2.1函数及其表示学案(高考一轮复习)
高三数学一轮复习精品学案5:§2.1函数及其表示
§2.1函数及其表示知识梳理1.函数与映射的概念(1)在函数y=f(x),x∈A中,自变量x的取值范围(数集A)叫做函数的;函数值的叫做函数的值域.(2)如果两个函数的定义域相同,并且完全一致,则这两个函数为相等函数.3.函数的表示方法表示函数的常用方法有、和.4.分段函数(1)若函数在其定义域的不同子集上,因不同而分别用几个不同的式子来表示,这种函数称为分段函数.(2)分段函数的定义域等于各段函数的定义域的,其值域等于各段函数的值域的,分段函数虽由几个部分组成,但它表示的是一个函数.学情自测1.(质疑夯基)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)函数y=1与y=x0是同一个函数.()(2)与x轴垂直的直线和一个函数的图象至多有一个交点.()(3)函数y =x 2+1+1的值域是{y |y ≥1}.( )(4)若两个函数的定义域与值域相同,则这两个函数相等.( ) 2.函数f (x )=log 2(x 2+2x -3)的定义域是( ) A .『-3,1』 B .(-3,1)C .(-∞,-3』∪『1,+∞)D .(-∞,-3)∪(1,+∞) 3.下列函数中,不满足f (2x )=2f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +1 D .f(x )=-x4.设f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=⎩⎪⎨⎪⎧1,x 为有理数,0,x 为无理数,则f (g (π))的值为( )A .1B .0C .-1D .π 5.给出四个命题:①函数是其定义域到值域的映射; ②f (x )=x -3+2-x 是一个函数; ③函数y =2x (x ∈N )的图象是一条直线; ④f (x )=lg x 2与g (x )=2lg x 是同一个函数. 其中正确命题的序号是________. 规律总结 两点注意1.在判断两个函数是否为同一函数时,要紧扣两点:一是定义域是否相同;二是对应关系是否相同.2.定义域优先原则:函数定义域是研究函数的基础依据,对函数性质的讨论,必须在定义域内进行.两点要求1.用换元法解题时,应注意换元前后的等价性. 2.分段函数问题要用分类讨论思想分段求解. 四种方法函数解析式的几种常用方法:待定系数法、换元法、配凑法、构造法。
高考数学一轮复习第二章函数概念与基本初等函数Ⅰ2-1函数及其表示学案理
【2019最新】精选高考数学一轮复习第二章函数概念与基本初等函数Ⅰ2-1函数及其表示学案理考纲展示► 1.了解构成函数的要素,会求一些简单函数的定义域和值域,了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单地应用(函数分段不超过三段).考点1 函数的概念1.函数与映射的概念确定2.函数由定义域、________和值域三个要素构成.答案:对应关系3.相等函数:如果两个函数的________和________完全一致,则这两个函数相等,这是判断两函数相等的依据.答案:定义域对应关系[教材习题改编]以下属于函数的有________.①y=±x;②y2=x+1;③y=+;④y=x2-2(x∈N).答案:④解析:①②中,对于定义域内任意一个数x,可能有两个不同的y 值,不满足对应的唯一性,所以①②错误;③中,定义域是空集,而函数的定义域是非空的数集,所以③错误.函数与映射理解的误区:唯一性;非空数集.如图表示的是从集合A到集合B的对应,其中________是映射,________是函数.答案:①②④①②解析:函数与映射都要求对于集合A中的任一元素在集合B中都有唯一确定的元素与之对应,所以③不是映射也不是函数;①②④表示的对应是映射;①②是函数,由于④中集合A,B不是数集,所以不是函数.[典题1] (1)下列四个图象中,是函数图象是( )A.① B.①③④C.①②③ D.③④[答案] B[解析] ②中当x>0时,每一个x的值对应两个不同的y值,因此不是函数图象;①③④中每一个x的值对应唯一的y值,因此是函数图象.