西安交通大学_信号与系统A课后习题(第3、4章)
《信号与系统分析基础》第3章部分习题解答
第三章习题解答3.2 求下列方波形的傅里叶变换。
(a) 解:1102()()11()2j t j t j t j j a F j f t e dt e e dt j e S e j ωτωτωωτωτωωωττω+∞--∞----=-=⋅=-==⎰⎰(b) 解:200022()11()1[](1(1)1(1)j t t j t j t j t j j j j tF e dttde j j te e dt j j e e ej eτωωττωωωτωτωτωτωττωτωωτωτωωττω--------==⋅⋅-=--=+-=+-⎰⎰⎰(c) 解:13112211()()22111()()2211()cos21()21()21112()2()22j t j t j t j t j t j t j t j tF t e dte e e dt e e dt e ej j ωππωππωωππωωπωππωω-------+---+--=⋅=+⋅=+=--+⎰⎰⎰()()()()22221111[][]2222j j j j e e e e j j ππππωωωωππωω----++=⋅--⋅--+2222sin()sin()cos ()cos ()cos 2222()()2222ππππωωωωωωπωππππωωωω-+⋅++⋅-⋅=+==-+--3.3依据上题中a,b 的结果,利用傅里叶变换的性质,求题图3.3所示各信号的傅里叶变换. (b) 解:262()()()f t g t g t =+,而()()2g t Sa τωττ↔2()6(3)2()F Sa Sa ωωω∴=+如利用3.2中(a)的结论来解,有:211'()(3)(1)f t f t f t ττ=+++,其中6,'2ττ==.3211'()()()6(3)2()j j F e F e F Sa Sa ωωττωωωωω∴=⋅+⋅=+(如()()f t F ω↔,则00()()j t f t t eF ωω±↔)(c) 解:32222()2()2(),1f t f t f t τττ=++-+= 由3.2(b)知,2221()(1)j j F e j e ωτωτωωττω--=+-32222222222222()2()2(),1112(1)2(1)222222444cos (1cos )j j j j j j j j j j F e F e F e e j e e e j e je je ωτωτωωωωωωωωωωωτωωωωωωωωωωωωωωω-----∴=+-==⋅⋅+-+⋅⋅--=+-+--=-=-3.4利用对称性求下列各函数的傅里叶变换.(2) 222(),.f t t tαα=-∞<<+∞+ 解:222t e αααω-↔+ ,由对称性,2222et αωαπα-↔+(3)2()f t444444444244()(2)(2)1(2)()21111()(2)(2)[()]*[()][()()]22282,()()0.22,()()2;26,()()f t Sa t Sa t Sa t g f t Sa t Sa t g g g g g g g g d g g d πππππππωππππππππωππωωωωππωπωωπωπωωυωππωπωωυ-=⋅↔=⋅↔=*<-*=-<<*==+<<*=⎰解:而,利用频域卷积特性,得:积分:2444246.6,()()0g g πωππππωππωωπωω-=-+=->*=⎰3.8(3) ()(2)()2()dF t f t j F d ωωω-↔-(6) (25)f t -;由1[()]()j b a F f at b e F a a ωω--=⋅,2,5,a b == 2.51(25)()22j f t e F ωω-∴-↔⋅3.9 计算下列各信号的傅里叶变换.(2) 3()2(32)()2[2()],2u t t u t t δδδ+-=+-是偶函数332232()1,1[()]().2, 3.112(32)21,()().21()2(32)()j b aj j j t F f at b e F a aa b t e e u t j u t t e j ωωωωδωδπδωωδπδωω----↔-===∴-↔⋅⋅⋅=↔+∴+-↔++ 由(7) 33(2)63(3)9[(2)(3)](2)(3)tt t e u t u t eu t e e u t e --+---+--=⋅+-⋅-33(2)23(3)31().11();(2)331(3)3t t t j t j e u t j e u t e u t e j j e u t e j αωωαωωωω---+---↔+∴↔+↔++-↔+ 同理:32(3)3(3)1[(2)(3)]()3t j j e u t u t e e j ωωω-+-+∴+--↔-+3.13 已知阶跃函数和正弦、余弦函数的傅里叶变换如下:0000001[()]()[c o s ][()()][s i n ][()()]F u t j F t F t j πδωωωπδωωδωωωπδωωδωω=+=++-=+-- 求单边正弦函数和单边余弦函数的傅里叶变换。
《信号与系统》课后习题参考答案
《信号与系统》课后习题参考答案第二章 连续信号与系统的时域分析2-9、(1)解:∵系统的微分方程为:)(2)(3)(t e t r t r '=+',∴r(t)的阶数与e(t) 的阶数相等,则h(t)应包含一个)(t δ项。
又∵系统的特征方程为:03=+α,∴特征根3-=α∴)()(2)(3t u Ae t t h t -+=δ∴)]()(3[)(2)(33t e t u e A t t h t t δδ--+-+'=')()(3)(23t A t u Ae t t δδ+-'=-将)(t h 和)(t h '代入微分方程(此时e(t)= )(t δ),得:)()(3)(23t A t u Ae t t δδ+-'-+3)(2)]()(2[3t t u Ae t t δδ'=+-∴A=-6则系统的冲激响应)(6)(2)(3t u et t h t --=δ。
∴⎰⎰∞--∞--==t td ue d h t g τττδτττ)](6)(2[)()(3⎰∞-=t d ττδ)(2⎰∞---t d u e τττ)(63 )()(6)(203t u d e u t t ⎰-∞--=τττ )()3(6)(203t u e t u t --=-τ)()1(2)(23t u e t u t -+=- )(23t u e t -=则系统的阶跃响应)(2)(3t u et g t -=。
