高三数学专题复习-命题及其关系、充分条件与必要条件专题练习带答案
高考文科数学热点题型02 命题及其关系、充分条件与必要条件
1.若f (x )是定义在R 上的函数,则“f (0)=0”是“函数f (x )为奇函数”的( ) A .必要不充分条件 B .充要条件 C .充分不必要条件 D .既不充分也不必要条件解析:f (x )在R 上为奇函数⇒f (0)=0;f (0)=0/⇒ f (x )在R 上为奇函数,如f (x )=x 2,故选A.答案:A2.下面四个条件中,使a >b 成立的充分而不必要的条件是( ) A .a >b +1 B .a >b -1 C .a 2>b 2D .a 3>b 3解析:由a >b +1,得a >b +1>b ,即a >b ,而由a >b 不能得出a >b +1,因此,使a >b 成立的充分不必要条件是a >b +1,选A.答案:A3.“(m -1)(a -1)>0”是“log a m >0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案:B4.若集合A ={x |x 2-5x +4<0},B ={x ||x -a |<1},则“a ∈(2,3)”是“B ⊆A ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件解析:由题意知A ={x |1<x <4},B ={x |-1+a <x <1+a },若B ⊆A ,则-1+a≥1,1+a≤4,解得2≤a ≤3,所以必要性不成立.反之,若2<a <3,则必有B ⊆A 成立,所以充分性成立,故选A.答案:A5.设函数f (x )=log 2x ,则“a >b ”是“f (a )>f (b )”的( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:因为f (x )=log 2x 在区间(0,+∞)上是增函数,所以当a >b >0时,f (a )>f (b );反之,当f (a )>f (b )时,a >b .故选B.答案:B6.已知p :x ≥k ,q :x +13<1,若p 是q 的充分不必要条件,则k 的取值范围是( ) A .[2,+∞) B .(2,+∞) C .[1,+∞)D .(-∞,-1]解析:∵q :x +13<1,∴x +13-1<0,∴x +12-x<0. ∴(x -2)·(x +1)>0,∴x <-1或x >2.因为p 是q 的充分不必要条件,所以k >2,故选B. 答案:B7.已知a ,b 为非零向量,则“函数f (x )=(ax +b )2为偶函数”是“a ⊥b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案:C8.“若a ,b ∈R +,a 2+b 2<1”是“ab +1>a +b ”的( ) A .充要条件 B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件解析:a ,b ∈R +,若a 2+b 2<1,则a 2+2ab +b 2<1+2ab <1+2ab +(ab )2,即(a +b )2<(1+ab )2,所以a +b <1+ab 成立;当a =b =2时,有1+ab >a +b 成立,但a 2+b 2<1不成立,所以“a 2+b 2<1”是“ab +1>a +b ”的充分不必要条件,故选C.答案:C9.在△ABC 中,设p :sinB a =sinC b =sinA c;q :△ABC 是正三角形,那么p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案:C10.以下四个命题中,真命题的个数是( )①“若a+b≥2,则a,b中至少有一个不小于1”的逆命题.②存在正实数a,b,使得lg(a+b)=lg a+lg b.③“所有奇数都是素数”的否定是“至少有一个奇数不是素数”.④在△ABC中,∠A<∠B是sin A<sin B的充分不必要条件.A.0 B.1C.2 D.3解析:对于①,原命题的逆命题为:若a,b中至少有一个不小于1,则a+b≥2,而a=2,b=-2满足a,b中至少有一个不小于1,但此时a+b=0,故①是假命题;对于②,根据对数的运算性质,知当a=b=2时,lg(a+b)=lg a+lg b,故②是真命题;对于③,易知“所有奇数都是素数”的否定就是“至少有一个奇数不是素数”,③是真命题;对于④,根据题意,结合边角的转换,以及正弦定理,可知∠A<∠B⇔a<b(a,b为角A,B所对的边)⇔2R sin A<2R sin B(R 为△ABC外接圆的半径)⇔sin A<sin B,故∠A<∠B是sin A<sin B的充要条件,故④是假命题.选C.答案:C11.命题“若a>-3,则a>-6”以及它的逆命题、否命题、逆否命题中,假命题的个数为( )A .1B .2C .3D .4 答案:B解析:原命题为真命题,从而其逆否命题也为真命题;逆命题“若a>-6,则a>-3”为假命题,故否命题也为假命题,故选B.12.命题“若x 2+y 2=0,则x =y =0”的否命题是( ) A .若x 2+y 2=0,则x ,y 中至少有一个不为0 B .若x 2+y 2≠0,则x ,y 中至少有一个不为0 C .若x 2+y 2≠0,则x ,y 都不为0 D .若x 2+y 2=0,则x ,y 都不为0 答案:B解析:否命题既否定条件又否定结论.13.若命题p 的否命题是命题q 的逆否命题,则命题p 是命题q 的( ) A .逆命题 B .否命题C .逆否命题D .p 与q 是同一命题 答案:A解析:设p :若A ,则B ,则p 的否命题为若綈A ,则綈B ,从而命题q 为若B ,则A ,则命题p 是命题q 的逆命题,故选A.14.下列命题中为真命题的是( )A .命题“若x>y ,则x>|y|”的逆命题B .命题“若x 2≤1,则x ≤1”的否命题 C .命题“若x =1,则x 2-x =0”的否命题 D .命题“若a>b ,则a 1<b 1”的逆否命题答案:A15.A ,B ,C 三个学生参加了一次考试,A ,B 的得分均为70分,C 的得分为65分.已知命题p :若及格分低于70分,则A ,B ,C 都没有及格.在下列四个命题中,为p 的逆否命题的是( )A .若及格分不低于70分,则A ,B ,C 都及格 B .若A ,B ,C 都及格,则及格分不低于70分C .若A ,B ,C 至少有一人及格,则及格分不低于70分D .若A ,B ,C 至少有一人及格,则及格分高于70分 答案:C解析:根据原命题与它的逆否命题之间的关系,命题p :“若及格分低于70分,则A ,B ,C 都没有及格”的逆否命题是“若A ,B ,C 至少有一人及格,则及格分不低于70分”.故选C.16. “x 1>1”是“e x -1<1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 答案:A解析:∵x 1>1,∴x ∈(0,1).∵e x -1<1,∴x<1. ∴“x 1>1”是“e x -1<1”的充分不必要条件.17.在△ABC 中,“sinB =1”是“△ABC 为直角三角形”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 答案:A18.若“x>1”是“不等式2x>a -x 成立”的必要而不充分条件,则实数a 的取值范围是( ) A .a>3 B .a<3 C .a>4 D .a<4答案:A解析:若2x>a -x ,即2x+x>a.设f(x)=2x+x ,则函数f(x)为增函数.由题意知“2x+x>a 成立,即f(x)>a 成立”能得到“x>1”,反之不成立.因为当x>1时,f(x)>3,∴a>3.19.祖暅原理:“幂势既同,则积不容异”.它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如在等高处截面的面积恒相等,则体积相等.设A ,B 为两个同高的几何体,p :A ,B 的体积不相等,q :A ,B 在等高处的截面积不恒相等,根据祖暅原理可知,p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案:A解析:p ⇒q ,而q p ,∴选A.20.若不等式31<x<21的必要不充分条件是|x -m|<1,则实数m 的取值范围是( ) A .[-34,21] B .[-21,34] C .(-∞,21) D .(34,+∞) 答案:B解析:由|x -m|<1,解得m -1<x<m +1.因为不等式31<x<21的必要不充分条件是|x -m|<1,所以≤m +1,1且等号不能同时取得,解得-21≤m ≤34,故选B.21.已知函数f(x)=x 2-2x +3,g(x)=kx -1,则“|k|≤1”是“f(x)≥g(x)在R 上恒成立”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案:A22.已知集合A ={x|a -2<x<a +2},B ={x|x ≤-2或x ≥4},则A ∩B =∅的充要条件是________.答案:0≤a ≤2解析:A ∩B =∅⇔a -2≥-2a +2≤4,⇔0≤a ≤2.23.如果对于任意实数x ,〈x 〉表示不小于x 的最小整数,例如〈1.1〉=2,〈-1.1〉=-1,那么“|x -y |<1”是“〈x 〉=〈y 〉”的________条件.解析:可举例子,比如x =-0.5,y =-1.4,可得〈x 〉=0,〈y 〉=-1;比如x =1.1,y =1.5,〈x 〉=〈y 〉=2,|x -y |<1成立.因此“|x -y |<1”是“〈x 〉=〈y 〉”的必要不充分条件.答案:必要不充分24.集合A =<0x -1,B ={x ||x -b |<a }.若“a =1”是“A ∩B ≠∅”的充分条件,则实数b 的取值范围是________.答案:(-2,2)25.已知A 为xOy 平面内的一个区域. 命题甲:点(a ,b )∈{(x ,y )|3x +y -6≤0x≥0,}; 命题乙:点(a ,b )∈A .如果甲是乙的充分条件,那么区域A 的面积的最小值是________.解析:设3x +y -6≤0x≥0,所对应的区域如右图所示的阴影部分PMN 为集合B .由题意,甲是乙的充分条件,则B ⊆A ,所以区域A 面积的最小值为S △PMN =21×4×1=2.答案:226.已知命题p :实数m 满足m 2+12a 2<7am (a >0),命题q :实数m 满足方程m -1x2+2-m y2=1表示的焦点在y 轴上的椭圆,且p 是q 的充分不必要条件,则a 的取值范围是________.解析:由a >0,m 2-7am +12a 2<0,得3a <m <4a , 即命题p :3a <m <4a ,a >0.由m -1x2+2-m y2=1表示焦点在y 轴上的椭圆,可得2-m >m -1>0, 解得1<m <23,即命题q :1<m <23. 因为p 是q 的充分不必要条件,所以 23或,3解得31≤a ≤83,所以实数a 的取值范围是[31,83]. 答案:[31,83]。
高三数学充分条件与必要条件试题答案及解析
高三数学充分条件与必要条件试题答案及解析1.在△中,“”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C【解析】由已知,当A,B都为锐角,且A<B时,正弦函数在(0,90°)单调递增,所以,故;当A为锐角,B为钝角时,A+B<180°,所以,所以,故选:C.【考点】充要条件.2.若实数满足,且=0,则称a与b互补.记φ(a,b)=-a-b,那么φ(a,b)=0是a与b互补的()A.必要而不充分的条件B.充分而不必要的条件C.充要条件D.既不充分也不必要的条件【答案】C【解析】由φ(a,b)=0得-a-b=0且;所以φ(a,b)=0是a与b互补的充分条件;再由a与b互补得到:,且=0;从而有,所以φ(a,b)=0是a与b互补的必要条件;故得φ(a,b)=0是a与b互补的充要条件;故选C.【考点】充要条件的判定.3.在中,角、、所对应的变分别为、、,则是的()A.充分必要条件B.充分非必要条件C.必要非充分条件D.非充分非必要条件【答案】A【解析】由正弦定理得(其中为外接圆的半径),则,,,因此是的充分必要必要条件,故选A.【考点】本题考查正弦定理与充分必要条件的判定,属于中等题.4.已知条件:,条件:,则是的()A.充分不必要条件B.必要不充分条件C.充要条件D.既非充分也非必要条件【答案】A【解析】解:因为::,所以:而:所以是的充分不必要条件,故选A.【考点】1、一元二次不等式及分式不等式的解法;2、充要条件.5.求证:方程x2+ax+1=0的两实根的平方和大于3的必要条件是|a|>,这个条件是其充分条件吗?为什么?【答案】必要条件但不是充分条件,见解析【解析】证明:设x2+ax+1=0的两实根为x1,x2,则平方和大于3的等价条件是即a>或a<-.∵{a|a>或a<-},{a||a|>},∴|a|>这个条件是必要条件但不是充分条件.6.(2011•浙江)若a、b为实数,则“0<ab<1”是“a<”或“b>”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】∵a、b为实数,0<ab<1,∴“0<a<”或“0>b>”∴“0<ab<1”⇒“a<”或“b>”.“a<”或“b>”不能推出“0<ab<1”,所以“0<ab<1”是“a<”或“b>”的充分而不必要条件.故选A.7.设,则“”是“”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【答案】【解析】若,则知即所以即;令,满足,但.所以是的充分而不必要条件.选.【考点】充要条件.8.(2013•浙江)若α∈R,则“α=0”是“sinα<cosα”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】∵“α=0”可以得到“sinα<cosα”,当“sinα<cosα”时,不一定得到“α=0”,如α=等,∴“α=0”是“sinα<cosα”的充分不必要条件,故选A.9.设a>0且a≠1,则“函数f(x)=a x在R上是减函数”,是“函数g(x)=(2﹣a)x3在R上是增函数”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解析】a>0 a≠1,则“函数f(x)=a x在R上是减函数”,所以a∈(0,1),“函数g(x)=(2﹣a)x3在R上是增函数”所以a∈(0,2);显然a>0 a≠1,则“函数f(x)=a x在R上是减函数”,是“函数g(x)=(2﹣a)x3在R上是增函数”的充分不必要条件.故选A.10.已知向量,,则的充要条件是()A.B.C.D.【答案】A【解析】,,由于,则,即,即,故选A.【考点】平面向量垂直的等价条件11.设,则是的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要【答案】B【解析】当时,,而当时,;当时,,∴,∴综上可知:是的必要而不充分条件.【考点】充分必要条件.12.设则是“”成立的 ( )A.充分必要条件B.充分不必要条件C.必要不充分条件D.既非充分也非必要条件【答案】C【解析】,,由于,因此应选C.【考点】解不等式,充要条件.13.“”是“” 的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】因为,,所以“”是“” 的必要不充分条件.【考点】充分与必要条件.14.设点P(x,y),则“x=2且y=-1”是“点P在直线l:x+y-1=0上”的 ().A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解析】当x=2且y=-1时,满足方程x+y-1=0,但方程x+y-1=0有无数多个解,不能确定x=2且y=-1,∴“x=2且y=-1”是“点P在直线l上”的充分不必要条件.15.“m=1”是“直线x-my=1和直线x+my=0互相垂直”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】因为m=1时,直线x-my=1和直线x+my=0即可化为x-y=1和x+y=0.即y=x-1和y=-x所以斜率积为-1,所以这两条直线垂直.所以充分性成立.若直线x-my=1和直线x+my=0互相垂直,因为m=0显然不成立.所以两条直线分别为和.所以由斜率乘积为-1可得.所以即.所以必要条件不存在.故选A.【考点】1.充分必要条件.2.直线的位置关系.3.含参数的讨论.16.“”是“函数为奇函数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】函数为奇函数,则当时,,即,因此“”是“函数为奇函数” 的充分不必要条件,故选A.【考点】1.三角函数的奇偶性;2.充分必要条件17.已知,则“”是“”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】解不等式得;解不等式得;因为,而,所以“”是“”的必要不充分条件,故选B【考点】1、一元一次、二次不等式的解法;2、充要条件.18.设命题甲:关于的不等式对一切恒成立,命题乙:对数函数在上递减,那么甲是乙的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】若的不等式对一切恒成立,则,解得;在上递减,则,解得,易知甲是乙的必要不充分条件,故选B.【考点】1.充分条件与充要条件;2.二次函数与对数函数的性质.19.设数列是首项大于零的等比数列,则“”是“数列是递增数列”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C【解析】若已知,则设数列的公比为,因为,所以有,又,解得,所以数列是递增数列;反之,若数列是递增数列,则公比且,所以,即,所以是数列是递增数列的充分必要条件.故选C.【考点】等比数列的通项公式,充要条件.20.两个非零向量的夹角为,则“”是“为锐角”的( )A.充分不必要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件【答案】B【解析】由可得,所以“”是“为锐角”的必要不充分条件.【考点】充分必要条件.21.或是的条件.【答案】必要不充分【解析】若,,则,故或是的必要不充分条件.【考点】充要条件的判断.22.“”是“”的条件.(填“充分不必要”、“必要不充分”、“充分必要”、“既不充分也不必要”之一)【答案】充分不必要【解析】如果时,那么,所以“”是“”的充分条件,如果,那么,或,所以“”是“”的不必要条件,综上所以“”是“”的充分不必要条件.【考点】充分条件和必要条件.23.“函数在区间上存在零点”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】函数在区间上存在零点,则:.即.所以“函数在区间上存在零点”是“”的必要不充分条件.【考点】1、函数的零点;2、充分条件与必要条件.24.“a≥0”是“函数在区间(-∞,0)内单调递减”的()A.充要条件B.必要不充分条件C.充分不必要条件D.即不充分也不必要条件【答案】A【解析】令t=(ax-1)x=ax2-x,则,设=0,解得x=,所以,当a≥0时,函数t=(ax-1)x在(-∞,)上是减函数,在(,+∞)上是增函数,即极小值为-,当x<0时,t>0,所以a≥0时,函数在区间(-∞,0)内单调递减;若函数在区间(-∞,0)内单调递减,则x时,<0,即成立,所以2a ≥0,故选A.【考点】1.导数的应用;2.充分必要条件的判断.25.若数列满足(为正常数,),则称为“等方比数列”.甲:数列是等方比数列;乙:数列是等比数列,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件【答案】B【解析】显然是等比数列一定是等方比数列,是等方比数列不一定是等比数列,故甲是乙的必要不充分条件,选B.【考点】充要条件.26.已知“命题”是“命题”成立的必要不充分条件,则实数的取值范围为_________________.【答案】【解析】将两个命题化简得,命题,命题.因为是成立的必要不充分条件,所以或,故的取值范围是.【考点】1.一元二次不等式的解法;2.必要不充分条件.27.已知是实数,则“且”是“且”的()条件A.充分不必要B.必要不充分C.充要D.既不充分也不必要【答案】C【解析】因为,且,所以,且;反之,当且时,说明a,b同号,而若a,b均为负数,与a+b>0矛盾,所以且。
届高考数学一轮总复习1.2命题及其关系、充分条件与必要条件练习【含答案】