故选B.(2)下列各组函数中,表示同一函数的是( )A.f(x)=|x|,g(x)=x2B.f(x)=,g(x)=()2C.f(x)=,g(x)=x+1D.f(x)=·,g(x)=x2-1[答案] A[解析] A中,g(x)=|x|,∴f(x)=g(x);B中,f(x)=|x|(x∈R),g(x)=x(x≥0),∴两函数的定义域不同;C中,f(x)=x+1(x≠1),g(x)=x+1(x∈R),∴两函数的定义域不同;D中,f(x)=·(x+1≥0且x-1≥0),f(x)的定义域为{x|x≥1};g(x)=(x2-1≥0),g(x)的定义域为{x|x≥1或x≤-1}.∴两函数的定义域不同.故选A.(3)下列集合A到集合B的对应f中:①A={-1,0,1},B={-1,0,1},f:A中的数平方;②A={0,1},B={-1,0,1},f:A中的数开方;③A=Z,B=Q,f:A中的数取倒数;④A=R,B={正实数},f:A中的数取绝对值.是从集合A到集合B的函数的为________.[答案] ①[解析] ②中,由于1的开方数不唯一,因此f不是A到B的函数;③中,A中的元素0在B中没有对应元素;④中,A中的元素0在B中没有对应元素.[点石成金] 函数的三要素:定义域、值域、对应法则.这三要素不是独立的,值域可由定义域和对应法则唯一确定.因此当且仅当定义域和对应法则都相同时,函数才是同一函数.特别值得说明的是,对应法则是就效果而言的(判断两个函数的对应法则是否相同,只要看对于函数定义域中的任意一个相同的自变量的值,按照这两个对应法则算出的函数值是否相同)不是指形式上的.即对应法则是否相同,不能只看外形,要看本质;若是用解析式表示的,要看化简后的形式才能正确判断.考点2 函数的定义域对函数y=f(x),x∈A,其中x叫做自变量,x的取值范围A叫做定义域,与x的值对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做值域.(1)[教材习题改编]函数f(x)=+的定义域为( )A.[0,2)B.(2,+∞)C.[0,2)∪(2,+∞)D.(-∞,2)∪(2,+∞)答案:C (2)[教材习题改编]若函数y=f(x)的定义域为M={x|-2≤x≤2},值域为N={y|0≤y≤2},则函数y=f(x)的图象可能是( )A BC D答案:B 定义域问题的两个易错点:忽略定义域;化简后求定义域.(1)已知长方形的周长为12,设一边长为x,则其面积y关于x的函数解析式为________.答案:y=x(6-x)(0<x<6)解析:因为长方形一边长为x,则另一边长为=6-x,所以y=x(6-x).又x>0,6-x>0,所以0<x<6.如果不考虑x的范围,会扩大x的范围,这样会使实际问题失去意义.(2)函数y=的定义域为________.答案:(-∞,1)∪(1,+∞)解析:要使函数有意义,应使x-1≠0,即x≠1,所以函数定义域为(-∞,1)∪(1,+∞).本题如果对解析式化简会有y===x+2,从而得函数定义域为R,所以在求解定义域时,不能对函数变形、化简,以免定义域发生变化.[考情聚焦] 函数的定义域是使函数有意义的自变量取值的集合,它是函数不可缺少的组成部分,研究函数问题必须树立“定义域优先”的观念.求给定函数的定义域往往转化为解不等式(组)的问题,在解不等式(组)取交集时可借助于数轴.主要有以下几个命题角度:角度一求给定函数解析式的定义域[典题2] (1)[2017·山东淄博月考]函数f(x)=的定义域是( )A.(0,2)B.(0,1)∪(1,2)D.(0,1)∪(1,2]C.(0,2][答案] D [解析] 要使函数有意义,则有即所以0<x≤2且x≠1,所以函数f(x)的定义域为(0,1)∪(1,2],故选D. (2)[2017·山东青州高三模拟]函数f(x)=ln(x-1)+的定义域为( )A .(1,2)B .[1,2)C .(1,2]D .[1,2][答案] A[解析] 函数f(x)=ln(x -1)+的定义域为⇒1<x<2,故选A.角度二求抽象函数的定义域[典题3] (1)若函数f(x2+1)的定义域为[-1,1],则f(lg x)的定义域为( )A .