,y 满足约束条件{2x −y +2≥0x +y −2≤02y −1≥0,则z =x −13y 的最大值为______ .16. 设已知函数f(x)=|log 2x|,正实数m ,n 满足m <n ,且f(m)=f(n),若f(x)在区间[m 2,n]上的最大值为2,则n +m = 三、解答题(本大题共7小题,共82.0分)17. 已知等差数列{a n }满足:a 1=101,a 3+a 4=187,求数列{|a n |}的前n 项和T n .18. 为了解某班学生喜爱体育运动是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:已知在全部女生中随机调查2人,恰好调查到的2位女生都喜爱体育运动的概率为320. (1)请将上面的列联表补充完整(不用写计算过程);(2)能否在犯错误的概率不超过0.005的前提下认为喜爱体育运动与性别有关?说明你的理由; 下面的临界值表供参考:P(K2≥k)0.150.100.050.0250.0100.0050.001 k 2.072 2.706 3.841 5.024 6.6357.87910.828(参考公式:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d)19.如图,三棱柱ABC−A1B1C1中,AA1⊥平面ABC,AB=AC=AA1=2,D,E分别为B1C1,AB中点.(1)证明:平面AA1D⊥平面EB1C1;(2)若AB⊥AC,求点B到平面EB1C1的距离.20.已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为12,左、右焦点分别为F1、F2,过F1的直线交椭圆于A、B两点,△AF1F2的周长为6.(1)求椭圆C的方程;(2)当直线AB 的斜率为1时,求△F 2AB 的面积.21. 已知函数f(x)=a 2lnx −x 2+ax (a ∈R).(1)当a =2时,求曲线y =f(x)在点(1,f (1))处的切线方程; (2)讨论函数f(x)的单调区间.22. 在直角坐标系xOy 中,曲线C 的参数方程为{x =acosθy =sinθ(θ为参数,a >0),直线l 的参数方程为{x =−1+ty =3−t(t 为参数). (Ⅰ)若a =2,求曲线C 与l 的普通方程;(Ⅱ)若C 上存在点P ,使得P 到l 的距离为√24,求a 的取值范围.23.已知函数f(x)=|x+2|−|x+a|.(1)当a=3时,解不等式f(x)≤1;2(2)若关于x的不等式f(x)≤a解集为R,求a的取值范围.-------- 答案与解析 --------1.答案:B解析:【分析】本题主要考查了集合的交集,属于基础题.【解答】解:集合A={1,2,3,4},B={y|y=3x−5,x∈A}={−2,1,4,7},则A∩B={1,4}.故选B.2.答案:D解析:【分析】本题考查复数的求法,考查复数的代数形式的乘除运算法则等基础知识,是基础题.利用复数的运算法则直接求解即可.【解答】解:.故选D.3.答案:C解析:解:由于对∀x∈R,2−x>0,故A为真命题;由于y=x2−1在[1,2]上为增函数,则y min=1−1=0,故B为真命题;由于sinx+cosx=√2sin(x+π4)∈[−√2,√2],而32∉[−√2,√2],故C为假命题;由于x=0∈R时,x2+1x2+1=1,故D为真命题.故选:C.根据指数函数的值域,我们可以判定A的真假;根据二次函数的图象与性质,我们可以判断B的真假;根据正弦型函数的值域,我们可以判断C的真假;根据不等式的基本性质,可以判断D的真假,进而得到答案.本题考查的知识点是全称命题和特称命题,其中根据基本不等式和正弦型函数的性质,是解答本题的关键.4.答案:D解析:【分析】本题考查的同角三角函数的基本关系,属于基础题.【解答】解:因为α是第四象限角,,所以,,又且α是第四象限角,所以cosα=1213,sinα=−513,故选D.5.答案:D解析:【分析】本题主要考查几何概型的概率的计算,属于基础题.求出不等式的等价条件,结合几何概型的概率公式进行求解即可.【解答】解:在区间(0,100)上任取一数x,结合lgx>1得10<x<100,则在区间(0,100)上任取一数x,则lg x>1的概率为:100−10100−0=90100=0.9,故选D.6.答案:C解析:【分析】本题考查三角函数解析式的求法及对称轴方程的求法,考查计算能力.通过函数的周期求出ω,利用正弦函数的对称性,即可求出对称轴方程,属于基础题.【解答】解:因为函数f(x)=sin(ωx+π3)−1最小正周期为2π3,T=2πω=2π3,∴ω=3,所以3x+π3=kπ+π2,k∈Z,解得x=kπ3+π18,k∈Z,当k=1时,x=7π18,是一条对称轴方程.故选C.7.答案:C解析:由知函数f(x)是定义在R上的偶函数,f(x)=−f(2−x)可知函数f(x)为周期为4的周期函数,令x=1得,f(1)=−f(2−1)=−f(1)所以,f(1)=0所以f(2015)=f(−1)=f(1)=0.8.答案:B解析:试题分析:求出圆的圆心,代入直线方程即可求出m的值,然后求出圆的半径.因为圆x2+y2−2x+my−4=0上两点M、N关于直线2x+y=0对称,所以直线经过圆的圆心,圆x2+y2−2x+my−4=0的圆心坐标(1,−m2),所以2×1−m2=0,m=4.所以圆的半径为:12√(−2)2+(4)2+4×4=3故选B9.答案:D解析:【分析】本题考查函数图象的应用,属于基础题.结合函数的奇偶性以及值域可以求解.【解答】解:由f(−x)=f(x)可得函数f(x)为偶函数,图象关于y轴对称,排除C;又ln(x2+2)≥ln2>0,排除A,B;故选D.10.答案:C解析:【分析】本题考察了空间几何体的性质,空间思维能力的运用,镶嵌几何体的求解方法,转为常见的几何体求解,属于中档题.折叠之后,得出三棱锥A −BDC 的外接球与长方体的外接球相同,利用对角线求解即可,再利用面积公式求解即可. 【解答】解:在平行四边形ABCD 中,AB ⊥BD ,|AB⃗⃗⃗⃗⃗ |=1, |AD⃗⃗⃗⃗⃗⃗ |=√3,若将其沿BD 折成直二面角A −BD −C , ∴三棱锥A −BDC 镶嵌在长方体中,即得出:三棱锥A −BDC 的外接球与长方体的外接球相同, ∴2R =√3+1=2,R =1, ∴外接球的表面积为4π×12=4π, 故选C .11.答案:A解析:解:S =√3=12bcsinA =12×b ×c ×√32,⇒bc =4, ⇒c =4,故由余弦定理知:a 2=b 2+c 2−2bccosA =1+16−8×12=13, 故asinA=√13√32=2√393.故选:A .由三角形的面积公式可求得c ,从而由余弦定理可求得a 的值,从而可求asinA 的值. 本题主要考察了三角形的面积公式的应用,考察了余弦定理的应用,属于基础题.12.答案:C解析: 【分析】本题主要考查双曲线的标准方程,以及双曲线的简单性质的应用,考查双曲线的定义,考查运算求解能力,考查数形结合思想、化归与转化思想,属于中档题.设F′为双曲线的右焦点,由题设知|EF|=b ,|PF|=2b ,|PF′|=2a ,再由|PF|−|PF′|=2a ,知b =2a ,由此能求出双曲线的离心率. 【解答】解:∵|OF|=c ,|OE|=a ,OE ⊥EF ,∴|EF|=b , 设F′为双曲线的右焦点,∵OE ⃗⃗⃗⃗⃗ =12(OF ⃗⃗⃗⃗⃗ +OP ⃗⃗⃗⃗⃗ ),则E 为PF 的中点,OE 为△FPF′的中位线,∴|PF|=2b ,|PF′|=2a ,∵|PF|−|PF′|=2a ,∴b =2a ,∴e =√1+(ba)2=√5,故选:C13.答案:3解析: 【分析】本题考查指数函数的图象与性质,由指数函数y =a x 图象的性质,我们知道y =a x 的图象恒过(0,1)点.由题可得 {2m −4=01+n =2 ,进而得出答案. 【解答】解:由函数f(x)=a 2x−4+n(a >0且a ≠1)的图象恒过定点P(m,2)知, {2m −4=01+n =2, 解得{m =2n =1,则m +n =3. 故答案为3.14.答案:21解析: 【分析】本题考查系统抽样,根据系统抽样的定义先求出样本间隔,然后进行计算即可. 【解答】解:样本抽取间隔为36÷4=9, 则样本中还有一个编号是12+9=21, 故答案为21.15.答案:43解析:解:不等式对应的平面区域如图:(阴影部分). 由z =x −13y 得y =3x −3z ,平移直线y =3x −3z ,由平移可知当直线y =3x −3z ,经过点A 时, 直线y =3x −3z 的截距最小,此时z 取得最大值, 由{2y −1=0x +y −2=0, 解得{x =32y =12,即A(32,12)代入z =x −13y 得z =x −13y =32−13×12=43, 故答案为:43根据二元一次不等式组表示平面区域,画出不等式组表示的平面区域,利用平移求出z 最大值,即可.本题主要考查线性规划的应用,利用图象平行求得目标函数的最大值和最小值,利用数形结合是解决线性规划问题中的基本方法.16.答案:52解析: 【分析】本题考查函数图像的应用、对数函数的性质、对数方程,属于中档题.由题意知0<m <1<n ,且mn =1.又函数在区间[m 2,n]上的最大值为2,f(m)=f(n),f(m 2)=2f(m),∴f(m 2)=2,即|log 2x|=2,解出m ,n 即可. 【解答】解:∵函数f(x)=|log 2x|,正实数m 、n 满足m <n ,且f(m)=f(n), ∴0<m <1<n ,且mn =1,∴0<m 2<m <1, 又∵函数在区间[m 2,n]上的最大值为2, ∴当x =m 时,f(x)取最大值,,∴m =12,∴n =2,∴m +n =52.故答案为52.17.答案:解:∵a 1=101,a 3+a 4=a 1+a 6=187,∴a 6=86∴a 6−a 1=5d =−15, ∴a n =−3n +104,∴|a n |={−3n +1043n −104n ∈{1,2,3,…,34}n ∈{35,35,37,…},当n ∈{1,2,3,…,34}时, T n =|a 1|+|a 2|+|a 3|+⋯+|a n |,=12[101+(−3n +104)]⋅n =−32n 2+2052n ,当n ∈{35,35,37,…}时,T n =(|a 1|+|a 2|+|a 3|+⋯+|a 34|)+(|a 35|+|a 36|+⋯+|a n |), =12(101+2)⋅34+12[1+(3n −104)]⋅(n −34),=32n 2−2052n +3502,∴T n ={−32n 2+2052n32n 2−2052n +3502(n ≤34)(n ≥35).解析:由题意可知a 1=101,a 3+a 4=a 1+a 6=187,求得a 6=86,根据等差数列的性质,即可求得d ,根据等差通项公式即可求得数列{a n }的通项公式,由当n ≤34时,求得T n =12[101+(−3n +104)]⋅n =−32n 2+2052n ,当n ≥35时,求得T n =32n 2−2052n +3502,即可求得数列{|a n |}的前n项和T n .本题考查等差数列的通项公式及前n 项和公式,考查含有绝对值的等差数列前n 项和公式的求法,考查分类讨论思想,属于中档题.18.答案:解:(1)因为在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为35,可得喜爱打篮球的学生为30人, 故可得列联表如下:(2)∵k 2=50(20×15−5×10)230×20×25×25≈8.333>7.879,∴有99.5%的把握认为喜爱打篮球与性别有关.解析:本题考查独立性检验及古典概型,考查学生的计算能力,考查学生分析解决问题的能力,属于中档题.(1)根据在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为35,可得喜爱打篮球的学生,即可得到列联表;(2)利用公式求得K2,与临界值比较,即可得到结论.19.答案:证明:(1)由已知可得,A1B1=A1C1,则B1C1⊥A1D,∵AA1⊥平面A1B1C1,B1C1⊂平面A1B1C1,∴B1C1⊥AA1,又∵A1D、AA1⊂平面AA1D,A1D∩AA1=A1,∴B1C1⊥平面AA1D,∵B1C1⊂平面EB1C1,∴平面AA1D⊥平面EB1C1.(2)连接EC,由已知,在Rt△AEC中,EC=√5,∴在Rt△ECC1中,得EC1=3,由题可得,在Rt△EBB1中,EB1=√5,在Rt△A1B1C1中,B1C1=2√2,∴在△EB1C1中,根据余弦定理可得:cos∠EB1C1=√5)2√2)222×√5×2√2=√1010,∴sin∠EB1C1=3√1010,∴S△EB1C1=12B1E⋅B1C1⋅sin∠EB1C1=3,∵C1A1⊥A1B1,C1A1⊥AA1,A1B1、AA1⊂平面BB1E,A1B1∩AA1=A1,∴C1A1⊥平面BB1E,∵S△EBB1=12BB1⋅BE=1,∴V C1−EBB1=13S△EBB1⋅C1A1=23,设点B到平面EB1C1的距离为h,由V C1−EBB1=V B−B1C1E得13S△EB1C1⋅ℎ=23,解得:ℎ=23即点B到平面EB1C1的距离为23.解析:本题考查面面垂直的证明,考查点到平面的距离的求法,考查空间中线线、线面、面面间的位置关系,考查运算求解能力,考查函数与方程思想,是中档题.(1)推导出B 1C 1⊥AD ,B 1C 1⊥AA 1,从而B 1C 1⊥平面AA 1D ,由此能证明平面AA 1D ⊥平面EB 1C 1. (2)连接EC ,设点B 到平面EB 1C 1的距离为h ,由V C 1−EBB 1=V B−B 1C 1E ,能求出点B 到平面EB 1C 1的距离.20.答案:解:(1)由离心率e =ca =12,a =2c ,∵△AF 1F 2的周长为6, 即2a +2c =6,即a +c =3, 即可求得a =2,c =1, b 2=a 2−c 2=3 故椭圆C 的方程:x 24+y 23=1;(2)由(1)可知焦点F 1(−1,0), 直线AB 的方程:y =x +1, 将直线方程代入椭圆方程得: 7x 2+8x −8=0,由x 1+x 2=−87,x 1⋅x 2=−87由弦长公式丨AB 丨=√1+1⋅√(x 1+x 2)2−4x 1x 2, =√2×12√27, =247,F 2到直线的距离为d =1+1=√2,△F 2AB 的面积S =12×d ×丨AB 丨=12×√2×247=12√27.解析:(1)利用离心率,椭圆的定义,列出方程组,即可求的a 、b 和c 的值,即可求得椭圆C 的方程;(2)求得焦点坐标,求得AB 的直线方程,代入椭圆方程,求得关于x 的一元二次方程,由韦达定理求得x 1+x 2,x 1⋅x 2,由弦长公式及点到直线的距离公式求得丨AB 丨和d ,由三角形面积公式即可求得△F 2AB 的面积.本题考查椭圆的性质,直线与圆锥曲线的位置关系,考查根与系数的关系、弦长公式、点到直线的距离公式,三角形的面积公式,考查转化思想,推理能力与计算能力,属于中档题.21.答案:.解:(1)当a =2时,f(x)=4lnx −x 2+2x,∵f (1)=1,∴切点为(1,1),∵f′(x)=4x −2x +2,∴切线斜率k =f′(1)=4,∴切线方程为y −1=4(x −1)⇒4x −y −3=0 (2)函数f(x)的定义域为(0,+∞) ,f′(x)=a 2+ax−2x 2x=(a−x)(a+2x)x.由f′(x)=0得 x =a 或x =−a2.当a =0时,f′(x)<0在(0,+∞)上恒成立,所以f(x)的单调递减区间是(0,+∞),没有单调递增区间.当a >0时,x ,f′(x),f(x)的变化情况如下表:所以f(x)的单调递增区间是(0,a)当a <0时,x ,f′(x),f(x)的变化情况如下表:所以f(x)的单调递增区间是(0,−a2)2解析:本题考查了利用导数研究函数的单调性、几何意义、切线方程、不等式的解法,考查了推理能力与计算能力,难度一般.22.答案:解:(Ⅰ)曲线C 的参数方程为{x =acosθy =sinθ(θ为参数,a >0),由于:a =2,故:{x =2cosθy =sinθ(θ为参数), 所以转换为直角坐标方程为:x 24+y 2=1.(Ⅱ)设点P(acosθ,sinθ), 则:点P 到直线的距离d =√2=|√1+a 2sin(β+θ)−2|√2,当√1+a 2≥2时,即a ≥√3时,0≤d ≤√1+a 2+2√2,当√1+a 2<2时, 即:0<a <√3时,2−√a 2+1√2≤d ≤√1+a 2+2√2,由于:√1+a 2+2√2>√2=√2,所以当a ≥√3时,始终满足条件. 当a <√3时,2−√a 2+1√2≤√24, 解得:a ≥√52故:a 的取值范围是:[√52,+∞).解析:本题考查的知识要点:参数方程直角坐标方程和极坐标方程之间的转换,点到直线的距离公式的应用,无理不等式的解法及应用,主要考查学生的运算能力和转化能力,属于基础题型. (Ⅰ)直接利用转换关系式,把参数方程直角坐标方程和极坐标方程之进行转换.(Ⅱ)利用点到直线的距离公式的应用和分类讨论的方法,对无理不等式进行求解,最后求出a 的取值范围.23.答案:解:(1)当a =3时,f(x)=|x +2|−|x +3|,f(x)={1, x ≤−3−2x −5 , −3<x <−2−1 , x ≥−2,根据题意{x ≤−31≤12或 {−3<x <−2−2x −5≤12或{x ≥−2−1≤12,−114≤x <−2或x ≥−2,故不等式的解集为:{x|x ≥−114 }; (2)由x 的不等式f(x)≤a 解集为R , 得函数f(x)max ≤a ,∵|x +2|−|x +a|≤|(x +2)−(x +a)|=|2−a|=|a −2|(当且仅当(x +2)(x +a)≥0取“=”), ∴|a −2|≤a ,∴{a ≤2−(a −2)≤a 或{a >2a −2≤a , 解得:a ≥1.则a的取值范围[1,+∞)解析:本题考查了解绝对值不等式问题,考查求函数的最大值,是一道中档题.(1)将a=3代入f(x),得到关于f(x)的分段函数,求出不等式的解集即可;(2)求出f(x)的最大值,得到|a−2|≤a,解出即可.。

2019年四川省成都市高考数学一诊试卷(理科)(解析版)

2019年四川省成都市高考数学一诊试卷(理科)(解析版)