2-11、解:①求)(t r zi : ∵系统的特征方程为:0)3)(2(652=++=++αααα,∴特征根:21-=α,32-=α ∴t t zi e C eC t r 3221)(--+= (t ≥0) ②求)(t r zs :t t e A eA t h 3221)(--+= (t ≥0),可求得:11=A ,12-=A (求解过程略) ∴)()()(32t u e e t h t t ---=∴)(*)()(*)()]()[(*)()(*)()(3232t u e t u e t u e t u e t u e e t u e t h t e t r t t t t t t t zs --------=-==)()2121()()(21)()(3232t u e e e t u e e t u e e t t t t t t t -------+-=---= ③求)(t r :)(t r =)(t r zi +)(t r zs ++=--)(3221t te C e C )2121(32t t t e e e ---+- t tt e C e C e 3221)21()1(21---++-+= (t ≥0) ∵)()(t u Ce t r t -=,21=C 21=C ∴ 011=-C , ∴ 11=C0212=+C 212-=C ∴=-)0(r 21211)0(21=-=+=+C C r zi , ='-)0(r 2123232)0(21-=+-=--='+C C r zi 2-12、解:(1)依题意,得:)(2)(*)()(t u e t h t u t r tzi -=+)()()(t t h t r zi δ=+∴)(2)]()([*)()(t u e t r t t u t r t zi zi -=-+δ)(2)()()()1(t u e t r t u t r t zi zi --=-+∴)()12()()()1(t u e t r t r t zi zi -=---,两边求导得:)()12()(2)()(t e t u e t r t r t t zi ziδ-+-=-'-- )(2)()()(t u e t t r t r t zi zi--=-'δ ∴)(11)(112)()()1(t p p t p t t r p zi δδδ+-=+-=- ∴)()(11)(t u e t p t r t zi -=+=δ (2)∵系统的起始状态保持不变,∴)()(t u e t r t zi -=∵)()()(t t h t r zi δ=+,∴)()()(t u e t t h t--=δ∴)]()([*)()()(*)()()(33t u e t t u e t u e t h t e t r t r t t t zi ----+=+=δ )()()(t u te t u e t u e tt t ----+=)()2(t u e t t --= 2-16、证:∑∑∞-∞=--∞-∞=--=-=k k t k t k t u e k t t u e t r )3()3(*)()()3(δ∑∞-∞=--=k k t k t u e e )3(3 ∵当t-3k>0即3t k <时:u(t-3k)为非零值 又∵0≤t ≤3,∴k 取负整数,则:3003311)(---∞=∞=----===∑∑e e e e e et r t k k k t k t 则t Ae t r -=)(,且311--=e A 。
信号与系统课后答案3&4
#
# " ’ 1 & 2 2 # 1 % 0 "
+
0 ’ 0 &’
0 ’
&
#1
&’
0
# & " 2
1 # #(! ( #,
&’
0 ’
# & " 2
"
0 0 " " & 2 2 # " & " 2 ’ ’ ’ 1 0! 2 1 1 ,1 " & % ’ " 0 & 2 " 0 " & 2 ’
+ , 0 "! " ’ 1 0# 2 $ % 1 &1 " , % , ’ 2 " 0+ " 0 " 0 ’ 1 " 2 " # $ % 7! " &6 !! ! " && % ’ , " + ’
&1 ’ $ ! 2
$ ! $ 2 " &
1 %1 %
’ $ # & ! 2 " &&
)1
&1 ’ $ ! 2
$ & ! $ 2 " &
’ $ # & ! 2 " 1 $6 && ! 7 $ 1 ! $" " & 0 ! 略" 5"!
略" !! ’! ! " 是满足以下两个条件的周期信号 !! (! 设 "! # 条件 "" " * # /8"! 8 # "!
信号与系统第三章习题部分参考答案
(7) (1 − t) f (1 − t) ;
(2) [1 + m f (t)]cosω0 t
(4) (t + 2) f (t); ( ) (6) e− jω0 t df t
dt
(8) f (t)∗ f (t − 3);
t
(9) ∫τ f (τ )dτ −∞
1−t / 2
(11) ∫ f (τ )dτ −∞
2π (sin π t )2 ↔ 2π (1− ⎜w⎜)[ε(w + 2π ) − ε(w − 2π )]
πt
2π
即 (sin π t )2 ↔ (1− ⎜w⎜)[ε(ω + 2π ) − ε(w − 2π )]
πt
2π
(3)双边指数信号
∵ e−a⎜t⎜
↔
2a a2 + w2
(−∞
<
t
<
+∞)
∴ 2a a2 + w2
(13) f (t)∗ Sa(2t) (15) t df (1 − t)
dt
t+5
(10) ∫ f (τ )dτ −∞
(12) df (t) + f (3t ) − 2 e− jt ;
dt
(14) f (t) u(t)
(16) (t − 2) f (t)e j2(t−3)
解:(1) f 2 (t) + f (t) = f (t). f (t) + f (t) ↔ 1 [F (w}* F (w)] + F (w)
又 f (t) = 2 + cos⎜⎛ 2πt ⎟⎞ + 4sin⎜⎛ 5πt ⎟⎞
⎝3⎠
信号与系统课后习题参考答案
1试分别指出以下波形是属于哪种信号?题图1-11-2试写出题1-1图中信号的函数表达式。
1-3已知信号)(1t x 与)(2t x 波形如题图1-3中所示,试作出下列各信号的波形图,并加以标注。
题图1-3⑴)2(1-t x ⑵)1(1t x -⑶)22(1+t x⑷)3(2+t x ⑸)22(2-t x ⑹)21(2t x - ⑺)(1t x )(2t x -⑻)1(1t x -)1(2-t x ⑼)22(1t x -)4(2+t x 1-4已知信号)(1n x 与)(2n x 波形如题图1-4中所示,试作出下列各信号的波形图,并加以标注。
题图1-4⑴)12(1+n x ⑵)4(1n x -⑶)2(1n x ⑷)2(2n x -⑸)2(2+n x ⑹)1()2(22--++n x n x⑺)2(1+n x )21(2n x -⑻)1(1n x -)4(2+n x ⑼)1(1-n x )3(2-n x1-5已知信号)25(t x -的波形如题图1-5所示,试作出信号)(t x 的波形图,并加以标注。
题图1-51-6试画出下列信号的波形图:⑴)8sin()sin()(t t t x ΩΩ=⑵)8sin()]sin(211[)(t t t x ΩΩ+= ⑶)8sin()]sin(1[)(t t t x ΩΩ+=⑷)2sin(1)(t tt x = 1-7试画出下列信号的波形图:⑴)(1)(t u e t x t -+=⑵)]2()1([10cos )(---=-t u t u t e t x t π⑶)()2()(t u e t x t --=⑷)()()1(t u e t x t --=⑸)9()(2-=t u t x ⑹)4()(2-=t t x δ1-8试求出以下复变函数的模与幅角,并画出模与幅角的波形图。
⑴)1(1)(2Ω-Ω=Ωj e j X ⑵)(1)(Ω-Ω-Ω=Ωj j e e j X ⑶Ω-Ω---=Ωj j e e j X 11)(4⑷21)(+Ω=Ωj j X 1-9已知信号)]()([sin )(π--=t u t u t t x ,求出下列信号,并画出它们的波形图。
信号与系统第二版课后答案_西安交大_奥本海姆(汉语)