[-1,1]B .[1,2]C .[10,100]D .[0,lg 2][答案] C[解析] 因为f(x2+1)的定义域为[-1,1],则-1≤x≤1,故0≤x2≤1,所以1≤x2+1≤2.因为f(x2+1)与f(lg x)是同一个对应法则,所以1≤lg x≤2,即10≤x≤100, 所以函数f(lg x)的定义域为[10,100].(2)[2017·河北唐山模拟]已知函数f(x)的定义域是[0,2],则函数g(x)=f +f 的定义域是________.[答案] ⎣⎢⎡⎦⎥⎤12,32 [解析] 因为函数f(x)的定义域是[0,2],所以函数g(x)=f +f中的自变量x 需要满足⎩⎪⎨⎪⎧0≤x+12≤2,0≤x-12≤2,解得≤x≤,所以函数g(x)的定义域是.角度三已知定义域确定参数问题[典题4] [2017·安徽合肥模拟]若函数f(x)=的定义域为R,则a的取值范围为________.[答案] [-1,0][解析] 函数f(x)的定义域为R,所以2x2+2ax-a-1≥0对x∈R恒成立,即2x2+2ax-a≥20,x2+2ax-a≥0恒成立,因此有Δ=(2a)2+4a≤0,解得-1≤a≤0.[点石成金] 求函数定义域的两种方法函数的表示法表示函数的常用方法有:________、________、________.答案:解析法图象法列表法[典题5] (1)已知f=lg x,则f(x)=________.[答案] lg (x>1)[解析] 令t =+1(t >1),则x =,∴f(t)=lg ,即f(x)=lg (x >1).(2)已知f(x)是一次函数,且满足3f(x +1)-2f(x -1)=2x +17,则f(x)=________. [答案] 2x +7[解析] 设f(x)=ax +b(a≠0),则3f(x +1)-2f(x -1)=3ax +3a +3b -2ax +2a -2b =ax +5a +b ,即ax +5a +b =2x +17不论x 为何值都成立,∴解得⎩⎪⎨⎪⎧a =2,b =7,∴f(x)=2x +7.(3)已知f(x)满足2f(x)+f =3x ,则f(x)=________.[答案] 2x -(x≠0)[解析] ∵2f (x)+f =3x ,① 以代替①式中的x(x≠0),得2f +f(x)=.②①×2-②,得3f(x)=6x -,∴f(x)=2x -(x ≠0).(4)[2017·山东青岛一中检测]奇函数f(x)在(0,+∞)上的表达式为f(x)=x +,则在(-∞,0)上f(x)的表达式为f(x)=________.[答案] x --x[解析] 设x<0,则-x>0,∴f(-x)=-x +.又f(x)为奇函数,∴f(x)=-f(-x)=x -, 即x∈(-∞,0)时,f(x)=x -. [点石成金] 求函数解析式的方法1.已知f(+1)=x +2,则f(x)=________.答案:x2-1(x≥1)解析:令t =+1,∴t≥1,x =(t -1)2,则f(t)=(t -1)2+2(t -1)=t2-1,∴f(x)=x2-1(x ≥1).2.已知f(x)为二次函数且f(0)=3,f(x +2)-f(x)=4x +2,则f(x)的解析式为________. 答案:f(x)=x2-x +3解析:设f(x)=ax2+bx +c(a≠0), 又f(0)=c =3,∴f(x)=ax2+bx +3,∴f(x +2)-f(x)=a(x +2)2+b(x +2)+3-(ax2+bx +3)=4ax+4a +2b =4x +2. ∴∴⎩⎪⎨⎪⎧a =1,b =-1.∴f(x)=x2-x +3.考点4 分段函数及其应用1.分段函数的定义若函数在其定义域内,对于定义域内的不同取值区间,有着不同的________,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.答案:对应关系 2.分段函数的性质(1)分段函数的定义域是各段函数解析式中自变量的取值集合的________.(2)分段函数的值域是各段函数值的________,它的最大值取各段最大值中最大的,最小值取各段最小值中最小的.