2019年四川省成都市高考数学一诊试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x>﹣2},B={x|x≥1},则A∪B=()A.{x|x>﹣2}B.{x|﹣2<x≤1}C.{x|x≤﹣2}D.{x|x≥1}2.(5分)复数(i为虚数单位)在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)一个三棱锥的正视图和侧视图如图所示(均为直角三角形),则该三棱锥的体积为()A.4B.8C.16D.244.(5分)设实数x,y满足约束条件,则z=3x+y的最小值为()A.1B.2C.3D.65.(5分)执行如图所示的程序框图,则输出的n值是()A.5B.7C.9D.116.(5分)设S n为等差数列{a n}的前n项和,且2+a5=a6+a3,则S7=()A.28B.14C.7D.27.(5分)下列判断正确的是()A.“x<﹣2”是“ln(x+3)<0”的充分不必要条件B.函数的最小值为2C.当α,β∈R时,命题“若α=β,则sinα=sinβ”的逆否命题为真命题D.命题“∀x>0,2019x+2019>0”的否定是“∃x0≤0,2019x+2019≤0”8.(5分)已知函数f(x)=3x+2cos x,若,b=f(2),c=f(log27),则a,b,c的大小关系是()A.a<b<c B.c<a<b C.b<a<c D.b<c<a9.(5分)在各棱长均相等的直三棱柱ABC﹣A1B1C1中,已知M是棱BB1的中点,N是棱AC的中点,则异面直线A1M与BN所成角的正切值为()A.B.1C.D.10.(5分)齐王有上等,中等,下等马各一匹;田忌也有上等,中等,下等马各一匹.田忌的上等马优于齐王的中等马,劣于齐王的上等马;田忌的中等马优于齐王的下等马,劣于齐王的中等马;田忌的下等马劣于齐王的下等马.现从双方的马匹中随机各选一匹进行一场比赛,若有优势的马一定获胜,则齐王的马获胜的概率为()A.B.C.D.11.(5分)已知定义在R上的函数f(x)的图象关于直线x=a(a>0)对称,且当x≥a时,f(x)=e x﹣2a.若A,B是函数f(x)图象上的两个动点,点P(a,0),则当的最小值为0时,函数f(x)的最小值为()A.e B.e﹣1C.e D.e﹣212.(5分)设椭圆C:=1(a>b>0)的左,右顶点为A,B.P是椭圆上不同于A,B的一点,设直线AP,BP的斜率分别为m,n,则当(3﹣)+3(ln|m|+ln|n|)取得最小值时,椭圆C的离心率为()A.B.C.D.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡上.13.(5分)已知双曲线C:x2﹣y2=1的右焦点为F,则点F到双曲线C的一条渐近线的距离为.14.(5分)(2x+)4展开式的常数项是.15.(5分)设S n为数列{a n}的前n项和,且a1=4,,则a5=.16.(5分)已知G为△ABC的重心,过点G的直线与边AB,AC分别相交于点P,Q,若AP=λAB,则当△ABC与△APQ的面积之比为时,实数λ的值为.三、解答题:本大题共5小题,共70分.解答应写出文字说明证明过程或演算步骤.17.(12分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知,.(1)求a的值;(2)若b=1,求△ABC的面积.18.(12分)如图,四棱锥P﹣ABCD的底面ABCD是边长为2的菱形,∠ABC=,P A ⊥平面ABCD,点M是棱PC的中点.(Ⅰ)证明:P A∥平面BMD;(Ⅱ)当P A=时,求直线AM与平面PBC所成角的正弦值.19.(12分)在2018年俄罗斯世界杯期间,莫斯科的部分餐厅经营了来自中国的小龙虾,这些小龙虾标有等级代码.为得到小龙虾等级代码数值x与销售单价y之间的关系,经统计得到如下数据:(Ⅰ)已知销售单价y与等级代码数值x之间存在线性相关关系,求y关于x的线性回归方程(系数精确到0.1);(Ⅱ)若莫斯科某个餐厅打算从上表的6种等级的中国小龙虾中随机选2种进行促销,记被选中的2种等级代码数值在60以下(不含60)的数量为X,求X的分布列及数学期望.参考公式:对一组数据(x1,y1),(x2,y2),…(x n,y n),其回归直线=x的斜率和截距最小二乘估计分别为:=,=.参考数据:x i y i=8440,x=25564.20.(12分)已知长度为4的线段AB的两个端点A,B分别在x轴和y轴上运动,动点P 满足=3,记动点P的轨迹为曲线C.(Ⅰ)求曲线C的方程;(Ⅱ)设不经过点H(0,1)的直线y=2x+t与曲线C相交于两点M,N.若直线HM与HN的斜率之和为1,求实数t的值.21.(12分)已知函数.(Ⅰ)当a<0时,讨论函数f(x)的单调性;(Ⅱ)当a=1时,若关于x的不等式f(x)+(x+)e x﹣bx≥1恒成立,求实数b的取值范围.请考生在第22,23题中任选择一题作答,如果多做,则按所做的第一题记分作答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数).在以坐标原点O为极点,x轴的正半轴为极轴,且与直角坐标系长度单位相同的极坐标系中,曲线C的极坐标方程是.(1)求直线l的普通方程与曲线C的直角坐标方程;(2)设点P(0,﹣1).若直线l与曲线C相交于两点A,B,求|P A|+|PB|的值.[选修4-5:不等式选讲]23.已知函数|.(Ⅰ)求不等式f(x)﹣3<0的解集;(Ⅱ)若关于x的方程f(x)﹣m2﹣2m﹣=0无实数解,求实数m的取值范围.2019年四川省成都市高考数学一诊试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【解答】解:集合A={x|x>﹣2},B={x|x≥1},则A∪B={x|x>﹣2}.故选:A.2.【解答】解:∵=,∴复数在复平面内对应的点的坐标为(1,﹣2),位于第四象限.故选:D.3.【解答】解:由三视图知几何体为三棱锥,且侧棱AO与底面OCB垂直,其直观图如图:∵其俯视图是直角三角形,直角边长为2;4;∴OA=6,∴棱锥的体积V==8.故选:B.4.【解答】解:作出实数x,y满足约束条件表示的平面区域(如图示:阴影部分):由得A(0,1),由z=3x+y得y=﹣3x+z,平移y=﹣3x,易知过点A时直线在y上截距最小,所以z=1.故选:A.5.【解答】解:执行如图所示的程序框图如下,n=1时,S==,n=3时,S=+=,n=5时,S=++=,n=7时,S=+++=,满足循环终止条件,此时n=9,则输出的n值是9.故选:C.6.【解答】解:∵2+a5=a6+a3,∴a4=2,S7==7a4=14.故选:B.7.【解答】解:“x<﹣2”推不出“ln(x+3)<0”,反正成立,所以“x<﹣2”是“ln(x+3)<0”的充分不必要条件,所以A不正确;函数的最小值为3+;所以B不正确;当α,β∈R时,命题“若α=β,则sinα=sinβ”是真命题,所以它的逆否命题为真命题;所以C正确;命题“∀x>0,2019x+2019>0”的否定是“∃x0≤0,2019x+2019≤0”不满足命题的否定形式,所以D不正确;故选:C.8.【解答】解:根据题意,函数f(x)=3x+2cos x,其导数函数f′(x)=3﹣2sin x,则有f′(x)=3﹣2sin x>0在R上恒成立,则f(x)在R上为增函数;又由2=log24<log27<3<,则b<c<a;故选:D.9.【解答】解:高各棱长均相等的直三棱柱ABC﹣A1B1C1中,棱长为2,以A为原点,AC为y轴,AA1为z轴,建立空间直角坐标系,则A1(0,0,2),M(,1,1),B(,1,0),N(0,1,0),=(,﹣1),=(﹣,0,0),设异面直线A1M与BN所成角为θ,则cosθ===,∴tanθ=.∴异面直线A1M与BN所成角的正切值为.故选:C.10.【解答】解:设齐王上等,中等,下等马分别为A,B,C,田忌上等,中等,下等马分别为a,b,c,现从双方的马匹中随机各选一匹进行一场比赛,基本事件有:(A,a),(A,b),(A,c),(B,a),(B,b),(B,c),(C,a),(C,b),(C,c),共9种,有优势的马一定获胜,齐王的马获胜包含的基本事件有:(A,a),(A,b),(A,c),(B,b),(B,c),(C,c),共6种,∴齐王的马获胜的概率为p==.故选:C.11.【解答】解如图,显然的模不为0,故当最小值为0时,只能是图中的情况,此时,P A⊥PB,且P A,PB与函数图象相切,根据对称性,易得∠BPD=45°,设B(x0,y0),当x≥a时,f′(x)=e x﹣2a,∴∴x0=2a∵P(a,0)∴PD=a,∴BD=a,即B(2a,a),∴e2a﹣2a=a,∴a=1,∴当x≥1时,f(x)=e x﹣2,递增,故其最小值为:e﹣1,根据对称性可知,函数f(x)在R上最小值为e﹣1.故选:B.12.【解答】解:A(﹣a,0),B(a,0),设P(x0,y0),则,则m=,n=,∴mn==,∴(3﹣)+3(ln|m|+ln|n|)==,令=t>1,则f(t)=.f′(t)==,∴当t=2时,函数f(t)取得最小值f(2).∴.∴e=,故选:D.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡上. 13.【解答】解:双曲线C:x2﹣y2=1的a=b=1,c=,则可设F(,0),设双曲线的一条渐近线方程为y=x,则F到渐近线的距离为d==1.故答案为:1.14.【解答】解:由通项公式得:T r+1=C(2x)4﹣r()r=24﹣r C x4﹣2r,令r=2,得展开式的常数项为:24﹣2C=24,故答案为:2415.【解答】解:S n为数列{a n}的前n项和,且a1=4,a n+1=S n,①,则:当n≥2时,a n=S n﹣1②①﹣②得:a n+1﹣a n=a n,所以:(常数),所以:数列{a n}是以4为首项,2为公比的等比数列.所以:(首项不符合通项).故:,当n=5时,.故答案为:3216.【解答】解:∵设AQ=μACG为△ABC的重心,∴==.∵P,G,Q三点共线,∴.△ABC与△APQ的面积之比为时,.∴或,故答案为:或.三、解答题:本大题共5小题,共70分.解答应写出文字说明证明过程或演算步骤. 17.【解答】解:(1)由题意可得,,由余弦定理可得,cos A=(2分)即=,(4分)∴a=(6分)(2)∵a=,b=1,由正弦定理可得,sin B===(8分)∵a>b,∴B=,(9分)C=π﹣A﹣B=(10分)∴S△ABC===(12分)18.【解答】证明:(Ⅰ)如图,连结AC,交BD于点O,连结MO,∵M,O分别为PC,AC的中点,∴P A∥MO∵P A⊄平面BMD,MO⊂平面BMD,∴P A∥平面BMD.解:(Ⅱ)如图,取线段BC的中点H,连结AH,∵ABCD为菱形,∠ABC=,∴AH⊥AD,分别以AH,AD,AP所在直线为x轴,y轴,z轴,建立空间直角坐标系,∴A(0,0,0),B(),C(),P(0,0,),M(),∴=(,),=(0,2,0),=(),设平面PBC的法向量=(x,y,z),则,取z=1,∴=(1,0,1),设直线AM与平面PBC所成角为θ,∴sinθ=|cos<>|===.∴直线AM与平面PBC所成角的正弦值为.19.【解答】解:(Ⅰ)由题意得:=(38+48+58+68+78+88)=63,=(16.8+18.8+20.8+22.8+24+25.8)=21.5,=≈0.2,=﹣=8.9,故所求回归方程是:=0.2x+8.9;(Ⅱ)由题意知X的所有可能为0,1,2,∵P(X=0)==,P(X=1)==,P(X=2)==,故X的分布列为:故E(X)=0×+1×+2×=1.20.【解答】解:(Ⅰ)设P(x,y),A(m,0),B(0,n),∵,∴(x,y﹣n)=3(m﹣x,﹣y)=(3m﹣3x,﹣3y),即,∴,∵|AB|=4,∴m2+n2=16,∴,∴曲线C的方程为:;(Ⅱ)设M(x1,y1),N(x2,y2),由,消去y得,37x2+36tx+9(t2﹣1)=0,由△=(36t)2﹣4×37×9(t2﹣1)>0,可得﹣,又直线y=2x+t不经过点H(0,1),且直线HM与HN的斜率存在,∴t≠±1,又,,∴k HM+k HN===4﹣=1,解得t=3,故t的值为3.21.【解答】解:(Ⅰ)由题意知:f′(x)=,∵当a<0,x>0时,有ax﹣e x<0,∴当x>1时,f′(x)<0,当0<x<1时,f′(x)>0,∴函数f(x)在(0,1)递增,在(1,+∞)递减;(Ⅱ)由题意当a=1时,不等式f(x)+(x+)e x﹣bx≥1恒成立,即xe x﹣lnx+(1﹣b)x≥1恒成立,即b﹣1≤e x﹣﹣恒成立,设g(x)=e x﹣﹣,则g′(x)=,设h(x)=x2e x+lnx,则h′(x)=(x2+2x)e x+,当x>0时,有h′(x)>0,故h(x)在(0,+∞)递增,且h(1)=e>0,h()=﹣ln2<0,故函数h(x)有唯一零点x0,且<x0<1,故当x∈(0,x0)时,h(x)<0,g′(x)<0,g(x)递减,当x∈(x0,+∞)时,h(x)>0,g′(x)>0,g(x)递增,即g(x0)为g(x)在定义域内的最小值,故b﹣1≤﹣﹣,∵h(x0)=0,得x0=﹣,<x0<1,…(*)令k(x)=xe x,<x<1,故方程(*)等价于k(x)=k(﹣lnx),<x<1,而k(x)=k(﹣lnx)等价于x=﹣lnx,<x<1,设函数m(x)=x+lnx,<x<1,易知m(x)单调递增,又m()=﹣ln2<0,m(1)=1>0,故x0是函数的唯一零点,即lnx0=﹣x0,=,故g(x)的最小值g(x0)=1,故实数b的取值范围是(﹣∞,2].请考生在第22,23题中任选择一题作答,如果多做,则按所做的第一题记分作答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑.[选修4-4:坐标系与参数方程]22.【解答】解:(1)已知直线l的参数方程为(t为参数).转换为直角坐标方程为:.曲线C的极坐标方程是.转换为直角坐标方程为:x2+y2=2x+2y,整理得:(x﹣1)2+(y﹣1)2=2,(2)将直线l的参数方程为(t为参数),代入(x﹣1)2+(y﹣1)2=2.得到:,化简得:,所以:(t 1和t2为A、B对应的参数).故:.[选修4-5:不等式选讲]23.【解答】解:(Ⅰ)当x≥,f(x)﹣3=2x﹣1++1﹣3<0,解得x<,即有≤x <;当﹣2<x<时,f(x)﹣3=1﹣2x++1﹣3<0,解得x>﹣,即有﹣<x<;当x≤﹣2时,f(x)﹣3=1﹣2x﹣﹣1﹣3<0,解得x>﹣,即有x∈∅.综上可得原不等式的解集为(﹣,):(Ⅱ)由f(x)=,可得f(x)的值域为[,+∞),关于x的方程f(x)﹣m2﹣2m﹣=0无实数解,可得m2+2m+<,即m2+2m<0,解得﹣2<m<0,则m的范围是(﹣2,0).。

山东省实验中学2020届高三第一次模拟考试数学(理)试卷含解析

山东省实验中学2020届高三第一次模拟考试数学(理)试卷含解析

山东省实验中学2020届高三第一次模拟考试数学(理)试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.在直角坐标平面内,已知A(-2,0),3(2,0)以及动点。

是AABC的三个顶点,且sin Asin B-2cosC=0,则动点C的轨迹曲线「的离心率是()\/2a/3A.2B.2 c.扬 D.右2.若函数f(x)=l+\x\+x\贝0/(lg2)+/flg|k/(lg5)+/flg^=()A.2b.4 C.6 D.83.在AA3C中,CA_CA AB.则sinA:sin3:sinC=()543A.9:7:8b.c.6:8:7D何.3:由4.如图为我国数学家赵爽(约3世纪初)在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不相同,则不同的涂色方案共有()种A.120B.260C.340D.4205.已知直线y=kx-1与抛物线J=8y相切,则双曲线x2-k2y2=l的离心率为()73A.打B.右C.D.26.已知数列{%}的前〃项和S"满足S"+a"=2n(nwN*),则%=()1_127321385A.3b.64 c.32d.64x+y>l,7.设x,y满足约束条件\x-y>-l,若目标函数z=ax+3y仅在点(1,0)处取得最小值,则。

的取值范围2x-y<2,为()A.(—6,3)B.(-6,-3)C.(。

,3)D.(-6,0]8.已知集合M=(x|y=log2(-4x-x2)},2V=(x|(-)x>4},则肱N=()A.d-2]b.[-2,0) c.(-4,2]D(-co,-4)9.如图,已知等腰梯形A3CD中,AB=2DC=4,AD=BC=^5,E是OC的中点,P是线段BC±的动点,则的最小值是()_9_4A.5B.0C.5D.110.已知^A={x\a-l<x<a+2},B=(x|3<x<5},则能使A^B成立的实数。