第二节 命题及其关系、充分条件与必要条件时间:45分钟 分值:100分基 础 必 做一、选择题1.“(2x -1)x =0”是“x =0”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件解析 由(2x -1)x =0⇒x =0或x =12,所以应选B.答案 B2.命题“若a >b ,则a 3>b 3”的逆否命题是( ) A .若a ≥b ,则a 3≥b 3 B .若a >b ,则a 3≤b 3C .若a ≤b ,则a 3≤b 3D .若a 3≤b 3,则a ≤b解析 由逆否命题的含义知,D 正确. 答案 D3.命题“若a <0,则一元二次方程x 2+x +a =0有实根”与其逆命题、否命题、逆否命题中真命题的个数是( )A .0B .2C .4D .不确定解析 当a <0时,Δ=1-4a >0,所以方程x 2+x +a =0有实根,故原命题为真;根据原命题与逆否命题真假一致,可知其逆否命题为真;逆命题为:“若方程x 2+x +a =0有实根,则a <0”,因为方程有实根,所以判别式Δ=1-4a ≥0,所以a ≤14,显然a <0不一定成立,故逆命题为假;根据否命题与逆命题真假一致,可知否命题为假.故正确的命题有2个.答案 B4.已知a ,b ,c 是实数,则b 2≠ac 是a ,b ,c 不成等比数列的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析 因为命题“若b 2≠ac ,则a ,b ,c 不成等比数列”的逆否命题为“若a ,b ,c 成等比数列,则b 2=ac ”,是真命题,所以b 2≠ac 是a ,b ,c 不成等比数列的充分条件;因为“若b 2=ac ,则a ,b ,c 成等比数列”是假命题,所以“若a ,b ,c 不成等比数列,则b 2≠ac ”是假命题,即b 2≠ac 不是a ,b ,c 不成等比数列的必要条件.故选A.答案 A5.(2014·东北三省二模)已知p :x ≥k ,q :3x +1<1,如果p 是q 的充分不必要条件,那么k 的取值范围是( )A .[2,+∞)B .(2,+∞)C .[1,+∞)D .(-∞,-1]解析 q :3x +1<1⇒3x +1-1<0⇒2-x x +1<0⇒(x -2)·(x +1)>0⇒x <-1或x >2. 因为p 是q 的充分不必要条件,所以k >2,故选B. 答案 B6.(2015·济宁模拟)已知函数f (x )=x 2-2ax +b ,则“1<a <2”是“f (1)<f (3)”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析 函数f (x )=x 2-2ax +b ,所以f (1)=1-2a +b ,f (3)=9-6a +b,1<a <2,所以1-2a <9-6a ,即f (1)<f (3);反过来,f (1)<f (3)时,得1-2a +b <9-6a +b 得a <2,不能得到1<a <2,所以“1<a <2”是“f (1)<f (3)”的充分不必要条件.答案 A 二、填空题7.已知命题“若a >b ,则ac 2>bc 2”,则命题的原命题、逆命题、否命题和逆否命题中正确命题的个数是________.解析 其中原命题和逆否命题为假命题,逆命题和否命题为真命题. 答案 28.若“x 2>1”是“x <a ”的必要不充分条件,则a 的最大值为________.解析 由x 2>1,得x <-1或x >1,又“x 2>1”是“x <a ”的必要不充分条件,知由“x <a ”可以推出“x 2>1”,反之不成立,所以a ≤-1,即a 的最大值为-1.答案 -19.下面有四个关于充要条件的命题: ①若x ∈A ,则x ∈B 是A ⊆B 的充要条件;②函数y =x 2+bx +c 为偶函数的充要条件是b =0; ③x =1是x 2-2x +1=0的充要条件; ④若a ∈R ,则a >1是1a<1的充要条件;其中真命题的序号是________.解析 由子集的定义知,命题①为真.当b =0时,y =x 2+bx +c =x 2+c 显然为偶函数,反之,y =x 2+bx +c 是偶函数,则(-x )2+b (-x )+c =x 2+bx +c 恒成立,就有bx =0恒成立,得b =0,因此②为真.当x =1时,x 2-2x +1=0成立,反之,当x 2-2x +1=0时,x =1,所以③为真.对于④,由于1a <1⇔a -1a >0,即a >1或a <0,故a >1是1a<1的充分不必要条件,所以④为假.答案 ①②③ 三、解答题10.π是圆周率,a ,b ,c ,d ∈Q ,已知命题p :若a π+b =c π+d ,则a =c 且b =d . (1)写出命题p 的否定并判断真假;(2)写出命题p 的逆命题、否命题、逆否命题并判断真假;(3)“a =c 且b =d ”是“a π+b =c π+d ”的什么条件?并证明你的结论. 解 (1)原命题p 的否定是:“若a π+b =c π+d ,则a ≠c 或b ≠d ”.假命题. (2)逆命题:“若a =c 且b =d ,则a π+b =c π+d ”,真命题. 否命题:“若a π+b ≠c π+d ,则a ≠c 或b ≠d ”,真命题. 逆否命题:“若a ≠c 或b ≠d ,则a π+b ≠c π+d ”,真命题. (3)“a =c 且b =d ”是“a π+b =c π+d ”的充要条件. 证明如下:充分性:若a =c ,则a π=c π, ∵b =d ,∴a π+b =c π+d .必要性:∵a π+b =c π+d ,∴a π-c π=d -b , 即(a -c )π=d -b .∵d -b ∈Q ,∴a -c =0,d -b =0,即a =c ,b =d . ∴“a =c 且b =d ”是“a π+b =c π+d ”的充要条件.11.已知集合A =⎩⎨⎧⎭⎬⎫y ⎪⎪⎪y =x 2-32x +1,x ∈⎣⎢⎡⎦⎥⎤34,2,B ={x |x +m 2≥1}.条件p :x ∈A ,条件q :x ∈B ,并且p 是q 的充分条件,求实数m 的取值范围.解 化简集合A ,由y =x 2-32x +1,得y =⎝ ⎛⎭⎪⎫x -342+716.∵x ∈⎣⎢⎡⎦⎥⎤34,2,∴y min =716,y max =2. ∴y ∈⎣⎢⎡⎦⎥⎤716,2,∴A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪716≤y ≤2. 化简集合B ,由x +m 2≥1,得x ≥1-m 2,B ={x |x ≥1-m 2}. ∵p 是q 的充分条件,∴A ⊆B .∴1-m 2≤716,解得m ≥34或m ≤-34.∴实数m 的取值范围是⎝ ⎛⎦⎥⎤-∞,-34∪⎣⎢⎡⎭⎪⎫34,+∞.培 优 演 练1.钱大姐常说“便宜没好货”,她这句话的意思是:“不便宜”是“好货”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件解析 根据等价命题,便宜⇒没好货,等价于,好货⇒不便宜,故选B. 答案 B2.(2014·天津卷)设a ,b ∈R ,则“a >b ”是“a |a |>b |b |”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件解析 先证“a >b ”⇒“a |a |>b |b |”.若a >b ≥0,则a 2>b 2,即a |a |>b |b |;若a ≥0>b ,则a |a |≥0>b |b |;若0>a >b ,则a 2<b 2,即-a |a |<-b |b |,从而a |a |>b |b |.再证“a |a |>b |b |”⇒“a >b ”.若a ,b ≥0,则由a |a |>b |b |,得a 2>b 2,故a >b ;若a ,b ≤0,则由a |a |>b |b |,得-a 2>-b 2,故a >b ;若a ≥0,b <0,则a >b .综上,“a >b ”是“a |a |>b |b |”的充要条件. 答案 C3.(2014·福建卷)直线l :y =kx +1与圆O :x 2+y 2=1相交于A ,B 两点,则“k =1”是“△OAB 的面积为12”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分又不必要条件解析 当k =1时,l :y =x +1,由题意不妨令A (-1,0),B (0,1),则S △AOB =12×1×1=12,所以充分性成立;当k =-1时,l :y =-x +1,也有S △AOB =12,所以必要性不成立. 答案 A4.已知集合A ={x |x 2-4mx +2m +6=0},B ={x |x <0},若命题“A ∩B =∅”是假命题,求实数m 的取值范围.解 因为“A ∩B =∅”是假命题,所以A ∩B ≠∅. 设全集U ={m |Δ=(-4m )2-4(2m +6)≥0},则U =⎩⎨⎧⎭⎬⎫m |m ≤-1或m ≥32.假设方程x 2-4mx +2m +6=0的两根x 1,x 2均非负,则有⎩⎪⎨⎪⎧m ∈U ,x 1+x 2≥0,x 1x 2≥0⇒⎩⎪⎨⎪⎧m ∈U ,4m ≥0,2m +6≥0⇒m ≥32.又集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m ⎪⎪⎪m ≥32关于全集U 的补集是{m |m ≤-1}, 所以实数m 的取值范围是{m |m ≤-1}.。
(山东专用)高考数学一轮复习专题02命题其关系、充分条件与必要条件(含解析)
专题02命题及其关系、充分条件与必需条件一、【知识精讲】1.命题用语言、符号或式子表达的,可以判断真假的陈说句叫做命题,此中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2.四种命题及其相互关系(1)四种命题间的相互关系图1-2-1(2)四种命题的真假关系①两个命题互为逆否命题,它们有同样的真假性;②两个命题互为抗命题或互为否命题,它们的真假性没有关系.3.充分条件与必需条件(1)若p?q,则p是q的充分条件,q是p的必需条件;(2)若p?q,且q?/p,则p是q的充分不用要条件;(3)若p?/q且q?p,则p是q的必需不充分条件;(4)若p?q,则p是q的充要条件;(5)若p?/q且q?/p,则p是q的既不充分也不用要条件.[知识拓展]会集与充要条件设会集A={x|x满足条件p},B={x|x满足条件q},则有:(1) 若A?B,则p是q的充分条件,若 A B,则p是q的充分不用要条件.(2) 若B?A,则p是q的必需条件,若 B A,则p是q的必需不充分条件.(3)若A=B,则p是q的充要条件.二、【典例精练】例1.(2019·菏泽模拟)有以下命题:①“若xy=1,则x,y互为倒数”的抗命题;②“面积相等的两个三角形全等”的否命题;③“若m≤1,则x2-2x+m=0有实数解”的逆否命题;④“若A∩B=B,则A?B”的逆否命题.此中真命题是( )A .①②B .②③C .④D .①②③【答案】D【分析】①原命题的抗命题为“若x ,y互为倒数,则xy =1”,是真命题;②原命题的否命题为“面积不相等的两个三角形不全等”,是真命题;③若m ≤1, =4-4m ≥0,所以原命题是真命题,故其逆否命题也是真命题;④由A ∩B =B ,得B ?A ,所以原命题是假命题,故其逆否命题也是假命题,故①②③正确. 【方法小结】1.由原命题写出其余三种命题的方法由原命题写出其余三种命题,要点要分清原命题的条件和结论,将条件与结论互换即得抗命题,将条件与 结论同时否定即得否命题,将条件与结论互换的同时进行否定即得逆否命题.例2.(1)(2017·北京高考)设m ,n 为非零向量,则“存在负数λ,使得m =λn ”是“m ·n <0”的( )A .充分而不用要条件B .必需而不充分条件C .充分必需条件D .既不充分也不用要条件例2.(2018 ·天津高考 ) 设 x ∈,则“x - 1<1 ”是“ x 3 <”的( )R 2 21A .充分而不用要条件B .必需而不充分条件C .充要条件D .既不充分也不用要条件【答案】(1)A(2)A【分析】(1)法一由题意知|m |≠0,|n |≠0. 设m 与n 的夹角为θ.若存在负数λ,使得m =λn , 则m 与n 反向共线,θ=180°,∴·=||| |cos θ=-||||<0.mnmnmn当90°<θ<180°时,m ·n <0,此时不存在负数 λ,使得m =λn .故“存在负数 λ,使得m =λn ”是“m ·n <0”的充分而不用要条件. 应选A .法二∵m =λn ,∴m ·n =λn ·n =λ|n |2. ∴当λ<0,n ≠0时,m ·n <0.反之,由 ·=||| |cos 〈,〉<0?cos 〈,〉<0? 〈, 〉∈ π,π,mn mnmnmnmn2当〈m ,n 〉∈π2,π时,m ,n 不共线.故“存在负数λ,使得m =λn ”是“m ·n <0”的充分而不用要条件.应选A .由x - 11 < < ,则 < 3 ,即“ 1 1“3<”;(2)<,得0 x <x -<”? x2 2 0x 1 1221由x 3<1,得x <1,11 当x ≤0时,x -2≥2,3-11即“x <1” “x 2<2”.1 <1”是“ x 3<1”的充分而不用要条件.所以“x -2 2 【方法小结】充分条件、必需条件的三种判断方法1定义法:依据p ?q ,q ?p 进行判断,适用于定义、定理判断性问题.2会集法:依据p ,q 成立的对象的会集之间的包括关系进行判断,适用于命题中涉及字母的范围的推测问 题.3 等价转变法:依据一个命题与其逆否命题的等价性,把判断的命题转变成其逆否命题进行判断,适用于 条件和结论带有否定性词语的命题.例3.已知={ | x 2-8-20≤0},非空会集 ={ x|1-≤ ≤1+}.若 x ∈ P 是 x ∈ S 的必需条件,则mPx xS mxm的取值范围是________. 【答案】[0,3]【分析】由 x 2-8 -20≤0,得-2≤ ≤10,x x所以P ={x |-2≤x ≤10},由x ∈P 是x ∈S 的必需条件,知S P .1-m ≤1+m ,则1-m ≥-2,所以0≤m ≤3.1+m ≤10,所以当0≤m ≤3时,x ∈P 是x ∈S 的必需条件,即所求m 的取值范围是[0,3].【方法小结】依据充分、必需条件求参数范围的方法(1) 解决此类问题一般是把充分条件、必需条件或充要条件转变成会集之间的关系,而后依据会集之间的关系列出关于参数的不等式(组)求解.(2) 求解参数的取值范围时,必定要注意区间端点值的检验,特别是利用两个会集之间的关系求解参数的取值范围时,不等式能否可以取等号决定端点值的弃取,办理不妥简单出现漏解或增解的现象. 三、【名校新题】21.(2019·长春质监)命题“若x <1,则-1<x <1”的逆否命题是( )B .若-1<x <1,则x 2<1C .若x >1或x <-1,则x 2>1D .若x ≥1或x ≤-1,则x 2≥1 【答案】D【分析】命题的形式是“若p ,则q ”,由逆否命题的知识,可知其逆否命题是“若,则”的形式,所以“若x 2<1,则-1<x <1”的逆否命题是“若 x ≥1或x ≤-1,则x 2≥1”.2.(2019·湖北八校联考)若a , , ,∈R ,则“ a+= + ”是“ a ,, , d 挨次成等差数列”的( )b c ddbc bcA .充分不用要条件B .必需不充分条件C .充要条件D .既不充分也不用要条件【答案】B【分析】当a =-1,b =0,c =3,d =4时,a +d =b +c ,但此时a ,b ,c ,d 不行等差数列;而当 a ,b ,c ,d 挨次成等差数列时,由等差数列的性质知a +d =b +c .所以“a +d =b +c ”是“a ,b ,c ,d 挨次成等差数列”的必需不充分条件,应选B.3.(2019·湘东五校联考)“不等式x 2-x +m >0在R 上恒成立”的一个必需不充分条件是()1 A .m >4 B .0<m <1C .>0D .>1mm【答案】C2212【分析】若不等式x -x +m >0在R 上恒成立,则=(-1) -4m <0,解得m >4,所以当不等式 x -x +m >0在R 上恒建马上,必有 m >0,但当m >0时,不必定推出不等式在 R 上恒成立,故所求的必需不充分条件可以是m >0.4.(蚌埠一中2019届高三考试题)已知 a ,b 都是实数,那么“2a2b”是“a 2b 2”的()A .充分不用要条件B .必需不充分条件C .充要条件 D.既不充分也不用要条件【答案】D【分析】由条件得不可以获取a 2b 2;反之,由a 2b 2 得,从而2 2不成立。
命题及其关系、充分条件与必要条件专题梳理及经典练习及答案详解
课时作业A组——基础对点练1.(2017·高考天津卷)设x∈R,则“2-x≥0”是“|x-1|≤1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件1、解析:由|x-1|≤1,得0≤x≤2,∵0≤x≤2⇒x≤2,x≤20≤x≤2,故“2-x≥0”是“|x-1|≤1”的必要而不充分条件,故选B.2.命题“若x,y都是偶数,则x+y也是偶数”的逆否命题是()A.若x+y是偶数,则x与y不都是偶数B.若x+y是偶数,则x与y都不是偶数C.若x+y不是偶数,则x与y不都是偶数D.若x+y不是偶数,则x与y都不是偶数2、解析:由于“x,y都是偶数”的否定表达是“x,y不都是偶数”,“x+y是偶数”的否定表达是“x+y不是偶数”,故原命题的逆否命题为“若x+y不是偶数,则x,y不都是偶数”,故选C.答案:C3.已知命题“若函数f(x)=e x-mx在(0,+∞)上是增函数,则m≤1”,则下列结论正确的是()A.否命题“若函数f(x)=e x-mx在(0,+∞)上是减函数,则m>1”是真命题B.逆命题“若m≤1,则函数f(x)=e x-mx在(0,+∞)上是增函数”是假命题C.逆否命题“若m>1,则函数f(x)=e x-mx在(0,+∞)上是减函数”是真命题D.逆否命题“若m>1,则函数f(x)=e x-mx在(0,+∞)上不是增函数”是真命题3、解析:命题“若函数f(x)=e x-mx在(0,+∞)上是增函数,则m≤1”是真命题,所以其逆否命题“若m>1,则函数f(x)=e x-mx在(0,+∞)上不是增函数”是真命题.答案:D4.“a=-2”是“直线l1:ax-y+3=0与l2:2x-(a+1)y+4=0互相平行”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4、解析:当a=-2时,直线l1:2x+y-3=0,l2:2x+y+4=0,所以直线l1∥l2;若l1∥l2,则-a(a+1)+2=0,解得a=-2或a=1.所以“a=-2”是“直线l1:ax-y+3=0与l2:2x-(a+1)y+4=0互相平行”的充分不必要条件,故选A.答案:A5.设m∈R,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是() A.若方程x2+x-m=0有实根,则m>0B.若方程x2+x-m=0有实根,则m≤0C.若方程x2+x-m=0没有实根,则m>0D.若方程x2+x-m=0没有实根,则m≤05、解析:由原命题和逆否命题的关系可知D正确.答案:D6.(2018·惠州市调研)设函数y=f(x),x∈R,“y=|f(x)|是偶函数”是“y=f(x)的图象关于原点对称”的()A.充分不必要条件B.充要条件C.必要不充分条件D.既不充分也不必要条件6、解析:设f(x)=x2,y=|f(x)|是偶函数,但是不能推出y=f(x)的图象关于原点对称.反之,若y=f(x)的图象关于原点对称,则y=f(x)是奇函数,这时y=|f(x)|是偶函数,故选C.答案:C7.(2018·南昌十校模拟)命题“已知a,b,c为实数,若abc=0,则a,b,c中至少有一个等于0”,在该命题的逆命题、否命题、逆否命题中,真命题的个数为() A.0 B.1C.2 D.37、解析:原命题为真命题,逆命题为“已知a,b,c为实数,若a,b,c中至少有一个等于0,则abc=0”,也为真命题.根据命题的等价关系可知其否命题、逆否命题也是真命题,故在该命题的逆命题、否命题、逆否命题中,真命题的个数为3.答案:D8.(2018·石家庄模拟)已知向量a=(1,m),b=(m,1),则“m=1”是“a∥b”成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8、解析:向量a=(1,m),b=(m,1),若a∥b,则m2=1,即m=±1,故“m=1”是“a∥b”的充分不必要条件,选A.答案:A9.(2018·武汉市模拟)设{a n}是首项为正数的等比数列,公比为q,则“q<0”是+a2n<0”的()“对任意的正整数n,a2n-1A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件9、解析:a1>0,a2n-1+a2n=a1q2n-2(1+q)<0⇒1+q<0⇒q<-1⇒q<0,而a1>0,q<0,取q=-1,此时a2n-1+a2n=a1q2n-2(1+q)>0.故“q<0”是“对任2意的正整数n,a2n-1+a2n<0”的必要不充分条件.答案:B10.