(3)分段函数的单调性,首先应该判断各段函数的单调性,若每一段函数单调性一致,再判断分界点处函数值的关系,若符合单调性定义,则该函数在整个定义域上单调递增或递减;若不符合,则必须分区间说明单调性.答案:(1)并集(2)并集[考情聚焦] 分段函数是一类重要的函数,是高考的命题热点,多以选择题或填空题的形式呈现,试题难度不大,多为中低档题.主要有以下几个命题角度:角度一求分段函数的函数值或取值范围[典题6] [2017·广东广州模拟]设函数f(x)=则f(f(4))=________;若f(a)<-1,则a的取值范围为________.[答案] 5 ∪(1,+∞)[解析] f(4)=-2×42+1=-31,f(f(4))=f(-31)=log2(1+31)=5.当a≥1时,由-2a2+1<-1,得a2>1,解得a>1;当a<1时,由log2(1-a)<-1,得log2(1-a)<log2,∴0<1-a<,∴<a<1.即a的取值范围为∪(1,+∞).角度二分段函数的图象与性质的应用[典题7] 对任意实数a ,b 定义运算“⊗”:a ⊗b =设f(x)=(x2-1)⊗(4+x),若函数y =f(x)+k 的图象与x 轴恰有三个不同交点,则k 的取值范围是( )A .(-2,1)B .[0,1]C .[-2,0)D .[-2,1)[答案] D[解析] 解不等式x2-1-(4+x)≥1,得x≤-2或x≥3.解x2-1-(4+x)<1,得-2<x<3.所以f(x)=⎩⎪⎨⎪⎧x +4,-∞,-2]∪[3,+,x2-1,-2,其图象如图实线所示.由图可知,当-2≤k<1时,函数y =f(x)+k 的图象与x 轴恰有三个不同交点,故选D.[点石成金] 分段函数应用的常见题型与破解策略间进行分别求解,然后整合.[方法技巧] 1.在判断两个函数是否为同一函数时,要紧扣两点:一是定义域是否相同;二是对应关系是否相同.2.函数的定义域是函数的灵魂,它决定了函数的值域,并且它是研究函数性质和图象的基础.因此,我们一定要树立函数定义域优先意识.3.函数解析式的几种常用求法:待定系数法、换元法、配凑法、解方程组法.[易错防范] 1.求函数的解析式时要充分根据题目的类型选取相应的方法,同时要注意函数的定义域,如已知f()=x +1,求函数f(x)的解析式时,通过换元的方法可得f(x)=x2+1,这个函数的定义域是[0,+∞),而不是(-∞,+∞).2.求分段函数应注意的问题:在求分段函数的值f(x0)时,首先要判断x0属于定义域的哪个子集,然后再代入相应的关系式.真题演练集训1.[2013·大纲全国卷]已知函数f(x)的定义域为(-1,0),则函数f(2x +1)的定义域为( )A .(-1,1)B .⎝ ⎛⎭⎪⎫-1,-12 C .(-1,0)D .⎝ ⎛⎭⎪⎫12,1 答案:B解析:∵f(x)的定义域为(-1,0),∴-1<2x +1<0,∴-1<x<-. 2.[2015·新课标全国卷Ⅱ]设函数f(x)=则f(-2)+f(log212)=( )A .3B .6C .9D .12答案:C解析:∵ -2<1,∴ f(-2)=1+log2(2+2)=1+log24=1+2=3.∵ log212>1,∴ f(log212)=2log212-1==6.∴ f(-2)+f(log212)=3+6=9.故选C. 3.[2015·浙江卷]存在函数f(x)满足:对任意x∈R都有( )A.f(sin 2x)=sin xB.f(sin 2x)=x2+xC.f(x2+1)=|x+1|D.f(x2+2x)=|x+1|答案:D解析:取特殊值法.取x=0,,可得f(0)=0,1,这与函数的定义矛盾,所以选项A错误;取x=0,π,可得f(0)=0,π2+π,这与函数的定义矛盾,所以选项B错误;取x=1,-1,可得f(2)=2,0,这与函数的定义矛盾,所以选项C错误;取f(x)=,则对任意x∈R都有f(x2+2x)==|x+1|,故选项D正确.综上可知,故选D.4.[2014·山东卷]函数f(x)=的定义域为( )A.B.(2,+∞)C.∪(2,+∞)D.∪[2,+∞)答案:C解析:(log2x)2-1>0,即log2x>1或log2x<-1,解得x>2或0<x<,故所求的定义域是∪(2,+∞).5.[2014·上海卷]设f(x)=若f(0)是f(x)的最小值,则a的取值范围为( )B.