第一章1.3 解:(a). 2401lim(),04Tt T TE x t dt e dt P ∞-∞∞→∞-====⎰⎰(b) dt t x TP T TT ⎰-∞→∞=2)(21lim121lim ==⎰-∞→dt T TTT∞===⎰⎰∞∞--∞→∞dt t x dt t x E TTT 22)()(lim(c).222lim()cos (),111cos(2)1lim()lim2222TT TTTT T TTE x t dt t dt t P x t dt dt TT∞∞→∞--∞∞→∞→∞--===∞+===⎰⎰⎰⎰(d) 034121lim )21(121lim ][121lim 022=⋅+=+=+=∞→=∞→-=∞→∞∑∑N N n x N P N Nn n N N N n N 34)21()(lim202===∑∑-∞=∞→∞nNNn N n x E (e). 2()1,x n E ∞==∞211lim []lim 112121N NN N n N n NP x n N N ∞→∞→∞=-=-===++∑∑ (f) ∑-=∞→∞=+=NNn N n x N P 21)(121lim 2∑-=∞→∞∞===NNn N n x E 2)(lim1.9. a). 00210,105T ππω===; b) 非周期的; c) 00007,,22mN N ωωππ=== d). 010;N = e). 非周期的; 1.12 解:∑∞=--3)1(k k n δ对于4n ≥时,为1即4≥n 时,x(n)为0,其余n 值时,x(n)为1易有:)3()(+-=n u n x , 01,3;M n =-=- 1.15 解:(a)]3[21]2[][][222-+-==n x n x n y n y , 又2111()()2()4(1)x n y n x n x n ==+-, 1111()2[2]4[3][3]2[4]y n x n x n x n x n ∴=-+-+-+-,1()()x n x n = ()2[2]5[3]2[4]y n x n x n x n =-+-+- 其中][n x 为系统输入。
信号与系统(第四版)第四章课后答案
第5-3页
■
©西安电子科技大学电路与系统教研中心
信号与系统 电子教案
4.1 拉普拉斯变换
一、从傅里叶变换到拉普拉斯变换
有些函数不满足绝对可积条件,求解傅里叶变换困难。 为此,可用一衰减因子e-t(为实常数)乘信号f(t) ,适当 选取的值,使乘积信号f(t) e-t当t∞时信号幅度趋近于 0 ,从而使f(t) e-t的傅里叶变换存在。
0
β
σ
第5-7页
■
©西安电子科技大学电路与系统教研中心
信号与系统 电子教案
4.1 拉普拉斯变换
例3 双边信号求其拉普拉斯变换。
e t , t 0 f 3 (t ) f1 (t ) f 2 (t ) t e , t 0
求其拉普拉斯变换。
解 其双边拉普拉斯变换 F (s)=F (s)+F (s) b b1 b2
第5-10页
■
©西安电子科技大学电路与系统教研中心
信号与系统 电子教案
4.1 拉普拉斯变换
四、常见函数的单边拉普拉斯变换
1. (t ) 1, 2.( t) 或1 3. ( t ) s, 4. 指数信号e
1
s
, 0
1 s s0
s0t
令s0 0
第5-12页
(t )
■
1
s
, 0
©西安电子科技大学电路与系统教研中心
信号与系统 电子教案
4.1 拉普拉斯变换
五、单边拉氏变换与傅里叶变换的关系
F ( s) f (t ) e st d t
0
Re[s]>0
F (j ) f (t ) e
信号与系统课后习题与解答第三章
3-1 求图3-1所示对称周期矩形信号的傅利叶级数(三角形式和指数形式)。
图3-1解 由图3-1可知,)(t f 为奇函数,因而00==a a n2112011201)cos(2)sin(242,)sin()(4T T T n t n T n Edt t n E T T dt t n t f T b ωωωπωω-====⎰⎰所以,三角形式的傅利叶级数(FS )为T t t t E t f πωωωωπ2,)5sin(51)3sin(31)sin(2)(1111=⎥⎦⎤⎢⎣⎡+++=指数形式的傅利叶级数(FS )的系数为⎪⎩⎪⎨⎧±±=-±±==-= ,3,1,0,,4,2,0,021n n jE n jb F n n π所以,指数形式的傅利叶级数为T e jE e jE e jE e jE t f t j t j t j t j πωππππωωωω2,33)(11111=++-+-=--3-2 周期矩形信号如图3-2所示。
若:图3-22τT-2τ-重复频率kHz f 5= 脉宽 s μτ20=幅度 V E 10=求直流分量大小以及基波、二次和三次谐波的有效值。
解 对于图3-2所示的周期矩形信号,其指数形式的傅利叶级数(FS )的系数⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛====⎰⎰--22sin 12,)(1112212211τωττωππωττωωn Sa T E n n E dt Ee T T dt e t f T F tjn TT t jn n则的指数形式的傅利叶级数(FS )为∑∑∞-∞=∞-∞=⎪⎭⎫ ⎝⎛==n tjn n tjn n e n Sa TE eF t f 112)(1ωωτωτ其直流分量为TE n Sa T EF n ττωτ=⎪⎭⎫ ⎝⎛=→2lim100 基波分量的幅度为⎪⎭⎫ ⎝⎛⋅=+-2sin 2111τωπEF F 二次谐波分量的幅度为⎪⎭⎫ ⎝⎛⋅=+-22sin 122τωπEF F 三次谐波分量的幅度为⎪⎭⎫ ⎝⎛⋅=+-23sin 32133τωπE F F 由所给参数kHz f 5=可得s T s rad 441102,/10-⨯==πω将各参数的值代入,可得直流分量大小为V 110210201046=⨯⨯⨯--基波的有效值为())(39.118sin 210101010sin 210264V ≈=⨯⨯⨯- πππ二次谐波分量的有效值为())(32.136sin 251010102sin 21064V ≈=⨯⨯⨯- πππ三次谐波分量的有效值为())(21.1524sin 32101010103sin 2310264V ≈=⨯⨯⨯⨯- πππ3-3 若周期矩形信号)(1t f 和)(2t f 的波形如图3-2所示,)(1t f 的参数为s μτ5.0=,s T μ1= ,V E 1=; )(2t f 的参数为s μτ5.1=,s T μ3= ,V E 3=,分别求:(1))(1t f 的谱线间隔和带宽(第一零点位置),频率单位以kHz 表示; (2))(2t f 的谱线间隔和带宽; (3))(1t f 与)(2t f 的基波幅度之比; (4))(1t f 基波与)(2t f 三次谐波幅度之比。
智慧树答案信号与系统(西安交通大学)知到课后答案章节测试2022年
绪论1.图像增强属于系统综合。
答案:对2.这门课程中研究的信号是确定性信号。
答案:对第一章1.ω0越大,离散时间序列sin(ω0n)的频率越高。
答案:错2.离散时间信号在n1≦n≦n2区间的平均功率为答案:错3.一切物理可实现的连续时间系统都是因果的。
答案:错4.对任意的线性系统,当输入为零时输出也一定为零。
答案:对5.已知信号x当n<—2或n>4时等于零,则x当()时一定等于零。
答案:n<-7和n>-16.某系统的输入输出关系为y=,则该系统是一个()系统。
答案:因果不稳定7.离散时间信号的基波频率是()。
答案:8.在信号与系统这门课程中,信号和系统的主要研究对象分别是()。
答案:一维确定性信号,线性时不变系统9.关于单位冲激函数的取样性质,表达正确的是()。
答案:10.下面关于和的表达式中,正确的有()。
答案:;第二章1.由两个因果的LTI系统的级联构成的系统一定是因果系统。