设平面α与平面β相交于直线m,直线a在平面α内,直线b在平面β内,且b⊥m,则“a⊥b”是“α⊥β”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件10、解析:因为α⊥β,b⊥m,所以b⊥α,又直线a在平面α内,所以a⊥b;但直线a,m不一定相交,所以“a⊥b”是“α⊥β”的必要不充分条件,故选B. 答案:B11.(2018·南昌市模拟)a2+b2=1是a sin θ+b cos θ≤1恒成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件11、解析:因为a sin θ+b cos θ=a2+b2sin(θ+φ)≤a2+b2,所以由a2+b2=1可推得a sin θ+b cos θ≤1恒成立.反之,取a=2,b=0,θ=30°,满足a sin θ+b cos θ≤1,但不满足a2+b2=1,即由a sin θ+b cos θ≤1推不出a2+b2=1,故a2+b2=1是a sin θ+b cos θ≤1恒成立的充分不必要条件.故选A.答案:A12.(2018·洛阳统考)已知集合A={1,m2+1},B={2,4},则“m=3”是“A∩B ={4}”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件12、解析:若A∩B={4},则m2+1=4,∴m=±3,而当m=3时,m2+1=4,∴“m =3”是“A ∩B ={4}”的充分不必要条件. 答案:A13.在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,则“a ≤b ”是“sin A ≤sin B ”的__________条件.13、解析:由正弦定理,得a sin A =bsin B ,故a ≤b ⇔sin A ≤sin B . 答案:充要 14.“x >1”是“”的__________条件.14、解析:由,得x +2>1,解得x >-1,所以“x >1”是“”的充分不必要条件.答案:充分不必要15.命题“若x >1,则x >0”的否命题是__________. 15、答案:若x ≤1,则x ≤016.如果“x 2>1”是“x <a ”的必要不充分条件,则a 的最大值为__________. 16、解析:由x 2>1,得x <-1,或x >1,又“x 2>1”是“x <a ”的必要不充分条件,知由“x <a ”可以推出“x 2>1”,反之不成立,所以a ≤-1,即a 的最大值为-1. 答案:-1B 组——能力提升练1.(2018·湖南十校联考)已知数列{a n }的前n 项和S n =Aq n +B (q ≠0),则“A =-B ”是“数列{a n }是等比数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件1、解析:若A =B =0,则S n =0,故数列{a n }不是等比数列;若数列{a n }是等比数列,则a 1=Aq +B ,a 2=Aq 2-Aq ,a 3=Aq 3-Aq 2,由a 3a 2=a 2a 1,得A =-B .故选B. 答案:B2.已知函数f (x )=3ln(x +x 2+1)+a (7x +7-x ),x ∈R ,则“a =0”是“函数f (x )为奇函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件2、解析:由题意知f (x )的定义域为R ,易知y =ln(x +x 2+1)为奇函数,y =7x+7-x 为偶函数.当a =0时,f (x )=3ln(x +x 2+1)为奇函数,充分性成立;当f (x )为奇函数时,则a =0,必要性成立.因此“a =0”是“函数f (x )为奇函数”的充要条件.故选C. 答案:C3.l 1,l 2表示空间中的两条直线,若p :l 1,l 2是异面直线;q :l 1,l 2不相交,则( )A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充要条件D .p 既不是q 的充分条件,也不是q 的必要条件3、解析:两直线异面,则两直线一定无交点,即两直线一定不相交;而两直线不相交,有可能是平行,不一定异面,故两直线异面是两直线不相交的充分不必要条件,故选A. 答案:A4.“x 1>3且x 2>3”是“x 1+x 2>6且x 1x 2>9”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4、、解析:x 1>3,x 2>3⇒x 1+x 2>6,x 1x 2>9;反之不成立,例如x 1=12,x 2=20.故选A.答案:A5.若a,b为正实数,且a≠1,b≠1,则“a>b>1”是“log a 2<log b 2”的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5、解析:当a>b>1时,log a 2-log b 2=ln 2ln a-ln 2ln b=ln 2(ln b-ln a)ln a·ln b<0,所以log a2<log b 2.反之,取a=12,b=2,log a 2<log b 2成立,但是a>b>1不成立.故“a>b>1”是“log a 2<log b 2”的充分不必要条件,选A.答案:A6.已知数列{a n}的前n项和为S n,则“a3>0”是“数列{S n}为递增数列”的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6、解析:当a1=1,a2=-1,a3=1,a4=-1,…时,{S n}不是递增数列,反之,若{S n}是递增数列,则S n+1>S n,即a n+1>0,所以a3>0,所以“a3>0”是“{S n}是递增数列”的必要不充分条件,故选B.答案:B7.“a≤-2”是“函数f(x)=|x-a|在[-1,+∞)上单调递增”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7、解析:结合图象可知函数f(x)=|x-a|在[a,+∞)上单调递增,易知当a≤-2时,函数f(x)=|x-a|在[-1,+∞)上单调递增,但反之不一定成立,故选A.答案:A8.设a,b是向量,则“|a|=|b|”是“|a+b|=|a-b|”的()A.充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件8、解析:结合平面向量的几何意义进行判断.若|a |=|b |成立,则以a ,b 为邻边的平行四边形为菱形.a +b ,a -b 表示的是该菱形的对角线,而菱形的两条对角线长度不一定相等,所以|a +b |=|a -b |不一定成立,从而不是充分条件;反之,若|a +b |=|a -b |成立,则以a ,b 为邻边的平行四边形为矩形,而矩形的邻边长度不一定相等,所以|a |=|b |不一定成立,从而不是必要条件.故“|a |=|b |”是“|a +b |=|a -b |”的既不充分也不必要条件. 答案:D9.(2016·高考四川卷)设p :实数x ,y 满足(x -1)2+(y -1)2≤2,q :实数x ,y 满足⎩⎨⎧y ≥x -1,y ≥1-x ,y ≤1,则p 是q 的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件9、解析:取x =y =0满足条件p ,但不满足条件q ,反之,对于任意的x ,y 满足条件q ,显然必满足条件p ,所以p 是q 的必要不充分条件,选A. 答案:A10.(2018·广州测试)已知命题p :∃x >0,e x -ax <1成立,q :函数f (x )=-(a -1)x 在R 上是减函数,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件10、解析:作出y=e x与y=ax+1的图象,如图.当a=1时,e x≥x+1恒成立,故当a≤1时,e x-ax<1不恒成立;当a>1时,可知存在x∈(0,x0),使得e x -ax<1成立,故p成立,即p:a>1,由函数f(x)=-(a-1)x是减函数,可得a -1>1,得a>2,即q:a>2,故p推不出q,q可以推出p,p是q的必要不充分条件,选B.答案:B11.直线l:y=kx+1与圆O:x2+y2=1相交于A,B两点,则“k=1”是“△OAB的面积为12”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件11、解析:若k=1,则直线l:y=x+1与圆相交于(0,1),(-1,0)两点,所以△OAB的面积S△OAB=12×1×1=12,所以“k=1”⇒“△OAB的面积为12”;若△OAB的面积为12,则k=±1,所以“△OAB的面积为12”⇒/ “k=1”,所以“k=1”是“△OAB的面积为12”的充分而不必要条件,故选A.答案:A12.对任意实数a,b,c,给出下列命题:①“a=b”是“ac=bc”的充要条件;②“a+5是无理数”是“a是无理数”的充要条件;③“a>b”是“a2>b2”的充分条件;④“a<5”是“a<3”的必要条件.其中真命题的序号是__________.12、解析:①中“a=b”可得ac=bc,但c=0时逆命题不成立,所以不是充要条件,②正确,③中a>b时a2>b2不一定成立,所以③错误,④中“a<5”得不到“a<3”,但“a<3”可得出“a<5”,“a<5”是“a<3”的必要条件,正确.答案:②④13.已知m∈R,“函数y=2x+m-1有零点”是“函数y=log m x在(0,+∞)上为减函数”的__________条件.13、解析:若函数y=2x+m-1有零点,则m<1;若函数y=log m x在(0,+∞)上为减函数,则0<m<1.答案:必要不充分14.(2018·江西九校联考)下列判断错误的是__________.①若p∧q为假命题,则p,q至少有一个为假命题②命题“∀x∈R,x3-x2-1≤0”的否定是“∃x0∈R,x30-x20-1>0”③“若a∥c且b∥c,则a∥b”是真命题④“若am2<bm2,则a<b”的否命题是假命题14、解析:选项①、②中的命题显然正确;选项④中命题的否命题为:若am2≥bm2,则a≥b,显然当m=0时,命题是假命题,所以选项④正确;对于选项③中的命题,当c=0时,命题是假命题,故填③.答案:③15.下列四个结论中正确的个数是__________.①“x2+x-2>0”是“x>1”的充分不必要条件;②命题:“∀x∈R,sin x≤1”的否定是“∃x0∈R,sin x0>1”;③“若x=π4,则tan x=1”的逆命题为真命题;④若f(x)是R上的奇函数,则f(log32)+f(log23)=0.15、解析:对于①,由x 2+x -2>0,解得x <-2或x >1,故“x 2+x -2>0”是“x >1”的必要不充分条件,故①错误;对于②,命题:“∀x ∈R ,sin x ≤1”的否定是“∃x 0∈R ,sin x 0>1”,故②正确;对于③,“若x =π4,则tan x =1”的逆命题为“若tan x =1,则x =π4”,其为假命题,故③错误;对于④,若f (x )是R 上的奇函数,则f (-x )+f (x )=0,∵log 32=1log 23≠-log 32, ∴log 32与log 23不互为相反数,故④错误.答案:1。
高三数学充分条件与必要条件试题答案及解析
高三数学充分条件与必要条件试题答案及解析1.设,则“”是“”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【答案】A.【解析】解一元二次不等式,可得或,“”是“”的充分不必要条件.【考点】1.一元二次不等式;2.充分必要条件.2.是直线和直线垂直的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】时,两直线方程分别为,斜率分别为,两直线垂直;反之,两直线垂直,则,解得或,即是直线和直线垂直的充分而不必要条件,故选.【考点】充要条件,直线的斜率.3.[2014·河源模拟]对任意实数a,b,c,给出下列命题:①“a=b”是“ac=bc”的充要条件;②“a+5是无理数”是“a是无理数”的充要条件;③“a>b”是“a2>b2”的充分条件;④“a<5”是“a<3”的必要条件.其中真命题的序号是________.【答案】②④【解析】①中“a=b”可得ac=bc,但c=0时逆命题不成立,所以不是充要条件,②正确,③中a >b时a2>b2不一定成立,所以③错误,④中“a<5”得不到“a<3”,但“a<3”可得出“a<5”,“a<5”是“a<3”的必要条件,正确.4.若集合,,,则“”是“”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【答案】C【解析】∵=,∴又∵且x≠2∴B={x|1<x<3且x≠2}∴A∩B=(1,2)∪(2,)∪(,3)还∵∴C={x|1<x<2}∵C A∩B∴满足集合C的元素一定满足集合A∩B,反之不成立.∴“”是“”的必要不充分条件5.设a>0且a≠1,则“函数f(x)=a x在R上是减函数”,是“函数g(x)=(2﹣a)x3在R上是增函数”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】a>0 a≠1,则“函数f(x)=a x在R上是减函数”,所以a∈(0,1),“函数g(x)=(2﹣a)x3在R上是增函数”所以a∈(0,2);显然a>0 a≠1,则“函数f(x)=a x在R上是减函数”,是“函数g(x)=(2﹣a)x3在R上是增函数”的充分不必要条件.故选A.6.已知命题p:命题q:1-m≤x≤1+m,m>0,若¬p是¬q的必要不充分条件,则实数m的取值范围是()A.m≥0B.m≥9C.m≤9D.m≤-2【答案】B【解析】p:x∈[-2,10],q:x∈[1-m,1+m],m>0,∵¬p是¬q的必要不充分条件,∴p⇒q.∴[-2,10][1-m,1+m].∴∴m≥9,故选B.7.已知α,β角的终边均在第一象限,则“α>β”是“sin α>sin β”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】D【解析】当α>β时,令α=390°,β=60°,则sin 390°=sin 30°=<sin 60°=,故sinα>sinβ不成立;当sinα>sinβ时,令α=60°,β=390°满足上式,此时α<β,故“α>β”是“sin α>sin β”的既不充分也不必要条件,选D.8.钱大姐常说“便宜没好货”,她这句话的意思是:“不便宜”是“好货”的()A.充分条件B.必要条件C.充分必要条件D.既非充分也非必要条件【答案】B【解析】钱大姐常说“便宜没好货”, “便宜没好货”是一个真命题,则它的逆否命题也是真命题,即“好货则不便宜”,所以“不便宜”是“好货”的必要条件.【考点】命题及其充要条件.9.“方程有实数根”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件【答案】【解析】由方程有实数根,知;由,成立,所以,方程有实数根,即“方程有实数根”是“”的必要不充分条件,故选.【考点】充要条件10.已知条件,条件,则是成立的 ( )A.充分不必要条件B.必要不充分条件C.充要条件D.既非充分也非必要条件【答案】B【解析】由等价于,得:,,所以,是成立的必要不充分条件,选B.【考点】充要条件,不等关系.11.“”是“关于x的不等式的解集非空”的()A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分又不必要条件【答案】C【解析】解:因为,所以由不等式的解集非空得:所以,“”是“关于x的不等式的解集非空”的充分不必要条件,故选C.【考点】1、绝对值不等式的性质;2、充要条件.12.下列说法错误的是:().A.命题“若x2-4x+3=0,则x=3”的逆否命题是“若x≠3”,则x2-4x+3≠0”B.“x>1”是“|x|>0”的充分不必要条件C.若p∧q为假命题,则p,q均为假命题D.命题p:“∃x∈R,使得x2+x+1<0”,则綈p:“∀x∈R,x2+x+1≥0”【答案】C【解析】若p∧q为假命题,则p,q至少有一个为假命题,所以C错误.13.“x>l”是“x2>1”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】解得,所以“x>l”是“x2>1”的充分不必要条件。
【高考总动员】高考数学大一轮复习 第1章 第2节 命题及其关系、充分条件与必要条件课时提升练 文 新
课时提升练(二)命题及其关系、充分条件与必要条件一、选择题1.(2023·东北四市联考)以下命题中真命题是( )A.“a>b”是“a2>b2”的充分条件B.“a>b”是“a2>b2”的必要条件C.“a>b”是“ac2>bc2”的必要条件D.“a>b”是“|a|>|b|”的充要条件【解析】C中,当c2=0时,由a>b ac2>bc2;反过来,由ac2>bc2⇒a>b,故“a>b”是“ac2>bc2”的必要条件.【答案】 C2.命题“假设a,b,c成等比数列,那么b2=ac”的逆否命题是( )A.“假设a,b,c成等比数列,那么b2≠ac”B.“假设a,b,c不成等比数列,那么b2≠ac”C.“假设b2=ac,那么a,b,c成等比数列”D.“假设b2≠ac,那么a,b,c不成等比数列”【解析】根据原命题与其逆否命题的关系知,命题“假设a,b,c成等比数列,那么b2=ac”的逆否命题为“假设b2≠ac,那么a,b,c不成等比数列”.【答案】 D3.(2023·长沙模拟)设A,B为两个互不相同的集合,命题p:x∈A∩B,命题q:x∈A 或x∈B,那么┑q是┑p的( )A.充分必要条件B.充分不必要条件C.必要不充分条件D.既不充分又不必要条件【解析】由题意p⇒q,故┑q⇒┑p;而q p,故┑p┑q,所以┑q是┑p的充分不必要条件.【答案】 B4.有以下四个命题:①“假设x+y=0,那么x,y互为相反数”的逆否命题;②“全等三角形的面积相等”的否命题;③“假设q≤1,那么x2+2x+q=0有实根”的逆否命题;④“不等边三角形的三个内角相等”的逆命题.其中的真命题为( )A.①②B.②③C.①③D.③④【解析】“假设x+y=0,那么x,y互为相反数”为真命题,那么逆否命题也为真;“全等三角形的面积相等”的否命题为“不全等三角形的面积不相等”,该否命题为假命题;假设q≤1⇒4-4q≥0,即Δ=4-4q≥0,那么x2+2x+q=0有实根,所以原命题为真命题,故其逆否命题也为真;“不等边三角形的三个内角相等”的逆命题为“三个内角相等的三角形是不等边三角形”,该逆命题为假命题.应选C.【答案】 C5.(2023·重庆模拟)假设p是q的必要条件,s是q的充分条件,那么以下推理一定正确的选项是( )A.┑p⇔┑s B.p⇔sC.┑p⇒┑s D.┑s⇒┑p【解析】由题意得q⇒p,且s⇒q,故s⇒p,所以┑p⇒┑s.【答案】 C6.(2023·深圳高级中学高三月考)命题:①假设“p且q”为假命题,那么p,q均为假命题;②命题“假设x≥2且y≥3,那么x+y≥5”的否命题为“假设x<2且y<3,那么x+y<5”;③在△ABC中,“A>45°”是“sin A>22”的充要条件;④命题“∃x0∈R,使得e x0≤0”是真命题.其中正确命题的个数是( )A.3 B.2C.1 D.0【解析】假设“p且q”为假命题,那么p,q至少有一个为假命题,①错;②中命题的否命题为:“假设x<2或y<3,那么x+y<5”,②错;③中当A=150°时,sin A<22,③错;由指数函数的性质,可知∀x∈R,e x>0,故④错.【答案】 D7.(2023·天津高考)设a,b∈R,那么“a>b”是“a|a|>b|b|”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件【解析】当b<0时,显然有a>b⇔a|a|>b|b|;当b=0时,显然有a>b⇔a|a|>b|b|;当b>0时,a>b有|a|>|b|,所以a>b⇔a|a|>b|b|.综上可知a>b⇔a|a|>b|b|,应选C.【答案】 C8.(2023·甘肃诊断)以下选项中,p是q的必要不充分条件的是( ) A.p:x=1,q:x2=xB.p:A∩B=A,q:∁U B⊆∁U AC.p:x>a2+b2,q:x>2abD.p:a+c>b+d,q:a>b且c>d【解析】A中,x=1⇒x2=x,x2=x⇒x=0或x=1 x=1,故p是q的充分不必要条件;B中,由A∩B=A得A⊆B,所以∁U B⊆∁U A.反之,假设∁U B⊆∁U A,那么A⊆B,那么A∩B =A,故p是q的充要条件;C中,因为a2+b2≥2ab,由x>a2+b2得x>2ab.反之不成立,如a=0,b=2,x=1,那么有x>2ab,但x=1<4=a2+b2,故p是q的充分不必要条件;D中,取a=-1,b=1,c=0,d=-3,满足a+c>b+d,但a<b,c>d.反之,由同向不等式可加性得a>b,c>d⇒a+c>b+d,故p是q的必要不充分条件.综上所述,应选D.【答案】 D9.