2019-2020年最新高考仿真模拟试题:文科数学(新课标II卷)试卷及答案解析

2019-2020年最新高考仿真模拟试题:文科数学(新课标II卷)试卷及答案解析

普通高等学校招生全国统一考试 II 卷文 科 数 学一、选择题:本大题共12道小题,每小题5分,共60分. 1.已知集合{}|12A x x =-<<,{}|03B x x =<<,则A B =( )A .()1,3-B .()1,0-C .()0,2D .()2,3 【答案】A考点:集合运算. 2. 若为a 实数,且2i3i 1ia +=++,则a =( ) A .4- B .3- C .3 D .4 【答案】D 【解析】试题分析:由题意可得()()2i 1i 3i 24i 4a a +=++=+⇒= ,故选D. 考点:复数运算.3. 根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A .逐年比较,2008年减少二氧化碳排放量的效果最显著B .2007年我国治理二氧化碳排放显现成效2004年 2005年 2006年 2007年 2008年 2009年 2010年 2011年 2012年 2013年190020002100220023002400250026002700C .2006年以来我国二氧化碳年排放量呈减少趋势D .2006年以来我国二氧化碳年排放量与年份正相关 【答案】 D考点:柱形图4. 已知()1,1=-a ,()1,2=-b ,则(2)+⋅=a b a ( ) A .1- B .0 C .1 D .2 【答案】C 【解析】试题分析:由题意可得22=a ,3,⋅=-a b 所以()222431+⋅=+⋅=-=a b a a a b .故选C.考点:向量数量积.5. 设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5S =( ) A .5 B .7 C .9 D .11 【答案】A 【解析】试题解析:13533331a a a a a ++==⇒=,()15535552a a S a +===.故选A. 考点:等差数列6. 一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( )1A.8 1B.7 1C.6 1D.5【答案】D 【解析】试题分析:截去部分是正方体的一个角,其体积是正方体体积的16,所以截去部分体积与剩余部分体积的比值为15,故选D.考点:三视图7. 已知三点(1,0),A B C,则△ABC外接圆的圆心到原点的距离为()5A.334 D.3【答案】B考点:直线与圆的方程.8. 右边程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的,a b分别为14,18,则输出的a为()A.0B.2C.4D.14【答案】B【解析】试题分析:由题意输出的a是18,14的最大公约数2,故选B.考点:1. 更相减损术;2.程序框图.9.已知等比数列{}n a 满足114a =,()35441a a a =-,则2a =( )A.2B.1 1C.2 1D.8【答案】C 【解析】试题分析:由题意可得()235444412a a a a a ==-⇒=,所以34182a q q a ==⇒= ,故2112a a q ==,选C.考点:等比数列.10. 已知B A ,是球O 的球面上两点,︒=∠90AOB ,C 为该球面上的动点.若三棱锥ABC O -体积的最大值为36,则球O 的表面积为( ) A.π36 B. π64 C.π144 D. π256 【答案】C考点:球与几何体的切接.11. 如图,长方形的边AB=2,BC=1,O 是AB 的中点,点P 沿着边BC,CD 与DA 运动,记BOP x ∠= ,将动点P 到A,B 两点距离之和表示为x 的函数()f x ,则的图像大致为( )A .B .C .D .【答案】B考点:函数图像12. 设函数21()ln(1||)1f x x x =+-+,则使得()(21)f x f x >-成立的x 的取值范围是( ) A .1,13⎛⎫ ⎪⎝⎭ B .()1,1,3⎛⎫-∞+∞ ⎪⎝⎭C .11,33⎛⎫-⎪⎝⎭D .11,,33⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭【答案】A 【解析】试题分析:由21()ln(1||)1f x x x =+-+可知()f x 是偶函数,且在[)0,+∞是增函数,所以 ()()()()121212113f x f x f x f x x x x >-⇔>-⇔>-⇔<< .故选A. 考点:函数性质二、填空题:本大题共4小题,每小题5分,共20分13. 已知函数()32f x ax x =-的图像过点(-1,4),则a= .【答案】-2 【解析】试题分析:由()32f x ax x =-可得()1242f a a -=-+=⇒=- .考点:函数解析式14. 若x,y 满足约束条件50210210x y x y x y +-≤⎧⎪--≥⎨⎪-+≤⎩,则z=2x+y 的最大值为 .【答案】8考点:线性规划15. 已知双曲线过点(3,且渐近线方程为12y x =±,则该双曲线的标准方程为 . 【答案】2214x y -=考点:双曲线几何性质16. 已知曲线ln y x x =+在点()1,1 处的切线与曲线()221y ax a x =+++ 相切,则a= . 【答案】8 【解析】试题分析:由11y x'=+可得曲线ln y x x =+在点()1,1处的切线斜率为2,故切线方程为21y x =-,与()221y ax a x =+++ 联立得220ax ax ++=,显然0a ≠,所以由 2808a a a ∆=-=⇒=.考点:导数的几何意义. 三、解答题17(本小题满分12分)△ABC 中D 是BC 上的点,AD 平分∠BAC,BD=2DC. (I )求sin sin BC∠∠ ;(II )若60BAC ∠=,求B ∠.【答案】(I )12;30.考点:解三角形试题解析:(I )由正弦定理得,,sin sin sin sin AD BD AD DCB BADC CAD==∠∠∠∠ 因为AD 平分∠BAC,BD=2DC,所以sin 1.sin 2B DC C BD ∠==∠.(II )因为()180,60,C BAC B BAC ∠=-∠+∠∠=所以()1sin sin sin .2C BAC B B B ∠=∠+∠=∠+∠ 由(I )知2sin sin B C ∠=∠,所以tan 30.B B ∠=∠= 考点:解三角形18. (本小题满分12分)某公司为了了解用户对其产品的满意度,从A,B 两地区分别随机调查了40个用户,根据用户对其产品的满意度的评分,得到A 地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频率分布表.A 地区用户满意度评分的频率分布直方图(I)在答题卡上作出B地区用户满意度评分的频率分布直方图,并通过此图比较两地区满意度评分的平均值及分散程度.(不要求计算出具体值,给出结论即可)B地区用户满意度评分的频率分布直方图(II)根据用户满意度评分,将用户的满意度评分分为三个等级:估计那个地区的用户的满意度等级为不满意的概率大,说明理由.【答案】(I)见试题解析(II)A地区的用户的满意度等级为不满意的概率大.考点:1.频率分布直方图;2.概率估计.19. (本小题满分12分)如图,长方体1111ABCD A BC D -中AB=16,BC=10,18AA =,点E,F 分别在1111,A B D C 上,11 4.A E D F ==过点E,F 的平面α与此长方体的面相交,交线围成一个正方形.(I )在图中画出这个正方形(不必说明画法与理由); (II )求平面α把该长方体分成的两部分体积的比值. 【答案】(I )见试题解析(II )97 或79考点:1.几何体中的截面问题;2.几何体的体积20. (本小题满分12分)已知椭圆()2222:10x y C a b a b +=>> 的离心率2点(2在C上.(I )求C 的方程;(II )直线l 不经过原点O,且不平行于坐标轴,l 与C 有两个交点A,B,线段AB 中点为M,证明:直线OM 的斜率与直线l 的斜率乘积为定值.【答案】(I )2222184x y +=(II )见试题解析考点:直线与椭圆21. (本小题满分12分)已知()()ln 1f x x a x =+-.(I )讨论()f x 的单调性;(II )当()f x 有最大值,且最大值大于22a -时,求a 的取值范围.【答案】(I )0a ≤,()f x 在()0,+∞是单调递增;0a >,()f x 在10,a ⎛⎫ ⎪⎝⎭单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭单调递减;(II )()0,1.【解析】考点:导数的应用.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号22. (本小题满分10分)选修4-1:几何证明选讲如图O是等腰三角形ABC内一点,圆O与△ABC的底边BC交于M,N两点,与底边上的高交于点G,且与AB,AC分别相切于E,F两点.(I )证明EF BC ;(II )若AG 等于圆O 半径,且AE MN ==,求四边形EBCF 的面积.【答案】(I )见试题解析;(II )3考点:1.几何证明;2.四边形面积的计算.23. (本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1cos ,:sin ,x t C y t αα=⎧⎨=⎩ (t 为参数,且0t ≠ ),其中0απ≤<,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线23:2sin ,:.C C ρθρθ==(I )求2C 与3C 交点的直角坐标;(II )若1C 与 2C 相交于点A,1C 与3C 相交于点B,求AB 最大值.【答案】(I )()30,0,2⎫⎪⎪⎝⎭;(II )4.【解析】试题分析:(I )把2C 与3C 的方程化为直角坐标方程分别为2220x y y +-=,220x y +-=,联立解考点:参数方程、直角坐标及极坐标方程的互化.24. (本小题满分10分)选修4-5:不等式证明选讲设,,,a b c d 均为正数,且a b c d +=+.证明:(I )若ab cd > ,>(II >a b c d -<-的充要条件.【答案】【解析】试题分析:(I )由a b c d +=+及ab cd >,可证明22>,开方即得>(II )本小题可借助第一问的结论来证明,但要分必要性与充分性来证明. 试题解析:解:(I )因为22a b c d =++=++考点:不等式证明.。

2019年高考数学一模试卷(附答案)

2019年高考数学一模试卷(附答案)

的渐近线的
距离为 3 c ,则双曲线的渐近线方程为() 2
A. y 3x
B. y 2x
C. y x
12.在如图的平面图形中,已知
D. y 2x
OM 1,ON 2, MON 120 , BM 2MA,CN 2NA, 则 BC·OM 的值为
A. 15
C. 6 二、填空题
B. 9
D.0
D. b a c
3.如果 ,那么下列不等式成立的是( )
4
2
A. sin cos tan
B. tan sin cos
C. cos sin tan
D. cos tan sin
4.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.
甲:我的成绩比乙高.
乙:丙的成绩比我和甲的都高.
2019 年高考数学一模试卷(附答案)
一、选择题
1.若 tan 3 ,则 cos2 2sin 2 (

4
A. 64
B. 48
C.1
25
25
2.设 a sin 5 , b cos 2 , c tan 2 ,则( )
7
7
7
A. a b c
B. a c b
C. b c a
D. 16 25
【方法点拨】三角函数求值:①“给角求值”将非特殊角向特殊角转化,通过相消或相约消
去非特殊角,进而求出三角函数值;②“给值求值”关键是目标明确,建立已知和所求之间
分成 9 组,制成了如图所示的频率分布直方图. (1)求直方图的 的值; (2)设该市有 30 万居民,估计全市居民中月均用水量不低于 3 吨的人数,说明理由; (3)估计居民月用水量的中位数.
23.如图,已知四棱锥 P ABCD 的底面为等腰梯形, AB//CD , AC BD ,垂足为 H , PH 是四棱锥的高.

2019-2020学年上海市闵行区高考数学一模试卷

2019-2020学年上海市闵行区高考数学一模试卷

上海市闵行区高考数学一模试卷一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1.(4分)集合P={x |0≤x <3,x ∈Z },M={x |x 2≤9},则P ∩M= . 2.(4分)计算= .3.(4分)方程的根是 .4.(4分)已知是纯虚数(i 是虚数单位),则= .5.(4分)已知直线l 的一个法向量是,则l 的倾斜角的大小是 .6.(4分)从4名男同学和6名女同学中选取3人参加某社团活动,选出的3人中男女同学都有的不同选法种数是 (用数字作答)7.(5分)在(1+2x )5的展开式中,x 2项系数为 (用数字作答) 8.(5分)如图,在直三棱柱ABC ﹣A 1B 1C 1中,∠ACB=90°,AC=4,BC=3,AB=BB 1,则异面直线A 1B 与B 1C 1所成角的大小是 (结果用反三角函数表示)9.(5分)已知数列{a n }、{b n }满足b n =lna n ,n ∈N *,其中{b n }是等差数列,且,则b 1+b 2+…+b 1009= .10.(5分)如图,向量与的夹角为120°,,,P 是以O 为圆心,为半径的弧上的动点,若,则λμ的最大值是 .祝您高考马到成功!11.(5分)已知F 1、F 2分别是双曲线(a >0,b >0)的左右焦点,过F 1且倾斜角为30°的直线交双曲线的右支于P ,若PF 2⊥F 1F 2,则该双曲线的渐近线方程是 .12.(5分)如图,在折线ABCD 中,AB=BC=CD=4,∠ABC=∠BCD=120°,E 、F 分别是AB 、CD 的中点,若折线上满足条件的点P 至少有4个,则实数k的取值范围是 .二.选择题(本大题共4题,每题5分,共20分)13.(5分)若空间中三条不同的直线l 1、l 2、l 3,满足l 1⊥l 2,l 2∥l 3,则下列结论一定正确的是( ) A .l 1⊥l 3B .l 1∥l 3C .l 1、l 3既不平行也不垂直D .l 1、l 3相交且垂直 14.(5分)若a >b >0,c <d <0,则一定有( ) A .ad >bc B .ad <bc C .ac >bd D .ac <bd15.(5分)无穷等差数列{a n }的首项为a 1,公差为d ,前n 项和为S n (n ∈N *),则“a 1+d >0”是“{S n }为递增数列”的( )条件. A .充分非必要 B .必要非充分C .充要D .既非充分也非必要16.(5分)已知函数(n <m )的值域是[﹣1,1],有下列结论:祝您高考马到成功!①当n=0时,m ∈(0,2]; ②当时,;③当时,m ∈[1,2]; ④当时,m ∈(n ,2];其中结论正确的所有的序号是( ) A .①② B .③④C .②③D .②④三.解答题(本大题共5题,共14+14+14+16+18=76分) 17.(14分)已知函数(其中ω>0).(1)若函数f (x )的最小正周期为3π,求ω的值,并求函数f (x )的单调递增区间;(2)若ω=2,0<α<π,且,求α的值.18.(14分)如图,已知AB 是圆锥SO 的底面直径,O 是底面圆心,,AB=4,P 是母线SA 的中点,C 是底面圆周上一点,∠AOC=60°. (1)求圆锥的侧面积;(2)求直线PC 与底面所成的角的大小.19.(14分)某公司举办捐步公益活动,参与者通过捐赠每天的运动步数获得公司提供的牛奶,再将牛奶捐赠给留守儿童,此活动不但为公益事业作出了较大的贡献,公司还获得了相应的广告效益,据测算,首日参与活动人数为10000人,以后每天人数比前一天都增加15%,30天后捐步人数稳定在第30天的水平,假设此项活动的启动资金为30万元,每位捐步者每天可以使公司收益0.05元(以下人数精确到1人,收益精确到1元).祝您高考马到成功!(1)求活动开始后第5天的捐步人数,及前5天公司的捐步总收益; (2)活动开始第几天以后公司的捐步总收益可以收回启动资金并有盈余? 20.(16分)已知椭圆的右焦点是抛物线Γ:y 2=2px 的焦点,直线l 与Γ相交于不同的两点A (x 1,y 1)、B (x 2,y 2). (1)求Γ的方程;(2)若直线l 经过点P (2,0),求△OAB 的面积的最小值(O 为坐标原点);(3)已知点C (1,2),直线l 经过点Q (5,﹣2),D 为线段AB 的中点,求证:|AB |=2|CD |.21.(18分)对于函数y=f (x )(x ∈D ),如果存在实数a 、b (a ≠0,且a=1,b=0不同时成立),使得f (x )=f (ax +b )对x ∈D 恒成立,则称函数f (x )为“(a ,b )映像函数”.(1)判断函数f (x )=x 2﹣2是否是“(a ,b )映像函数”,如果是,请求出相应的a 、b 的值,若不是,请说明理由;(2)已知函数y=f (x )是定义在[0,+∞)上的“(2,1)映像函数”,且当x ∈[0,1)时,f (x )=2x ,求函数y=f (x )(x ∈[3,7))的反函数;(3)在(2)的条件下,试构造一个数列{a n },使得当x ∈[a n ,a n +1)(n ∈N *)时,2x +1∈[a n +1,a n +2),并求x ∈[a n ,a n +1)(n ∈N *)时,函数y=f (x )的解析式,及y=f (x )(x ∈[0,+∞))的值域.祝您高考马到成功!上海市闵行区高考数学一模试卷参考答案与试题解析一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.(4分)集合P={x |0≤x <3,x ∈Z },M={x |x 2≤9},则P ∩M= {0,1,2} .【解答】解:∵集合P={x |0≤x <3,x ∈Z }={0,1,2}, M={x |x 2≤9}={x |﹣3≤x ≤3}, ∴P ∩M={0,1,2}. 故答案为:{0,1,2}.2.(4分)计算=.【解答】解:===,故答案为:.3.(4分)方程的根是 10 . 【解答】解:∵,即1+lgx ﹣3+lgx=0,∴lgx=1, ∴x=10.故答案为:10.4.(4分)已知是纯虚数(i 是虚数单位),则=. 【解答】解:∵是纯虚数,祝您高考马到成功!∴,得sin 且cos ,∴α为第二象限角,则cos .∴=sinαcos +cosαsin=.故答案为:﹣.5.(4分)已知直线l 的一个法向量是,则l 的倾斜角的大小是.【解答】解:设直线l 的倾斜角为θ,θ∈[0,π). 设直线的方向向量为=(x ,y ),则=x ﹣y=0,∴tanθ==,解得θ=.故答案为:.6.(4分)从4名男同学和6名女同学中选取3人参加某社团活动,选出的3人中男女同学都有的不同选法种数是 96 (用数字作答)【解答】解:根据题意,在4名男同学和6名女同学共10名学生中任取3人,有C 103=120种,其中只有男生的选法有C 43=4种,只有女生的选法有C 63=20种 则选出的3人中男女同学都有的不同选法有120﹣4﹣20=96种; 故答案为:96.7.(5分)在(1+2x )5的展开式中,x 2项系数为 40 (用数字作答) 【解答】解:设求的项为T r +1=C 5r (2x )r , 今r=2,∴T 3=22C 52x 2=40x 2. ∴x 2的系数是40祝您高考马到成功!8.(5分)如图,在直三棱柱ABC ﹣A 1B 1C 1中,∠ACB=90°,AC=4,BC=3,AB=BB 1,则异面直线A 1B 与B 1C 1所成角的大小是 arccos(结果用反三角函数表示)【解答】解:∵在直三棱柱ABC ﹣A 1B 1C 1中,∠ACB=90°,AC=4,BC=3,AB=BB 1, BC ∥B 1C 1,∴∠A 1BC 是异面直线A 1B 与B 1C 1所成角, ∵A 1B===5,A 1C===,∴cos ∠A 1BC===. ∴∠A 1BC=arccos. ∴异面直线A 1B 与B 1C 1所成角的大小是arccos .故答案为:arccos.9.(5分)已知数列{a n }、{b n }满足b n =lna n ,n ∈N *,其中{b n }是等差数列,且,则b 1+b 2+…+b 1009= 2018 .【解答】解:数列{a n }、{b n }满足b n =lna n ,n ∈N *,其中{b n }是等差数列, ∴b n +1﹣b n =lna n +1﹣lna n =ln=常数t .祝您高考马到成功!∴=常数e t =q >0,因此数列{a n }为等比数列. 且,∴a 1a 1009=a 2a 1008==….则b 1+b 2+…+b 1009=ln (a 1a 2…a 1009)==lne 2018=2018.故答案为:2018.10.(5分)如图,向量与的夹角为120°,,,P 是以O 为圆心,为半径的弧上的动点,若,则λμ的最大值是.【解答】解:如图建立平面直角坐标系,设P (cosθ,sinθ),,,. ∵,∴,sinθ=.∴,∴λμ=﹣+=+,故答案为:祝您高考马到成功!11.(5分)已知F 1、F 2分别是双曲线(a >0,b >0)的左右焦点,过F 1且倾斜角为30°的直线交双曲线的右支于P ,若PF 2⊥F 1F 2,则该双曲线的渐近线方程是 y=±x .【解答】解:设|PF 1|=m ,|PF 2|=n ,|F 1F 2|=2c ,在直角△PF 1F 2中,∠PF 1F 2=30°, 可得m=2n ,则m ﹣n=2a=n ,即a=n , 2c=n ,即c=n , b==n ,可得双曲线的渐近线方程为y=±x , 即为y=±x ,故答案为:y=±x .12.(5分)如图,在折线ABCD 中,AB=BC=CD=4,∠ABC=∠BCD=120°,E 、F 分别是AB 、CD 的中点,若折线上满足条件的点P 至少有4个,则实数k的取值范围是 (﹣,﹣2) .【解答】解:以BC 的垂直平分线为y 轴,以BC 为x 轴,建立如图所示的平面直角坐标系, ∵AB=BC=CD=4,∠ABC=∠BCD=120°, ∴B (﹣2.0),C (2,0),A (﹣4,2),D (4,2),∵E 、F 分别是AB 、CD 的中点,∴E (﹣3,),F (3,),祝您高考马到成功!设P (x ,y ),﹣4≤x ≤4,0≤y ≤2,∵,∴(﹣3﹣x ,﹣y )(3﹣x ,﹣y )=x 2+(y ﹣)+9=k ,即x 2+(y ﹣)﹣9=k +9,当k +9>0时,点P 的轨迹为以(0,)为圆心,以为半径的圆,当圆与直线DC 相切时,此时圆的半径r=,此时点有2个,当圆经过点C 时,此时圆的半径为r==,此时点P 有4个,∵满足条件的点P 至少有4个,结合图象可得,∴<k +9<7,解得﹣<k <﹣2,故实数k 的取值范围为(﹣,﹣2), 故答案为:(﹣,﹣2)二.选择题(本大题共4题,每题5分,共20分)13.(5分)若空间中三条不同的直线l 1、l 2、l 3,满足l 1⊥l 2,l 2∥l 3,则下列结论一定正确的是( ) A .l 1⊥l 3B .l 1∥l 3C .l 1、l 3既不平行也不垂直D .l 1、l 3相交且垂直【解答】解:∵空间中三条不同的直线l 1、l 2、l 3,满足l 1⊥l 2,l 2∥l 3, ∴l 1⊥l 3, 故选:A .祝您高考马到成功!14.(5分)若a >b >0,c <d <0,则一定有( ) A .ad >bc B .ad <bc C .ac >bd D .ac <bd 【解答】解:∵c <d <0,∴﹣c >﹣d >0. 又a >b >0,则一定有﹣ac >﹣bd ,可得ac <bd . 故选:D .15.(5分)无穷等差数列{a n }的首项为a 1,公差为d ,前n 项和为S n (n ∈N *),则“a 1+d >0”是“{S n }为递增数列”的( )条件. A .充分非必要 B .必要非充分 C .充要D .既非充分也非必要【解答】解:等差数列{a n }的首项为a 1,公差为d ,前n 项和为S n =na 1+d ,则S n +1=(n +1)a 1+,则S n +1﹣S n =(n +1)a 1+﹣na 1﹣d=a 1+nd ,若{S n }为递增数列,a 1+nd >0, ∵S 2﹣S 1=a 1+d >0,∴a 1+nd >0不能推出a 1+d >0但a 1+d 能推出a 1+nd ,故a 1+d >0”是“{S n }为递增数列必要非充分, 故选:B16.(5分)已知函数(n <m )的值域是[﹣1,1],有下列结论:①当n=0时,m ∈(0,2]; ②当时,;祝您高考马到成功!③当时,m ∈[1,2]; ④当时,m ∈(n ,2];其中结论正确的所有的序号是( ) A .①②B .③④C .②③D .②④【解答】解:当x >1时,x ﹣1>0,f (x )=22﹣x +1﹣3=23﹣x ﹣3,单调递减,当﹣1<x <1时,f (x )=22+x ﹣1﹣3=21+x ﹣3,单调递增,∴f (x )=22﹣|x ﹣1|﹣3在(﹣1,1)单调递增,在(1,+∞)单调递减, ∴当x=1时,取最大值为1, ∴绘出f (x )的图象,如图: ①当n=0时,f (x )=,由函数图象可知:要使f (x )的值域是[﹣1,1], 则m ∈(1,2];故①错误; ②当时,f (x )=,f (x )在[﹣1,]单调递增,f (x )的最大值为1,最小值为﹣1,∴;故②正确;③当时,m ∈[1,2];故③正确,④错误,故选C .祝您高考马到成功!三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)已知函数(其中ω>0).(1)若函数f (x )的最小正周期为3π,求ω的值,并求函数f (x )的单调递增区间;(2)若ω=2,0<α<π,且,求α的值.【解答】解:(1)函数=sin (ωx),∵函数f (x )的最小正周期为3π,即T=3π=∴ω= 那么:,由,k ∈Z ,得:∴函数f (x )的单调递增区间为,k ∈Z ;(2)函数=sin (ωx),∵ω=2 ∴f (x )=sin (2x ),祝您高考马到成功!,可得sin (2α)=∵0<α<π, ∴≤(2α)≤2α=或解得:α=或α=.18.(14分)如图,已知AB 是圆锥SO 的底面直径,O 是底面圆心,,AB=4,P 是母线SA 的中点,C 是底面圆周上一点,∠AOC=60°. (1)求圆锥的侧面积;(2)求直线PC 与底面所成的角的大小.【解答】解:(1)∵AB 是圆锥SO 的底面直径,O 是底面圆心,,AB=4,P 是母线SA 的中点,C 是底面圆周上一点,∠AOC=60°.∴r==2,l===4,∴圆锥的侧面积S=πrl=π×2×4=8π.(2)过点P 作PE ⊥圆O ,交AO 于E ,连结CE ,则E 是AO 中点, ∴PE=PO=,CE==,∴∠PCE 是直线PC 与底面所成角, ∵PE=CE ,PE ⊥CE ,∴, ∴直线PC 与底面所成的角为.祝您高考马到成功!19.(14分)某公司举办捐步公益活动,参与者通过捐赠每天的运动步数获得公司提供的牛奶,再将牛奶捐赠给留守儿童,此活动不但为公益事业作出了较大的贡献,公司还获得了相应的广告效益,据测算,首日参与活动人数为10000人,以后每天人数比前一天都增加15%,30天后捐步人数稳定在第30天的水平,假设此项活动的启动资金为30万元,每位捐步者每天可以使公司收益0.05元(以下人数精确到1人,收益精确到1元).(1)求活动开始后第5天的捐步人数,及前5天公司的捐步总收益; (2)活动开始第几天以后公司的捐步总收益可以收回启动资金并有盈余? 【解答】解:(1)设第x 天的捐步人数为x ,则f (x )=.∴第5天的捐步人数为f (5)=10000•(1+15%)4=17490.由题意可知前5天的捐步人数成等比数列,其中首项为10000,公比为1.15,∴前5天的捐步总收益为×0.05=3371;(2)设活动第x 天后公司捐步总收益可以回收并有盈余, ①若1≤x ≤30,则×0.05>300000,解得x >log 1.1591≈32.3(舍). ②若x >30,则[+10000•1.1529•(x ﹣30)]•0.05>300000,解得x >32.87.∴活动开始后第33天公司的捐步总收益可以收回启动资金并有盈余.20.(16分)已知椭圆的右焦点是抛物线Γ:y 2=2px 的焦点,直线l 与祝您高考马到成功!Γ相交于不同的两点A (x 1,y 1)、B (x 2,y 2). (1)求Γ的方程;(2)若直线l 经过点P (2,0),求△OAB 的面积的最小值(O 为坐标原点); (3)已知点C (1,2),直线l 经过点Q (5,﹣2),D 为线段AB 的中点,求证:|AB |=2|CD |.【解答】(1)解:由椭圆,得a 2=10,b 2=9,则c=1.∴椭圆的右焦点,即抛物线Γ:y 2=2px 的焦点为(1,0),则,p=2,∴Γ的方程为y 2=4x ;(2)解:设直线l :x=my +2, 联立,得y 2﹣4my ﹣8=0.则y 1+y 2=4m ,y 1y 2=﹣8.∴==,即△OAB 的面积的最小值为;(3)证明:当AB 所在直线斜率存在时,设直线方程为y +2=k (x ﹣5),即y=kx﹣5k ﹣2.联立,可得ky 2﹣4y ﹣20k ﹣8=0.,. =.===.祝您高考马到成功!∵C (1,2), ∴,,则=(x 1﹣1)(x 2﹣1)+(y 1﹣2)(y 2﹣2)=x 1x 2﹣(x 1+x 2)+1+y 1y 2﹣2(y 1+y 2)+4 =,当AB 所在直线斜率不存在时,直线方程为x=5, 联立,可得A (5,﹣),B (5,2), ,,有,∴CA ⊥CB ,又D 为线段AB 的中点,∴|AB |=2|CD |.21.(18分)对于函数y=f (x )(x ∈D ),如果存在实数a 、b (a ≠0,且a=1,b=0不同时成立),使得f (x )=f (ax +b )对x ∈D 恒成立,则称函数f (x )为“(a ,b )映像函数”.(1)判断函数f (x )=x 2﹣2是否是“(a ,b )映像函数”,如果是,请求出相应的a 、b 的值,若不是,请说明理由;(2)已知函数y=f (x )是定义在[0,+∞)上的“(2,1)映像函数”,且当x ∈[0,1)时,f (x )=2x ,求函数y=f (x )(x ∈[3,7))的反函数;(3)在(2)的条件下,试构造一个数列{a n },使得当x ∈[a n ,a n +1)(n ∈N *)时,2x +1∈[a n +1,a n +2),并求x ∈[a n ,a n +1)(n ∈N *)时,函数y=f (x )的解析式,及y=f (x )(x ∈[0,+∞))的值域.祝您高考马到成功!【解答】解:(1)由f (x )=x 2﹣2,可得f (ax +b )=(ax +b )2﹣2=a 2x 2+2abx +b 2﹣2,由f (x )=f (ax +b ),得x 2﹣2=a 2x 2+2abx +b 2﹣2, 则,∵a ≠0,且a=1,b=0不同时成立,∴a=﹣1,b=0.∴函数f (x )=x 2﹣2是“(﹣1,0)映像函数”;(2)∵函数y=f (x )是定义在[0,+∞)上的“(2,1)映像函数”,∴f (x )=f (2x +1),则f (0)=f (1)=f (3),f (1)=f (3)=f (7),∴f (0)=f (3),f (1)=f (7),而当x ∈[0,1)时,f (x )=2x , ∴x ∈[3,7)时,设f (x )=2sx +t , 由,解得s=,t=﹣.∴x ∈[3,7)时,f (x )=.令y=(3≤x <7),得,∴x=(1≤y <2),∴函数y=f (x )(x ∈[3,7))的反函数为y=(1≤x <2);(3)由(2)可知,构造数列{a n },满足a 1=0,a n +1=2a n +1,则a n +1+1=2(a n +1), ∴数列{a n +1}是以1为首项,以2为公比的等比数列,则,即.当x ∈[a n ,a n +1)=[2n ﹣1﹣1,2n ﹣1).令,解得s=21﹣n ,t=21﹣n ﹣1.∴x ∈[a n ,a n +1)(n ∈N *)时,函数y=f (x )的解析式为f (x )=.当x ∈[0,+∞)时,函数f (x )的值域为[1,2).祝您高考马到成功!!功成到马考高您祝。