答案:对2.一切连续时间线性系统都可以用它的单位脉冲响应来表征。
答案:错3.具有零附加条件的线性常系数微分方程所描述的系统是线性的。
答案:对4.两个单位冲激响应分别为,的LTI系统级联构成的系统,其总的单位冲激响应是。
答案:错5.若和,则。
答案:对6.线性时不变系统的单位脉冲响应为,该系统稳定的充要条件为()。
答案:7.由离散时间差分方程所描述的系统为()。
答案:FIR(有限长脉冲响应)系统8.LTI系统的单位脉冲响应为,输入为,求时系统的输出时,输入的加权系数是()。
答案:9.信号通过单位冲激响应为的LTI系统,输出等于()。
答案:10.离散时间LTI系统的单位脉冲响应,则该系统是。
答案:因果稳定系统第三章1.对一个信号进行尺度变换,其傅里叶级数系数及傅里叶级数表示均不会改变。
答案:错2.令是一个基波周期为T、傅里叶级数系数为的周期信号,则的傅里叶级数系数是:()答案:3.令是一个基波周期为T、傅里叶级数系数为的实值周期信号,则下列说法正确的是:()答案:若是偶信号,则它的傅里叶级数系数一定为实偶函数4.对于一个周期信号,如果一次谐波分量相移了,为了使合成后的波形只是原始信号的一个简单的时移,那么k次谐波应该相移。
信号与系统第二版课后习题解答(3-4)
Chap 33.1 A continuous-time periodic signal x(t) is real value and has a fundamental period T=8. The nonzero Fourier series coefficients for x(t) arej a a a a 4,2*3311====--.Express x(t) in the form)cos()(0k k k k t A t x φω+=∑∞=Solution:Fundamental period 8T =.02/8/4ωππ==00000000033113333()224434cos()8sin()44j kt j t j t j t j tk k j t j t j t j tx t a e a e a e a e a e e e je je t t ωωωωωωωωωππ∞----=-∞--==+++=++-=-∑3.2 A discrete-time periodic signal x[n] is real valued and has afundamental period N=5.The nonzero Fourier series coefficients for x[n] are10=a ,4/2πj e a --=,4/2πj e a =,3/*442πj ea a ==- Express x[n] in the form)sin(][10k k k k n A A n x φω++=∑∞=Solution:for, 10=a , 4/2πj ea --=, 4/2πj ea =, 3/42πj ea --=,3/42πj e a =n N jk k N k e a n x )/2(][π∑>=<=n j n j n j n j e a e a e a e a a )5/8(4)5/8(4)5/4(2)5/4(20ππππ----++++=nj j n j j n j j n j j e e e e e e e e )5/8(3/)5/8(3/)5/4(4/)5/4(4/221ππππππππ----++++=)358cos(4)454cos(21ππππ++++=n n)6558sin(4)4354sin(21ππππ++++=n n3.3 For the continuous-time periodic signal)35sin(4)32cos(2)(t t t x ππ++=Determine the fundamental frequency 0ω and the Fourier series coefficients k a such thattjk k kea t x 0)(ω∑∞-∞==.Solution: forthe period of )32cos(t πis 3=T , the period of )35sin(t πis 6=Tso the period of )(t x is 6, i.e. 3/6/20ππ==w )35sin(4)32cos(2)(t t t x ππ++=)5sin(4)2cos(21200t t ωω++=0000225512()2()2j t j t j t j t e e j e e ωωωω--=++--then, 20=a , 2122==-a a , j a 25=-, j a 25-=3.5 Let 1()x t be a continuous-time periodic signal with fundamental frequency 1ω and Fourier coefficients k a . Given that211()(1)(1)x t x t x t =-+-How is the fundamental frequency 2ω of 2()x t related to? Also, find a relationship between the Fourier series coefficients k b of 2()x t and the coefficients k a You may use the properties listed in Table 3.1. Solution:(1). Because )1()1()(112-+-=t x t x t x , then )(2t x has the same period as )(1t x ,that is 21T T T ==, 12w w =(2). 212111()((1)(1))jkw t jkw t k TT b x t e dt x t x t e dt T --==-+-⎰⎰ 111111(1)(1)jkw t jkw t TTx t e dt x t e dt T T --=-+-⎰⎰111)(jkw k k jkw k jkw k e a a e a e a -----+=+=3.8 Suppose given the following information about a signal x(t): 1. x(t) is real and odd.2. x(t) is periodic with period T=2 and has Fourier coefficients k a .3. 