(2023·福建高考)直线l :y =kx +1与圆O :x 2+y 2=1相交于A ,B 两点,那么“k =1”是“△OAB 的面积为12”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分又不必要条件【解析】 将直线l 的方程化为一般式得kx -y +1=0,所以圆O :x 2+y 2=1的圆心到该直线的距离d =1k 2+1.又弦长为21-1k 2+1=2|k |k 2+1,所以S △OAB =12·1k 2+1·2|k |k 2+1=|k |k 2+1=12,解得k =±1.因此可知“k =1”是“△OAB 的面积为12”的充分而不必要条件,应选A.【答案】 A10.已知集合A ={x |x >5},集合B ={x |x >a },假设命题“x ∈A ”是命题“x ∈B ”的充分不必要条件,那么实数a 的取值范围是( )A .a <5B .a ≤5C .a >5D .a ≥5【解析】 由题意可知A B ,又A ={x |x >5},B ={x |x >a },如下图,由图可知a <5.【答案】 A11.(2023·上海高考)钱大姐常说“廉价没好货”,她这句话的意思是:“不廉价”是“好货”的( )A .充分条件B .必要条件C .充分必要条件D .既非充分也非必要条件【解析】 根据等价命题,廉价⇒没好货,等价于,好货⇒不廉价,应选B. 【答案】 B12.(2023·湖北高考)设U 为全集,A ,B 是集合,那么“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的( )A .充分而不必要的条件B .必要而不充分的条件C .充要条件D .既不充分也不必要的条件【解析】 假设存在集合C 使得A ⊆C ,B ⊆∁U C ,那么可以推出A ∩B =∅;假设A ∩B =∅,由Venn 图(如图)可知,存在A =C ,同时满足A ⊆C ,B ⊆∁U C .故“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的充要条件. 【答案】 C 二、填空题13.已知集合A ={1,a },B ={1,2,3},那么“a =3”是“A ⊆B ”的________条件. 【解析】 a =3⇒A ⊆B ,A ⊆B ⇒a =2或3,因此“a =3”是“A ⊆B ”的充分不必要条件. 【答案】 充分不必要14.在命题p 的四种形式(原命题、逆命题、否命题、逆否命题)中,真命题的个数记为f (p ),已知命题p :“假设两条直线l 1:a 1x +b 1y +c 1=0,l 2:a 2x +b 2y +c 2=0平行,那么a 1b 2-a 2b 1=0”.那么f (p )=________.【解析】 命题p 为真命题,其逆否命题也为真命题;命题p 的逆命题为假命题,其否命题也为假命题.【答案】 215.假设命题“ax 2-2ax -3>0不成立”是真命题,那么实数a 的取值范围是________. 【解析】 由题意得,ax 2-2ax -3≤0,当a =0时,有-3≤0,成立;当a ≠0时,需满足⎩⎪⎨⎪⎧a <0,Δ=4a 2+12a ≤0,即-3≤a <0,综上知-3≤a ≤0.【答案】 [-3,0]16.已知命题p :⎩⎪⎨⎪⎧x +2≥0,x -10≤0,命题q :1-m ≤x ≤1+m ,m >0,假设q 是p 的必要而不充分条件,那么m 的取值范围为________.【解析】 命题p :-2≤x ≤10,由q 是p 的必要不充分条件知, {x |-2≤x ≤10}{x |1-m ≤x ≤1+m ,m >0},∴⎩⎪⎨⎪⎧m >01-m ≤-21+m >10或⎩⎪⎨⎪⎧m >01-m <-21+m ≥10,∴m ≥9,即m 的取值范围是[9,+∞). 【答案】 [9,+∞)。
第二节 命题及其关系、充分条件与必要条件(有答案)
第二节 命题及其关系、充分条件与必要条件【考纲下载】1.理解命题的概念.2.了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.3.理解必要条件、充分条件与充要条件的含义.1.命题的概念用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2.四种命题及其关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们有相同的真假性;②两个命题互为逆命题或互为否命题,它们的真假性没有关系.3.充分条件与必要条件(1)若p⇒q,则p是q的充分条件,q是p的必要条件.(2)若p⇔q,则p与q互为充要条件.(3)若p⇒/ q,且q⇒/ p,则p是q的既不充分也不必要条件.1.一个命题的否命题与这个命题的否定是同一个命题吗?提示:不是,一个命题的否命题是既否定该命题的条件,又否定该命题的结论,而这个命题的否定仅是否定它的结论.2.“p是q的充分不必要条件”与“p的一个充分不必要条件是q”两者的说法相同吗?提示:两者说法不相同.“p的一个充分不必要条件是q”等价于“q是p的充分不必要条件”,显然这与“p是q的充分不必要条件”是截然不同的.1.(2013·福建高考)已知集合A={1,a},B={1,2,3},则“a=3”是“A⊆B”的( ) A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析:选A 当a=3时,A={1,3},A⊆B;反之,当A⊆B时,a=2或3,所以“a=3”是“A⊆B”的充分而不必要条件.2.命题“若x2>y2,则x>y”的逆否命题是( )A.“若x<y,则x2<y2”B.“若x>y,则x2>y2”C.“若x≤y,则x2≤y2”D.“若x≥y,则x2≥y2”解析:选C 根据原命题和逆否命题的条件和结论的关系得命题“若x2>y2,则x>y”的逆否命题是“若x≤y,则x2≤y2”.3.(教材习题改编)命题“如果b2-4ac>0,则方程ax2+bx+c=0(a≠0)有两个不相等的实根”的否命题、逆命题和逆否命题中,真命题的个数为( )A.0 B.1 C.2 D.3解析:选D 原命题为真,则它的逆否命题为真,逆命题为“若方程ax2+bx+c=0(a≠0)有两个不相等的实根,则b2-4ac>0”,为真命题,则它的否命题也为真.4.命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是 ( )A.若f(x)是偶函数,则f(-x)是偶函数B.若f(x)不是奇函数,则f(-x)不是奇函数C.若f(-x)是奇函数,则f(x)是奇函数D.若f(-x)不是奇函数,则f(x)不是奇函数解析:选B 原命题的否命题是既否定题设又否定结论,故“若f(x)是奇函数,则f(-x)是奇函数”的否命题是B选项.5.下面四个条件中,使a>b成立的充分而不必要的条件是 ( )A.a>b+1 B.a>b-1 C.a2>b2D.a3>b3解析:选A 由a>b+1,且b+1>b,得a>b;反之不成立.考点一四种命题的关系 [例1] (1)命题“若x>1,则x>0”的否命题是( )A.若x>1,则x≤0B.若x≤1,则x>0C.若x≤1,则x≤0D.若x<1,则x<0(2)命题“若x,y都是偶数,则x+y也是偶数”的逆否命题是( )A.若x+y是偶数,则x与y不都是偶数B.若x+y是偶数,则x与y都不是偶数C.若x+y不是偶数,则x与y不都是偶数D.若x+y不是偶数,则x与y都不是偶数[自主解答] (1)因为“x>1”的否定为“x≤1”,“x>0”的否定为“x≤0”,所以命题“若x>1,则x>0”的否命题为:“若x≤1,则x≤0”.(2)由于“x,y都是偶数”的否定表达是“x,y不都是偶数”,“x+y是偶数”的否定表达是“x+y不是偶数”,故原命题的逆否命题为“若x+y不是偶数,则x与y不都是偶数”.[答案] (1)C (2)C【互动探究】试写出本例(2)中命题的逆命题和否命题,并判断其真假性.解:逆命题:若x+y是偶数,则x,y都是偶数.是假命题.否命题:若x,y不都是偶数,则x+y不是偶数.是假命题. 【方法规律】判断四种命题间关系的方法(1)由原命题写出其他三种命题,关键要分清原命题的条件和结论,将条件与结论互换即得逆命题,将条件与结论同时否定即得否命题,将条件与结论互换的同时进行否定即得逆否命题.(2)原命题和逆否命题、逆命题和否命题有相同的真假性,解题时注意灵活应用.1.命题p:“若a≥b,则a+b>2 012且a>-b”的逆否命题是 ( )A.若a+b≤2 012且a≤-b,则a<bB.若a+b≤2 012且a≤-b,则a>bC.若a+b≤2 012或a≤-b,则a<bD.若a+b≤2 012或a≤-b,则a≤b解析:选C “且”的否定是“或”,根据逆否命题的定义知,逆否命题为“若a+b≤2 012或a≤-b,则a<b”.2.下列命题中为真命题的是( )A.命题“若x>y,则x>|y|”的逆命题B .命题“若x >1,则x 2>1”的否命题C .命题“若x =1,则x 2+x -2=0”的否命题D .命题“若x 2>0,则x >1”的逆否命题解析:选A A 中逆命题为“若x >|y |,则x >y ”是真命题;B 中否命题为“若x ≤1,则x 2≤1”是假命题;C 中否命题为“若x ≠1,则x 2+x -2≠0”是假命题;D 中原命题是假命题,从而其逆否命题也为假命题.考点二命题的真假判断 [例2] (1)下列命题是真命题的是( )A .若=,则x =y1x 1y B .若x 2=1,则x =1C .若x =y ,则=x yD .若x <y ,则x 2<y 2(2)(2014·济南模拟)在空间中,给出下列四个命题:①过一点有且只有一个平面与已知直线垂直;②若平面外两点到平面的距离相等,则过这两点的直线必平行于该平面;③两条相交直线在同一平面内的射影必为相交直线;④两个相互垂直的平面,一个平面内的任意一直线必垂直于另一平面内的无数条直线.其中正确的是( )A .①②B .②③C .③④D .①④[自主解答] (1)取x =-1排除B ;取x =y =-1排除C ;取x =-2,y =-1排除D ,故选A.(2)对于①,由线面垂直的判定可知①正确;对于②,若点在平面的两侧,则过这两点的直线可能与该平面相交,故②错误;对于③,两条相交直线在同一平面内的射影可以为一条直线,故③错误;对于④,两个相互垂直的平面,一个平面内的任意一条直线必垂直于另一个平面内的无数条与交线垂直的直线,故④正确.综上可知,选D.[答案] (1)A (2)D【方法规律】命题的真假判断方法(1)给出一个命题,要判断它是真命题,需经过严格的推理证明;而要说明它是假命题,只需举一反例即可.(2)由于原命题与其逆否命题为等价命题,有时可以利用这种等价性间接地证明命题的真假.给出下列命题:①函数y =sin(x +k π)(k ∈R )不可能是偶函数;②已知数列{a n }的前n 项和S n =a n -1(a ∈R ,a ≠0),则数列{a n }一定是等比数列;③若函数f (x )的定义域是R ,且满足f (x )+f (x +2)=3,则f (x )是以4为周期的周期函数;④过两条异面直线外一点能作且只能作出一条直线和这两条异面直线同时相交.其中所有正确的命题有________(填正确命题的序号).解析:①当k =时,y =sin(x +k π)就是偶函数,故①错;②当a =1时,S n =0,则a n 的12各项都为零,不是等比数列,故②错;③由f (x )+f (x +2)=3,则f (x +2)+f (x +4)=3,相减得f (x )-f (x +4)=0,即f (x )=f (x +4),所以f (x )是以4为周期的周期函数,③正确;④过两条异面直线外一点,有时没有一条直线能与两条异面直线都相交,故④错.综上所述,正确的命题只有③.答案:③高频考点考点三充 要 条 件 1.充分条件、必要条件是每年高考的必考内容,多以选择题的形式出现,难度不大,属于容易题.2.高考对充要条件的考查主要有以下三个命题角度:(1)判断指定条件与结论之间的关系;(2)探求某结论成立的充要条件、充分不必要条件或必要不充分条件;(3)与命题的真假性相交汇命题.[例3] (1)(2013·北京高考)“φ=π”是“曲线y =sin(2x +φ)过坐标原点”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件(2)(2012·四川高考)设a 、b 都是非零向量,下列四个条件中,使=成立的充分条件a |a|b|b|是( )A .a =-bB .a ∥bC .a =2bD .a ∥b 且|a|=|b|(3)给出下列命题:①“数列{a n }为等比数列”是“数列{a n a n +1}为等比数列”的充分不必要条件;②“a =2”是“函数f (x )=|x -a |在区间[2,+∞)上为增函数”的充要条件;③“m =3”是“直线(m +3)x +my -2=0与直线mx -6y +5=0互相垂直”的充要条件;④设a ,b ,c 分别是△ABC 三个内角A ,B ,C 所对的边,若a =1,b =,则3“A =30°”是“B =60°”的必要不充分条件.其中真命题的序号是________.[自主解答] (1)当φ=π时,y =sin(2x +π)=-sin 2x ,则曲线y =-sin 2x 过坐标原点,所以“φ=π”⇒“曲线y =sin(2x +φ)过坐标原点”;当φ=2π时,y =sin(2x +2π)=sin 2x ,则曲线y =sin 2x 过坐标原点,所以“φ=π”⇐/“曲线y =sin(2x +φ)过坐标原点”,所以“φ=π”是“曲线y =sin(2x +φ)过坐标原点”的充分而不必要条件.(2),分别是与a ,b 同方向的单位向量,由=,得a 与b 的方向相同.而a ∥b 时,a |a |b |b |a |a |b |b |a 与b 的方向还可能相反.故选C.(3)对于①,当数列{a n }为等比数列时,易知数列{a n a n +1}是等比数列,但当数列{a n a n +1}为等比数列时,数列{a n }未必是等比数列,如数列1,3,2,6,4,12,8显然不是等比数列,而相应的数列3,6,12,24,48,96是等比数列,因此①正确;对于②,当a ≤2时,函数f (x )=|x -a |在区间[2,+∞)上是增函数,因此②不正确;对于③,当m =3时,相应的两条直线互相垂直,反之,这两条直线垂直时,不一定有m =3,也可能m =0.因此③不正确;对于④,由题意得=ba =,若B =60°,则sin A =,注意到b >a ,故A =30°,反之,当A =30°时,有sin B =sin Bsin A 312,由于b >a ,所以B =60°或B =120°,因此④正确.综上所述,真命题的序号是①④.32[答案] (1)A (2)C (3)①④充要条件问题的常见类型及解题策略(1)判断指定条件与结论之间的关系.解决此类问题应分三步:①确定条件是什么,结论是什么;②尝试从条件推结论,从结论推条件;③确定条件和结论是什么关系.(2)探究某结论成立的充要、充分、必要条件.解答此类题目,可先从结论出发,求出使结论成立的必要条件,然后再验证得到的必要条件是否满足充分性.(3)充要条件与命题真假性的交汇问题.依据命题所述的充分必要性,判断是否成立即可.1.(2014·西安模拟)如果对于任意实数x ,[x ]表示不超过x 的最大整数,那么“[x ]=[y ]”是“|x -y |<1成立”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 若[x ]=[y ],则|x -y |<1;反之,若|x -y |<1,如取x =1.1,y =0.9,则[x ]≠[y ],即“[x ]=[y ]”是“|x -y |<1成立”的充分不必要条件.2.已知p :<1,q :x 2+(a -1)x -a >0,若p 是q 的充分不必要条件,则实数a 的1x -1取值范围是( )A .(-2,-1]B .[-2,-1]C .[-3,1]D .[-2,+∞)解析:选A 不等式<1等价于-1<0,即>0,解得x >2或x <1,所以p 为1x -11x -1x -2x -1(-∞,1)∪(2,+∞).不等式x 2+(a -1)x -a >0可以化为(x -1)(x +a )>0,当-a ≤1时,解得x >1或x <-a ,即q 为(-∞,-a )∪(1,+∞),此时a =-1;当-a >1时,不等式(x -1)(x +a )>0的解集是(-∞,1)∪(-a ,+∞),此时-a <2,即-2<a <-1.综上可知a 的取值范围为(-2,-1].3.设n ∈N *,一元二次方程x 2-4x +n =0有整数根的充要条件是n =________.解析:一元二次方程x 2-4x +n =0的根为x ==2±,因为x 是整数,4±16-4n24-n 即2±为整数,所以为整数,且n ≤4,又因为n ∈N *,取n =1,2,3,4,验证可知4-n 4-n n =3,4符合题意,所以n =3,4时可以推出一元二次方程x 2-4x +n =0有整数根.答案:3或4——————————[课堂归纳——通法领悟]——————————— 1个区别——“A 是B 的充分不必要条件”与“A 的充分不 必要条件是B ”的区别 “A 是B 的充分不必要条件”中,A 是条件,B 是结论;“A 的充分不必要条件是B ”中,B 是条件,A 是结论.在进行充分、必要条件的判断中,要注意这两种说法的区别. 2条规律——四种命题间关系的两条规律 (1)逆命题与否命题互为逆否命题;互为逆否命题的两个命题同真假.(2)当判断一个命题的真假比较困难时,可转化为判断它的逆否命题的真假.同时要关注“特例法”的应用. 3种方法——判断充分条件和必要条件的方法 (1)定义法;(2)集合法;(3)等价转化法.方法博览(一)三法破解充要条件问题1.定义法定义法就是将充要条件的判断转化为两个命题——“若p ,则q ”与“若q ,则p ”的判断,根据两个命题是否正确,来确定p 与q 之间的充要关系.[典例1] 设0<x <,则“x sin 2x <1”是“x sin x <1”的( )π2A .充要条件 B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件[解题指导] 由0<x <可知0<sin x <1,分别判断命题“若x sin 2x <1,则x sin x <1”π2与“若x sin x <1,则x sin 2x <1”的真假即可.[解析] 因为0<x <,所以0<sin x <1,不等式x sin x <1两边同乘sin x ,可得x sin 2x <sin x ,π2所以有x sin 2x <sin x <1.即x sin x <1⇒x sin 2x <1;不等式x sin 2x <1两边同除以sin x ,可得x sin x <,而由0<sin x <1,知>1,故x sin 1sin x 1sin x x <1不一定成立,即x sin 2x <1⇒/ x sin x <1.综上,可知“x sin 2x <1”是“x sin x <1”的必要不充分条件.[答案] C[点评] 判断p 、q 之间的关系,只需判断两个命题A :“若p ,则q ”和B :“若q ,则p ”的真假.(1)若p ⇒q ,则p 是q 的充分条件;(2)若q ⇒p ,则p 是q 的必要条件;(3)若p ⇒q 且q ⇒p ,则p 是q 的充要条件;(4)若p ⇒q 且q ⇒/ p ,则p 是q 的充分不必要条件;(5)若p ⇒/ q 且q ⇒p ,则p 是q 的必要不充分条件;(6)若p ⇒/ q 且q ⇒/ p ,则p 是q 的既不充分也不必要条件.2.集合法集合法就是利用满足两个条件的参数取值所构成的集合之间的关系来判断充要关系的方法.主要解决两个相似的条件难以进行区分或判断的问题.[典例2] 若A :log 2a <1,B :x 的二次方程x 2+(a +1)x +a -2=0的一个根大于零,另一根小于零,则A 是B 的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件[解题指导] 分别求出使A 、B 成立的参数a 的取值所构成的集合M 和N ,然后通过集合M 与N 之间的关系来判断.[解析] 由log 2a <1,解得0<a <2,所以满足条件A 的参数a 的取值集合为M ={a |0<a <2};而方程x 2+(a +1)x +a -2=0的一根大于零,另一根小于零的充要条件是f (0)<0,即a -2<0,解得a <2,即满足条件B 的参数a 的取值集合为N ={a |a <2},显然M N ,所以A 是B 的充分不必要条件.[答案] B[点评] 利用集合间的关系判断充要条件的方法记法条件p 、q 对应的集合分别为A 、B 关系A ⊆B B ⊆A A B⊂B A ⊂A =B A B 且⊄B A ⊄结论p 是q 的充分条件p 是q 的必要条件p 是q 的充分不必要条件p 是q 的必要不充分条件p 是q 的充要条件p 是q 的既不充分也不必要条件3.等价转化法等价转化法就是在判断含有逻辑联结词“否”的有关条件之间的充要关系时,根据原命题与其逆否命题的等价性转化为形式较为简单的两个条件之间的关系进行判断.