2019年江苏省高考数学模拟试卷(1)(含附加,详细答案)

2019年江苏省高考数学模拟试卷(1)(含附加,详细答案)

2019年江苏省高考数学模拟试卷(1)(含附加,详细答案)文章中没有明显的格式错误和有问题的段落,因此直接改写每段话。

2019年高考模拟试卷(1)第Ⅰ卷(必做题,共160分)一、填空题:本大题共14小题,每小题5分,共70分。

1.已知集合A为{x-1<x<1},集合B为{-1≤x≤2},则AB 的并集为[ -1.2 )。

2.复数z=2i/(1-i)的实部是2/5.3.甲、乙两人下棋,结果是一人获胜或下成和棋。

已知甲不输的概率为0.8,乙不输的概率为0.7,则两人下成和棋的概率为0.06.4.某地区连续5天的最低气温(单位:°C)依次为8,-4,-1,0,2,则该组数据的方差为23.2.5.根据XXX所示的伪代码,当输出y的值为2时,则输入的x的值为e。

6.在平面直角坐标系xOy中,圆x^2+y^2-4x+4y+4=0被直线x-y-5=0所截得的弦长为4.7.如图,三个相同的正方形相接,则XXX∠XXX的值为1.8.如图,四棱锥P-ABCD的底面ABCD是矩形,PA⊥底面ABCD,E为PD上一点,且PE=2ED。

设三棱锥P-ACE的体积为V1,三棱锥P-ABC的体积为V2,则.9.已知F是抛物线C:y=8x的焦点,M是C上一点,FM的延长线交y轴于点N。

若M是FN的中点,则FN的长度为16.10.若函数f(x)为定义在R上的奇函数,当x>0时,f(x)=xlnx,则不等式f(x)<-e的解集为(1/e。

e)。

11.钢材市场上通常将相同的圆钢捆扎为正六边形垛(如图)。

现将99根相同的圆钢捆扎为1个尽可能大的正六边形垛,则剩余的圆钢根数为3.12.如图,在△ABC中,点M为边BC的中点,且AM=2,点N为线段AM的中点,若AB×AC=28,则NB×NC的值为21.13.已知正数x,y满足x+y+1/x+1/y=10,则x+y的最小值是4.14.设等比数列{an}满足:a1=2,an=cos(πn/2)+3sin(πn/2),其中n∈N,且nπ/2∈(0.π/2)。