0=k a for 1||>k .4 1|)(|21202=⎰dt t x .Specify two different signals that satisfy these conditions. Solution:0()j kt k k x t a e ω∞=-∞=∑while: )(t x is real and odd, then k a is purely imaginary and odd ,00=a , k k a a --=,.2=T , then 02/2ωππ==and 0=k a for 1>k so0()j kt k k x t a e ω∞=-∞=∑00011j t j t a a e a e ωω--=++)sin(2)(11t a e ea t j tj πππ=-=-for12)(2121212120220==++=-⎰a a a a dt t x ∴ j a 2/21±=∴ )sin(2)(t t x π±=3.13 Consider a continuous-time LTI system whose frequency response is⎰∞∞--==ωωωω)4sin()()(dt e t h j H t jIf the input to this system is a periodic signal⎩⎨⎧<≤-<≤=84,140,1)(t t t x With period T=8,determine the corresponding system output y(t). Solution:Fundamental period 8T =.02/8/4ωππ==0()j kt k k x t a e ω∞=-∞=∑∴ 00()()jk t k k y t a H jk e ωω∞=-∞=∑0004, 0sin(4)()0, 0k k H jk k k ωωω=⎧==⎨≠⎩ ∴ 000()()4jkw t k k y t a H jk e a ω∞=-∞==∑Because 48004111()1(1)088T a x t dt dt dt T ==+-=⎰⎰⎰另:x(t)为实奇信号,则a k 为纯虚奇函数,也可以得到a 0为0。
信号系统教材课后习题答案
第6章 系统及系统的时域分析1. 解:由于系统(1)不满足分解性;系统(2)不满足零输入线性;系统(3)不满足零状态线性,故这三个系统都不是线性系统。
对于系统(4),如果直接观察)(n y ~)(n f 关系,似乎系统既不满足齐次性,也不满足叠加性。
但考虑到令)(n f =0时,系统响应为常数b ,若把它看成是由初始状态引起的零输入响应时,系统仍是满足线性系统条件的,故系统(4)是线性系统。
2. 解:(1) 已知)(t f →)](cos[)(t f a t y f =,设 dd t t t t f t f >-=),()(1,则其零状态响应为)](cos[)](cos[)(11d f t t f a t f a t y -==,显然 )()(1d f f t t y t y -=,故该系统是时不变系统。
(2) 已知)(n f →)()(n bf n y f =,设01),()(n n n n f n f >-=,则其零状态响应为)()()(011n n bf n bf n y f -==,显然 )()(01n n y n y f f -=,故该系统是时不变系统。
3. 解:对于(1)~(4),由于任一时刻的零状态响应均与该时刻以后的输入无关,因此都是因果系统。
而对于(5),系统任一时刻的零状态响应都与该时刻以后的激励有关。
响应在先,激励在后,这在物理系统中是不可能的。
因此,该系统是非因果的。
(6)也是非因果的,因为如果0)(=t f ,0t t < 则有 0)3()(==t f t y f ,3t t <可见在区间003t t t <<上0)(≠t y f ,即零状态出现于激励之前,因而该系统是非因果的。
4. 解:(1)显然,无论激励)(n f 是何种形式的序列,只要它是有界的,那么)(n y f 也是有界的,因果该系统是稳定的。
(2)若)()(t u t f =,显然该激励是有界的,但 t x x u t y tf ==⎰∞-d )()(,0≥t它随时间t 无限增长,故该系统是不稳定的。
信号与系统课后答案
信号与系统课后答案第1章1-1题1-1图示信号中,哪些是连续信号?哪些是离散信号?哪些是周期信号?哪些是非周期信号?哪些是有始信号?(c) (d)题1-1图解(a)、(c)、(d)为连续信号;(b)为离散信号;(d)为周期信号;其余为非周期信号;(a)、(b)、(c)为有始(因果)信号。
1-2给定题1-2图示信号f ( t ),试画出下列信号的波形。
[提示:f ( 2t )表示将f ( t )波形压缩,f (2t)表示将f ( t )波形展宽。
](a) 2f (t - 2 ) (b) f ( 2t )(c)f (2t )(d)f (-t +1 ) 题1-2图解以上各函数的波形如图p1-2所示。
图p1-21-3如图1-3图示,R 、L 、C 元件可以看成以电流为输入,电压为响应的简单线性系统S R 、S L 、S C ,试写出各系统响应电压与激励电流函数关系的表达式。
题1-3图解各系统响应与输入的关系可分别表示为)()(t i R t u R R ⋅= tt i Lt u L L d )(d )(= ⎰∞-=tC C i C t u ττd )(1)(S RS L S C1-4如题1-4图示系统由加法器、积分器和放大量为-a 的放大器三个子系统组成,系统属于何种联接形式?试写出该系统的微分方程。
题1-4图解系统为反馈联接形式。
设加法器的输出为x ( t ),由于)()()()(t y a t f t x -+=且)()(,d )()(t y t x t t x t y '==⎰故有)()()(t ay t f t y -='即)()()(t f t ay t y =+'1-5已知某系统的输入f ( t )与输出y ( t )的关系为y ( t ) = | f ( t )|,试判定该系统是否为线性时不变系统?解设T 为系统的运算子,则可以表示为)()]([)(t f t f T t y ==不失一般性,设f ( t ) = f 1( t ) +f 2( t ),则)()()]([111t y t f t f T ==)()()]([222t y t f t f T ==故有)()()()]([21t y t f t f t f T =+=显然)()()()(2121t f t f t f t f +≠+即不满足可加性,故为非线性时不变系统。
信号与系统课后习题答案第4章 PPT
4.8 已知因果信号f(t)的象函数为F(s),求下列F(s)的原函 数f(t)的初值f(0+)和终值f(∞)。
解 本题练习初值定理和终值定理的应用。
解 计算单边拉氏逆变换的常用方法有: ① 查表、公式法; ② 应用性质;③ 部分分式展开法;④ 反演积分法。
题图 4.4
解 画出S域零状态系统模型如题解图4.19所示。
题解图 4.19
故有单位冲激响应:
令式①中
再取拉氏逆变换,求得单位阶跃响应:
4.20 题图4.5所示RLC系统,us(t)=12 V, L=1 H,C=1 F, R1=3 Ω, R2=2 Ω,R3=1 Ω。t<0时电路已达稳态,t=0时开 关S闭合。求t≥0时电压u(t)的零输入响应、零状态响应和全 响应。
4.28 已知线性连续系统的系统函数H(s)的零、极点分布如
题图 4.10 所示。图中,“×”号表示极点,“ 。”号表示零
点。
(1) 若H(∞)=1,求图(a)对应系统的H(s);
(2) 若H(0)=
求图(b)对应系统的H(s);
(3) 求系统频率响应H(jω),粗略画出系统幅频特性和相频
特性曲线。
题图 4.12
其中
(3) 考虑到f(t)=ε(t-1), 即输入在t=1时刻激励系统,故有 且
代入式①、②整理得
所以,系统零输入响应和零状态响应为 全响应:
4.15 已知线性连续系统的系统函数和输入f(t),求系统的 全响应。
解 本题分别用时域方法计算零输入响应,S域方法计算 零状态响应,然后叠加求得全响应。
解 用直接形式信号流图、方框图模拟连续系统。
信号与系统教材课后答案、参考用第四章作业参考答案36页PPT
x(t)F1
X()
c 2
sincct
/2ejct/2ej/2
2c sincct
/2ejct/2ej/2
c sinc
2
t/2 e e j(ct/2/2) j(ct/2/2)