[-1,0]A.[-1,2]D.[0,2]C.[1,2]答案:D解析:∵当x≤0时,f(x)=(x-a)2,又f(0)是f(x)的最小值,∴a≥0.当x>0时,f(x)=x++a≥2+a,当且仅当x=1时等号成立.要满足f(0)是f(x)的最小值,需2+a≥f(0)=a2,即a2-a-2≤0,解得-1≤a≤2,∴a的取值范围是0≤a≤2.故选D.6.[2016·江苏卷]函数y=的定义域是________.答案:[-3,1]解析:要使函数y=有意义,则3-2x-x2≥0,解得-3≤x≤1,则函数y=的定义域是[-3,1].课外拓展阅读已知定义域求参数问题[典例1] 已知函数y=的定义域为R,求实数k的值.[解] 函数y=的定义域即使k2x2+3kx+1≠0的实数x的集合.由函数的定义域为R,得方程k2x2+3kx+1=0无解.当k=0时,函数y==1,函数的定义域为R,因此k=0符合题意;当k≠0时,k2x2+3kx+1=0无解,即Δ=9k2-4k2=5k2<0,不等式不成立.所以实数k的值为0.归纳总结已知函数的定义域,逆向求解函数中参数的取值,需运用分类讨论以及转化与化归的思想方法.转化与化归的思想方法是通过某种转化过程,将一个难以解决的问题转化为一个已经解决或者比较容易解决的问题,从而获解.如本题中将求参问题转化为方程无解的问题.[典例2] 已知函数y=(a<0且a为常数)在区间(-∞,1]上有意义,求实数a的取值范围.[解] 由题意知ax+1≥0,a<0,所以x≤-,即函数的定义域为.因为函数在(-∞,1]上有意义,所以(-∞,1]⊆,所以-≥1.又a<0,所以-1≤a<0,即a的取值范围是[-1,0).温馨提示函数在(-∞,1]上有意义,说明函数的定义域包含区间(-∞,1],使函数有意义的自变量的集合是定义域的子集.已知分段函数图象求解析式已知函数的图象求函数的解析式y=f(x),如果自变量x在不同的区间上变化时,函数y=f(x)的解析式也不同,应分类求解.此时应根据图象,结合已学过的基本函数的图象,选择相应的解析式,用待定系数法求解,其函数解析式一般为分段函数.要注意写解析式时各区间端点的值,做到不重也不漏.[典例3] 根据如图所示的函数y=f(x)的图象,写出函数的解析式.[解] 当-3≤x<-1时,函数y=f(x)的图象是一条线段(右端点除外),设f(x)=ax +b(a≠0),将点(-3,1),(-1,-2)代入,可得f(x)=-x -;当-1≤x<1时,同理可设f(x)=cx +d(c≠0),将点(-1,-2),(1,1)代入,可得f(x)=x -; 当1≤x<2时,f(x)=1.综上f(x)=⎩⎪⎨⎪⎧-32x -72,-3≤x<-1,32x -12,-1≤x<1,1,1≤x<2.方法探究由图象求函数的解析式,需充分挖掘图象中提供的点的坐标,合理利用待定系数法求解.对于分段函数,需观察各段图象的端点是空心点还是实心点,正确写出各段解析式对应的自变量的范围.。
高三数学第二章函数+导数高考一轮复习教案2.1函数及其表示
2.1函数及其表示一、学习目标:考纲点击:理解函数的有关概念热点提示:1.函数是高考数学的核心内容,在历年高考中,函数知识覆盖面广、综合性强,在难中易各类考题中都会出现。
而在江苏高考中,函数题的难度一般偏大,同其他省比有其独特性。
2、本节是函数的起始部分,以考查函数的概念、三要素及表示法为主,同时函数的图像,分段函数的考查是热点,另外,实际问题中的建模能力也经常考查。
本节复习重点:函数的定义域和表达式二、知识要点:1.函数的概念定义:设A,B 是___________,如果按照某种对应法则f,对于集合A 中的______,在集合B 中都有______元素y 和它对应,这样的对应叫做从A 到B 的一个函数记作____________. 其中,x 叫做______,x 的取值范围A 叫做函数的_______;与x 的值相对应的y 的值叫做______,函数值的集合{ f(x) |x ∈A}叫做函数的_______.2.函数的三要素:①_________;②__________________;③_________ 。