2020年高考模拟试卷广西高考数学一诊测试试卷(理科) 含解析

2020年高考模拟试卷广西高考数学一诊测试试卷(理科) 含解析

2020年高考模拟试卷高考数学一诊试卷(理科)一、选择题1.已知集合A={x|3x2﹣5x﹣2≥0},则∁R A=()A.B.C.D.2.已知复数z满足z•|3﹣4i|=2+5i(i为虚数单位),则在复平面内复数z对应的点的坐标为()A.B.C.D.3.设x∈R,则“x3>8”是“x>2”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件4.已知双曲线C:x2﹣4y2=k的焦距等于圆M:x2+y2+4x=12的直径,则实数k=()A.B.C.或D.5.在区间[4,12]上随机地取一个实数a,则方程2x2﹣ax+8=0有实数根的概率为()A.B.C.D.6.已知等比数列{a n}的前n项和为S n,若a1=a3﹣8,且S3=13,则a2=()A.﹣3 B.3 C.D.3或7.某程序框图如图所示,则该程序的功能是()A.输出3(1+2+3+4+…+2018)的值B.输出3(1+2+3+4+…+2017)的值C.输出3(1+2+3+4+…+2019)的值D.输出1+2+3+4+…+2018的值8.某几何体的三视图如图所示,其俯视图是一圆心角为45°的扇形,则该几何体的表面积为()A.5π+24 B.C.3π+12 D.9.近两年为抑制房价过快上涨,政府出台了﹣﹣系列以“限购、限外、限贷、限价”为主题的房地产调控政策.各地房产部门为尽快实现稳定房价,提出多种方案,其中之一就是在规定的时间T内完成房产供应量任务Q.已知房产供应量Q与时间t的函数关系如图所示,则在以下四种房产供应方案中,供应效率(单位时间的供应量)逐步提高的是()A.B.C.D.10.函数f(x)=A sin(wx+φ)(A>0,w>0)的部分图象如图所示,则下列说法中错误的是()A.f(x)的最小正周期是2πB.f(x)在上单调递增C.f(x)在上单调递增D.直线是曲线y=f(x)的一条对称轴11.已知椭圆的左、右焦点分别为F1,F2,P是C上一点,且PF2⊥x轴,直线PF1与C的另一个交点为Q,若|PF1|=4|F1Q|,则C的离心率为()A.B.C.D.12.已知二次函数f(x)=ax2﹣ax﹣1没有零点,g(x)=f(x)+ax3﹣(a+3)x2+ax+2,若方程g(x)=0只有唯一的正实数根,则实数a的取值范围是()A.(﹣4,0)B.(﹣∞,﹣4)C.(﹣2,0)D.(﹣4,﹣2)二、填空题13.已知向量,若,则实数k=.14.二项式的展开式中的常数项是.15.已知实数x,y满足不等式组则的最小值为.16.已知正三棱锥的底面边长为2,侧棱长为2,则该正三棱锥内切球的表面积为.三、解答题17.在△ABC中,角A,B,C所对的边分别为a,b,c,且a2﹣3c2=ac,sin A cos C=sin C (2﹣cos A).(1)求角B的大小;(2)若△ABC的外接圆半径是,求△ABC的周长.18.如图,在四棱锥A﹣DBCE中,AD=BD=AE=CE=,BC=4,DE=2,DE∥BC,O,H分别为DE,AB的中点,AO⊥CE.(1)求证:DH∥平面ACE;(2)求直线DH与底面DBCE所成角的大小19.已知抛物线C:y2=4x的焦点为F,过点P(2,0)的直线交抛物线C于A(x1,y1)和B(x2,y2)两点.(1)当x1+x2=4时,求直线AB的方程;(2)若过点P且垂直于直线AB的直线l与抛物线C交于C,D两点,记△ABF与△CDF 的面积分别为S1,S2,求S1S2的最小值.20.在某项娱乐活动的海选过程中评分人员需对同批次的选手进行考核并评分,并将其得分作为该选手的成绩,成绩大于等于60分的选手定为合格选手,直接参加第二轮比赛,大于等于90分的选手将直接参加竞赛选拔赛.已知成绩合格的100名参赛选手成绩的频率分布直方图如图所示,其中[60,70),[80,90),[90,100]的频率构成等比数列.(1)求a,b的值;(2)估计这100名参赛选手的平均成绩;(3)根据已有的经验,参加竞赛选拔赛的选手能够进入正式竞赛比赛的概率为,假设每名选手能否通过竞赛选拔赛相互独立,现有4名选手进入竞赛选拔赛,记这4名选手在竞赛选拔赛中通过的人数为随机变量X,求X的分布列和数学期望.21.已知函数f(x)=e x+aln(x+1)(a∈R)的图象在点(0,f(0))处的切线与直线x+2y+1=0垂直.(1)求f(x)的单调区间;(2)若当x∈[0,+∞)时,f(x)﹣mx﹣1≥0恒成立,求实数m的取值范围.(二)选考题:共10分.请考生在第22、23两题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,直线l的参数方程为(t为参数).以坐标原点为极点,x轴的非负半轴为极轴且取相同的单位长度建立极坐标系,曲线C的极坐标方程为ρ2+12ρcosθ+35=0.(1)求直线l的普通方程和曲线C的直角坐标方程;(2)设A是曲线C上任意一点,直线l与两坐标轴的交点分别为M,N,求|AM|2+|AN|2最大值.[选修4-5:不等式选讲]23.(1)求不等式|x﹣4|﹣x<0的解集;(2)设a,b∈(2,+∞),证明:(a2+4)(b2+4)>8a2+8b2.参考答案一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|3x2﹣5x﹣2≥0},则∁R A=()A.B.C.D.【分析】先求出集合A,再利用补集的定义即可求出∁R A.解:易知,所以,故选:A.2.已知复数z满足z•|3﹣4i|=2+5i(i为虚数单位),则在复平面内复数z对应的点的坐标为()A.B.C.D.【分析】利用复数模的计算公式求|3﹣4i|,即可求得z,则答案可求.解:由题意,得z•5=2+5i.则,其在复数平面内对应的点的坐标为.故选:B.3.设x∈R,则“x3>8”是“x>2”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【分析】“x3>8”⇔“x>2”,即可判断出结论.解:“x3>8”⇔“x>2”,∴“x3>8”是“x>2”的充要条件.故选:C.4.已知双曲线C:x2﹣4y2=k的焦距等于圆M:x2+y2+4x=12的直径,则实数k=()A.B.C.或D.【分析】C圆M:x2+y2+4x=12化为标准方程是(x+2)2+y2=16,其半径为4.直径为8.对k分类讨论,可得双曲线的焦距,即可得出k.解:C圆M:x2+y2+4x=12化为标准方程是(x+2)2+y2=16,其半径为4.直径为8.当k>0时,双曲线C:x2﹣4y2=k化为标准方程,其焦距为,解得;当k<0时,双曲线C:x2﹣4y2=k化为标准方程是,其焦距为,解得.综上,或.故选:C.5.在区间[4,12]上随机地取一个实数a,则方程2x2﹣ax+8=0有实数根的概率为()A.B.C.D.【分析】根据一元二次方程有实数根△≥0,求出a的取值范围,再求对应的概率值.解:因为方程2x2﹣ax+8=0有实数根,所以△=(﹣a)2﹣4×2×8≥0,解得a≥8或a≤﹣8,所以方程2x2﹣ax+8=0有实数根的概率为P==.故选:D.6.已知等比数列{a n}的前n项和为S n,若a1=a3﹣8,且S3=13,则a2=()A.﹣3 B.3 C.D.3或【分析】由已知结合等比数列的通项公式及求和公式可求首项及公比,然后再结合等比数列的通项公式即可求解.解:设公比为q,易知q≠1.由得,解得或,当时,a2=a1q=3;当时,,所以a2=3或,故选:D.7.某程序框图如图所示,则该程序的功能是()A.输出3(1+2+3+4+…+2018)的值B.输出3(1+2+3+4+…+2017)的值C.输出3(1+2+3+4+…+2019)的值D.输出1+2+3+4+…+2018的值【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.解:模拟程序的运行,可得第一次运行时,k=2,S=3+3×2;第二次运行时,k=3,S=3+3×2+3×3;第三次运行时,k=4,S=3+3×2+3×3+3…,以此类推,第2017次运行时,k=2018,S=3+3×2+3×3+3×4+…+3×2018,此时刚好不满足k<2018,则输出S=3(1+2+3+4+…+2018),所以该程序的功能是“输出3(1+2+3+4+…+2018)的值.故选:A.8.某几何体的三视图如图所示,其俯视图是一圆心角为45°的扇形,则该几何体的表面积为()A.5π+24 B.C.3π+12 D.【分析】直接把三视图转换为几何体,进一步求出几何体的表面积.解:由三视图可知,该几何体是个圆柱,其上下底面均为圆面,侧面由2个矩形和1个圆弧面构成,所以其表面积.故选:B.9.近两年为抑制房价过快上涨,政府出台了﹣﹣系列以“限购、限外、限贷、限价”为主题的房地产调控政策.各地房产部门为尽快实现稳定房价,提出多种方案,其中之一就是在规定的时间T内完成房产供应量任务Q.已知房产供应量Q与时间t的函数关系如图所示,则在以下四种房产供应方案中,供应效率(单位时间的供应量)逐步提高的是()A.B.C.D.【分析】分析可知,图象应上升的,且越来越陡,由此即可得出选项.解:单位时间的供应量逐步提高时,供应量的增长速度越来越快,图象上切线的斜率随着自变量的增加会越来越大,则曲线是上升的,且越来越陡,所以函数的图象应一直下凹的.故选:B.10.函数f(x)=A sin(wx+φ)(A>0,w>0)的部分图象如图所示,则下列说法中错误的是()A.f(x)的最小正周期是2πB.f(x)在上单调递增C.f(x)在上单调递增D.直线是曲线y=f(x)的一条对称轴【分析】由图象求出函数f(x)的解析式,然后逐个分析所给命题的真假.解:由图可知,A=2,该三角函数的最小正周期,故A项正确;由,则f(x)=2sin(x+φ)中,因为,所以该三角函数的一条对称轴为,将代入y=2sin(x+φ),得,解得,所以,令,得,所以函数f(x)在上单调递增.故B项正确;令,得,所以函数f(x)在上单调递减.故C项错误;令,得,则直线是f(x)的一条对称轴.故D项正确.故选:C.11.已知椭圆的左、右焦点分别为F1,F2,P是C上一点,且PF2⊥x轴,直线PF1与C的另一个交点为Q,若|PF1|=4|F1Q|,则C的离心率为()A.B.C.D.【分析】本题根据题意可得|PF2|=,然后过Q点作QE⊥x轴,垂足为点E,设Q(x0,y0),根据两个直角三角形相似可计算出点Q坐标,再将点Q坐标代入椭圆方程,结合b2=a2﹣c2,可解出e的值.解:由题意,可将点P坐标代入椭圆C方程得+=1,解得|PF2|=.如图所示,过Q点作QE⊥x轴,垂足为点E,设Q(x0,y0),根据题意及图可知,Rt△PF2F1∽Rt△QEF1,∵=4,∴==4,∴|EF1|===,∴x0=﹣c﹣=﹣.又∵y0=﹣|QE|=﹣=﹣.∴点Q坐标为(﹣,﹣).将点Q坐标代入椭圆方程,得.结合b2=a2﹣c2,解得,故选:D.12.已知二次函数f(x)=ax2﹣ax﹣1没有零点,g(x)=f(x)+ax3﹣(a+3)x2+ax+2,若方程g(x)=0只有唯一的正实数根,则实数a的取值范围是()A.(﹣4,0)B.(﹣∞,﹣4)C.(﹣2,0)D.(﹣4,﹣2)【分析】根据已知二次函数f(x)=ax2﹣ax﹣1没有零点,则a≠0且△=a2+4a<0;解得﹣4<a<0.再根据方程g(x)=0只有唯一的正实数根,求导,分析函数y=g(x)根的分布,列出不等式得出a的取值范围即可.解:因为二次函数f(x)=ax2﹣ax﹣1没有零点,则a≠0且△=a2+4a<0,解得﹣4<a <0.由g(x)=f(x)+ax3﹣(a+3)x2+ax+2=ax2﹣ax﹣1+ax3﹣(a+3)x2+ax+2=a3x﹣3x2+1.则g'(x)=3ax2﹣6x=3x(ax﹣2),令g'(x)=0,故x=0或x=;由于a<0,所以x<时,g'(x)<0,g(x)单调递减;当<x<0时,g'(x)>0,g(x)单调递增;当x>0时,g'(x)<0,g(x)单调递减;所以x=有极小值,x=0时,有极大值;因为g(0)=1.当a<0时,g(x)=0只有唯一的正实数根,所以g(x)=0在(﹣∞,0)上没有实数根.而当时,g(x)=ax3﹣3x2+1在(﹣∞,0)上取得最小值,所以,解得a>2(舍去)或a<﹣2.综上所述,实数a 的取值范围是(﹣4,﹣2).故选:D.二、填空题:本题共4小题,每小题5分,共20分.13.已知向量,若,则实数k= 2 .【分析】根据两向量平行的坐标表示,列出方程求出k的值解:由题意,得,因为.所以1×(﹣3k﹣4)﹣5(﹣k)=0,解得k=2.故答案为2.14.二项式的展开式中的常数项是.【分析】先求得二项式展开式的通项公式,再令x的幂指数等于0,求得r的值,即可求得结论.解:二项式的展开式的通项是,令,解得r=6.故二项式的展开式中的常数项是.故答案为:15.已知实数x,y满足不等式组则的最小值为.【分析】作出不等式对应的平面区域,利用线性规划的知识,转化为斜率问题即可求解.【解答】解作出不等式组表示的平面区域如图所示:由几何意义可知,目标函数表示可行域内的点(x,y)与点(﹣1,﹣1)组成的直线的斜率,目标函数在点C(4,0)处取得最小值,故答案为:.16.已知正三棱锥的底面边长为2,侧棱长为2,则该正三棱锥内切球的表面积为(4﹣)π.【分析】设底面正三角形BCD的中心为O,由三角形的知识可得棱锥的高和底面积,代入体积公式可得;设内切球的半径为R,则由等体积的方法可求半径,由球的表面积公式可得.解:正三棱锥的底面边长为2,侧棱长为2,由正弦定理可知,△BDC外接圆半径2r==4及r=2,所以三棱锥的高h==4,又底面积S△BCD==3,根据题意可知△ABC底BC边上的高h1==,侧面积S=3S△ABC=3×=3,设三棱锥的体积V==4,设内切球的半径为R,则由等体积可得,(S△ABC+S△ACD+S△ABD+S△BCD)R=4,所以R=,故内切球的表面积S′=4πR2=(4﹣)π.故答案为:(4﹣)π.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.在△ABC中,角A,B,C所对的边分别为a,b,c,且a2﹣3c2=ac,sin A cos C=sin C (2﹣cos A).(1)求角B的大小;(2)若△ABC的外接圆半径是,求△ABC的周长.【分析】(1)由sin A cos C=sin C(2﹣cos A),可得sin A cos C=2sin C﹣sin C cos A,利用和差公式可得:sin(A+C)=2sin C,利用诱导公式、三角形内角和定理及其正弦定理可得b=2c.根据已知a2﹣3c2=ac,利用余弦定理即可得出B.(2)因为△ABC的外接圆半径是,由正弦定理,得.解得b.c.代入a2﹣3c2=ac 中,得a,j即可得出△ABC的周长.解:(1)因为sin A cos C=sin C(2﹣cos A),所以sin A cos C=2sin C﹣sin C cos A,所以sin A cos C+sin C cos A=2sin C,所以sin(A+C)=2sin C,所以sin B=2sin C.由正弦定理,得b=2c.因为a2﹣3c2=ac,由余弦定理,得,又因为B∈(0,π),所以(2)因为△ABC的外接圆半径是,则由正弦定理,得.解得b=4.所以c=2.将c=2代入a2﹣3c2=ac中,得a2﹣12=2a,解得(舍去)或.所以△ABC的周长是.18.如图,在四棱锥A﹣DBCE中,AD=BD=AE=CE=,BC=4,DE=2,DE∥BC,O,H分别为DE,AB的中点,AO⊥CE.(1)求证:DH∥平面ACE;(2)求直线DH与底面DBCE所成角的大小【分析】(1)利用中位线的性质及平行线的传递性,可证四边形DEFH为平行四边形,由此即可得证;(2)关键是找出∠HDG是DH与底面DBCE所成的角,进而转化到三角形中解三角形即可.【解答】(1)证明:取线段AC的中点F,连接EF,HF.因为HF是△ABC的中位线,所以.又因为DE=2,DE∥BC,所以HF=DE,HF∥DE.所以四边形DEFH为平行四边形,所以EF∥HD.因为EF⊂平面ACE,DH⊄平面ACE.所以DH∥平面ACE.(2)解:连接OB,取OB的中点G,连接HG,DG.易知,易知HG是△AOB的中位线,所以HG∥AO且.因为AD=AE,O为DE中点,AO⊥DE,又HG∥AO,所以HG⊥DE.因为AO⊥CE,HG∥AO,所以HG⊥CE.又DE∩CE=E,DE,CE⊂平面DBCE,所以HG⊥底面DBCE.所以∠HDG是DH与底面DBCE所成的角.易求等腰梯形DBCE的高为所以DG=1.在Rt△HDG中,由.得∠HDG=45°.故直线DH与底面DBCE所成角的大小为45°.19.已知抛物线C:y2=4x的焦点为F,过点P(2,0)的直线交抛物线C于A(x1,y1)和B(x2,y2)两点.(1)当x1+x2=4时,求直线AB的方程;(2)若过点P且垂直于直线AB的直线l与抛物线C交于C,D两点,记△ABF与△CDF 的面积分别为S1,S2,求S1S2的最小值.【分析】(1)由直线AB过定点P(2,0),可设直线方程为x=my+2.与抛物线方程联立消去x,得y2﹣4my﹣8=0,利用根与系数的关系即可得出.(2)由(1),知△ABF的面积为=,利用根与系数的关系代入可得.因为直线CD与直线AB垂直,对m分类讨论,m≠0时,推理可得:△CDF的面积.进而得出结论.解:(1)由直线AB过定点P(2,0),可设直线方程为x=my+2.联立消去x,得y2﹣4my﹣8=0,由韦达定理得y1+y2=4m,y1y2=﹣8,所以.因为x1+x2=4.所以4m2+4=4,解得m=0.所以直线AB的方程为x=2.(2)由(1),知△ABF的面积为=.因为直线CD与直线AB垂直,且当m=0时,直线AB的方程为x=2,则此时直线l的方程为y=0,但此时直线l与抛物线C没有两个交点,所以不符合题意,所以m≠0.因此,直线CD的方程为.同理,△CDF的面积.所以,当且仅当,即m2=1,亦即m=±1时等号成立.20.在某项娱乐活动的海选过程中评分人员需对同批次的选手进行考核并评分,并将其得分作为该选手的成绩,成绩大于等于60分的选手定为合格选手,直接参加第二轮比赛,大于等于90分的选手将直接参加竞赛选拔赛.已知成绩合格的100名参赛选手成绩的频率分布直方图如图所示,其中[60,70),[80,90),[90,100]的频率构成等比数列.(1)求a,b的值;(2)估计这100名参赛选手的平均成绩;(3)根据已有的经验,参加竞赛选拔赛的选手能够进入正式竞赛比赛的概率为,假设每名选手能否通过竞赛选拔赛相互独立,现有4名选手进入竞赛选拔赛,记这4名选手在竞赛选拔赛中通过的人数为随机变量X,求X的分布列和数学期望.【分析】(1)由频率分布直方图的性质能求出a,b.(2)由频率分布直方图的性质能估计这100名选手的平均成绩.(3)由题意知X~B(4,),由此能求出X的分布列和数学期望.解:(1)由题意,得,解得a=0.04,b=0.02.(2)估计这100名选手的平均成绩为:=65×0.1+75×0.3+85×0.2+95×0.4=84.(3)由题意知X~B(4,),则P(X=i)=,(i=0,1,2,3,4),∴X的分布列为:X 0 1 2 3 4PE(X)=4×=1.21.已知函数f(x)=e x+aln(x+1)(a∈R)的图象在点(0,f(0))处的切线与直线x+2y+1=0垂直.(1)求f(x)的单调区间;(2)若当x∈[0,+∞)时,f(x)﹣mx﹣1≥0恒成立,求实数m的取值范围.【分析】(1)先对函数求导,然后结合导数与单调性的关系即可求解;(2)构造函数g(x)=f(x)﹣mx﹣1,对其求导,然后结合导数,对a进行分类讨论,结合函数的性质分析求解.解:(1)由已知得,则f'(0)=e0+a=a+1.又因为直线x+2y+1=0的斜率为所以,解得a=1.所以f(x)=e x+ln(x+1),定义域为(﹣1,+∞),所以.所以函数f(x)的单调递增区间为(﹣1,+∞),无单调减区间.(2)令g(x)=f(x)﹣mx﹣1.则令,则当x≥0时,,所以h'(x)≥0.所以函数y=h(x)(x≥0)为增函数.所以h(x)≥h(0)=2,所以g'(x)≥2﹣m.①当m≤2时,2﹣m≥0,所以当m≤2时,g'(x)≥0,所以函数y=g(x)(x≥0)为增函数,所以g(x)≥g(0)=0,故对∀x≥0,f(x)﹣mx﹣1≥0成立;②当m>2时,m﹣1>1,由x≥0时,,,当x∈(0,ln(m﹣1)),知e x+1﹣m<0,即g'(x)<0.所以函数y=g(x),x∈(0,ln(m﹣1))为减函数.所以当0<x<ln(m﹣1)时,g(x)<g(0)=0.从而f(x)﹣mx﹣1<0,这与题意不符.综上,实数m的取值范围为(﹣∞,2].(二)选考题:共10分.请考生在第22、23两题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,直线l的参数方程为(t为参数).以坐标原点为极点,x轴的非负半轴为极轴且取相同的单位长度建立极坐标系,曲线C的极坐标方程为ρ2+12ρcosθ+35=0.(1)求直线l的普通方程和曲线C的直角坐标方程;(2)设A是曲线C上任意一点,直线l与两坐标轴的交点分别为M,N,求|AM|2+|AN|2最大值.【分析】(1)直接利用转换关系的应用,把参数方程极坐标方程和直角坐标方程之间进行转换.(2)利用两点间的距离公式的应用和三角函数关系式的恒等变换及正弦型函数的性质的应用求出结果.解:(1)由直线l的参数方程为(t为参数).转换为直角坐标方程为:3x﹣y+9=0.所以:直线l的普通方程为3x﹣y+9=0.曲线C的极坐标方程为ρ2+12ρcosθ+35=0.转换为直角坐标方程为:x2+y2+12x+35=0.故曲线C的直角坐标方程为x2+y2+12x+35=0.(2)直线l3x﹣y+9=0与坐标轴的交点依次为(﹣3,0),(0,9),不妨设M(﹣3,0),N(0,9),曲线C的直角坐标方程x2+y2+12x+35=0化为标准方程是(x+6)2+y2=1,由圆的参数方程,可设点A(﹣6+cosα,sinα),所以|AM|2+|AN|2最=(﹣3+cosα)2+sin2α+(﹣6+cosα)2+(sinα﹣9)2=﹣18(sin α+cosα)2+128=﹣18,当,即时,最大值为18.[选修4-5:不等式选讲]23.(1)求不等式|x﹣4|﹣x<0的解集;(2)设a,b∈(2,+∞),证明:(a2+4)(b2+4)>8a2+8b2.【分析】(1)解绝对值不等式即可;(2)利用作差法比较大小.解:(1)由不等式|x﹣4|﹣x<0,得|x﹣4|<x,则,解得x>2.故所求不等式的解集为(2,+∞).证明:(2)(a2+4)(b2+4)﹣(8a2+8b2)=(ab)2﹣4a2﹣4b2+16=(ab)2﹣4a2﹣4b2+16=(a2﹣4)(b2﹣4),因为a>2,b>2,所以a2>4,b2>4,所以(a2﹣4)(b2﹣4)>0.所以原不等式(a2+4)(b2+4)>8a2+8b2成立.。

2019年高考数学模拟考试题含答案解析

2019年高考数学模拟考试题含答案解析

FDCBA 2019年高考数学模拟试题(理科)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并收回。

一.选择题:本大题共12个小题,每小题5分,共60分。

在每小题给出的四个选项中只有一项是符合题目要求的1.已知集合}032{2>--=x x x A ,}4,3,2{=B ,则B A C R ⋂)(=A .}3,2{B .}4,3,2{C .}2{D .φ2.已知i 是虚数单位,iz +=31,则z z ⋅= A .5B .10C .101D .51 3.执行如图所示的程序框图,若输入的点为(1,1)P ,则输出的n 值为A .3B .4C .5D .6(第3题) (第4题)4.如图,ABCD 是边长为8的正方形,若13DE EC =,且F 为BC 的中点,则EA EF ⋅=A .10B .12C .16D .205.若实数y x ,满足⎪⎩⎪⎨⎧≥≤-≤+012y x y y x ,则yx z 82⋅=的最大值是A .4B .8C .16D .326.一个棱锥的三视图如右图,则该棱锥的表面积为 A .3228516++ B .32532+C .32216+D .32216516++7. 5张卡片上分别写有0,1,2,3,4,若从这5张卡片中随机取出2张,则取出的2张卡片上的数字之和大于5的概率是 A .101 B .51 C .103 D .548.设n S 是数列}{n a 的前n 项和,且11-=a ,11++⋅=n n n S S a ,则5a = A .301 B .031- C .021 D .201- 9. 函数()1ln1xf x x-=+的大致图像为10. 底面为矩形的四棱锥ABCD P -的体积为8,若⊥PA 平面ABCD ,且3=PA ,则四棱锥ABCD P -的外接球体积最小值是A .π625 B .π125 C .π6251 D .π25 11. 已知抛物线()220y px p =>,过焦点且倾斜角为30°的直线交抛物线于A,B 两点,以AB为直径的圆与抛物线的准线相切,切点的纵坐标是3,则抛物线的准线方程为A .1x =-B .2x =-C .3x =- D .x =12. 已知函数x x x f ln )(2-=(22≥x ),函数21)(-=x x g ,直线t y =分别与两函数交于B A ,两点,则AB 的最小值为A .21B .1C .23D .2二.填空题:本大题共4小题,每小题5分,共20分.13. 设样本数据1x ,2x ,...,2018x 的方差是5,若13+=i i x y (2018,...,2,1=i ),则1y ,2y ,...,2018y 的方差是________14. 已知函数x x x f ωωcos 3sin )(-=(0>ω),若3=ω,则方程1)(-=x f 在),0(π的实数根个数是_____15. 我国的《洛书》中记载着世界上最古老的一个幻方:将1,2,...,9填入33⨯ 的方格内,使三行、三列、两对角线的三个数之和都等于15 (如图).一般地,将连续的正整数1,2,3,…, 2n 填入n n ⨯的方格内,使得每行、每列、每条对角线上的数的和相等,这个正方形就叫做n 阶幻方.记n 阶幻方的一条对角线上数的和为n N (如:在3阶幻方中,315N =),则5N =_______16.已知ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,且1c =,π3C =.若sin sin()sin 2C A B B +-=,则ABC ∆的面积为三、解答题:本大题共6小题,其中17-21小题为必考题,每小题12分,第22—23题为选考题,考生根据要求做答,每题10分. 17.(本小题满分12分)设数列}{n a 是公差为d 的等差数列. (Ⅰ) 推导数列}{n a 的通项公式;(Ⅱ) 设0≠d ,证明数列}1{+n a 不是等比数列.18.(本小题满分12分)某中学为了解全校学生的上网情况,在全校随机抽取了40名学生(其中男、女生各占一半)进行问卷调查,并进行了统计,按男、女分为两组,再将每组学生的月上网次数分为5组:[0,5),[5,10),[10,15),[15,20),[20,25],得到如图所示的频率分布直方图.(Ⅰ)写出女生组频率分布直方图中a 的值;(Ⅱ)在抽取的40名学生中从月上网次数不少于20的学生中随机抽取2人,并用X 表示随机抽取的2人中男生的人数,求X 的分布列和数学期望.19.(本小题满分12分)在直三棱柱111C B A ABC -中,21===AA AC AB ,CA BA ⊥。