[典例3] 已知条件p :≤-1,条件q :x 2-x <a 2-a ,且q 的一个充分不必要条4x -1⌝件是p ,则a 的取值范围是________.⌝[解题指导] “q 的一个充分不必要条件是p ”等价于“p 是q 的一个必要不充分⌝⌝条件”.[解析] 由≤-1,得-3≤x <1.由x 2-x <a 2-a ,得(x -a )[x +(a -1)]<0,4x -1当a >1-a ,即a >时,不等式的解为1-a <x <a ;当a =1-a ,即a =时,不等式的解为∅;1212当a <1-a ,即a <时,不等式的解为a <x <1-a .12由q 的一个充分不必要条件是p ,可知p 是q 的充分不必要条件,即p 为q 的一个⌝⌝⌝⌝必要不充分条件,即条件q 对应的x 取值集合是条件p 对应的x 取值集合的真子集.当a >时,由{x |1-a <x <a } {x |-3≤x <1},得Error!解得<a ≤1;1212当a =时,因为空集是任意一个非空集合的真子集,所以满足条件;12当a <时,由{x |a <x <1-a } {x |-3≤x <1},得Error!解得0≤a <.1212综上,a 的取值范围是[0,1].[答案] [0,1][点评] 条件和结论带有否定性词语的命题,常转化为其逆否命题来判断真假.p 、q 之间的关系和之间的关系p ⌝q ⌝p 是q 的充分不必要条件是的必要不充分条件p ⌝q ⌝p 是q 的必要不充分条件是的充分不必要条件p ⌝q ⌝p 是q 的充要条件是的充要条件p ⌝q ⌝p 是q 的既不充分也不必要条件是的既不充分也不必要条件p ⌝q ⌝[全盘巩固]1.“若b 2-4ac <0,则ax 2+bx +c =0没有实根”,其否命题是 ( )A .若b 2-4ac >0,则ax 2+bx +c =0没有实根B .若b 2-4ac >0,则ax 2+bx +c =0有实根C .若b 2-4ac ≥0,则ax 2+bx +c =0有实根D .若b 2-4ac ≥0,则ax 2+bx +c =0没有实根解析:选C 由原命题与否命题的关系可知,“若b 2-4ac <0,则ax 2+bx +c =0没有实根”的否命题是“若b 2-4ac ≥0,则ax 2+bx +c =0有实根”.2.f (x ),g (x )是定义在R 上的函数,h (x )=f (x )+g (x ),则“f (x ),g (x )均为偶函数”是“h (x )为偶函数”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件解析:选B 因为f (x ),g (x )均为偶函数,可推出h (x )为偶函数,反之,则不成立.3.(2014·黄冈模拟)与命题“若a ,b ,c 成等比数列,则b 2=ac ”等价的命题是( )A .若a ,b ,c 成等比数列,则b 2≠acB .若a ,b ,c 不成等比数列,则b 2≠acC .若b 2=ac ,则a ,b ,c 成等比数列D .若b 2≠ac ,则a ,b ,c 不成等比数列解析:选D 因为原命题与其逆否命题是等价的,所以与命题“若a ,b ,c 成等比数列,则b 2=ac ”等价的命题是“若b 2≠ac ,则a ,b ,c 不成等比数列”.4.设a >0且a ≠1,则“函数f (x )=a x 在R 上是减函数”是“函数g (x )=(2-a )x 3在R 上是增函数”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选A “函数f (x )=a x 在R 上是减函数”的充要条件是p :0<a <1.因为g ′(x )=3(2-a )x 2,而x 2≥0,所以“函数g (x )=(2-a )x 3在R 上是增函数”的充要条件是2-a >0,即a <2.又因为a >0且a ≠1,所以“函数g (x )=(2-a )x 3在R 上是增函数”的充要条件是q :0<a <2且a ≠1.显然p ⇒q ,但q ⇒/ p ,所以p 是q 的充分不必要条件,即“函数f (x )=a x 在R 上是减函数”是“函数g (x )=(2-a )x 3在R 上是增函数”的充分不必要条件.5.(2014·南昌模拟)下列选项中正确的是( )A .若x >0且x ≠1,则ln x +≥21ln x B .在数列{a n }中,“|a n +1|>a n ”是“数列{a n }为递增数列”的必要不充分条件C .命题“所有素数都是奇数”的否定为“所有素数都是偶数”D .若命题p 为真命题,则其否命题为假命题解析:选B 当0<x <1时,ln x <0,此时ln x +≤-2,A 错;当|a n +1|>a n 时,{a n }不1ln x 一定是递增数列,但若{a n }是递增数列,则必有a n <a n +1≤|a n +1|,B 对;全称命题的否定为特称命题,C 错;若命题p 为真命题,其否命题可能为真命题,也可能为假命题,D 错.6.已知p :≤1,q :(x -a )(x -a -1)≤0.若p 是q 的充分不必要条件,则实数2x -1a 的取值范围是( )A. B. C .(-∞,0)∪ D .(-∞,0)∪[0,12](0,12)[12,+∞)(12,+∞)解析:选A 令A ={x |≤1},得A =Error!,令B ={x |(x -a )(x -a -1)≤0},得2x -1B ={x |a ≤x ≤a +1},若p 是q 的充分不必要条件,则A B ,需Error!⇒0≤a ≤.127.在命题p 的四种形式(原命题、逆命题、否命题、逆否命题)中,真命题的个数记为f (p ),已知命题p :“若两条直线l 1:a 1x +b 1y +c 1=0,l 2:a 2x +b 2y +c 2=0平行,则a 1b 2-a 2b 1=0”.那么f (p )=________.解析:原命题p 显然是真命题,故其逆否命题也是真命题,而其逆命题是:若a 1b 2-a 2b 1=0,则两条直线l 1:a 1x +b 1y +c 1=0与l 2:a 2x +b 2y +c 2=0平行,这是假命题,因为当a 1b 2-a 2b 1=0时,还有可能l 1与l 2重合,逆命题是假命题,从而否命题也为假命题,故f (p )=2.答案:28.下列四个命题:①“若x +y =0,则x ,y 互为相反数”的逆命题;②“若x 2+x -6≥0,则x >2”的否命题;③在△ABC 中,“A >30°”是“sin A >”的充分不必要条件;12④“函数f (x )=tan(x +φ)为奇函数”的充要条件是“φ=k π(k ∈Z )”.其中真命题的序号是________(把真命题的序号都填上).解析:①原命题的逆命题为:“若x ,y 互为相反数,则x +y =0”,①是真命题;“若x 2+x -6≥0,则x >2”的否命题是“若x 2+x -6<0,则x ≤2”,②也是真命题;在△ABC 中,“A >30°”是“sin A >”的必要不充分条件,③是假命题;“函数f (x )=tan(x +φ)为奇函数”12的充要条件是“φ=(k ∈Z )”,④是假命题.k π2答案:①②9.已知α:x ≥a ,β:|x -1|<1.若α是β的必要不充分条件,则实数a 的取值范围为________.解析:α:x ≥a ,可看作集合A ={x |x ≥a },由|x -1|<1,得0<x <2,∴β可看作集合B ={x |0<x <2}.又∵α是β的必要不充分条件,∴B A ,∴a ≤0.答案:(-∞,0]10.已知函数f (x )是(-∞,+∞)上的增函数,a ,b ∈R ,对命题“若a +b ≥0,则f (a )+f (b )≥f (-a )+f (-b )”.(1)写出否命题,判断其真假,并证明你的结论;(2)写出逆否命题,判断其真假,并证明你的结论.解:(1)否命题:已知函数f (x )在(-∞,+∞)上是增函数,a ,b ∈R ,若a +b <0,则f (a )+f (b )<f (-a )+f (-b ).该命题是真命题,证明如下:∵a +b <0,∴a <-b ,b <-a .又∵f (x )在(-∞,+∞)上是增函数.∴f (a )<f (-b ),f (b )<f (-a ),∴f (a )+f (b )<f (-a )+f (-b ),∴否命题为真命题.(2)逆否命题:已知函数f (x )在(-∞,+∞)上是增函数,a ,b ∈R ,若f (a )+f (b )<f (-a )+f (-b ),则a +b <0.真命题,可证明原命题为真来证明它.∵a +b ≥0,∴a ≥-b ,b ≥-a ,∵f (x )在(-∞,+∞)上是增函数,∴f (a )≥f (-b ),f (b )≥f (-a ),∴f (a )+f (b )≥f (-a )+f (-b ),故原命题为真命题,所以逆否命题为真命题.11.已知集合A =Error!,B ={x |x +m 2≥1}.若“x ∈A ”是“x ∈B ”的充分条件,求实数m 的取值范围.解:y =x 2-x +1=2+,∵x ∈,∴≤y ≤2,∴A =Error!.32(x -34)716[34,2]716由x +m 2≥1,得x ≥1-m 2,∴B ={x |x ≥1-m 2}.∵“x ∈A ”是“x ∈B ”的充分条件,∴A ⊆B ,∴1-m 2≤,解得m ≥或m ≤-,7163434故实数m 的取值范围是∪.(-∞,-34][34,+∞)12.已知两个关于x 的一元二次方程mx 2-4x +4=0和x 2-4mx +4m 2-4m -5=0,求两方程的根都是整数的充要条件.解:∵mx 2-4x +4=0是一元二次方程,∴m ≠0.又另一方程为x 2-4mx +4m 2-4m -5=0,且两方程都要有实根,∴Error!解得m ∈.[-54,1]∵两方程的根都是整数,故其根的和与积也为整数,∴Error!∴m 为4的约数.又∵m ∈,∴m =-1或1.[-54,1]当m =-1时,第一个方程x 2+4x -4=0的根为非整数;而当m =1时,两方程的根均为整数,∴两方程的根均为整数的充要条件是m =1.[冲击名校]1.对于函数y =f (x ),x ∈R ,“y =|f (x )|的图象关于y 轴对称”是“y =f (x )是奇函数”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选B y =|f (x )|的图象关于y 轴对称,但是y =f (x )不一定为奇函数,如取函数f (x )=x 2,则函数y =|x 2|的图象关于y 轴对称,但函数f (x )=x 2是偶函数不是奇函数,即“y =|f (x )|的图象关于y 轴对称”⇒/ “y =f (x )是奇函数”;若y =f (x )是奇函数,图象关于原点对称,所以y =|f (x )|的图象关于y 轴对称,即“y =f (x )是奇函数”⇒“y =|f (x )|的图象关于y 轴对称”,故应选B.2.已知下列各组命题,其中p 是q 的充分必要条件的是( )A .p :m ≤-2或m ≥6;q :y =x 2+mx +m +3有两个不同的零点B .p :=1;q :y =f (x )是偶函数f (-x )f (x )C .p :cos α=cos β;q :tan α=tan βD .p :A ∩B =A ;q :A ⊆U ,B ⊆U ,∁U B ⊆∁U A解析:选D 对于A ,由y =x 2+mx +m +3有两个不同的零点,可得Δ=m 2-4(m +3)>0,从而可得m <-2或m >6.所以p 是q 的必要不充分条件;对于B ,由=1⇒f (-x )=f (x )⇒y =f (x )是偶函数,但由y =f (x )是偶函数不能推出f (-x )f (x )=1,例如函数f (x )=0,所以p 是q 的充分不必要条件;f (-x )f (x )对于C ,当cos α=cos β=0时,不存在tan α=tan β,反之也不成立,所以p 是q 的既不充分也不必要条件;对于D ,由A ∩B =A ,知A ⊆B ,所以∁U B ⊆∁U A ;反之,由∁U B ⊆∁U A ,知A ⊆B ,即A ∩B =A .所以p ⇔q .综上所述,p 是q 的充分必要条件的是D.[高频滚动]1.已知全集U =R ,集合A ={x |x 2-3x -4>0},B ={x |2x >8},那么集合(∁U A )∩B =( )A .{x |3<x <4}B .{x |x >4}C .{x |3<x ≤4}D .{x |3≤x ≤4}解析:选C A ={x |x 2-3x -4>0}={x |x <-1或x >4},所以∁U A ={x |-1≤x ≤4},又B ={x |2x >8}={x |x >3},所以(∁U A )∩B ={x |3<x ≤4}.2.对于任意的两个正数m ,n ,定义运算⊙:当m ,n 都为偶数或都为奇数时,m ⊙n =;当m ,n 为一奇一偶时,m ⊙n =.设集合A ={(a ,b )|a ⊙b =6,a ,b ∈N *},m +n2mn 则集合A 中的元素个数为________.解析:(1)当a ,b 都为偶数或都为奇数时,=6⇒a +b =12,即a +b22+10=4+8=6+6=1+11=3+9=5+7=12,故符合题意的点(a,b)有2×5+1=11个.ab(2)当a,b为一奇一偶时,=6⇒ab=36,即1×36=3×12=4×9=36,故符合题意的点(a,b)有2×3=6个.综上可知,集合A中的元素共有17个.答案:17。
高考理科数学真题练习题命题及其关系充分条件与必要条件理含解析
高考数学复习 课时作业2 命题及其关系、充分条件与必要条件一、选择题1.命题“若xy =0,则x =0”的逆否命题是( D ) A .若xy =0,则x ≠0 B.若xy ≠0,则x ≠0 C .若xy ≠0,则y ≠0 D.若x ≠0,则xy ≠0解析:“若xy =0,则x =0”的逆否命题为“若x ≠0,则xy ≠0”.2.命题“若△ABC 有一内角为π3,则△ABC 的三内角成等差数列”的逆命题( D )A .与原命题同为假命题B .与原命题的否命题同为假命题C .与原命题的逆否命题同为假命题D .与原命题同为真命题解析:原命题显然为真,原命题的逆命题为“若△ABC 的三内角成等差数列,则△ABC 有一内角为π3”,它是真命题.3.在命题“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠∅”的逆命题、否命题、逆否命题中结论成立的是( D )A .都真B .都假C .否命题真D .逆否命题真解析:对于原命题:“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠∅”,这是一个真命题,所以其逆否命题也为真命题;但其逆命题:“若{x |ax 2+bx +c <0}≠∅,则抛物线y =ax 2+bx +c 的开口向下”是一个假命题,因为当不等式ax 2+bx +c <0的解集非空时,可以有a >0,即抛物线的开口可以向上,因此否命题也是假命题.故选D.4.已知p :-1<x <2,q :log 2x <1,则p 是q 成立的( B ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分又不必要条件解析:由log 2x <1,解得0<x <2,所以-1<x <2是log 2x <1的必要不充分条件,故选B. 5.(2019·郑州质量预测)下列说法正确的是( D ) A .“若a >1,则a 2>1”的否命题是“若a >1,则a 2≤1” B .“若am 2<bm 2,则a <b ”的逆命题为真命题 C .存在x 0∈(0,+∞),使3x 0>4 x 0成立 D .“若sin α≠12,则α≠π6”是真命题解析:对于选项A ,“若a >1,则a 2>1”的否命题是“若a ≤1,则a 2≤1”,故选项A 错误;对于选项B ,“若am 2<bm 2,则a <b ”的逆命题为“若a <b ,则am 2<bm 2”,因为当m =0时,am 2=bm 2,所以其逆命题为假命题,故选项B 错误;对于选项C ,由指数函数的图象知,对任意的x ∈(0,+∞),都有4x >3x,故选项C 错误;对于选项D ,“若sin α≠12,则α≠π6”的逆否命题为“若α=π6,则sin α=12”,且其逆否命题为真命题,所以原命题为真命题,故选D.6.一次函数y =-m nx +1n的图象同时经过第一、三、四象限的必要不充分条件是( B )A .m >1,且n <1B .mn <0C .m >0,且n <0D .m <0,且n <0解析:因为y =-m nx +1n的图象经过第一、三、四象限,故-m n>0,1n<0,即m >0,n <0,但此为充要条件,因此,其必要不充分条件为mn <0.7.“不等式x 2-x +m >0在R 上恒成立”的一个必要不充分条件是( C ) A .m >14B .0<m <1C .m >0D .m >1解析:不等式x 2-x +m >0在R 上恒成立⇔Δ<0,即1-4m <0,∴m >14,同时要满足“必要不充分”,在选项中只有“m >0”符合.故选C.8.(2019·洛阳市高三统考)已知圆C :(x -1)2+y 2=r 2(r >0),设p :0<r ≤3,q :圆上至多有两个点到直线x -3y +3=0的距离为1,则p 是q 的( B )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:对于q ,圆(x -1)2+y 2=r 2(r >0)上至多有两个点到直线x -3y +3=0的距离为1,又圆心(1,0)到直线的距离d =|1-3×0+3|2=2,则r <2+1=3,所以0<r <3,又p :0<r ≤3,所以p 是q 的必要不充分条件,故选B.二、填空题9.“在△ABC 中,若∠C =90°,则∠A ,∠B 都是锐角”的否命题为:在△ABC 中,若∠C ≠90°,则∠A ,∠B 不都是锐角.解析:原命题的条件:在△ABC 中,∠C =90°,结论:∠A ,∠B 都是锐角.否命题是否定条件和结论.即“在△ABC 中,若∠C ≠90°,则∠A ,∠B 不都是锐角”.10.(2019·山西太原联考)已知a ,b 都是实数,那么“2a >2b ”是“a 2>b 2”的既不充分也不必要条件.解析:充分性:若2a >2b ,则2a -b >1,∴a -b >0,∴a >b .当a =-1,b =-2时,满足2a >2b,但a 2<b 2,故由2a >2b 不能得出a 2>b 2,因此充分性不成立.必要性:若a 2>b 2,则|a |>|b |.当a =-2,b =1时,满足a 2>b 2,但2-2<21,即2a <2b ,故必要性不成立.综上,“2a >2b ”是“a 2>b 2”的既不充分也不必要条件.11.已知命题p :a ≤x ≤a +1,命题q :x 2-4x <0,若p 是q 的充分不必要条件,则a 的取值范围是(0,3).解析:令M ={x |a ≤x ≤a +1},N ={x |x 2-4x <0}={x |0<x <4}.∵p 是q 的充分不必要条件,∴M N ,∴⎩⎪⎨⎪⎧a >0,a +1<4,解得0<a <3.12.下列命题中为真命题的序号是②④. ①若x ≠0,则x +1x≥2;②命题:若x 2=1,则x =1或x =-1的逆否命题为:若x ≠1且x ≠-1,则x 2≠1; ③“a =1”是“直线x -ay =0与直线x +ay =0互相垂直”的充要条件;④命题“若x <-1,则x 2-2x -3>0”的否命题为“若x ≥-1,则x 2-2x -3≤0”. 解析:当x <0时,x +1x≤-2,故①是假命题;根据逆否命题的定义可知,②是真命题;“a =±1”是“直线x -ay =0与直线x +ay =0互相垂直”的充要条件,故③是假命题;根据否命题的定义知④是真命题.13.已知m ,n 为两个非零向量,则“m 与n 共线”是“m ·n =|m ·n |”的( D ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:当m 与n 反向时,m ·n <0,而|m ·n |>0,故充分性不成立.若m ·n =|m ·n |,则m ·n =|m |·|n |cos 〈m ,n 〉=|m |·|n |·|cos〈m ,n 〉|,则cos 〈m ,n 〉=|cos 〈m ,n 〉|,故cos 〈m ,n 〉≥0,即0°≤〈m ,n 〉≤90°,此时m 与n 不一定共线,即必要性不成立.故“m 与n 共线”是“m ·n =|m ·n |”的既不充分也不必要条件,故选D.14.设命题p :|4x -3|≤1;命题q :x 2-(2a +1)x +a (a +1)≤0.若綈p 是綈q 的必要不充分条件,则实数a 的取值范围是⎣⎢⎡⎦⎥⎤0,12. 解析:由|4x -3|≤1,得12≤x ≤1;由x 2-(2a +1)·x +a (a +1)≤0,得a ≤x ≤a +1.∵綈p 是綈q 的必要不充分条件,∴q 是p 的必要不充分条件,∴p 是q 的充分不必要条件.∴⎣⎢⎡⎦⎥⎤12,1[a ,a +1].∴a ≤12,且a +1≥1,两个等号不能同时成立,解得0≤a ≤12.∴实数a 的取值范围是⎣⎢⎡⎦⎥⎤0,12.尖子生小题库——供重点班学生使用,普通班学生慎用15.定义在R 上的可导函数f (x ),其导函数为f ′(x ),则“f ′(x )为偶函数”是“f (x )为奇函数”的( B )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:∵f (x )为奇函数,∴f (-x )=-f (x ).∴[f (-x )]′=[-f (x )]′,∴f ′(-x )·(-x )′=-f ′(x ),∴f ′(-x )=f ′(x ),即f ′(x )为偶函数;反之,若f ′(x )为偶函数,如f ′(x )=3x 2,f (x )=x 3+1满足条件,但f (x )不是奇函数,所以“f ′(x )为偶函数”是“f (x )为奇函数”的必要不充分条件.故选B.16.已知p :实数m 满足m 2+12a 2<7am (a >0),q :方程x 2m -1+y 22-m=1表示焦点在y 轴上的椭圆.若p 是q 的充分不必要条件,则a 的取值范围是⎣⎢⎡⎦⎥⎤13,38. 解析:由a >0,m 2-7am +12a 2<0,得3a <m <4a ,即p :3a <m <4a ,a >0.由方程x 2m -1+y 22-m=1表示焦点在y 轴上的椭圆,可得2-m >m -1>0,解得1<m <32,即q :1<m <32.因为p 是q的充分不必要条件,所以⎩⎪⎨⎪⎧3a >1,4a ≤32或⎩⎪⎨⎪⎧3a ≥1,4a <32,解得13≤a ≤38,所以实数a 的取值范围是⎣⎢⎡⎦⎥⎤13,38.。