注:两个函数当且仅当_______和________,都相同时,才称作相同的函数.3.常用的函数表示法(1)解析法:;(2)列表法:;(3)图象法:。
4.分段函数5.复合函数若y =f (u),u=g(x ),x ∈ (a ,b ),u∈ (m,n),那么y =f [g(x )]称为复合函数,u 称为中间变量,它的取值范围是g(x )的值域。
三、课前检测:1. (09山东理)定义在R 上的函数f(x )满足f(x)= ⎩⎨⎧>---≤-0),2()1(0),1(log 2x x f x f x x ,则f (2009)的值为________2.(09福建文)下列函数中,与函数y= 有相同定义域的是( ) A .()ln f x x = B.1()f x x =C. ()||f x x =D.()x f x e = 3. (09江西理)函数y =的定义域为________4. (09北京文)已知函数3,1,(),1,x x f x x x ⎧≤=⎨->⎩若()2f x =,则x = .5. .(09安徽理)已知函数()f x 在R 上满足2()2(2)88f x f x x x =--+-,则曲线()y f x =在点(1,(1))f 处的切线方程是 .四.经典例题:热点考向一:求函数定义域例1:(1)求函数02)4(1||21)(-+-+-=x x x x f 的定义域。
高三数学一轮复习精品教案8:2.1 函数及其表示教学设计
2.1 函数及其表示目标定位1. 了解映射的概念,在此基础上加深对函数概念的理解。
2.能根据函数的二要素判断两个函数是否为同一函数。
3.理解分段函数的意义。
4.掌握函数的三种表示方法。
知识梳理1. 设集合A是一个非空的数集,对A内任意数x,按照确定的法则f,都有,则这种对应关系叫做集合A的一个函数。
记作:。
2.确定一个函数只需两个要素:。
3.设A、B是两个非空的集合,如果按照某种对应法则f,对A内任意一个元素x,在B 内,则称f是集合A到集合B的映射。
4.函数的三种表示方法是:。
课堂互动知识点1 函数的概念函数的定义有各种不同的形式,不管哪种形式其中最核心的内容都是“对于任意的一个数x,按照确定的法则f,都有惟一确定的数值y与它对应”,“惟一”是其中的关键字。
在处理有关函数的概念的问题时,必须切实把握“惟一”二字。
『例题1』下列各图象不能表示函数图象的是『分析』根据函数的定义,对于任意的一个数x,按照确定的法则f,都有惟一确定的数值y与它对应,而在D中对于的x可能有两个y值与它对应,所以D不能表示函数图象。
『答案』D『点评』在解决考查函数的概念的题目时,必须把握两点:一是定义域非空数集(当然值域也非空数集);二是对于任意的一个数x,按照确定的法则f,都有惟一确定的数值y与它对应(必须是惟一的)。
巩固练习 以下四组函数中,表示同一函数的是A .2)(|,|)(t t g x x f ==B .22)()(,)(x x g x x f ==C .1)(,11)(2+=--=x x g x x x f D .1)(,11)(2-=-⋅+=x x g x x x f 知识点2 函数的表示法函数的表示方法是函数的外在表现形式,在三种形式中最重要的是解析法、图象法(这两种表示方法必须既要能读懂,又要能用它们熟练地表示函数),列表法在以前的考查中主要是能读懂列表法表示的函数和列表法画函数图象,一般不要求学生用列表的方法表示函数。
高考数学(理科)一轮复习函数及其表示学案带答案
高考数学(理科)一轮复习函数及其表示学案带答案本资料为woRD文档,请点击下载地址下载全文下载地址第二章函数学案4 函数及其表示导学目标:1.了解构成函数的要素,会求一些简单函数的定义域和值域,了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法表示函数.3.了解简单的分段函数,并能简单应用.自主梳理.函数的基本概念函数定义设A,B是非空的,如果按照某种确定的对应关系f,使对于集合A中的,在集合B中,称f:A→B为从集合A到集合B的一个函数,x的取值范围A叫做函数的__________,__________________叫做函数的值域.函数的三要素__________、________和____________.