2019年上海市闵行区高考数学一模试卷(含解析版)

2019年上海市闵行区高考数学一模试卷(含解析版)

2019年上海市闵行区高考数学一模试卷一、填空题1.(3分)已知全集U=R,集合A={x|x2﹣3x≥0},则∁U A=.2.(3分)=.3.(3分)若复数z满足(1+2i)z=4+3i(i是虚数单位),则z=.4.(3分)方程=0的解为.5.(3分)等比数列{a n}中,a1+a2=1,a5+a6=16,则a9+a10=.6.(3分)(1﹣2x)5的展开式中x3的项的系数是(用数字表示)7.(3分)已知两条直线l1:4x+2y﹣3=0,l2:2x+y+1=0,则l l与l2的距离为.8.(3分)已知函数f(x)=|x﹣1|(x+1),x∈[a,b]的值域为[0,8],则a+b的取值范围是.9.(3分)如图,在过正方体ABCD﹣A1B1C1D1的任意两个顶点的所有直线中,与直线AC1异面的直线的条数为.10.(3分)在△ABC中,角A,B,C的对边分别为a,b,c,面积为S,且4S=(a+b)2﹣c2,则cos C=.11.(3分)已知向量=(cosα,sinα),=(cosβ,sinβ),且α﹣β=,若向量满足||=1,则||的最大值为.12.(3分)若无穷数列{a n}满足:a1≥0,当n∈N*,n≥2时.|a n﹣a n﹣1|=max{a1,a2,…,a n﹣1}(其中max{a1,a2,…,a,n﹣1}表示a1,a2,…,a,n﹣1中的最大项),有以下结论:①若数列{a n}是常数列,则a n=0(n∈N*)②若数列{a n}是公差d≠0的等差数列,则d<0;③若数列{a n}是公比为q的等比数列,则q>1④若存在正整数T,对任意n∈N*,都有a n+T=a n,则a1是数列{a n}的最大项.则其中正确的结论是(写出所有正确结论的序号)二、选择题13.(3分)若a,b为实数,则“a<﹣1”是“>﹣1”的()A.充要条件B.充分非必要条件C.必要非充分条件D.既非充分必要条件14.(3分)已知a,b为两条不同的直线,α,β为两个不同的平面,α∩β=a,a∥b,则下面结论不可能成立的是()A.b⊄β,且b∥αB.b⊄aC.b∥α,且b∥βD.b与α,β都相交15.(3分)已知函数y=,(x≥a,a>0,b>0)与其反函数有交点,则下列结论正确的是()A.a=b B.a<bC.a>b D.a与b的大小关系不确定16.(3分)在平面直角坐标系中,已知向量=(1,2),O是坐标原点,M是曲线|x|+2|y|=2上的动点,则•的取值范围()A.[﹣2,2]B.[﹣]C.[﹣]D.[﹣]三、解答题17.如图,正三棱柱ABC﹣A1B1C1的各棱长均为2,D为棱BC的中点.(1)求该三棱柱的表面积;(2)求异面直线AB与C1D所成角的大小.18.已知抛物线C:y2=2px(p≠0).(1)若C上一点M(1,t)到其焦点的距离为3,求C的方程;(2)若P=2,斜率为2的直线l交C于两点,交x轴的正半轴于点M,O为坐标原点=0,求点M的坐标.19.在股票市场上,投资者常根据股价(每股的价格)走势图来操作,股民老张在研究某只股票时,发现其在平面直角坐标系内的走势图有如下特点:每日股价y(元)与时间x (天)的关系在ABC段可近似地用函数y=a sin(ωx+φ)+20(a>0,ω>0,0<ω<π)的图象从最高点A到最低点C的一段来描述(如图),并且从C点到今天的D点在底部横盘整理,今天也出现了明显的底部结束信号.老张预测这只股票未来一段时间的走势图会如图中虚线DEF段所示,且DEF段与ABC 段关于直线l:x=34对称,点B,D的坐标分别是(12,20)(44,12).(1)请你帮老张确定a,ω,φ的值,并写出ABC段的函数解析式;(2)如果老张预测准确,且今天买入该只股票,那么买入多少天后股价至少是买入价的两倍?20.对于函数y=f(x),若函数F(x)=f(x+1)﹣f(x)是增函数,则称函数y=f(x)具有性质A.(1)若f(x)=x2+2,求F(x)的解析式,并判断f(x)是否具有性质A;(2)判断命题“减函数不具有性质A”是否真命题,并说明理由;(3)若函数f(x)=kx2+x3(x≥0)具有性质A,求实数k的取值范围,并讨论此时函数g(x)=f(sin x)﹣sin x在区间[0,π]上零点的个数.21.对于数列{a n},若存在正数p,使得a n+1≤pa n对任意n∈N*都成立,则称数列{a n}为“拟等比数列”.(1)已知a>0,b>0且a>b,若数列{a n}和{b n}满足:a1=,b1=且a n+1=,b n+1=(n∈N*).①若a1=1,求b1的取值范围;②求证:数列{a n﹣b n)(n∈N*)是“拟等比数列”;(2)已知等差数列{c n}的首项为c1,公差为d,前n项和为S n,若c1>0,S4035>0,S4036<0,且{c n}是“拟等比数列”,求p的取值范围(请用c1,d表示).2019年上海市闵行区高考数学一模试卷参考答案与试题解析一、填空题1.(3分)已知全集U=R,集合A={x|x2﹣3x≥0},则∁U A=(0,3).【考点】1F:补集及其运算.【专题】11:计算题;37:集合思想;49:综合法;5J:集合.【分析】可求出集合A,然后进行补集的运算即可.【解答】解:A={x|x≤0,或x≥3};∴∁U A=(0,3).故答案为:(0,3).【点评】考查描述法的定义,以及补集的运算.2.(3分)=.【考点】6F:极限及其运算.【专题】11:计算题;52:导数的概念及应用.【分析】由,,可得==.【解答】解:=.===,故答案为:.【点评】本题考查了极限及其运算,属简单题.3.(3分)若复数z满足(1+2i)z=4+3i(i是虚数单位),则z=2﹣i.【考点】A5:复数的运算.【专题】34:方程思想;49:综合法;5N:数系的扩充和复数.【分析】利用复数的运算性质即可得出.【解答】解:(1+2i)z=4+3i(i是虚数单位),∴(1﹣2i)(1+2i)z=(1﹣2i)(4+3i),∴5z=10﹣5i,可得z=2﹣i.故答案为:2﹣i.【点评】本题考查了复数的运算法则及其性质,考查了推理能力与计算能力,属于基础题.4.(3分)方程=0的解为log25.【考点】OM:二阶行列式的定义.【专题】11:计算题;34:方程思想;4O:定义法;5R:矩阵和变换.【分析】利用行列式展开法则列出方程,从而能求出结果.【解答】解:∵方程=0,∴2x﹣2﹣3=0,解得x=log25.故答案为:log25.【点评】本题考查二阶行列式的求法,考查行列式展开法则等基础知识,考查运算求解能力,是基础题.5.(3分)等比数列{a n}中,a1+a2=1,a5+a6=16,则a9+a10=256.【考点】87:等比数列的性质.【专题】11:计算题;34:方程思想;35:转化思想;54:等差数列与等比数列.【分析】根据题意,设等比数列{a n}的公比为q,由等比数列的通项公式可得a5+a6=q4×a1+q4×a2=q4(a1+a2)=16,解可得q4的值,又由a9+a10=q8×a1+q8×a2=q8(a1+a2),计算可得答案.【解答】解:根据题意,设等比数列{a n}的公比为q,若a1+a2=1,则a5+a6=q4×a1+q4×a2=q4(a1+a2)=16,解可得:q4=16,则a9+a10=q8×a1+q8×a2=q8(a1+a2)=256,故答案为:256.【点评】本题考查等比数列的性质,关键是求出等比数列的公比,属于基础题.6.(3分)(1﹣2x)5的展开式中x3的项的系数是﹣80(用数字表示)【考点】DA:二项式定理.【专题】11:计算题.【分析】在(1﹣2x)5的展开式中,令通项x的指数等于3,求出r,再求系数【解答】(1﹣2x)5的展开式的通项为T r+1=C5r(﹣2x)r,令r=3,得x3的项的系数是C53(﹣2)3=﹣80故答案为:﹣80【点评】本题考查二项式定理的简单直接应用,属于基础题.7.(3分)已知两条直线l1:4x+2y﹣3=0,l2:2x+y+1=0,则l l与l2的距离为.【考点】IU:两条平行直线间的距离.【专题】35:转化思想;49:综合法;5B:直线与圆.【分析】先把直线方程中x、y的系数化为相同的,再利用两条平行直线间的距离公式d =,求出他们之间的距离.【解答】解:两条直线l1:4x+2y﹣3=0,l2:2x+y+1=0,即两条直线l1:4x+2y﹣3=0,l2:4x+2y+2=0,它们之间的距离为d==,故答案为:.【点评】本题主要考查两条平行直线间的距离公式d=应用,注意未知数的系数必需相同,属于基础题.8.(3分)已知函数f(x)=|x﹣1|(x+1),x∈[a,b]的值域为[0,8],则a+b的取值范围是[2,4].【考点】34:函数的值域.【专题】33:函数思想;44:数形结合法;51:函数的性质及应用.【分析】写出分段函数解析式,作出图形,数形结合得答案.【解答】解:数f(x)=|x﹣1|(x+1)=.作出函数的图象如图:由图可知,b=3,a∈[﹣1,1],则a+b∈[2,4].故答案为:[2,4].【点评】本题考查函数的值域,考查数形结合的解题思想方法,是中档题.9.(3分)如图,在过正方体ABCD﹣A1B1C1D1的任意两个顶点的所有直线中,与直线AC1异面的直线的条数为12.【考点】LN:异面直线的判定.【专题】11:计算题;31:数形结合;49:综合法;5F:空间位置关系与距离.【分析】结合正方体的结构特征,利用列举法能求出在过正方体ABCD﹣A1B1C1D1的任意两个顶点的所有直线中,与直线AC1异面的直线的条数.【解答】解:在过正方体ABCD﹣A1B1C1D1的任意两个顶点的所有直线中,与直线AC1异面的直线有:A1D1,DD1,CD,A1B1,BC,BB1,B1D1,B1C,D1C,BD,A1D,A1B,共12条.故答案为:12.【点评】本题考查异面直线的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理能力与计算能力,是基础题.10.(3分)在△ABC中,角A,B,C的对边分别为a,b,c,面积为S,且4S=(a+b)2﹣c2,则cos C=0.【考点】HR:余弦定理.【专题】35:转化思想;49:综合法;58:解三角形.【分析】由余弦定理和三角形面积公式得sin C﹣cos C=1,结合平方关系得答案.【解答】解:∵4S=(a+b)2﹣c2,∴4×ab sin C=a2+b2﹣c2+2ab,由余弦定理得:2ab sin C=2ab cos C+2ab,∴sin C﹣cos C=1,又∵sin2C+cos2C=1,∴sin C cos C=0,又∵在△ABC中,sin C≠0,∴cos C=0.故答案为:0.【点评】本题考查余弦定理、三角形面积公式、平方关系,考查计算能力.11.(3分)已知向量=(cosα,sinα),=(cosβ,sinβ),且α﹣β=,若向量满足||=1,则||的最大值为.【考点】9O:平面向量数量积的性质及其运算;GL:三角函数中的恒等变换应用.【专题】11:计算题;5A:平面向量及应用.【分析】首先解决,结合两角差的余弦可以得到的模,即对应点的轨迹,进而得到对应点的轨迹,问题得解.【解答】解:∵,∴=2+2cos(α﹣β)=3,令,则||=,∴D点轨迹为以原点为原心,半径为的圆,令,则||=||=1,∴C点轨迹是以原点为原心,半径为的两个圆及其之间的部分,∴最大值为,即||最大值为.故答案为:.【点评】此题考查了向量的模与点的轨迹,三角公式等,难度不大.12.(3分)若无穷数列{a n}满足:a1≥0,当n∈N*,n≥2时.|a n﹣a n﹣1|=max{a1,a2,…,a n﹣1}(其中max{a1,a2,…,a,n﹣1}表示a1,a2,…,a,n﹣1中的最大项),有以下结论:①若数列{a n}是常数列,则a n=0(n∈N*)②若数列{a n}是公差d≠0的等差数列,则d<0;③若数列{a n}是公比为q的等比数列,则q>1④若存在正整数T,对任意n∈N*,都有a n+T=a n,则a1是数列{a n}的最大项.则其中正确的结论是①②③④(写出所有正确结论的序号)【考点】2K:命题的真假判断与应用;8H:数列递推式.【专题】35:转化思想;48:分析法;54:等差数列与等比数列.【分析】由常数列,结合新定义可得a n=0,可判断①;由等差数列的定义和单调性,可判断②;由等比数列的定义和单调性可判断③;假设a1不是数列{a n}的最大项,设i是使得a i>a1的最小正整数,根据第二数学归纳法可判断④.【解答】解:①,若数列{a n}是常数列,由|a n﹣a n﹣1|=max{a1,a2,…,a n﹣1},可得max{a1,a2,…,a n﹣1}=0,则a n=0(n∈N*),故①正确;②,若数列{a n}是公差d≠0的等差数列,由max{a1,a2,…,a n﹣1}=|d|,若d>0,即有数列递增,可得d=a n,即数列为常数列,不成立;若d<0,可得数列递减,可得﹣d=a1成立,则d<0,故②正确;③,若数列{a n}是公比为q的等比数列,若q=1可得数列为非零常数列,不成立;由|a2﹣a1|=a1,可得a2=0(舍去)或a2=2a1,即有q=2>1,a1>0,则数列递增,由max{a1,a2,…,a n﹣1}=a n﹣1,可得a n﹣a n﹣1=a n﹣1,可得a n=2a n﹣1,则q>1,故③正确;④,假设a1不是数列{a n}的最大项,设i是使得a i>a1的最小正整数,则|a i+1﹣a i|=max{a1,a2,…a i}=a i,因此a i+1是a i的倍数,假设a i+1,a i+2,…,a i+k﹣1都是a i的倍数,则|a i+k﹣a i+k﹣1|=max{a1,a2,…,a i+k﹣1}=max{a i,a i+1…,a i+k﹣1},故a i+k是a i的倍数,假设a i+1,a i+2,…,a i+k﹣1都是a i的倍数,则|a i+k﹣a i+k﹣1|=max{a1,a2,…,a i+k﹣1}=max{a1,a i+1,…,a i+k﹣1},因此,a i+k也是a i的倍数,由第二数学归纳法可知,对任意n≥i,a n都是a i的倍数,又存在正整数T,对任意正整数n,都有a T+n=a n,故存在正整数m≥i,a m=a1,故a i 是a1的倍数,但a i>a1,故a1不是a i的倍数,矛盾,故a i是数列{a n}的最大值.故④正确.故答案为:①②③④.【点评】本题考查数列新定义问题,考查等差数列和等比数列的定义的运用,考查举例法和数学归纳法的运用,属于综合题.二、选择题13.(3分)若a,b为实数,则“a<﹣1”是“>﹣1”的()A.充要条件B.充分非必要条件C.必要非充分条件D.既非充分必要条件【考点】29:充分条件、必要条件、充要条件.【专题】35:转化思想;4O:定义法;5L:简易逻辑.【分析】首先找出>﹣1的等价条件,然后根据充分条件和必要条件的定义分别进行判断即可.【解答】解:>﹣1⇔a<﹣1或a>0,∵a<﹣1⇒a<﹣1或a>0,a<﹣1或a>0推不出a<﹣1,∴“a<﹣1”是“>﹣1”的充分非必要条件.故选:B.【点评】本题主要考查充分条件和必要条件的判断,根据充分条件和必要条件的定义是解决本题的关键.14.(3分)已知a,b为两条不同的直线,α,β为两个不同的平面,α∩β=a,a∥b,则下面结论不可能成立的是()A.b⊄β,且b∥αB.b⊄aC.b∥α,且b∥βD.b与α,β都相交【考点】LO:空间中直线与直线之间的位置关系;LP:空间中直线与平面之间的位置关系.【专题】11:计算题;35:转化思想;44:数形结合法;5F:空间位置关系与距离.【分析】以正方体ABCD﹣A1B1C1D1为载体,能求出结果.【解答】解:由a,b为两条不同的直线,α,β为两个不同的平面,α∩β=a,a∥b,知:在A中,在正方体ABCD﹣A1B1C1D1中,平面ABCD∩平面ABB1A1=AB,C1D1⊄平面ABCD,且C1D1∥AB,∴b⊄β,且b∥α有可能成立,故A错误;在B中,在正方体ABCD﹣A1B1C1D1中,平面ABCD∩平面ABB1A1=AB,C1D1∥平面ABCD,且C1D1∥平面ABB1A1,∴b⊄a有可能成立,故B错误;在C中,在正方体ABCD﹣A1B1C1D1中,平面ABCD∩平面ABB1A1=AB,C1D1∥平面ABCD,且C1D1∥平面ABB1A1,∴b∥α,且b∥β有可能成立,故C错误;在D中,b与α,β都相交不可能成立,故D成立.故选:D.【点评】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理能力与计算能力,是中档题.15.(3分)已知函数y=,(x≥a,a>0,b>0)与其反函数有交点,则下列结论正确的是()A.a=b B.a<bC.a>b D.a与b的大小关系不确定【考点】4R:反函数.【专题】11:计算题;51:函数的性质及应用.【分析】问题转化为函数y=(x≥a,a>0,b>0)与函数y=x有交点.【解答】解:依题意得:函数y=(x≥a,a>0,b>0)与函数y=x有交点,即=x2,x2==≥a2,∴b2>a2,∴b>a,故选:B.【点评】本题考查了反函数.属基础题.16.(3分)在平面直角坐标系中,已知向量=(1,2),O是坐标原点,M是曲线|x|+2|y|=2上的动点,则•的取值范围()A.[﹣2,2]B.[﹣]C.[﹣]D.[﹣]【考点】9O:平面向量数量积的性质及其运算.【专题】11:计算题;44:数形结合法;5A:平面向量及应用.【分析】首先去绝对值,得到曲线,并发现垂直关系,从而找到向量的射影,得解.【解答】解:去绝对值整理后知,曲线为菱形BCDE,易知CD⊥AN,BE⊥AN,故当点M在曲线上运动时,在上的射影必在FN上,且当M在CD上时得到最大值,在BE上时得到最小值,最大值为==2,最小值为﹣2,故选:A.【点评】此题考查了曲线方程,数量积,射影等,难度适中.三、解答题17.如图,正三棱柱ABC﹣A1B1C1的各棱长均为2,D为棱BC的中点.(1)求该三棱柱的表面积;(2)求异面直线AB与C1D所成角的大小.【考点】LE:棱柱、棱锥、棱台的侧面积和表面积;LM:异面直线及其所成的角.【专题】11:计算题;31:数形结合;44:数形结合法;5G:空间角.【分析】(1)该三棱柱的表面积S=2S△ABC+3,由此能求出结果.(2)取AC中点E,连结DE,C1E,则DE∥AB,从而∠C1DE是异面直线AB与C1D 所成角(或所成角的补角),由此能求出异面直线AB与C1D所成角的大小.【解答】解:(1)∵正三棱柱ABC﹣A1B1C1的各棱长均为2,∴该三棱柱的表面积:S=2S△ABC+3=2×+3×2×2=12+2.(2)取AC中点E,连结DE,C1E,∵D为棱BC的中点,∴DE∥AB,DE==1,∴∠C1DE是异面直线AB与C1D所成角(或所成角的补角),DC1=EC1==,cos∠C1DE===,∴∠C1DE=arccos,∴异面直线AB与C1D所成角的大小为arccos.【点评】本题考查三棱柱的表面积的求法,考查异面直线所成角的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理能力与计算能力,是中档题.18.已知抛物线C:y2=2px(p≠0).(1)若C上一点M(1,t)到其焦点的距离为3,求C的方程;(2)若P=2,斜率为2的直线l交C于两点,交x轴的正半轴于点M,O为坐标原点=0,求点M的坐标.【考点】KN:直线与抛物线的综合.【专题】11:计算题;5D:圆锥曲线的定义、性质与方程.【分析】(1)根据抛物线的定义可得;(2)设出直线l:y=2x+b,并代入抛物线,根据韦达定理以及x1x2+y1y2=0解得b,然后求得M(4,0).【解答】解:(1)由抛物线的定义得:1﹣(﹣=3,解得:p=4,所以抛物线C的方程为:y2=8x;(2)p=2时,抛物线C:y2=4x,设直线l:y=2x+b,并代入抛物线C:y2=4x得:4x2+(4b﹣4)x+b2=0,△=(4b﹣4)2﹣16b2>0,解得设A(x1,y1),B(x2,y2),则x1+x2=1﹣b,x1x2=,∵•=x1x2+y1y2=x1x2+(2x1+b)(2x2+b)=5x1x2+2b(x1+x2)+b2=+2b(1﹣b)+b2=0,解得b=0或b=﹣8当b=0时,M(0,0)不在x轴正半轴上,舍去;当b=﹣8时,M(4,0)故点M的坐标为(4,0)【点评】本题考查了直线与抛物线的综合.属中档题.19.在股票市场上,投资者常根据股价(每股的价格)走势图来操作,股民老张在研究某只股票时,发现其在平面直角坐标系内的走势图有如下特点:每日股价y(元)与时间x (天)的关系在ABC段可近似地用函数y=a sin(ωx+φ)+20(a>0,ω>0,0<ω<π)的图象从最高点A到最低点C的一段来描述(如图),并且从C点到今天的D点在底部横盘整理,今天也出现了明显的底部结束信号.老张预测这只股票未来一段时间的走势图会如图中虚线DEF段所示,且DEF段与ABC 段关于直线l:x=34对称,点B,D的坐标分别是(12,20)(44,12).(1)请你帮老张确定a,ω,φ的值,并写出ABC段的函数解析式;(2)如果老张预测准确,且今天买入该只股票,那么买入多少天后股价至少是买入价的两倍?【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】11:计算题;57:三角函数的图象与性质.【分析】(1)对照图象可求出a,ω,φ以及ABC的解析式;(2)先根据对称性求出DEF段的解析式,再令函数值等于24,解出x=60,可得.【解答】解:(1)a=12﹣4=8,=24﹣12=12,∴T=48,ω==,由×24+φ=可得φ=,∴f(x)=8sin(x+)+20=8cos x+20,x∈[0,24].(2)由题意得DEF的解析式为:y=8cos[(68﹣x)]+20,由8cos[(68﹣x)]+20=24,得x=60,故买入60﹣44=16天后股价至少是买入价的两倍.【点评】本题考查了由y=A sin(ωx+φ)的部分图象确定其解析式,属中档题.20.对于函数y=f(x),若函数F(x)=f(x+1)﹣f(x)是增函数,则称函数y=f(x)具有性质A.(1)若f(x)=x2+2,求F(x)的解析式,并判断f(x)是否具有性质A;(2)判断命题“减函数不具有性质A”是否真命题,并说明理由;(3)若函数f(x)=kx2+x3(x≥0)具有性质A,求实数k的取值范围,并讨论此时函数g(x)=f(sin x)﹣sin x在区间[0,π]上零点的个数.【考点】3E:函数单调性的性质与判断;52:函数零点的判定定理.【专题】35:转化思想;48:分析法;51:函数的性质及应用.【分析】(1)由新定义直接化简即可得到F(x)的解析式,判断单调性可得f(x)的性质;(2)命题为假命题,可举指数函数;(3)由新定义结合单调性和导数,解不等式可得k的范围,运用正弦函数的图象和性质,讨论k的范围,即可得到所求零点个数.【解答】解:(1)f(x)=x2+2,F(x)=(x+1)2+2﹣x2﹣2=2x+1,F(x)在R上递增,可知f(x)具有性质A;(2)命题“减函数不具有性质A”,为假命题,比如:f(x)=0.5x,F(x)=f(x+1)﹣f(x)=﹣0.5x+1在R上递增,f(x)具有性质A;(3)若函数f(x)=kx2+x3(x≥0)具有性质A,可得F(x)=f(x+1)﹣f(x)=k(x+1)2+(x+1)3﹣kx2﹣x3=3x2+(3+2k)x+1+k 在x≥0递增,可得﹣≤0,解得k≥﹣;由t=sin x(0≤t≤1),可得g(x)=0,即f(t)=t,可得kt2+t3=t,t=0时显然成立;0<t≤1时,k=,由在(0,1]递减,且值域为[,+∞),k=0时,t=0或1,sin x有三解,3个零点;当k=时,t=1,即sin x=1,可得x=,1个零点;当k>时,f(t)=t,t有一解,x两解,即两个零点;当﹣≤k<,且k≠0时,f(t)=t无解,即x无解,无零点.【点评】本题考查函数的解析式的求法,注意运用新定义,考查函数的单调性,以及分类讨论思想方法,考查化简运算能力,属于中档题.21.对于数列{a n},若存在正数p,使得a n+1≤pa n对任意n∈N*都成立,则称数列{a n}为“拟等比数列”.(1)已知a>0,b>0且a>b,若数列{a n}和{b n}满足:a1=,b1=且a n+1=,b n+1=(n∈N*).①若a1=1,求b1的取值范围;②求证:数列{a n﹣b n)(n∈N*)是“拟等比数列”;(2)已知等差数列{c n}的首项为c1,公差为d,前n项和为S n,若c1>0,S4035>0,S4036<0,且{c n}是“拟等比数列”,求p的取值范围(请用c1,d表示).【考点】8H:数列递推式.【专题】35:转化思想;48:分析法;54:等差数列与等比数列.【分析】(1)根据基本不等式的性质以及“拟等比数列”的定义进行求解证明即可(2)根据等差数列的通项公式以及前n项和公式,推导首项和公差d的范围,结合{c n}是“拟等比数列,建立不等式关系进行求解即可【解答】解:(1)①∵a>0,b>0,且a>b,a1=,b1=<1,∴b1∈(0,1).②由题意得a1=>=b1,∴当n∈N*且n≥2时,a n﹣b n=>0,∴对任意n∈N*,都有a n+1﹣b n+1=<﹣=(a n﹣b n),即存在p=,使得有a n+1﹣b n+1<p(a n﹣b n),∴数列数列{a n﹣b n)(n∈N*)是“拟等比数列”;(2)∵c1>0,S4035>0,S4036<0,∴,⇒,⇒⇒,由c1>0得d<0,从而解得﹣2018<<﹣2017,又{c n}是“拟等比数列”,故存在p>0,使得c n+1≤p c n成立,1°当n≤2018时,c n>0,p≥==1+=1+,由﹣2018<<﹣2017得2018<1﹣<2019,由图象可知1+在n≤2018时递减,故p≥=1+∈(,),2°当n≥2019时,c n<0,p≤==1+=1+,由﹣2018<<﹣2017得2018<1﹣<2019,由图象可知1+在n≥2019时递减,故p≤1,由1°2°得p的取值范围是[1+,1].【点评】本题考查递推数列的应用,利用“拟等比数列”的定义结合等差数列的前n项和公式进行递推是解决本题的关键.查了推理能力与计算能力,运算量较大,有一定的难度.。