高三数学充分条件与必要条件试题答案及解析
高三数学充分条件与必要条件试题答案及解析1.设为非零实数,则:是:成立的 ( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B【解析】∵,∴,∴,∴,∴,又∵,∴或.若成立,不一定成立,如取,反之成立,故是的必要不充分条件,故选B【考点】充分必要条件.2.已知a∈R,且a≠0,则是“a>1”的( ).A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件【答案】B【解析】由或.所以是“a>1”的必要不充分条件.故选B【考点】1.分式不等式的解法.2.充要条件.3.中,角的对边分别为,则“”是“是等腰三角形”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】当时,由余弦定理得,,故,即,所以是等腰三角形,反之,当是等腰三角形时等腰三角形时,不一定有,故“”是“是等腰三角形”的充分不必要条件.【考点】1、余弦定理;2、充分必要条件.4.条件p:<2x<16,条件q:(x+2)(x+a)<0,若p是q的充分而不必要条件,则a的取值范围是()A.(4,+∞)B.[-4,+∞)C.(-∞,-4]D.(-∞,-4)【答案】D【解析】由<2x<16,得2-2<2x<24,即-2<x<4.由p⇒q而q p可得(x+2)(x+a)<0⇒-2<x<-a且-a>4得a<-4,故选D.5.(2013•浙江)若α∈R,则“α=0”是“sinα<cosα”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】∵“α=0”可以得到“sinα<cosα”,当“sinα<cosα”时,不一定得到“α=0”,如α=等,∴“α=0”是“sinα<cosα”的充分不必要条件,故选A.6.若实数a,b满足a≥0,b≥0,且ab=0,则称a与b互补.记φ(a,b)=-a-b,那么φ(a,b)=0是a与b互补的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C【解析】若φ(a,b)=0,即=a+b,两边平方得ab=0,故具备充分性.若a≥0,b≥0,ab=0,则不妨设a=0.φ(a,b)=-a-b=-b=0.故具备必要性.故选C.7.设集合M={1,2},N={a2},则“a=1”是“N⊆M”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】当a=1时,N={1},此时有N⊆M,则条件具有充分性;当N⊆M时,有a2=1或a2=2得到a1=1,a2=-1,a3=,a4=-,故不具有必要性,所以“a=1”是“N⊆M”的充分不必要条件,选A.8.已知向量,,则是的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】由题知,,则,即,故是的充分不必要条件.【考点】充分条件和必要条件.9.“方程有实数根”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件【答案】【解析】由方程有实数根,知;由,成立,所以,方程有实数根,即“方程有实数根”是“”的必要不充分条件,故选.【考点】充要条件10.设向量,则“∥”是“”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件【答案】B【解析】∥的充要条件是,因此本题选B.【考点】充要条件.11.设,且,则“函数在上是减函数”是“函数在上是增函数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】函数在上是减函数,则;函数在上是增函数,则,则,因此“函数在上是减函数”是“函数在上是增函数”的充分而不必要条件,故选A.【考点】1.函数的单调性;2.充分必要条件12.命题且满足.命题且满足.则是的()A.充分非必要条件B.必要非充分条件C.充要条件D.既不充分也不必要条件【答案】C【解析】由得,,即,故,反之也成立,故是的充要条件.【考点】充要条件的判断.13.“”是“”的A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件【答案】B【解析】由显然可得,而当时,对应的角有无数多个,比如,所以答案是B.【考点】(1)充要条件;(2)三角函数.14.设则是“”成立的.( )A.充分必要条件B.充分不必要条件C.必要不充分条件D.既非充分也非必要条件【解析】,,由于,因此应选C.【考点】解不等式,充要条件.15.“”是“直线与直线互相垂直”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】当两直线垂直时,解得或。
2020高考数学文科大一轮复习导学案《命题及其关系、充分条件和必要条件》含答案
第二节命题及其关系、充分条件与必要条件知识点一命题及四种命题1.命题的概念用语言、符号或式子表达的,可以判断真假的陈述句叫做命题,其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2.四种命题及其关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们有相同的真假性;②两个命题互为逆命题或互为否命题,它们的真假性没有关系.1.对于命题“单调函数不是周期函数”,下列陈述正确的是(D) A.逆命题为“周期函数不是单调函数”B.否命题为“单调函数是周期函数”C.逆否命题为“周期函数是单调函数”D.以上三者都不正确解析:原命题可以改写为“若函数是单调函数,则函数不是周期函数”.其逆命题为“若函数不是周期函数,则函数是单调函数”,故选项A 不正确;其否命题为“若函数不是单调函数,则函数是周期函数”,故选项B不正确;其逆否命题为“若函数是周期函数,则函数不是单调函数”,故选项C不正确.2.“若a,b都是偶数,则ab是偶数”的逆否命题为若ab不是偶数,则a,b不都是偶数.解析:“a,b都是偶数”的否定为“a,b不都是偶数”,“ab是偶数”的否定为“ab不是偶数”,故其逆否命题为“若ab不是偶数,则a,b不都是偶数”.3.在命题“若m>-n,则m2>n2”的逆命题、否命题、逆否命题中,假命题的个数是3.解析:原命题为假命题,则逆否命题也为假命题,逆命题是假命题,则否命题也是假命题.故假命题的个数为3.知识点二充分条件与必要条件1.若p⇒q且q⇒/p,则p是q的充分不必要条件,q是p的必要不充分条件;若p⇒q且q⇒p,则p是q的充分必要条件,q也是p的充分必要条件.2.若A、B为两个集合,满足A B,则A是B的充分不必要条件,B 是A的必要不充分条件;若A=B,则A是B的充分必要条件.4.(2018·天津卷)设x∈R,则“x3>8”是“|x|>2”的(A)A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解析:由x3>8可得x>2,由|x|>2可得x>2或x<-2.故“x3>8”是“|x|>2”的充分而不必要条件,故选A.5.在△ABC中,“A>B”是“sin A>sin B”的(C)A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:由正弦定理知asin A=bsin B=2R(R为△ABC外接圆半径).若sin A>sin B,则a2R>b2R,即a>b,所以A>B;若A>B,则a>b,所以2R sin A>2R sin B,即sin A>sin B,所以“A>B”是“sin A>sin B”成立的充要条件.1.区别两个说法(1)“A是B的充分不必要条件”中,A是条件,B是结论.(2)“A的充分不必要条件是B”中,B是条件,A是结论.2.充要条件的两个特征(1)对称性:若p是q的充分条件,则q是p的必要条件.(2)传递性:若p是q的充分(必要)条件,q是r的充分(必要)条件,则p 是r的充分(必要)条件.3.充要关系与集合的子集之间的关系设A={x|p(x)},B={x|q(x)},(1)若A⊆B,则p是q的充分条件,q是p的必要条件.(2)若A B,则p是q的充分不必要条件,q是p的必要不充分条件.(3)若A=B,则p是q的充要条件.考向一四种命题及其关系【例1】(1)已知x∈R,命题“若x2>0,则x>0”的逆命题、否命题和逆否命题中,正确命题的个数是()A.0 B.1C.2 D.3(2)已知命题p:若a<1,则a2<1,下列说法正确的是()A.命题p是真命题B.命题p的逆命题是真命题C.命题p的否命题是“若a<1,则a2≥1”D.命题p的逆否命题是“若a2≥1,则a<1”【解析】(1)命题“若x2>0,则x>0”的逆命题是“若x>0,则x2>0”,是真命题;否命题是“若x2≤0,则x≤0”,是真命题;逆否命题是“若x≤0,则x2≤0”,是假命题.综上,以上三个命题中真命题的个数是2.故选C.(2)已知命题p:若a<1,则a2<1,如a=-2,则(-2)2>1,命题p为假命题,所以A不正确;命题p的逆命题是“若a2<1,则a<1”,为真命题,所以B正确;命题p的否命题是“若a≥1,则a2≥1”,所以C不正确;命题p的逆否命题是“若a2≥1,则a≥1”,所以D不正确.故选B.【答案】(1)C(2)B(1)四种命题在书写时,要注意词语的否定形式,如“都是”的否定应为“不都是”,“大于”的否定为“不大于”等.(2)命题真假的判断方法①联系已有的数学公式、定理、结论进行正面直接判断.②利用原命题与逆否命题,逆命题与否命题的等价关系进行判断.(1)命题“若x2≠4,则x≠2且x≠-2”的否命题为(D)A.若x2=4,则x≠2且x≠-2B.若x2≠4,则x=2且x=-2C.若x2≠4,则x=2或x=-2D.若x2=4,则x=2或x=-2(2)下列命题的逆命题为真命题的是(B)A.若x>2,则(x-2)(x+1)>0B.若x2+y2≥4,则xy=2C.若x+y=2,则xy≤1D .若a ≥b ,则ac 2≥bc 2解析:(1)“若x 2≠4,则x ≠2且x ≠-2”的否命题是“若x 2=4,则x =2或x =-2”.故选D.(2)选项A ,“若x >2,则(x -2)(x +1)>0”的逆命题为“若(x -2)(x +1)>0,则x >2”,因为由(x -2)(x +1)>0得到x >2或x <-1,所以是假命题;选项B ,“若x 2+y 2≥4,则xy =2”的逆命题为“若xy =2,则x 2+y 2≥4”是真命题;选项C ,“若x +y =2,则xy ≤1”的逆命题为“若xy ≤1,则x +y =2”;因为x =2,y =12,满足xy ≤1,但不满足x +y =2,所以是假命题;选项D ,“若a ≥b ,则ac 2≥bc 2”的逆命题为“若ac 2≥bc 2,则a ≥b ”,因为若c =0,a =1,b =2,满足ac 2≥bc 2,但不满足a ≥b ,所以是假命题.故选B.考向二 充分条件与必要条件的判断【例2】 (1)设等比数列{a n }的公比为q ,前n 项和为S n ,则“|q |=1”是“S 6=3S 2”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(2)已知p :x +y ≠-2,q :x ,y 不都是-1,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(3)若集合A ={x |x -x 2>0},B ={x |(x +1)(m -x )>0},则“m >1”是“A ∩B ≠∅”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】(1)由S6=3S2,得a1(1+q+q2+q3+q4+q5)=3a1(1+q),即q5+q4+q3+q2-2-2q=0,(q+1)2(q-1)·(q2+2)=0,解得q=±1,所以“|q|=1”是“S6=3S2”的充要条件,故选C.(2)因为p:x+y≠-2,q:x,y不都是-1,所以綈p:x+y=-2,綈q:x=-1,且y=-1.因为綈q⇒綈p,但綈p⇒/綈q,所以綈q是綈p的充分不必要条件,即p是q的充分不必要条件.故选A.(3)化简集合A={x|0<x<1},若m>1,则B={x|-1<x<m},此时A∩B≠∅,反之,若A∩B≠∅,则m>0,因(1,+∞)(0,+∞),故选A.【答案】(1)C(2)A(3)A充分条件、必要条件的三种判定方法(1)定义法:根据p⇒q,q⇒p进行判断,适用于定义、定理判断性问题.(2)集合法:根据p,q成立的对象的集合之间的包含关系进行判断,多适用于命题中涉及字母范围的推断问题.(3)等价转化法:根据一个命题与其逆否命题的等价性进行判断,适用于条件和结论带有否定性词语的命题.(1)设a,b均为单位向量,则“|a-3b|=|3a+b|”是“a⊥b”的(C)A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件(2)(2019·山东日照联考)“m<0”是“函数f(x)=m+log2x(x≥1)存在零点”的(A)A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(3)已知p:a<0,q:a2>a,则綈p是綈q的(B)A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:(1)∵|a-3b|=|3a+b|,∴(a-3b)2=(3a+b)2,∴a2-6a·b+9b2=9a2+6a·b+b2,又∵|a|=|b|=1,∴a·b=0,∴a⊥b;反之也成立.故选C.(2)当m<0时,由图象的平移变换可知,函数f(x)必有零点;当函数f(x)有零点时,m≤0,所以“m<0”是“函数f(x)=m+log2x(x≥1)存在零点”的充分不必要条件,故选A.(3)因为綈p:a≥0,綈q:0≤a≤1,所以綈q⇒綈p且綈p⇒/綈q,所以綈p是綈q的必要不充分条件.考向三 充分条件、必要条件的应用【例3】 (1)若“x >2m 2-3”是“-1<x <4”的必要不充分条件,则实数m 的取值范围是( )A .[-1,1]B .[-1,0]C .[1,2]D .[-1,2](2)已知条件p :4x -1≤-1,条件q :x 2+x <a 2-a ,且綈q 的一个充分不必要条件是綈p ,则a 的取值范围是( )A.⎣⎢⎡⎦⎥⎤-2,-12 B.⎣⎢⎡⎦⎥⎤12,2 C .[-1,2] D.⎝ ⎛⎦⎥⎤-2,12∪[2,+∞) 【解析】 (1)∵x >2m 2-3是-1<x <4的必要不充分条件,∴(-1,4)⊆(2m 2-3,+∞),∴2m 2-3≤-1,解得-1≤m ≤1.故选A.(2)由4x -1≤-1,解得-3≤x <1;由x 2+x <a 2-a ,得x 2+x -a 2+a <0.由綈q 的一个充分不必要条件是綈p ,可知p 是q 的必要不充分条件,即条件q 对应的x 取值集合是条件p 对应的x 取值集合的真子集.设f (x )=x 2+x-a 2+a ,其大致图象如图,则⎩⎪⎨⎪⎧ f (-3)=-a 2+a +6≥0,f (1)=-a 2+a +2≥0,所以⎩⎪⎨⎪⎧-2≤a ≤3,-1≤a ≤2,解得-1≤a ≤2.故选C. 【答案】 (1)A (2)C(1)求解充分、必要条件的应用问题时,一般是把充分、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(组)求解.(2)求解参数的取值范围时,一定要注意对区间端点值进行检验,尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现错误.(1)下面四个条件中,使a >b 成立的必要而不充分条件是( B )A .a -1>bB .a +1>bC .|a |>|b |D .a 3>b 3(2)“直线x -y -k =0与圆(x -1)2+y 2=2有两个不同的交点”的一个充分不必要条件可以是( C )A .-1≤k <3B .-1≤k ≤3C.0<k<3D.k<-1或k>3解析:(1)“a>b”不能推出“a-1>b”,故选项A不是“a>b”的必要条件,不满足题意;“a>b”能推出“a+1>b”,但“a+1>b”不能推出“a>b”,故满足题意;“a>b”不能推出“|a|>|b|”,故选项C不是“a>b”的必要条件,不满足题意;“a>b”能推出“a3>b3”,且“a3>b3”能推出“a>b”,故是充要条件,不满足题意.故选B.(2)直线x-y-k=0与圆(x-1)2+y2=2有两个不同交点等价于|1-0-k|<2,解得k∈(-1,3).四个选项中只有(0,3)是(-1,3)的真子集,2故充分不必要条件可以是“0<k<3”.。
高中数学命题及其关系、充分条件与必要条件 基础过关专题训练(2)
专题训练(二) 命题及其关系、充分条件与必要条件基础过关一、选择题1.命题“若a >b ,则a +c >b +c ”的否命题是( )A .若a ≤b ,则a +c ≤b +cB .若a +c ≤b +c ,则a ≤bC .若a +c >b +c ,则a >bD .若a >b ,则a +c ≤b +c2.设x ∈R ,则“2-x ≥0”是“|x -1|≤1”的( )A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件3.设a >b ,a ,b ,c ∈R ,则下列命题为真命题的是( )A .ac 2>bc 2B .a b >1C .a -c >b -cD .a 2>b 24.若命题p 的否命题是命题q 的逆否命题,则命题p 是命题q 的( ) A .逆命题 B .否命题C .逆否命题D .p 与q 是同一命题 5.“α=π6+2k π(k ∈Z )”是“cos2α=12”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.(2020·皖南八校联考)“1x >1”是“e x -1<1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.命题“对任意x ∈[1,2),x 2-a ≤0”为真命题的一个充分不必要条件可以是( )A .a ≥4B .a >4C .a ≥1D .a >18.在等比数列{a n }中,“a 1,a 3是方程x 2+3x +1=0的两根”是“a 2=±1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件9.已知命题p :x 2+2x -3>0;命题q :x >a ,且綈q 的一个充分不必要条件是綈p ,则a 的取值范围是( )A .[1,+∞)B .(-∞,1]C .[-1,+∞)D .(-∞,-3]10.(2020·南昌市第一次模拟)已知r >0,x ,y ∈R ,p :|x |+|y |2≤1,q :x 2+y 2≤r 2,若p 是q 的必要不充分条件,则实数r 的取值范围是( )A .⎝ ⎛⎦⎥⎤0,255 B .(0,1] C .⎣⎢⎡⎭⎪⎫255,+∞ D .[2,+∞)二、填空题11.“在△ABC 中,若∠C =90°,则∠A ,∠B 都是锐角”的否命题为________。
2019届高考(文)《命题及其关系、充分条件与必要条件》专题达标试卷(含答案)
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