c
c 2
2
ct
sinct
/2cos(ct
/2/2)
2t sin2ct /2
例1、某低频信号f(t)的最高频率分量为fm=1kHz,该信号经
1
1
2
(e
j t
e
jt ) e
jk t / 2 dt
40
4 2j 0
1
2
(e
j ( 2 t ) / 2
e j ( 2 t ) ) dt
8j 0
1 8j
2 j (2
e j ( 2 t ) / 2 k)
|
2 0
j
2 (2
k)
e j ( 2 t ) / 2
|
2 0
1 2 (( 1 ) k 1 )
T0 x2(t)ejk0tdt
1 1 2(t1)ejktdtejk (1)k 2 1
从而:
c k c 1 k c 2 k1 2 ( 1 )k,k 0 , 1 , 2
l ) 0/2,T04
c k
1 T0
x ( t ) e jk 0 t dt
T0
1
2
sin
te jk t / 2 dt
1
/
2
)
je j sin(( (
) T 1 / 2 ) sin((
)T1 / 2 ) )
2
( )T1 / 2
( )T1 / 2
电子教案《信号与系统》(第三版)信号系统习题解答.docx
《信号与系统》(第 3 版)习题解析高等教育出版社目录第 1 章习题解析 (2)第 2 章习题解析 (6)第 3 章习题解析 (16)第 4 章习题解析 (23)第 5 章习题解析 (31)第 6 章习题解析 (41)第 7 章习题解析 (49)第 8 章习题解析 (55)第 1 章习题解析1-1题 1-1 图示信号中, 哪些是连续信号?哪些是离散信号?哪些是周期信号?哪些是非周期信号?哪些是有始信号?(c)(d)题 1-1图解 (a)、(c)、(d)为连续信号; (b)为离散信号; (d)为周期信号;其余为非周期信号; (a)、(b)、(c)为有始(因果)信号。
1-2 给定题 1-2 图示信号 f( t ),试画出下列信号的波形。
[提示: f( 2t )表示将 f( t )波形压缩,f( t)表示将 f( t )波形展宽。
]2(a) 2 f( t 2 )(b) f( 2t ) (c) f(t)2(d) f( t +1 )题1-2图解 以上各函数的波形如图 p1-2 所示。
图 p1-21-3如图1-3图示,R、L、C元件可以看成以电流为输入,电压为响应的简单线性系统S R、S L、 S C,试写出各系统响应电压与激励电流函数关系的表达式。
S RS LS C题 1-3图解各系统响应与输入的关系可分别表示为u R (t)R i R (t )u L (t)di L (t )L1dttu C (t )i C ( )dC1-4如题1-4图示系统由加法器、积分器和放大量为 a 的放大器三个子系统组成,系统属于何种联接形式?试写出该系统的微分方程。
题 1-4图解 系统为反馈联接形式。
设加法器的输出为 x( t ),由于x(t ) f (t) ( a) y(t)且y(t ) x(t)dt ,x(t) y (t)故有y (t) f (t ) ay (t)即y (t ) ay(t ) f (t)1-5已知某系统的输入 f( t )与输出 y( t )的关系为 y( t ) = | f( t )|,试判定该系统是否为线性时不变系统?解 设 T 为系统的运算子,则可以表示为y(t) T[ f (t )]f (t)不失一般性,设 f( t ) = f 1( t ) + f 2 ( t ),则T[ f 1 (t)]f 1 (t)y 1 (t )T[ f 2 (t)] f 2 (t )y 2 (t )故有T[ f (t)] f 1 (t )f 2 (t ) y(t)显然f 1 (t ) f 2 (t)f 1 (t ) f 2 (t )即不满足可加性,故为非线性时不变系统。
信号与系统课后答案(西南交大)
y x (t ) = 3e −2 t − 2 e−3 t t ≥ 0 y f ( t ) = te−2 t − e−2 t + e −3 t t ≥ 0
自由响应 2 e−2 t − e −3 t 强迫响应 te−2 t 稳态响应 0
暂态响应 te−2 t + 2e −2 t − e− 3t t ≥ 0
2.19 y f ( t ) =
2.22① t 3 u( t ) ④(
②∞
③( t−
1 2
1 1 −2 t + e )u( t ) 4 4
sin t + cost 1 −t − e )u( t ) ⑤ eu (t − 3) + e t − 2 u( 3 − t ) ⑥ cos(ωt + 45° ) 2 2 1 − cosπt cosπt − 1 1 1 2.23① u( t ) + u( t − 2) ② t 2 u( t ) − ( t − 1)2 u( t − 1) π π 2 2
3.6 f (t ) =
1 − j 3 ω0 t 3 − j 2 ω 0 t 3 1 e + e + e − jω 0 t + 1 + e jω 0 t + e j 2 ω0 t + e j 3 ω 0t 2 2 2 2
3.7 f (t ) = cos( 4ω0 t + 20°) + 2 cos( 2ω0 t + 30 °) + 3 cos(ω 0 t + 10° ) + 2
p2 + p +1 2.3 H ( p ) = 3 p + 2 p2 + 3p + 2 p2 + 3 p + 2 2.4 H ( p ) = 2p2 +3p +2
大学科目《信号与系统》各章节习题答案
第一章 习 题1-1 画出下列各信号的波形:(1) f 1(t)=(2-e -t )U(t); (2) f 2(t)=e -t cos10πt×[U(t -1)-U(t-2)]。
答案(1))(1t f 的波形如图1.1(a )所示.(2) 因t π10cos 的周期s T 2.0102==ππ,故)(2t f 的波形如图题1.1(b)所示.1-2 已知各信号的波形如图题1-2所示,试写出它们各自的函数式。
答案)1()]1()([)(1-+--=t u t u t u t t f)]1()()[1()(2----=t u t u t t f)]3()2()[2()(3----=t u t u t t f1-3 写出图题1-3所示各信号的函数表达式。
答案2002121)2(21121)2(21)(1≤≤≤≤-⎪⎩⎪⎨⎧+-=+-+=+=t t t t t t t f)2()1()()(2--+=t u t u t u t f)]2()2([2sin )(3--+-=t u t u t t f π)3(2)2(4)1(3)1(2)2()(4-+---++-+=t u t u t u t u t u t f1-4 画出下列各信号的波形:(1) f 1(t)=U(t 2-1); (2) f 2(t)=(t-1)U(t 2-1);(3) f 3(t)=U(t 2-5t+6); (4)f 4(t)=U(sinπt)。
答案(1) )1()1()(1--+-=t u t u t f ,其波形如图题1.4(a)所示.(2))1()1()1()1()]1()1()[1()(2---+--=--+--=t u t t u t t u t u t t f 其波形如图题1.4(b)所示.(3))3()2()(3-++-=t u t u t f ,其波形如图1.4(c)所示.(4) )(sin )(4t u t f π=的波形如图题1.4(d)所示.1-5 判断下列各信号是否为周期信号,若是周期信号,求其周期T 。
(完整)信号与系统 西安邮电 习题答案