函数的表示法表示函数的常用方法有:________、________、________.函数相等如果两个函数的定义域和__________完全一致,则这两个函数相等,这是判定两函数相等的依据.分段函数:在函数的________内,对于自变量x的不同取值区间,有着不同的____________,这样的函数通常叫做分段函数.分段函数是一个函数,它的定义域是各段取值区间的________,值域是各段值域的________.2.映射的概念映射的定义设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的.(2)由映射的定义可以看出,映射是概念的推广,函数是一种特殊的映射,要注意构成函数的两个集合,A、B必须是数集.自我检测.设集合m={x|0≤x≤2},N={y|0≤y≤2},给出下列4个图形,其中能表示集合m到N的函数关系的有A.0个B.1个c.2个D.3个2.函数y=1log0.54x-3的定义域为A.B.c.D.∪3.已知函数f=log3x,x>02x,x≤0,则f)等于A.4B.14c.-4D.-144.下列函数中,与函数y=x相同的函数是A.y=x2xB.y=2c.y=lg10xD.y=2log2x5.函数y=lg的定义域是R,求a的取值范围.探究点一函数与映射的概念例1 下列对应关系是集合P上的函数的是________.P=Z,Q=N*,对应关系f:对集合P中的元素取绝对值与集合Q中的元素相对应;y=x2,x∈P,y∈Q;(2)P={-1,1,-2,2},Q={1,4},对应关系:f:x→y=x2,x ∈P,y∈Q;P={三角形},Q={x|x>0},对应关系f:对P中三角形求面积与集合Q中元素对应.变式迁移1已知映射f:A→B.其中B.其中A=B=R,对应关系f:x→y=-x2+2x,对于实数k∈B,在集合A中不存在元素与之对应,则k的取值范围是A.k>1B.k≥1c.k<1D.k≤1探究点二求函数的定义域例2求函数y=x+1+x-10lg2-x的定义域;已知函数f的定义域为,求f的定义域.变式迁移2 已知函数y=f的定义域是[0,2],那么g =fx21+lgx+1的定义域是___________________________________________________ _____________________.探究点三求函数的解析式例3 已知f=lgx,求f;已知f是一次函数,且满足3f-2f=2x+17,求f;已知f满足2f+f=3x,求f.变式迁移3 给出下列两个条件:f=x+2x;f为二次函数且f=3,f-f=4x+2.试分别求出f的解析式.探究点四分段函数的应用例4 设函数f=x2+bx+c,x≤0,2,x>0.若f=f,f=-2,则关于x的方程f=x的解的个数为A.1B.2c.3D.4变式迁移4 已知函数f=x2+1,x≥0,1,x<0,则满足不等式f>f的x的范围是________________.1.与定义域有关的几类问题第一类是给出函数的解析式,这时函数的定义域是使解析式有意义的自变量的取值范围;第二类是实际问题或几何问题,此时除要考虑解析式有意义外,还应考虑使实际问题或几何问题有意义;第三类是不给出函数的解析式,而由f的定义域确定函数f[g]的定义域或由f[g]的定义域确定函数f的定义域.第四类是已知函数的定义域,求参数范围问题,常转化为恒成立问题来解决.2.解析式的求法求函数解析式的一般方法是待定系数法和换元法,除此还有代入法、拼凑法和方程组法.一、选择题.下列各组中的两个函数是同一函数的为y1=x+3x-5x+3,y2=x-5;y1=x+1x-1,y2=x+1x -1;f=x,g=x2;f=3x4-x3,F=x3x-1;f1=2,f2=2x-5.A.B.c.D.2.函数y=f的图象与直线x=1的公共点数目是A.1B.0c.0或1D.1或23.已知f=x+2x≤-1,x2-1<x<2,2xx≥2,若f=3,则x的值是A.1B.1或32c.1,32或±3D.34.函数y=lnx+1-x2-3x+4的定义域为A.B.c.D.A.∅B.{1}c.∅或{2}D.∅或{1}题号2345答案二、填空题6.