课时提升作业(二)(45分钟100分)一、选择题(每小题5分,共40分)1.(2018·安徽高考)“(2x-1)x=0”是“x=0”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.A.若a≥b,则a3≥b3B.若a>b,则a3≤b3C.若a≤b,则a3≤b3D.若a3≤b3,则a≤b3.已知下列①已知集合A,B,若a∈A,则a∈(A∩B);②若A∪B=B,则A⊆B;③若a>|b|,则a2>b2;④3≥2.其中是真A.1B.2C.3D.44.(2018·浙江高考)若α∈R,则“α=0”是“sinα<cosα”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5.(2018·鄂州模拟)已知a,b为非零向量,则“a⊥b”是“函数f(x)=(xa+b)·(xb-a)为一次函数”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.(2018·池州模拟)已知向量a=(1,2),b=(-2,1),则“λ=2018”是“λa⊥b”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.(2018·黄冈模拟)△ABC中,角A,B,C成等差数列是sinC=(cosA+sinA)cosB成立的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.(2018·随州模拟)下列给出的四个A.B.“x=-1”是“x2-5x-6=0”的必要不充分条件C.命题“存在x0∈R,使得+x0+1<0”的否定是“对任意x∈R,均有x2+x+1<0”D.二、填空题(每小题5分,共20分)9.10.(2018·合肥模拟)有下列几个①“若a>b,则a2>b2”的否②“若x+y=0,则x,y互为相反数”的逆③“若x2<4,则-2<x<2”的逆否其中真11.函数f(x)=x3+2x2+mx+1在(-∞,+∞)内单调递增的充要条件是.12.(能力挑战题)下面有四个关于充要条件的①若x∈A,则x∈B是A⊆B的充要条件;②函数y=x2+bx+c为偶函数的充要条件是b=0;③x=1是x2-2x+1=0的充要条件;④若a∈R,则a>1是<1的充要条件;其中真三、解答题(13题12分,14~15题各14分)13.已知集合A={x|x2-4mx+2m+6=0},B={x|x<0},若14.已知集合A=,B={x|x+m2≥1}.若“x∈A”是“x∈B”的充分条件,求实数m的取值范围.15.(能力挑战题)已知两个关于x的一元二次方程mx2-4x+4=0和x2-4mx+4m2-4m-5=0,求两方程的根都是整数的充要条件.答案解析1.【思路点拨】解出一元二次方程的解,根据充分必要条件的概念判定.【解析】选B.由(2x-1)x=0⇒x=0或x=,所以应选B.2.【解析】选D.由逆否3.【解析】选C.①是假命题,因为a∈A a∈(A∩B);②是真B⇔A⊆B;③是真4.【思路点拨】让“α=0”和“sinα<cosα”其中一个作条件,另一个作结论,判断【解析】选A.当α=0时,sinα=0,cosα=1,所以sinα<cosα;若sinα<cosα,则α∈∪(k∈Z).5.【解析】选B.f(x)=(xa+b)·(xb-a)=a·bx2+(b2-a2)x-a·b,若“函数f(x)=(xa+b)·(xb-a)为一次函数”,则a·b=0,即“a⊥b”;若“a⊥b”,当a2=b2时,f(x)=0,就不是一次函数,故“a⊥b”是“函数f(x)=(xa+b)·(xb-a)为一次函数”的必要不充分条件.【加固训练】设x∈R,则“x2-3x>0”是“x>4”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【解析】选B.由x2-3x>0得x>3或x<0,所以x2-3x>0是x>4的必要而不充分条件,故选B.6.【解析】选A.因为a=(1,2),b=(-2,1),所以a·b=1×(-2)+2×1=0,即2018a·b=0,所以λa⊥b成立.反之,由λa⊥b,得λa·b=λ(a·b)=λ[1×(-2)+2×1]=0,此时λ不一定等于2018.故选A.7.【解析】选A.由sinC=(cosA+sinA)cosB可得sin(A+B)=(cosA+sinA)cosB,化简得cosAsin=0,所以A=或B=,则角A,B,C成等差数列是sinC=(cosA+sinA)cosB成立的充分不必要条件,故选A.【加固训练】(2018·烟台模拟)设p:f(x)=lnx+2x2+mx+1在(0,+∞)内单调递增,q:m≥-5,则p是q的( ) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】选A.f′(x)=+4x+m,由f′(x)=+4x+m≥0,得m≥-.因为+4x≥2=4,所以-≤-4,所以m≥-4,即p:m≥-4,所以p⇒q,但q p,所以p是q的充分不必要条件,选A.8.【解析】选D.本题考查命题的相关概念.选项A,“若x2=1,则x=1”的否命题为:“若x2≠1,则x≠1”,故选项A错;x=-1可以推出x2-5x-6=0,反之不成立,故“x=-1”是“x2-5x-6=0”的充分不必要条件,故选项B错;命题“存在x0∈R,使得+x0+1<0”的否定应为“对任意x∈R,均有x2+x+1≥0”,故选项C错,正确答案为D.【加固训练】已知x,y是实数,则x≠y是x2≠y2的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】选B.若x≠y,则x2≠y2⇔若x2=y2,则x=y,显然是假的;若x2≠y2,则x≠y⇔若x=y,则x2=y2,显然是真的.故x≠y是x2≠y2的必要不充分条件.9.【思路点拨】x>1,y>1是且的关系,其否定为x≤1或y≤1.【解析】因为x>1,y>1的否定是x≤1或y≤1,所以原答案:若x≤1或y≤1,则xy≤110.【解析】①原②原③原答案:②③11.【解析】在(-∞,+∞)内单调递增,则f′(x)≥0在(-∞,+∞)上恒成立,即3x2+4x+m≥0在(-∞,+∞)上恒成立,故Δ=16-12m≤0,解得m≥.答案:m≥【误区警示】解答本题,易由题意误得f′(x)>0在(-∞,+∞)上恒成立,而误得m>.12.【解析】由子集的定义知,命题①为真.当b=0时,y=x2+bx+c=x2+c显然为偶函数,反之,y=x2+bx+c是偶函数,则(-x)2+b(-x)+c=x2+bx+c恒成立,就有bx=0恒成立,得b=0,因此②为真.当x=1时,x2-2x+1=0成立,反之,当x2-2x+1=0时,x=1,所以③为真.对于④,由于<1⇔>0,即a>1或a<0,故a>1是<1的充分不必要条件,所以④为假.答案:①②③13.【解析】因为“A∩B=∅”是假设全集U={m|Δ=(-4m)2-4(2m+6)≥0},则U=.假设方程x2-4mx+2m+6=0的两根x1,x2均非负,则有,⇒⇒m≥.又集合关于全集U的补集是{m|m≤-1},所以实数m的取值范围是{m|m≤-1}.14.【解析】y=x2-x+1=+,因为x∈,所以≤y≤2,所以A=.由x+m2≥1,得x≥1-m2,所以B={x|x≥1-m2}.因为“x∈A”是“x∈B”的充分条件,所以A⊆B,所以1-m2≤,解得m≥或m≤-,故实数m的取值范围是∪.【加固训练】求证:关于x的方程ax2+bx+c=0有一个根为1的充要条件是a+b+c=0. 【证明】必要性:若方程ax2+bx+c=0有一个根为1,则x=1满足方程ax2+bx+c=0,所以a+b+c=0.充分性:若a+b+c=0,则b=-a-c,所以ax2+bx+c=0可化为ax2-(a+c)x+c=0,所以(ax-c)(x-1)=0,所以当x=1时,ax2+bx+c=0,所以x=1是方程ax2+bx+c=0的一个根.15.【解析】因为mx2-4x+4=0是一元二次方程,所以m≠0.又另一方程为x2-4mx+4m2-4m-5=0,且两方程都要有实根,所以解得m∈.因为两方程的根都是整数,故其根的和与积也为整数,所以所以m为4的约数.又因为m∈,所以m=-1或1.当m=-1时,第一个方程x2+4x-4=0的根为非整数;而当m=1时,两方程的根均为整数,所以两方程的根都是整数的充要条件是m=1.关闭Word文档返回原板块。
高三数学充分条件与必要条件试题答案及解析
高三数学充分条件与必要条件试题答案及解析1.“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件【答案】B【解析】当a,b异号时,一定有|a-b|=|a|+|b|,但a,b中至少有一个为0时,也有|a-b|=|a|+|b|,故选B【考点】绝对值的性质,充要条件2.[2014·徐州检测]用分析法证明:欲使①A>B,只需②C<D,这里①是②的()A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件【答案】B【解析】分析法证明的本质是证明结论的充分条件成立,即②⇒①,所以①是②的必要条件.,一元二次方程x2﹣4x+n=0有整数根的充要条件是n= .3.(5分)(2011•陕西)设n∈N+【答案】3或4,则分别讨论n为1,2,3,4时的【解析】由一元二次方程有实数根⇔△≥0得n≤4;又n∈N+情况即可.解:一元二次方程x2﹣4x+n=0有实数根⇔(﹣4)2﹣4n≥0⇔n≤4;又n∈N,则n=4时,方程x2﹣4x+4=0,有整数根2;+n=3时,方程x2﹣4x+3=0,有整数根1,3;n=2时,方程x2﹣4x+2=0,无整数根;n=1时,方程x2﹣4x+1=0,无整数根.所以n=3或n=4.故答案为:3或4.点评:本题考查一元二次方程有实根的充要条件及分类讨论的策略.4.对于函数y=f(x),x∈R,“y=|f(x)|的图象关于y轴对称”是“y=f(x)是奇函数”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】例如f(x)=x2﹣4满足|f(x)|的图象关于y轴对称,但f(x)不是奇函数,所以,“y=|f(x)|的图象关于y轴对称”推不出“y=f(x)是奇函数”当“y=f(x)是奇函数”⇒f(﹣x)=f(x)⇒|f(﹣x)|=|f(x)|⇒y=|f(x)|为偶函数⇒,“y=|f(x)|的图象关于y轴对称”所以,“y=|f(x)|的图象关于y轴对称”是“y=f(x)是奇函数”的必要而不充分条件故选B5.钱大姐常说“便宜没好货”,她这句话的意思是:“不便宜”是“好货”的()A.充分条件B.必要条件C.充分必要条件D.既非充分也非必要条件【答案】B【解析】钱大姐常说“便宜没好货”, “便宜没好货”是一个真命题,则它的逆否命题也是真命题,即“好货则不便宜”,所以“不便宜”是“好货”的必要条件.【考点】命题及其充要条件.6.“”是“”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】由指数函数的单调性可得等价于,当或时,不成立;而等价于,能推出;所以“”是“”的必要不充分条件.故选B.【考点】逻辑关系指对数7.“函数g(x)=(2-a)在区间(0,+∞)上是增函数”的充分不必要条件是a∈ .【答案】(-∞,t)(t<2)【解析】由于在(0,+∞)上是增函数,故需要2-a>0,即a<2,而要求充分不必要条件,则填集合(-∞,2)的一个子集即可.8.已知集合A={x|x>5},集合B={x|x>a},若命题“x∈A”是命题“x∈B”的充分不必要条件,则实数a的取值范围是________.【答案】a<5【解析】命题“x∈A”是命题“x∈B”的充分不必要条件,∴A⊆B,∴a<5.9.若且命题,命题,则是的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】因为且命题,所以可得,所以充分性成立.又因为由可得或.所以必要性不成立,故选A.本小题关键是要熟练掌握二次不等式的解法.【考点】1.二次不等式的解法.2.对参数的正确理解.10.“M>N”是“log2M>log2N”成立的______条件(从“充要”、“充分不必要”、“必要不充分”中选择一个正确的填写).【答案】必要不充分【解析】“M>N”⇒/ log2M>log2N,”因为M,N小于零不成立;“log2M>log2N”⇒M>N.故“M>N”是“log2M>log2N”的必要不充分条件.11.“m=1”是“直线x-my=1和直线x+my=0互相垂直”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】因为m=1时,直线x-my=1和直线x+my=0即可化为x-y=1和x+y=0.即y=x-1和y=-x所以斜率积为-1,所以这两条直线垂直.所以充分性成立.若直线x-my=1和直线x+my=0互相垂直,因为m=0显然不成立.所以两条直线分别为和.所以由斜率乘积为-1可得.所以即.所以必要条件不存在.故选A.【考点】1.充分必要条件.2.直线的位置关系.3.含参数的讨论.12.已知命题,命题,若是的充分不必要条件,则实数的范围是 .【答案】【解析】命题首先化简为,命题是二次不等式,是的充分不必要条件说明当时不等式恒成立,故又,故可解得.【考点】充分必要条件与不等式恒成立问题.13.“”是“直线与直线垂直”的()条件A.充分而不必要B.必要而不充分C.充要D.既不充分也不必要【答案】A【解析】当时,两直线方程分别为,满足两直线的斜率乘积为,直线互相垂直;反之,直线与直线垂直,则有,解得,故“”是“直线与直线垂直”的充分而不必要条件,选A.【考点】充要条件,直线垂直的条件.14.对于常数、,“”是“方程的曲线是椭圆”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B【解析】是椭圆,则即,∴不能推出曲线是椭圆,而曲线是椭圆可以推出,∴“”是“方程的曲线是椭圆”的必要而不充分条件.【考点】1.二次方程表示椭圆的充要条件;2.充要条件.15.设,则是的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】因为当时,;当时,.所以是的充分不必要条件.【考点】必要条件、充分条件和充要条件的判断16.在中,是的 ( )A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件【答案】C【解析】当时,,则;当时,,则,故,或,选C.【考点】1、正弦定理;2、正弦的二倍角公式;3、充分条件和必要条件.17.或是的条件.【答案】必要不充分【解析】若,,则,故或是的必要不充分条件.【考点】充要条件的判断.18.设,则“”是“直线与直线平行”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】若直线与直线平行,则所以“”是“直线与直线平行”的充分不必要条件,选A【考点】两直线平行的充要条件19.已知命题p:是命题q:向量与共线的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】当时,,,则,共线;当与共线,则,解得或.即命题p是命题q的充分不必要条件.【考点】1.充要条件;2.向量共线的充要条件.20.在中,“”是“是直角三角形”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】,又因为,所以,因为,所以,故为直角三角形;若为直角三角形,则不一定为直角,也可能为锐角,则不一定取到最大值,即不一定有,故“”是“是直角三角形”的充分不必要条件,故选A.【考点】1.两角和的正弦公式;2.充分必要条件21.已知“”是“”的充分不必要条件,则k的取值范围是( )A.[2,+)B.[1,+)C.(2,+)D.(一,-1]【答案】A【解析】由,得,所以或,因为“”是“”的充分不必要条件,所以.【考点】1.充分必要条件;2.分式不等式的解法.22.已知条件,条件,则成立的()A.充要条件B.充分不必要条件C.必要不充分条件D.既非充分也非必要条件【答案】C.【解析】由条件,知,由条件,则或,所以是的成立的必要不充分条件.【考点】充要条件.23.设命题:实数满足,其中;命题:实数满足且的必要不充分条件,求实数的取值范围.【答案】.【解析】先把命题、中实数满足的不等式分别表示为集合、,再由的必要不充分条件,得必要不充分条件,即可得两个集合、的关系,从而解得的取值范围. 试题解析:设,. 5分是的必要不充分条件,必要不充分条件,, 8分所以,又,所以实数的取值范围是. 12分【考点】1、一元二次不等式的解法;2、充要条件.24.已知复数,则“”是“为纯虚数”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】为纯虚数,为纯虚数,所以“”是“为纯虚数”的充分不必要条件.【考点】复数的概念、充要条件.25.“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】由或,,但,所以“”是“”的必要不充分条件.【考点】1.简单的绝对值不等式;2.充要条件.26.给定两个命题,,若是的必要而不充分条件,则是的( )A.充分不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】由且可得且,所以是的充分不必要条件。
课后练习——命题及其关系、充分条件与必要条件 (解析版)
课后练习——命题及其关系、充分条件与必要条件建议用时:45分钟一、选择题1.已知命题p :“正数a 的平方不等于0”,命题q :“若a 不是正数,则它的平方等于0”,则q 是p 的( )A .逆命题B .否命题C .逆否命题D .否定B [命题p :“正数a 的平方不等于0”可写成“若a 是正数,则它的平方不等于0”,从而q 是p 的否命题.]2.原命题“设a ,b ,c ∈R ,若a >b ,则ac 2>bc 2”以及它的逆命题、否命题、逆否命题中,真命题的个数为( )A .0B .1C .2D .4C [当c =0时,ac 2=bc 2,所以原命题是假命题;由于原命题与逆否命题的真假一致,所以逆否命题也是假命题;逆命题为“设a ,b ,c ∈R ,若ac 2>bc 2,则a >b ”,它是真命题;由于否命题与逆命题的真假一致,所以否命题也是真命题.综上所述,真命题有2个.]3.设x ∈R ,则“2-x ≥0”是“(x -1)2≤1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件B [2-x ≥0,则x ≤2,(x -1)2≤1,则-1≤x -1≤1,即0≤x ≤2,据此可知:“2-x ≥0”是“(x -1)2≤1”的必要不充分条件.]4.设x ∈R ,则“⎪⎪⎪⎪⎪⎪x -12<12”是“x 3<1”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件A [由⎪⎪⎪⎪⎪⎪x -12<12,得0<x <1,所以0<x 3<1;由x 3<1,得x <1,不能推出0<x <1.所以“⎪⎪⎪⎪⎪⎪x -12<12”是“x 3<1”的充分而不必要条件.故选A .] 5.(2019·庆阳模拟)有下列命题:①“若x +y >0,则x >0且y >0”的否命题;②“矩形的对角线相等”的否命题;③“若m >1,则mx 2-2(m +1)x +m +3>0的解集是R ”的逆命题; ④“若a +7是无理数,则a 是无理数”的逆否命题.其中为真命题的是( )A .①②③B .②③④C .①③④D .①④C [①的逆命题为“若x >0且y >0,则x +y >0”为真,故否命题为真; ②的否命题为“不是矩形的图形对角线不相等”,为假命题;③的逆命题为“若mx 2-2(m +1)x +m +3>0的解集为R ,则m >1”, ∵当m =0时,解集不是R ,∴应有⎩⎪⎨⎪⎧m >0,Δ<0,即m >1. ∴③是真命题;④原命题为真,逆否命题也为真.综上得①③④为真命题,故选C .]6.下列说法正确的是( )A .命题“若x 2=1,则x =1”的否命题是“若x 2=1,则x ≠1”B .“x =-1”是“x 2-x -2=0”的必要不充分条件C .命题“若x =y ,则sin x =sin y ”的逆否命题是真命题D .“tan x =1”是“x =π4”的充分不必要条件C [对A 项,由原命题与否命题的关系知,原命题的否命题是“若x 2≠1,则x ≠1”,即A 错误;因为x 2-x -2=0⇔x =-1或x =2,所以由“x =-1”能推出“x 2-x -2=0”,反之,由“x 2-x -2=0”推不出“x =-1”,所以“x =-1”是“x 2-x -2=0”的充分不必要条件,即B 错误;因为由x =y 能推出sin x =sin y ,即原命题是真命题,所以它的逆否命题是真命题,故C 正确;由x =π4能推出tan x =1,但由tan x =1推不出x =π4,所以“x =π4”是“tan x =1”的充分不必要条件,即D错误.]7.若x>2m2-3是-1<x<4的必要不充分条件,则实数m的取值范围是()A.[-3,3]B.(-∞,-3]∪[3,+∞)C.