第一次1.1 画出下列各个信号的波形[式中()()r t t t ε=为斜升函数]知识要点:本题主要考查阶跃函数和单位阶跃序列的性质,包括()t ε和()k ε的波形特性以及它们与普通函数结合时的波形变化特性。
解题方法:首先考虑各信号中普通函数的波形特点,再考虑与()t ε或()k ε结合时的变化情况;若()t f 只是普通信号与阶跃信号相乘,则可利用()t ε或()k ε的性质直接画出0>t 或0≥k 部分的普通函数的波形;若()t f 是普通函数与阶跃信号组合成的复合信号,则需要考虑普通函数值域及其对应的区间。
(1) ()()()t t t f εsin = 解:正弦信号周期ππωπ2122===T 1-12ππt()f t(2) ()()sin f t t επ= 解:()0 sin 01 sin 0t f t t ππ<⎧=⎨>⎩,正弦信号周期22==ππT(3)()()cosf t r t=解:()0 cost0 cos cos0f tt t <⎧=⎨>⎩,正弦信号周期221Tππ==(4) ()()kkkfε)12(+=-1-212k3135()f k …………(5) ()()()111k f k k ε+⎡⎤=+-⎣⎦-2-412k312()f k …………45-1-31。
2 画出下列各信号的波形[式中()()r t t t ε=为斜升函数]知识要点:本题主要考查阶跃函数和单位阶跃序列的性质,包括()t ε和()k ε的波形特性以及它们与普通函数结合时的波形变化特性。
解题方法:首先考虑各信号中普通函数的波形特点,再考虑与()t ε或()k ε结合时的变化情况;若()t f 只是普通信号与阶跃信号相乘,则可利用()t ε或()k ε的性质直接画出0>t 或0≥k 部分的普通函数的波形;若()t f 是普通函数与阶跃信号组合成的复合信号,则需要考虑普通函数值域及其对应的区间。
西交版信号与系统习题答案-第三章
第三章习题答案3.1 计算下列各对信号的卷积积分()()()y t x t h t =*:(a)()()()()t t x t e u t h t e u t αβ==(对αβ≠和αβ=两种情况都做)。
(b)2()()2(2)(5)()t x t u t u t u t h t e =--+-=(c)()3()()()1t x t e u t h t u t -==-(d)5,0()()()(1),0t t te t x t h t u t u t e e t -⎧<⎪==--⎨->⎪⎩(e)[]()sin ()(2)()(2)x t t u t u t h t u t π=--=--(f)()x t 和()h t 如图P3.1(a)所示。
(g)()x t 和()h t 如图P3.1(b)所示。
图P3.1解:(a)()()0()()()(0)t ttt y t x t h t e ed e e d t βτατβαβτττ------=*==>⎰⎰当αβ≠时,()1()()t te y t e u t αβββα----=-当αβ=时,()()t y t te u t α-=(b) 由图PS3.1(a)知,当1t ≤时,252()2()22(2)2(5)021()22t t tt t y t e d e d e e e ττττ----⎡⎤=-=-+⎣⎦⎰⎰当13t ≤≤时,252()2()22(2)2(5)121()22t t t t t y t ed e d e e e ττττ-----⎡⎤=-=-+⎣⎦⎰⎰ 当36t ≤≤时,52()2(5)211()2t t t y t e d e e ττ---⎡⎤=-=-⎣⎦⎰ 当6t >时,()0y t =(c) 由图PS3.1(b)知,当1t ≤时,()0y t =当1t >时,133(1)1()13t t y t e d e ττ----⎡⎤==-⎣⎦⎰3(1)1()1(1)3t y t e u t --⎡⎤∴=--⎣⎦(d) 由图PS3.1(d)知:当0t ≤时,11()tt t t y t e d e e ττ--==-⎰当01t <≤时,055(1)1014()(2)255t t t t t y t e d e e d e e e τττττ-----=+-=+--⎰⎰当1t >时,555(1)(1)111()(2)2255t t t t t t y t e e d e e e e τττ------=-=-+-⎰ (e) 如下图所示:(f) 令()11()(2)3h t h t t δ⎡⎤=+--⎢⎥⎣⎦,则11()()()(2)3y t x t h t x t =*--由图PS3.1(h)知,11424()()()()(21)333tt y t x t h t a b d a t b ττ-=*=+=-+⎰2411()(21)(2)()3333a y t tb a t b a t b x t ∴=-+---=+= (g)()x t 是周期信号,由此可推知()()()y t x t h t =*也是周期的,且周期也为2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ω
31
(a) 证明下面三个不同单位冲激响应的 LTI 系统:
h1 (t ) = u (t )
h2 (t ) = −2δ (t ) + 5e −2t u (t )
和
8
h3 (t ) = 2te − t u (t )
对输入为 x(t ) = cos t 的响应全都一样。 (b) 求另一个 LTI 系统的单位冲激响应,它对 cos t 的响应也相同。 (这道题说明,对 cos t 的响应不能唯一用来标定一个 LTI 系统) 32 考虑一个 LTI 系统 S ,其单位冲激响应为
和
(t ) = x
k =−∞
∑ x(t − kT )
∞
(t ) 的傅里叶级数系数, X ( jω ) 为 x(t ) 的傅里叶变换。 式中 T > 2 。令 ak 记作 x
(a) 求 X ( jω ) 的闭式表达式。
7
(b) 求傅里叶级数 ak 的表达式,并验证 ak =
1 2π k ) X (j T T
2
∞
k
sin(4(t + 1)) (c) x3 (t ) = π (t + 1)
10
《第三次课后作业》 (a) 借助于表 4.1(P.233—傅里叶变换性质)和表 4.2(P.234—基本傅里叶变换对) ,求 下列信号的傅里叶变换:
⎛ sin t ⎞ x(t ) = t ⎜ ⎟ ⎝ πt ⎠
x(t ) =
k =−∞
∑ae
k
+∞
jk (2π / T ) t
中,对全部非零的偶数 k ,有 ak = 0 ,则称 x(t ) 是奇谐(odd-harmonic)的。 (i) 证明:若 x(t ) 是奇谐的,则有
T x(t ) = − x(t + ) 2
(ii) 证明:若 x(t ) 满足上式,则它是奇谐的。 (b) 假设 x(t ) 是一个周期为 2 的奇谐周期信号,且有
1 2 2 x(t ) dt = 1 。 ∫ 0 2 试确定两个不同的信号都满足这些条件。
22 求下面各图所示信号的傅里叶级数表示:
x(t)
1 -2 -3 -1 -1 1 2 3 4 5 t
(a)
x(t) 1
-5
-4
-3 -2
-1
1
2
3
4
5
t
(b)
x(t) 2
-7
-6
-5
-4
-3 -2
-1
1
2
3
4
5
(b) x[n] − x[n − 1]
(c) x[n] − x[n −
N ] ( N 为偶数) 2
N ] ( N 为偶数;注意该信号是周期的,周期为 N / 2 ) 2
5
第四章
13 设 x(t ) 的傅里叶变换为 并令 (a) x(t ) 是周期的吗? (b) x(t ) ∗ h(t ) 是周期的吗?