高考数学模拟试卷附答案解析

高考数学模拟试卷附答案解析

高考数学模拟试卷附答案解析请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知函数f(x)是定义域为R的偶函数,且满足f(x)=f(2一x),当x e[0,1]时,f(x)=x,则函数F(x)=f(x)+x+4在区间[一9,10]上零点的个数为() 1一2xA.9B.10C.18D.202.如图,ABC中经A=2经B=60。

,点D在BC上,经BAD=30。

,将△ABD沿AD旋转得到三棱锥B,一ADC,分别记B,A,B,D与平面ADC所成角为C,β,则C,β的大小关系是()A.C<β<2C B.2C<β<3CC.β<2C,2C<β<3C两种情况都存在D.存在某一位置使得β>3a3.为计算S=1一2x2+3x22一4x23+...+100x(一2)99,设计了如图所示的程序框图,则空白框中应填入()A.i<100B.i>100C.i<100D.i之1004.已知定义在[1,+伪)上的函数f(x)满足f(3x)=3f(x),且当1<x<3时,f(x)=1一x一2,则方程f (x )=f (2019)的最小实根的值为()A .168B .249C .411D .5615.已知抛物线C :x 2=4y ,过抛物线C 上两点A ,B 分别作抛物线的两条切线PA ,PB ,P 为两切线的交点O 为坐标原点若PA .PB =0,则直线OA 与OB 的斜率之积为()11A .—-B .—3C .—-486.在复平面内,复数z =a +bi (a ,b e R )对应向量OZ (O 为坐标原点),设OZ =r ,以射线Ox 为始边,OZ 为终边旋转的角为θ,则z =r (cos θ+isin θ),法国数学家棣莫弗发现了棣莫弗定理:z 1=r (cos θ+isin θ),111z 2=r 2(cos θ2+isin θ2),则z 1z 2=r 2cos r (cos θ+isin θ)n =r n (cos n θ+isinn θ)(θ+θ)+isin (θ+121,已知z =(3+i )4θ2),由棣莫弗定理可以导出复数乘方公式:,则z =()A .23B .4C .83D .167.已知我市某居民小区户主人数和户主对户型结构的满意率分别如图和如图所示,为了解该小区户主对户型结构的满意程度,用分层抽样的方法抽取30%的户主进行调查,则样本容量和抽取的户主对四居室满意的人数分别为A .240,18C .240,208.直角坐标系xOy 中,双曲线边三角形,则该双曲线的离心率x 2y 2—a 2b 2e =()A .43B .54B .200,20D .200,18=1(a ,b >0)与抛物线y 2=2bx?相交于A 、B 两点,若ΔOAB 是等C .65D .76119.在平行四边形ABCD 中,AB =3,AD =2,AP =AB,AQ =AD,若CP .CQ =12,则经ADC =()32A .5π6B .3π4C .2π3D .π210.在ABC 中,角A ,B,C 的对边分别为a ,b,c ,若c —a cos B =(2a —b)cos A ,则ABC 的形状为()D .—4A .直角三角形C .等腰或直角三角形B .等腰非等边三角形D .钝角三角形11.若复数z =21+i,其中i 为虚数单位,则下列结论正确的是()A .z 的虚部为-iB .z =2C .z 的共轭复数为-1-iD .z 2为纯虚数12.下图为一个正四面体的侧面展开图,G 为BF 的中点,则在原正四面体中,直线EG 与直线BC 所成角的余弦值为()A .C .3336B .D .63336二、填空题:本题共4小题,每小题5分,共20分。

2020届高考全国卷1数学(理)模拟试卷含答案详解-202全国卷1数学

2020届高考全国卷1数学(理)模拟试卷含答案详解-202全国卷1数学

第 1 页 共 8 页 2020年普通高等学校招生全国统一考试理科数学模拟试题卷注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知集合}02|{2<--=x x x A ,}log |{2m x x B >=,若B A ⊆,则实数m 的取值范围( )A .]21,(-∞ B .]4,0( C .]1,21( D .]21,0( 2. 若复数z 满足232z z i +=-,其中i 为虚数单位,则z=( )A .1+2iB .1﹣2iC .﹣1+2iD .﹣1﹣2i 3.在等差数列{}n a 中,810112a a =+,则数列{}n a 的前11项和11S =( ) A. 8 B. 16 C. 22 D. 444. 某几何体的三视图如图(其中侧视图中的圆弧是半圆),则该几何体的表面积为A .9214π+B .8214π+C .9224π+D .8224π+5.若)()1(*3N n xx x n ∈+ 的展开式中存在常数项,则下列选项中n 可为( ) A .9 B .10 C .11 D .12 6.某地区高考改革,实行“3+1+2”模式,即“3”指语文、数学、外语三门必考科目,“1”指在物理、历史两门科目中必选一门,“2”指在化学、生物、政治、地理以及除了必选一门以外的历史或物理这五门学科中任意选择两门学科,则一名学生的不同选科组合有( )A. 8种B. 12种C. 16种D. 20种7. 已知抛物线C: 28=x y ,定点A (0,2),B (0,2-),点P 是抛物线C 上不同于顶点的动点,则∠PBA 的取值范围为 ( ) A. 0,4π⎛⎤ ⎥⎝⎦ B. 42,ππ⎡⎫⎪⎢⎣⎭ C. 0,3π⎛⎤ ⎥⎝⎦D. 32,ππ⎡⎫⎪⎢⎣⎭8. 若0>ω,函数)3cos(πω+=x y 的图象向右平移3π个单位长度后与函数x y ωsin =图象重合,则ω的最小值为A.211B.25C.21D. 23 9.抛掷两枚骰子,当至少有一枚5点或6点出现时,就说这次试验成功,则在9次试验中成功次数的均值为( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020高考数学第一次模拟试题(含答案)一、选择题1.某班上午有五节课,分別安排语文,数学,英语,物理,化学各一节课.要求语文与化学相邻,数学与物理不相邻,且数学课不排第一节,则不同排课法的种数是 A .24B .16C .8D .122.已知变量x 与y 正相关,且由观测数据算得样本平均数3x =, 3.5y =,则由该观测的数据算得的线性回归方程可能是( ) A .$0.4 2.3y x =+ B .$2 2.4y x =-C .$29.5y x =-+D .$0.3 4.4y x =-+3.在复平面内,O 为原点,向量OA u u u v对应的复数为12i -+,若点A 关于直线y x =-的对称点为点B ,则向量OB uuu v对应的复数为( ) A .2i -+ B .2i -- C .12i + D .12i -+4.一个正方体内接于一个球,过球心作一个截面,如图所示,则截面的可能图形是( )A .①③④B .②④C .②③④D .①②③5.甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面,不同的安排方法共有( ) A .20种B .30种C .40种D .60种6.若干年前,某教师刚退休的月退休金为6000元,月退休金各种用途占比统计图如下面的条形图.该教师退休后加强了体育锻炼,目前月退休金的各种用途占比统计图如下面的折线图.已知目前的月就医费比刚退休时少100元,则目前该教师的月退休金为( ).A .6500元B .7000元C .7500元D .8000元7.下列函数中,最小正周期为π,且图象关于直线3x π=对称的函数是( )A .2sin 23y x π⎛⎫=+⎪⎝⎭B .2sin 26y x π⎛⎫=-⎪⎝⎭C .2sin 23x y π⎛⎫=+ ⎪⎝⎭D .2sin 23y x π⎛⎫=- ⎪⎝⎭ 8.渐近线方程为0x y ±=的双曲线的离心率是( ) A .22B .1C .2D .29.在同一直角坐标系中,函数11,log (02a x y y x a a ⎛⎫==+> ⎪⎝⎭且1)a ≠的图象可能是( )A .B .C .D .10.如图,中心均为原点O 的双曲线与椭圆有公共焦点,M ,N 是双曲线的两顶点.若M ,O ,N 将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是A .3B .2C .3D .211.将函数()sin 2y x ϕ=+的图象沿轴向左平移8π个单位后,得到一个偶函数的图象,则ϕ的一个可能取值为( ) A .B .C .0D .4π-12.抛掷一枚骰子,记事件A 为“落地时向上的点数是奇数”,事件B 为“落地时向上的点数是偶数”,事件C 为“落地时向上的点数是3的倍数”,事件D 为“落地时向上的点数是6或4”,则下列每对事件是互斥事件但不是对立事件的是( )A .A 与B B .B 与C C .A 与D D .C 与D二、填空题13.在区间[﹣2,4]上随机地取一个数x ,若x 满足|x|≤m 的概率为,则m= _________ .14.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________ 件. 15.设正数,a b 满足21a b +=,则11a b+的最小值为__________. 16.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为________.17.已知复数z=1+2i (i 是虚数单位),则|z|= _________ .18.高三某班一学习小组的,,,A B C D 四位同学周五下午参加学校的课外活动,在课外活动中,有一人在打篮球,有一人在画画,有一人在跳舞,另外一人在散步,①A 不在散步,也不在打篮球;②B 不在跳舞,也不在散步;③“C 在散步”是“A 在跳舞”的充分条件;④D 不在打篮球,也不在散步;⑤C 不在跳舞,也不在打篮球.以上命题都是真命题,那么D 在_________. 19.34331654+log log 8145-⎛⎫+= ⎪⎝⎭________. 20.设α 为第四象限角,且sin3sin αα=135,则 2tan =α ________. 三、解答题21.某中学拟在高一下学期开设游泳选修课,为了了解高一学生喜欢游泳是否与性别有关,该学校对100名高一新生进行了问卷调查,得到如下列联表:喜欢游泳 不喜欢游泳 合计 男10生女生20合计已知在这100人中随机抽取1人抽到喜欢游泳的学生的概率为. (1)请将上述列联表补充完整;(2)并判断是否有99.9%的把握认为喜欢游泳与性别有关?并说明你的理由;(3)已知在被调查的学生中有5名来自甲班,其中3名喜欢游泳,现从这5名学生中随机抽取2人,求恰好有1人喜欢游泳的概率. 下面的临界值表仅供参考: P(K 2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001 k2.0722.7063.8415.0246.6357.87910.828(参考公式:22n(ad bc)K (a b)(c d)(a c)(b d)-=++++,其中n=a+b+c+d )22.已知a ,b ,c 分别为ABC ∆三个内角A ,B ,C 的对边,3c asinC ccosA =-. (Ⅰ)求A ;(Ⅱ)若a =2,ABC ∆3,求b ,c . 23.已知2256x ≤且21log 2x ≥,求函数22()log 22x xf x =⋅的最大值和最小值. 24.随着移动互联网的发展,与餐饮美食相关的手机APP 软件层出不穷,现从某市使用A 和B 两款订餐软件的商家中分别随机抽取100个商家,对它们的“平均送达时间”进行统计,得到频率分布直方图如下:(1)已知抽取的100个使用A 未订餐软件的商家中,甲商家的“平均送达时间”为18分钟,现从使用A 未订餐软件的商家中“平均送达时间”不超过20分钟的商家中随机抽取3个商家进行市场调研,求甲商家被抽到的概率;(2)试估计该市使用A 款订餐软件的商家的“平均送达时间”的众数及平均数;(3)如果以“平均送达时间”的平均数作为决策依据,从A 和B 两款订餐软件中选择一款订餐,你会选择哪款?25.已知数列{n a }的前n 项和Sn =n 2-5n (n∈N +).(1)求数列{n a }的通项公式; (2)求数列{12nn a +}的前n 项和Tn . 26.已知3,cos )a x x =r ,(sin ,cos )b x x =r ,函数()f x a b =⋅rr .(1)求()f x 的最小正周期及对称轴方程; (2)当(,]x ππ∈-时,求()f x 单调递增区间.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】根据题意,可分三步进行分析:(1)要求语文与化学相邻,将语文与化学看成一个整体,考虑其顺序;(2)将这个整体与英语全排列,排好后,有3个空位;(3)数学课不排第一行,有2个空位可选,在剩下的2个空位中任选1个,得数学、物理的安排方法,最后利用分步计数原理,即可求解。