(-∞,-1]∪[1,+∞)D.[-1,1]D[∵x>2m2-3是-1<x<4的必要不充分条件,∴(-1,4)(2m2-3,+∞),∴2m2-3≤-1,解得-1≤m≤1,故选D.]二、填空题8.在△ABC中,“A=B”是“tan A=tan B”的________条件.充要[由A=B,得tan A=tan B,反之,若tan A=tan B,则A=B+kπ,k∈Z.∵0<A<π,0<B<π,∴A=B,故“A=B”是“tan A=tan B”的充要条件.]9.设p:实数x,y满足x>1且y>1,q:实数x,y满足x+y>2,则p是q的________条件.(选填“充分不必要”“必要不充分”“充要”“既不充分也不必要”)充分不必要[当x>1,y>1时,x+y>2一定成立,即p⇒q,当x+y>2时,可令x=-1,y=4,即q⇒/ p,故p是q的充分不必要条件.]10.直线x-y-k=0与圆(x-1)2+y2=2有两个不同交点的充要条件是________.k∈(-1,3)[直线x-y-k=0与圆(x-1)2+y2=2有两个不同交点等价于|1-0-k|<2,解之得-1<k<3.]21.设a,b均为单位向量,则“|a-3b|=|3a+b|”是“a⊥b”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件C[由|a-3b|=|3a+b|,得(a-3b)2=(3a+b)2,即a2+9b2-6a·b=9a2+b2+6a·b.因为a,b均为单位向量,所以a2=b2=1,所以a·b=0,能推出a⊥b.由a⊥b得|a-3b|=10,|3a+b|=10,能推出|a-3b|=|3a+b|,所以“|a-3b|=|3a+b|”是“a⊥b”的充要条件.]2.王昌龄《从军行》中两句诗为“黄沙百战穿金甲,不破楼兰终不还”,“攻破楼兰”是“返回家乡”的()A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件B[“不破楼兰终不还”的逆否命题为:“若返回家乡,则攻破楼兰”,所以“攻破楼兰”是“返回家乡”的必要条件.]3.有下列几个命题:①“若a>b,则a2>b2”的否命题;②“若x+y=0,则x,y互为相反数”的逆命题;③“若x2<4,则-2<x<2”的逆否命题.其中真命题的序号是________.②③[①原命题的否命题为“若a≤b,则a2≤b2”,错误.②原命题的逆命题为“若x,y互为相反数,则x+y=0”,正确.③原命题的逆否命题为“若x≥2或x≤-2,则x2≥4”,正确.]4.已知集合A=,B={x|-1<x<m+1,m∈R},若x∈B成立的一个充分不必要条件是x∈A,则实数m的取值范围是________.(2,+∞)[因为A=={x|-1<x<3},x∈B成立的一个充分不必要条件是x∈A,所以A B,所以m+1>3,即m>2.]1.下面四个条件中,使a>b成立的充分而不必要的条件是() A.a>b+1 B.a>b-1C.a2>b2D.a3>b3A[a>b+1⇒a>b,但反之未必成立,故选A.]2.给出下列说法:①“若x+y=π2,则sin x=cos y”的逆命题是假命题;②“在△ABC中,sin B>sin C是B>C的充要条件”是真命题;③“a=1”是“直线x-ay=0与直线x+ay=0互相垂直”的充要条件;④命题“若x<-1,则x2-2x-3>0”的否命题为“若x≥-1,则x2-2x -3≤0”.以上说法正确的是________(填序号).①②④[对于①,“若x+y=π2,则sin x=cos y”的逆命题是“若sin x=cos y,则x+y=π2”,当x=0,y=3π2时,有sin x=cos y成立,但x+y=3π2,故逆命题为假命题,①正确;对于②,在△ABC中,由正弦定理得sin B>sin C⇔b >c⇔B>C,②正确;对于③,“a=±1”是“直线x-ay=0与直线x+ay=0互相垂直”的充要条件,故③错误;对于④,根据否命题的定义知④正确.]。
高考数学一轮复习命题及其关系、充分条件与必要条件练习含答案
第2讲命题及其关系、充分条件与必要条件一、选择题1.(2015·山东卷)设m∈R, 命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是()A.若方程x2+x-m=0有实根,则m>0B.若方程x2+x-m=0有实根,则m≤0C.若方程x2+x-m=0没有实根,则m>0D.若方程x2+x-m=0没有实根,则m≤0解析根据逆否命题的定义,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是“若方程x2+x-m=0没有实根,则m≤0”.答案 D2.“x=1”是“x2-2x+1=0”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件解析因为x2-2x+1=0有两个相等的实数根为x=1,所以“x=1”是“x2-2x+1=0”的充要条件.答案 A3.设α,β是两个不同的平面,m是直线且mα,则“m∥β”是“α∥β”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析mα,m∥βα∥β,但mα,α∥β⇒m∥β,∴“m∥β”是“α∥β”的必要不充分条件.答案 B4.(2017·安徽江南十校联考)“a=0”是“函数f(x)=sin x-1x+a为奇函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析 显然a =0时,f (x )=sin x -1x 为奇函数;当f (x )为奇函数时,f (-x )+f (x )=0.又f (-x )+f (x )=sin(-x )-1-x +a +sin x -1x +a =0. 因此2a =0,故a =0.所以“a =0”是“函数f (x )为奇函数”的充要条件. 答案 C5.下列结论错误的是( )A.命题“若x 2-3x -4=0,则x =4”的逆否命题为“若x ≠4,则x 2-3x -4≠0”B.“x =4”是“x 2-3x -4=0”的充分条件C.命题“若m >0,则方程x 2+x -m =0有实根”的逆命题为真命题D.命题“若m 2+n 2=0,则m =0且n =0”的否命题是“若m 2+n 2≠0,则m ≠0或n ≠0”解析 C 项命题的逆命题为“若方程x 2+x -m =0有实根,则m >0”.若方程有实根,则Δ=1+4m ≥0,即m ≥-14,不能推出m >0.所以不是真命题. 答案 C6.设x ∈R ,则“1<x <2”是“|x -2|<1”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件解析 由|x -2|<1,得1<x <3,所以1<x <2⇒1<x <3;但1<x <3⇒/ 1<x <2. 所以“1<x <2”是“|x -2|<1”的充分不必要条件. 答案 A7.已知命题p :x 2+2x -3>0;命题q :x >a ,且綈q 的一个充分不必要条件是綈p ,则a 的取值范围是( ) A.[1,+∞)B.(-∞,1]C.[-1,+∞)D.(-∞,-3]解析由x2+2x-3>0,得x<-3或x>1,由綈q的一个充分不必要条件是綈p,可知綈p是綈q的充分不必要条件,等价于q是p的充分不必要条件.故a≥1.答案 A8.(2017·汉中模拟)已知a,b都是实数,那么“a>b”是“ln a>ln b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析由ln a>ln b⇒a>b>0⇒a>b,故必要性成立.当a=1,b=0时,满足a>b,但ln b无意义,所以ln a>ln b不成立,故充分性不成立.答案 B二、填空题9.“若a≤b,则ac2≤bc2”,则命题的原命题、逆命题、否命题和逆否命题中真命题的个数是________.解析其中原命题和逆否命题为真命题,逆命题和否命题为假命题.答案 210.“sin α=cos α”是“cos 2α=0”的________条件.解析cos 2α=0等价于cos2α-sin2α=0,即cos α=±sin α.由cos α=sin α得到cos 2α=0;反之不成立.∴“sin α=cos α”是“cos 2α=0”的充分不必要条件.答案充分不必要11.已知命题p:a≤x≤a+1,命题q:x2-4x<0,若p是q的充分不必要条件,则a的取值范围是________.解析令M={x|a≤x≤a+1},N={x|x2-4x<0}={x|0<x<4}.∵p是q的充分不必要条件,∴M N,∴⎩⎪⎨⎪⎧a >0,a +1<4,解得0<a <3. 答案 (0,3) 12.有下列几个命题:①“若a >b ,则a 2>b 2”的否命题;②“若x +y =0,则x ,y 互为相反数”的逆命题;③“若x 2<4,则-2<x <2”的逆否命题. 其中真命题的序号是________.解析 ①原命题的否命题为“若a ≤b ,则a 2≤b 2”错误.②原命题的逆命题为:“若x ,y 互为相反数,则x +y =0”正确.③原命题的逆否命题为“若x ≥2或x ≤-2,则x 2≥4”正确. 答案 ②③13.(2016·四川卷)设p :实数x ,y 满足(x -1)2+(y -1)2≤2,q :实数x ,y 满足⎩⎨⎧y ≥x -1,y ≥1-x ,y ≤1,则p 是q 的( )A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件解析 如图作出p ,q 表示的区域,其中⊙M 及其内部为p 表示的区域,△ABC 及其内部(阴影部分)为q 表示的区域. 故p 是q 的必要不充分条件.答案 A14.(2017·南昌十所省重点中学联考)已知m ∈R ,“函数y =2x +m -1有零点”是“函数y =log m x 在(0,+∞)上为减函数”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析 由y =2x +m -1=0,得m =1-2x ,则m <1. 由于函数y =log m x 在(0,+∞)上是减函数, 所以0<m <1.因此“函数y =2x +m -1有零点”是“函数y =log m x 在(0,+∞)上为减函数”的必要不充分条件. 答案 B 15.已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪12<2x <8,x ∈R ,B ={x |-1<x <m +1,x ∈R },若x ∈B成立的一个充分不必要的条件是x ∈A ,则实数m 的取值范围是________.解析 A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪12<2x <8,x ∈R ={x |-1<x <3},∵x ∈B 成立的一个充分不必要条件是x ∈A , ∴A B ,∴m +1>3,即m >2. 答案 (2,+∞)16.(2017·临沂模拟)下列四个结论中正确的是________(填序号).①“x 2+x -2>0”是“x >1”的充分不必要条件;②命题:“任意x ∈R ,sin x ≤1”的否定是“存在x 0∈R ,sin x 0>1”;③“若x =π4,则tan x =1”的逆命题为真命题;④若f (x )是R 上的奇函数,则f (log 32)+f (log 23)=0. 解析 ①中“x 2+x -2>0”是“x >1”的必要不充分条件,故①错误.对于②,命题:“任意x ∈R ,sin x ≤1”的否定是“存在x 0∈R ,sin x 0>1”,故②正确.对于③,“若x =π4,则tan x =1”的逆命题为“若tan x =1,则x =π4”,其为假命题,故③错误.对于④,若f(x)是R上的奇函数,则f(-x)+f(x)=0,∵log32=1≠-log32,log23∴log32与log23不互为相反数,故④错误.答案②。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
02 命题及其关系、充分条件与必要条件1.“直线与双曲线相切”是“直线与双曲线只有一个公共点”的( )A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件【答案】A直线与双曲线相切,则直线与双曲线只有一个公共点,反之当直线与双曲线只有一个公共点时除了直线与双曲线相切,还有就是直线和双曲线的渐近线平行的时候;故是充分不必要条件。
学科&故答案为:A .2.“k =1”是“直线x -y +k =0与圆x 2+y 2=1相交”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A圆x 2+y 2=1圆心是(0,0),半径1=r ,当k =1,直线x -y +1=0与圆x 2+y 2=1的距离12211|100|22<=++-=d ,直线x -y +1=0与圆x 2+y 2=1相交;当直线x -y +k =0与圆x 2+y 2=1相交时, ,111|00|22<++-=k d 解得22<<-k ,所以“k =1”是“直线x -y +k =0与圆x 2+y 2=1相交”的充分而不必要条件.3.设,则“a =1”是“直线ax+y-1=0与直线x+ay+1=0平行”的A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D . 既不充分也不必要条件,【答案】C若直线ax+y-1=0与直线x+ay+1=0平行,则,且 解得,故选.4.()()()0,000,x f x x x p f q x x f x ===函数在处导数存在,若::是的极值点,则()A . p 是q 的充分必要条件B . p 是q 的充分条件,但不是q 的必要条件C . p 是q 的必要条件但不是q 的充分条件D . p 既不是q 的充分条件,也不是q 的必要条件【答案】C根据函数极值的定义可知,函数0x x = 为函数y f x =() 的极值点, '0f x =() 一定成立.但当'0f x =()时,函数不一定取得极值,比如函数3f x x =(). 函数导数2'3f x x =(), 当0x = 时, '0f x =(),但函数f 3f x x =()单调递增,没有极值.则p 是q 的必要不充分条件,故选C .5.甲:x ≠2或y ≠3;乙:x +y ≠5,则( )A . 甲是乙的充分不必要条件B . 甲是乙的必要不充分条件C . 甲是乙的充要条件D . 甲既不是乙的充分条件,也不是乙的必要条件【答案】B“甲⇒乙”的逆否命题为“若x +y =5,则x =2且y =3”显然不正确,而“乙⇒甲”的逆否命题为“若x =2且y =3,则x +y =5”是真命题,因此甲是乙的必要不充分条件.故选 B.6.“x <0”是“ln (x +1)<0”的A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D . 既不充分也不必要条件【答案】B 试题分析:由题意得,,故是必要不充分条件,故选B . 7.设a ∈R ,则“a =-1”是“直线ax +y -1=0与直线x +ay +5=0平行”的A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件【答案】A 试题分析:若,则直线与直线平行,充分性成立;若直线与直线平行,则或,必要性不成立. 8.“x 为无理数”是“x 2为无理数”的A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分又不必要条件【答案】B为无理数,不能推出为无理数,例如,反过来,是无理数,那么一定是无理数,故为无理数是为无理数必要不充分条件,故选B.9.三角形全等是三角形面积相等的A.充分但不必要条件B.必要但不充分条件C.充要条件D.既不充分也不必要条件【答案】A当三角形的面积相等时,三角形不一定全等,但是三角形全等时面积一定相等.即:三角形全等是三角形面积相等的充分但不必要条件.本题选择A选项.10.甲:x≠2或y≠3;乙:x+y≠5,则()A.甲是乙的充分不必要条件B.甲是乙的必要不充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件,也不是乙的必要条件【答案】B“甲⇒乙”的逆否命题为“若x+y=5,则x=2且y=3”显然不正确,而“乙⇒甲”的逆否命题为“若x=2且y=3,则x+y=5”是真命题,因此甲是乙的必要不充分条件.故选B.11.给定空间中的直线l及平面 ,条件“直线l与平面α内的无数条直线都垂直”是“直线l与平面α垂直的().A.充分非必要条件B.必要非充分条件C.充要条件D.非充分非必要条件【答案】B直线与平面α内的无数条平行直线垂直,但该直线未必与平面α垂直;即“直线l与平面α内无数条直线都垂直”⇒“直线l与平面α垂直”为假命题;但直线l与平面α垂直时,l与平面α内的每一条直线都垂直,即“直线l与平面α垂直”⇒“直线l与平面α内无数条直线都垂直”为真命题;故“直线l与平面α内无数条直线都垂直”是“直线l与平面α垂直”的必要非充分条件;故选B.12.i 、j 是不共线的单位向量,若a =5i +3j ,b =3i -5j ,则a ⊥b 的充要条件是________.【答案】i ⊥ja ⊥b ⇔a ·b =0,即(5i +3j )·(3i -5j )=0,即15i 2-16i ·j -15j 2=0,∵|i |=|j |=1,∴16i ·j =0,即i ·j =0,∴i ⊥j .13.有下列几个命题:①“若a >b ,则a 2>b 2”的否命题;②“若x +y =0,则x ,y 互为相反数”的逆命题;③“若x 2<4,则-2<x <2”的逆否命题.其中真命题的序号是________.【答案】②③①原命题的否命题为“若a ≤b 则a 2≤b 2”错误.②原命题的逆命题为:“x ,y 互为相反数,则x +y =0”正确.③原命题的逆否命题为“若x ≥2或x ≤-2,则x 2≥4”正确.14.给定下列四个命题:①“x =π6”是“sin x =12”的充分不必要条件; ②若“p ∨q ”为真,则“p ∧q ”为真;③若a <b ,则am 2<bm 2;④若集合A ∩B =A ,则A ⊆B .其中为真命题的是________.(填上所有正确命题的序号)【答案】①④①中,若x =π6,则sin x =12,但sin x =12时,x =π6+2k π或5π6+2k π(k ∈Z).故“x =π6”是“s in x =12”的充分不必要条件,故①为真命题;②中,令p 为假命题,q 为真命题,有“p ∨q ”为真命题,则“p ∧q ”为假命题,故②为假命题;③中,当m =0时,am 2=bm 2,故③为假命题;④中,由A ∩B =A 可得A ⊆B ,故④为真命题.15.在△ABC 中,“A >30°”是“sin A >12”的________条件. 【答案】必要不充分在△ABC 中,A >30°⇒0<sin A ≤1,不能推出sin A >12, 而sin A >12⇒30°<A <150°, 所以在△ABC 中,“A >30°”是“sin A >12”的必要不充分条件. 16.下列命题的否命题为假命题的个数是________.①p :存在x ∈R ,x 2+2x +2≤0;②p :有的三角形是正三角形;③p :所有能被3整除的整数为奇数;④p :每一个四边形的四个顶点共圆.【答案】1①p 的否命题:任意x ∈R ,x 2+2x +2>0,为真命题;②p 的否命题:所有的三角形都不是正三角形,为假命题;③p 的否命题:存在一个能被3整除的整数不是奇数,0是能被3整除的非奇数,该命题为真命题; ④p 的否命题:存在一个四边形的四个顶点不共圆,为真命题.17.设{a n }是公比为q 的等比数列,则“q >1”是“{a n }”为递增数列的 (用“充分且不必要条件”,“必要且不充分条件”,“充分必要条件”,“既不充分也不必要条件”填空)【答案】既不充分也不必要条件直接举反例可得答案.解:由q >1,数列{a n }不一定是递增数列,如:﹣1,﹣2,﹣4,…;若数列{a n }是递增数列,q 也不一定大于1,如:﹣8,﹣4,﹣2,﹣1.∴“q >1”是“{a n }”为递增数列的既不充分也不必要条件.故答案为:既不充分也不必要条件.18.已知集合A ={y |y =x 2-32x +1,x ∈[34,2]},B ={x |x +m 2≥1};命题p :x ∈A ,命题q :x ∈B ,并且命题p 是命题q 的充分条件,求实数m 的取值范围.【答案】(-∞,-34]∪[34,+∞) 化简集合A ,由y =x 2-32x +1=(x -34)2+716, ∵x ∈[34,2],∴y min =716,y max =2. ∴y ∈[716,2],∴A ={y |716≤y ≤2}. 化简集合B ,由x +m 2≥1,∴x ≥1-m 2,B ={x |x ≥1-m 2}.∵命题p 是命题q 的充分条件,∴A ⊆B .∴1-m 2≤716, ∴m ≥34或m ≤-34.∴实数m 的取值范围是(-∞,-34]∪[34,+∞).。