1 9 2 x[n] = 50 ∑ n =0 10
证明: x[n] = A cos( Bn + C ) ,并给出 A , B 和 C 的值。 30 考虑下面三个基波周期为 6 的离散时间信号: 2π 2π π x[n] = 1 + cos( n) y[ n] = sin( n + ) 6 4 6 (a) 求 x[ n] 的傅里叶级数的系数。 (b) 求 y[n] 的傅里叶级数的系数。 (c) 利用(a)和(b)的结果,并按照离散时间傅里叶级数的相乘性质,求 z[n] = x[n] y[ n] 的傅 里叶级数系数。 (d) 经由直接求 z[n] 的傅里叶级数系数,并将结果与(c)作比较。 34 考虑一个连续时间 LTI 系统,其单位冲激响应为
第三章
课后习题汇总
《第一次课后作业》 5 设 x1 (t ) 是一个连续时间周期信号,其基波频率为 ω1 ,傅里叶系数为 ak ,已知 x2 (t ) = x1 (1 − t ) + x1 (t − 1) 问 x2 (t ) 的基波频率 ω2 与 ω1 是什么关系?求 x2 (t ) 的傅里叶级数系数 bk 与系数 ak 之间的关 系。 (注:可参考书 P.146-表 3.1 中所列的连续时间傅里叶级数性质) 8 现对信号 x(t ) 给出如下信息: 1. x(t ) 是实的且为奇函数。 3. 对 k > 1 , ak = 0 。 2. x(t ) 是周期的,周期 T = 2 ,傅里叶系数为 ak 。 4.
课后习题汇总
《第一次课后作业》
X ( jω ) = δ (ω ) + δ (ω − π ) + δ (ω − 5) h(t ) = u (t ) − u (t − 2)
(c) 两个非周期信号的卷积有可能是周期的吗? 14 考虑一个信号 x(t ) ,其傅里叶变换为 X ( jω ) ,假设给出下列条件: 1. x(t ) 是实值且非负的。 2. F 3.
并求出 A 和 B 的值。 22 对下列每一个变换求对应的连续时间信号: 2sin[3(ω − 2π )] (a) X ( jω ) = ω − 2π (c) X ( jω ) 的模和相位如下图所示
X ( jω )
1 -1 0 1
)X ( jω )
1
ω
ω −3ω
(e) X ( jω ) 如下图所示
X (jω )
(3) 存在一个实数 α ,使 e jαω X ( jω ) 为实函数 (4)
∫
∞
−∞
X ( jω )dω = 0
(5)
∫
∞
−∞
ω X ( jω )dω = 0
(6) X ( jω ) 是周期的。
x(t) 1 -5 -4 -3 -2 -1 -1 1 2 3 4 5 6 7 8
(a)
x(t) x(t) 2 1 2 1 t -1 3 8 t
x(t ) = t , 0 < t < 1
3
画出 x(t ) 并求出它的傅里叶级数系数。 45 设 x(t ) 是一个实周期信号,其正弦-余弦形式的傅里叶级数表示为
x(t ) = a0 + 2∑ [ Bk cos kω0t − Ck sin kω0t ]
k =1
∞
(a) 求 x(t ) 的偶部和奇部的指数形式的傅里叶级数表示;也就是利用上式的系数求下面 两式中的 α k 和 β k ,
35 考虑一个连续时间 LTI 系统 S ,其频率响应是
⎧1, H ( jω ) = ⎨ ⎩0,
ω ≥ 250 其余ω
当输入到该系统的信号 x(t ) 是一个基波周期 T = π / 7 ,傅里叶级数系数为 ak 的信号时, 发现输出 y (t ) = x(t ) 。问:对于什么样的 k 值,才有 ak = 0 ? 36 考虑一个因果离散时间 LTI 系统,其输入 x[n] 和输出 y[n] 由下面差分方程所关联:
x[n] =
k= N
∑ae
k
jk (2π / N ) n
下列每个信号的傅里叶级数系数都能用上式中的 ak 来表示,试导出如下信号的表示式: (a) x[n − n0 ] (d) x[n] + x[n +
x(t ) = a0 + 2∑ [ Bk cos(
k =1
∞
2π kt 2π kt ) − Ck sin( )] 3 3
z (t ) = d 0 + 2∑ [ Ek cos(
k =1
∞
2π kt 2π kt ) − Fk sin( )] 3 3
x(t)
2
-6
-5
-3
-6
7
9
t
2
-6
《第二次课后作业》 11 已知下列关系:
y (t ) = x(t ) ∗ h(t )
和
g (t ) = x(3t ) ∗ h(3t )
并已知 x(t ) 的傅里叶变换是 X ( jω ) , h(t ) 的傅里叶变换是 H ( jω ) ,利用傅里叶变换性质证明
g (t ) 为 g (t ) = Ay ( Bt )
(g) x(t ) 如下图所示
x(t )
1 -2 -1 -1 1 2
t
9
34 一个因果稳定的 LTI 系统 S ,有频率响应为
H ( jω ) =
jω + 4 6 − ω 2 + 5jω
(a) 写出关联系统 S 输入和输出的微分方程。 (b) 求该系统 S 的单位冲激响应 h(t ) 。 (c) 若输入 x(t ) 为
−∞ ∞
(f)
x(t)
2 1
(d) 计算 ∫ X ( jω )
−∞ ∞
∞
2sin ω
ω
2
e j2ω dω
-1
0
1
2
3
t
(e) 计算 ∫
−∞
X ( j ω ) dω
(f) 画出 Re { X ( jω )} 的反变换 注意:不必具体算出 X ( jω ) 就能完成以上全部计算。 27 考虑信号
x(t ) = u (t − 1) − 2u (t − 2) + u (t − 3)
−1
{(1 + jω ) X ( jω )} = Ae−2t u (t ) , A 与 t 无关。
X ( jω ) dω = 2π
2
∫
∞
−∞
求 x(t ) 的闭式表达式。 24 (a) 下图所示的实信号中,如果有的话,哪些信号的傅里叶变换满足下列所有条件: (1) Re { X ( jω )} = 0 (2) Im { X ( jω )} = 0
Ev { x(t )} = ∑ α k e jkω0t
k =1