【详解】根据题意,可分三步进行分析:(1)要求语文与化学相邻,将语文与化学看成一个整体,考虑其顺序,有222A =种情况;(2)将这个整体与英语全排列,有222A =中顺序,排好后,有3个空位;(3)数学课不排第一行,有2个空位可选,在剩下的2个空位中任选1个, 安排物理,有2中情况,则数学、物理的安排方法有224⨯=种, 所以不同的排课方法的种数是22416⨯⨯=种,故选B 。

本题主要考查了排列、组合的综合应用,其中解答红注意特殊问题和相邻问题与不能相邻问题的处理方法是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题。

2.A解析:A 【解析】试题分析:因为与正相关,排除选项C 、D ,又因为线性回归方程恒过样本点的中心,故排除选项B ;故选A .考点:线性回归直线.3.A解析:A 【解析】 【分析】首先根据向量OA u u u v对应的复数为12i -+,得到点A 的坐标,结合点A 与点B 关于直线y x =-对称得到点B 的坐标,从而求得向量OB uuu v对应的复数,得到结果.【详解】复数12i -+对应的点为(1,2)A -, 点A 关于直线y x =-的对称点为(2,1)B -, 所以向量OB uuu r对应的复数为2i -+. 故选A . 【点睛】该题是一道复数与向量的综合题,解答本题的关键是掌握复数在平面坐标系中的坐标表示.4.A解析:A 【解析】 【分析】分别当截面平行于正方体的一个面时,当截面过正方体的两条相交的体对角线时,当截面既不过体对角线也不平行于任一侧面时,进行判定,即可求解. 【详解】由题意,当截面平行于正方体的一个面时得③;当截面过正方体的两条相交的体对角线时得④;当截面既不过正方体体对角线也不平行于任一侧面时可能得①;无论如何都不能得②.故选A. 【点睛】本题主要考查了正方体与球的组合体的截面问题,其中解答中熟记空间几何体的结构特征是解答此类问题的关键,着重考查了空间想象能力,以及推理能力,属于基础题.5.A解析:A 【解析】【详解】根据题意,分析可得,甲可以被分配在星期一、二、三;据此分3种情况讨论,计算可得其情况数目,进而由加法原理,计算可得答案.解:根据题意,要求甲安排在另外两位前面,则甲有3种分配方法,即甲在星期一、二、三;分3种情况讨论可得,甲在星期一有A 42=12种安排方法, 甲在星期二有A 32=6种安排方法, 甲在星期三有A 22=2种安排方法, 总共有12+6+2=20种; 故选A .6.D解析:D 【解析】 【分析】设目前该教师的退休金为x 元,利用条形图和折线图列出方程,求出结果即可. 【详解】设目前该教师的退休金为x 元,则由题意得:6000×15%﹣x×10%=100.解得x =8000. 故选D . 【点睛】本题考查由条形图和折线图等基础知识解决实际问题,属于基础题.7.B解析:B 【解析】 【分析】首先选项C 中函数2sin 23x y π⎛⎫=+ ⎪⎝⎭的周期为2412T ππ==,故排除C,将3x π=,代入A,B,D 求得函数值,而函数sin()y A x B ωϕ=++在对称轴处取最值,即可求出结果. 【详解】先选项C 中函数2sin 23x y π⎛⎫=+ ⎪⎝⎭的周期为2412T ππ==,故排除C,将3x π=,代入A,B,D求得函数值为0,,而函数sin()y A x B ωϕ=++在对称轴处取最值. 故选:B . 【点睛】本题考查三角函数的周期性、对称性,难度较易.8.C【解析】 【分析】本题根据双曲线的渐近线方程可求得a b =,进一步可得离心率.容易题,注重了双曲线基础知识、基本计算能力的考查. 【详解】根据渐近线方程为x ±y =0的双曲线,可得a b =,所以c =则该双曲线的离心率为 e ca==, 故选C . 【点睛】理解概念,准确计算,是解答此类问题的基本要求.部分考生易出现理解性错误.9.D解析:D 【解析】 【分析】本题通过讨论a 的不同取值情况,分别讨论本题指数函数、对数函数的图象和,结合选项,判断得出正确结论.题目不难,注重重要知识、基础知识、逻辑推理能力的考查. 【详解】当01a <<时,函数xy a =过定点(0,1)且单调递减,则函数1xy a =过定点(0,1)且单调递增,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭过定点1(,0)2且单调递减,D 选项符合;当1a >时,函数x y a =过定点(0,1)且单调递增,则函数1x y a=过定点(0,1)且单调递减,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭过定点1(,02)且单调递增,各选项均不符合.综上,选D.【点睛】易出现的错误有,一是指数函数、对数函数的图象和性质掌握不熟,导致判断失误;二是不能通过讨论a 的不同取值范围,认识函数的单调性.10.B解析:B 【解析】 【分析】 【详解】M N Q ,是双曲线的两顶点,M O N ,,将椭圆长轴四等分∴椭圆的长轴长是双曲线实轴长的2倍 Q 双曲线与椭圆有公共焦点,∴双曲线与椭圆的离心率的比值是2故答案选B11.B解析:B 【解析】得到的偶函数解析式为sin 2sin 284y x x ππϕϕ⎡⎤⎡⎤⎛⎫⎛⎫=++=++ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦,显然.4πϕ= 【考点定位】本题考查三角函数的图象和性质,要注意三角函数两种变换的区别,sin 24x πϕ⎡⎤⎛⎫++ ⎪⎢⎥⎝⎭⎣⎦选择合适的ϕ值通过诱导公式把sin 24x πϕ⎡⎤⎛⎫++ ⎪⎢⎥⎝⎭⎣⎦转化为余弦函数是考查的最终目的. 12.C解析:C 【解析】分析:利用互斥事件、对立事件的概念直接求解判断即可. 详解:在A 中,A 与B 是对立事件,故不正确;在B 中,B 与C 能同时发生,不是互斥事件,所以不正确;在C 中,A 与D 两个事件不能同时发生,但能同时不发生,所以是互斥事件,但不是对立事件,所以是正确的;在D 中,C 与D 能同时发生,不是互斥事件,所以是错误的. 综上所述,故选C.点睛:本题主要考查了命题的真假判定,属于基础题,解答时要认真审题,注意互斥事件与对立事件的定义的合理运用,同时牢记互斥事件和对立事件的基本概念是解答的基础.二、填空题13.3【解析】【分析】【详解】如图区间长度是6区间﹣24上随机地取一个数x 若x 满足|x|≤m 的概率为若m 对于3概率大于若m 小于3概率小于所以m=3故答案为3解析:3 【解析】 【分析】 【详解】如图区间长度是6,区间[﹣2,4]上随机地取一个数x ,若x 满足|x|≤m 的概率为,若m 对于3概率大于,若m 小于3,概率小于,所以m=3. 故答案为3.14.18【解析】应从丙种型号的产品中抽取件故答案为18点睛:在分层抽样的过程中为了保证每个个体被抽到的可能性是相同的这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比即ni解析:18 【解析】应从丙种型号的产品中抽取30060181000⨯=件,故答案为18. 点睛:在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即n i ∶N i =n ∶N .15.【解析】则则的最小值为点睛:本题主要考查基本不等式解决本题的关键是由有在用基本不等式求最值时应具备三个条件:一正二定三相等①一正:关系式中各项均为正数;②二定:关系式中含变量的各项的和或积必须有一个 解析:322+【解析】21a b Q +=,则1111223+322b a a b a b a b a b +=++=+≥+()(),则11a b+的最小值为322+.点睛:本题主要考查基本不等式,解决本题的关键是由21a b +=,有11112a b a b a b+=++()(),在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.16.8【解析】分析:先判断是否成立若成立再计算若不成立结束循环输出结果详解:由伪代码可得因为所以结束循环输出点睛:本题考查伪代码考查考生的读图能力难度较小解析:8 【解析】分析:先判断6I <是否成立,若成立,再计算I S ,,若不成立,结束循环,输出结果.详解:由伪代码可得3,2;5,4;7,8I S I S I S ======,因为76>,所以结束循环,输出8.S =点睛:本题考查伪代码,考查考生的读图能力,难度较小.17.【解析】【分析】【详解】复数z=1+2i (i 是虚数单位)则|z|==故答案为 解析:【解析】 【分析】 【详解】复数z=1+2i(i是虚数单位),则|z|==.故答案为.18.画画【解析】以上命题都是真命题∴对应的情况是:则由表格知A在跳舞B在打篮球∵③C在散步是A在跳舞的充分条件∴C在散步则D在画画故答案为画画解析:画画【解析】以上命题都是真命题,∴对应的情况是:则由表格知A在跳舞,B在打篮球,∵③“C在散步”是“A在跳舞”的充分条件,∴C在散步,则D在画画,故答案为画画19.【解析】试题分析:原式=考点:1指对数运算性质解析:27 8【解析】试题分析:原式=34433 2542727log log1 34588 -⎡⎤⎛⎫+⨯=+=⎢⎥⎪⎝⎭⎢⎥⎣⎦考点:1.指对数运算性质.20.-【解析】因为=====4cos2α-1=2(2cos2α-1)+1=2cos2α+1=所以cos2α=又α是第四象限角所以sin2α=-tan2α=-点睛:三角函数求值常用方法:异名三角函数化为同解析:-3 4【解析】因为3sinsinαα=()2sinsinααα+=22sin cos cos sinsinααααα+=()22221sin cos cos sinsinααααα+-=24sin cos sinsinαααα-=4cos2α-1=2(2cos2α-1)+1=2cos 2α+1=135,所以cos 2α=45.又α是第四象限角,所以sin 2α=-35,tan2α=-34.点睛:三角函数求值常用方法:异名三角函数化为同名三角函数,异角化为同角,异次化为同次,切化弦,特殊值与特殊角的三角函数互化.三、解答题21.(1)列联表见解析;(2)有99.9%的把握认为喜欢游泳与性别有关;(3).【解析】试题分析:(1)根据在100人中随机抽取1人抽到喜欢游泳的学生的概率为35,可得喜爱游泳的学生,即可得到列联表;(2)利用公式求得2K与邻界值比较,即可得到结论;(3)利用列举法,确定基本事件的个数,即利用古典概型概率公式可求出恰好有1人喜欢游泳的概率.试题解析:(1)因为在100人中随机抽取1人抽到喜欢游泳的学生的概率为, 所以喜欢游泳的学生人数为人其中女生有20人,则男生有40人,列联表补充如下:喜欢游泳 不喜欢游泳 合计 男生 40 10 50 女生 20 30 50 合计 6040100(2)因为所以有99.9%的把握认为喜欢游泳与性别有关(3)5名学生中喜欢游泳的3名学生记为a ,b ,c ,另外2名学生记为1, 2,任取2名学生,则所有可能情况为(a ,b )、(a ,c )、(a ,1)、(a ,2)、(b ,c )、(b ,1)、(b ,2)、(c ,1)、(c ,2)、(1,2),共10种.其中恰有1人喜欢游泳的可能情况为(a ,1)、(a ,2)、(b ,1)、(c ,1)、 (c ,2),共6种所以,恰好有1人喜欢游泳的概率为【方法点睛】本题主要考查古典概型概率公式,以及独立性检验的应用,属于中档题,利用古典概型概率公式,求概率时,找准基本事件个数是解题的关键,在找基本事件个数时,一定要按顺序逐个写出:先11(,)A B ,12(,)A B …. 1(,)n A B ,再21(,)A B ,22(,)A B …..2(,)n A B 依次31(,)A B 32(,)A B ….3(,)n A B … 这样才能避免多写、漏写现象的发生. 22.(1)3A π=(2)b c ==2【解析】 【分析】 【详解】(Ⅰ)由3sin cos c a C c A =-及正弦定理得3sin sin cos sin sin A C A C C -=由于sin 0C ≠,所以1sin 62A π⎛⎫-= ⎪⎝⎭, 又0A π<<,故3A π=.(Ⅱ)ABC ∆的面积S =1sin 2bc A 3故bc =4,而2222cos a b c bc A =+-故22c b +=8,解得b c ==2 23.最小值为14-,最大值为2. 【解析】 【分析】 由已知条件化简得21log 32x ≤≤,然后化简()f x 求出函数的最值 【详解】由2256x ≤得8x ≤,2log 3x ≤即21log 32x ≤≤ ()()()222231log 1log 2log 24f x x x x ⎛⎫=-⋅-=-- ⎪⎝⎭.当23log ,2x = ()min 14f x =-,当2log 3,x = ()max 2f x =. 【点睛】熟练掌握对数的基本运算性质是转化本题的关键,将其转化为二次函数的值域问题,较为基础. 24.(1)12; (2)40; (3)选B 款订餐软件. 【解析】 【分析】⑴运用列举法给出所有情况,求出结果 ⑵由众数结合题意求出平均数⑶分别计算出使用A 款订餐、使用B 款订餐的平均数进行比较,从而判定 【详解】(1)使用A 款订餐软件的商家中“平均送达时间”不超过20分钟的商家共有1000.006106⨯⨯=个,分别记为甲,,,,,,a b c d e从中随机抽取3个商家的情况如下:共20种.{},a b 甲,,{},a c 甲,,{},a d 甲,,{},a e 甲,,{},b c 甲,,{},b d 甲,,{},b e 甲,,{}{},,c d c e 甲,甲,,{},d e 甲,,{},,a b c ,{},,a b d ,{},,a b e ,{},,a c d ,{},,a c e ,{},,a d e ,{},,b c d ,{},,b c e ,{},,b d e ,{},,c d e .甲商家被抽到的情况如下:共10种.{},a b 甲,,{},a c 甲,,{},a d 甲,,{},a e 甲,,{},b c 甲,,{},b d 甲,,{},b e 甲,,{},c d 甲,,{},c e 甲,,{},d e 甲,记事件A 为甲商家被抽到,则()101202P A ==. (2)依题意可得,使用A 款订餐软件的商家中“平均送达时间”的众数为55,平均数为150.06250.34350.12450.04550.4650.0440⨯+⨯++⨯+⨯+⨯=. (3)使用B 款订餐软件的商家中“平均送达时间”的平均数为150.04250.2350.56450.14550.04650.023540⨯+⨯+⨯+⨯+⨯+⨯=< 所以选B 款订餐软件. 【点睛】本题主要考查了频率分布直方图,平均数和众数,古典概率等基础知识,考查了数据处理能力以及运算求解能力和应用意识,属于基础题. 25.(1)26()n a n n N +=-∈;(2)112n nn T -=-- 【解析】 【分析】(1)运用数列的递推式:11,1,1n n n S n a S S n -=⎧=⎨->⎩,计算可得数列{n a }的通项公式;(2)结合(1)求得1322n n na n +-=,运用错位相减法,结合等比数列的求和公式,即可得到数列{12nn a +}的前n 项和n T . 【详解】(1)因为11,1,1n n n S n a S S n -=⎧=⎨->⎩,()25n S n n n N +=-∈所以114a S ==-, 1n >时,()()22515126n a n n n n n =---+-=- 1n =也适合,所以()+26N n a n n =-∈(2)因为1322n n na n +-=, 所以12121432222n n n n n T -----=++⋅⋅⋅++ 2311214322222n n n n n T +----=++⋅⋅⋅++ 两式作差得:1211211322222n n n n T +--=++⋅⋅⋅+- 化简得1111222n n n T +-=--, 所以112n nn T -=--. 【点睛】本题考查数列的通项公式的求法,等比数列的求和公式,考查数列的错位相减法,属于中档题. “错位相减法”求数列的和是重点也是难点,利用“错位相减法”求数列的和应注意以下几点:①掌握运用“错位相减法”求数列的和的条件(一个等差数列与一个等比数列的积);②相减时注意最后一项的符号;③求和时注意项数别出错;④最后结果一定不能忘记等式两边同时除以1q -. 26.(1) T π= ;26k x ππ=+(k Z ∈). (2) 5(,]6ππ--,[,]36ππ-和2[,]3ππ 【解析】 【分析】(1)化简得()1sin 262f x x π⎛⎫=++ ⎪⎝⎭,再求函数的周期和对称轴方程;(2)先求出函数在R 上的增区间为[,36k k ππππ-+] (k Z ∈),再给k 赋值与定义域求交集得解.【详解】解:(1)()2cos cos f x a b x x x =⋅+r r111sin2cos2sin 222262x x x π⎛⎫=++=++ ⎪⎝⎭ 所以()f x 的周期22T ππ==, 令262x k πππ+=+(k Z ∈),即26k x ππ=+(k Z ∈) 所以()f x 的对称轴方程为26k x ππ=+(k Z ∈). (2)令222262k x k πππππ-≤+≤+(k Z ∈)解得36k x k ππππ-≤≤+(k Z ∈),由于(],x ππ∈- 所以当1,0k =-或1时,得函数()f x 的单调递增区间为5,6ππ⎛⎤-- ⎥⎝⎦,,36ππ⎡⎤-⎢⎥⎣⎦和2,3ππ⎡⎤⎢⎥⎣⎦. 【点睛】本题主要考查三角恒等变换,考查三角函数的周期的求法和对称轴的求法,考查三角函数的单调区间的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.。

相关文档
最新文档