下列四个命题:f=x-2+1-x有意义;函数是其定义域到值域的映射;函数y=2x的图象是一条直线;函数y=x2,x≥0,-x2,x<0的图象是抛物线.其中正确的命题个数是________.7.设f=3x+1 x≥0x2x<0,g=2-x2x≤12x>1,则f[g]=________,g[f]=________.8.已知函数f=3x+2,x<1,x2+ax,x≥1,若f)=4a,则实数a=______.三、解答题9.若f=2x2+1,求f的表达式;若2f-f=x+1,求f的表达式;若函数f=xax+b,f=1,又方程f=x有唯一解,求f 的表达式.10.已知f=x2+2x-3,用图象法表示函数g=fx+|fx|2,并写出g 的解析式.11.某产品生产厂家根据以往的生产销售经验得到下面有关销售的统计规律:每生产产品x,其总成本为G万元,其中固定成本为2万元,并且每生产100台的生产成本为1万元,销售收入R满足R=-0.4x2+4.2x-0.8,0≤x≤5,10.2,x>5.假定该产品产销平衡,那么根据上述统计规律:要使工厂有盈利,产品x应控制在什么范围?工厂生产多少台产品时盈利最大?此时每台产品的售价为多少?答案自主梳理.数集任意一个数x 都有唯一确定的数f和它对应定义域函数值的集合{f|x∈A} 定义域值域对应关系解析法列表法图象法对应关系定义域对应关系并集并集 2.都有唯一一个映射函数非空自我检测.B [对于题图:m中属于:m中属于:符合m到N的函数关系;对于题图:其象不唯一,因此也不表示m到N的函数关系.]2.A 3.B 4.c5.解函数y=lg的定义域是R,即ax2-ax+1>0恒成立.①当a=0时,1>0恒成立;②当a≠0时,应有a>0,Δ=a2-4a<0,∴0<a<4.综上所述,a的取值范围为0≤a<4.课堂活动区例1 解题导引函数是一种特殊的对应,要检验给定的两个变量之间是否具有函数关系,只需要检验:①定义域和对应关系是否给出;②根据给出的对应关系,自变量在其定义域中的每一个值,是否都有唯一确定的函数值.解析由于中集合P中元素0在集合Q中没有对应元素,并且中集合P不是数集,所以和都不是集合P上的函数.由题意知,正确.变式迁移1 A [由题意知,方程-x2+2x=k无实数根,即x2-2x+k=0无实数根.∴Δ=4<0,∴k>1时满足题意.]例2 解题导引在中函数f的定义域为是指x的取值范围还是2x+1的取值范围?f中的x与f中的2x+1的取值范围有什么关系?解要使函数有意义,应有x+1≥0,x-1≠0,2-x>0,2-x≠1,即x≥-1,x≠1,x<2,解得-1≤x<2,x≠1.所以函数的定义域是{x|-1≤x<1或1<x<2}.∵f的定义域为,∴1<2x+1<3,所以f的定义域是.变式迁移2 ∪∪若已知函数的类型,可用待定系数法.已知复合函数f)的解析式,可用换元法,此时要注意变量的取值范围.已知f满足某个等式,这个等式除f是未知量外,还出现其他未知量,如f、f等,要根据已知等式再构造其他等式组成方程组,通过解方程组求出f.解令2x+1=t,则x=2t-1,∴f=lg2t-1,∴f=lg2x-1,x∈.设f=ax+b,则3f-2f=3ax+3a+3b-2ax+2a-2b=ax+b+5a=2x+17,∴a=2,b+5a=17,∴a=2,b=7,故f=2x+7.2f+f=3x,①把①中的x换成1x,得2f+f=3x,②①×2-②,得3f=6x-3x,∴f=2x-1x.变式迁移3 解令t=x+1,∴t≥1,x=2.则f=2+2=t2-1,即f=x2-1,x∈[1,+∞).设f=ax2+bx+c,∴f=a2+b+c,则f-f=4ax+4a+2b=4x+2.∴4a=4,4a+2b=2. ∴a=1,b=-1.又f=3,∴c=3,∴f=x2-x+3.例4 解题导引①本题可以先确定解析式,然后通过解方程f=x来确定解的个数;也可利用数形结合,更为简洁.②对于分段函数,一定要明确自变量所属的范围,以便于选择与之相应的对应关系.③分段函数体现了数学的分类讨论思想,相应的问题处理应分段解决.c [方法一若x≤0,则f=x2+bx+c.∵f=f,f=-2,∴-42+b•-4+c=c,-22+b•-2+c=-2,解得b=4,c=2.∴f=x2+4x+2,x≤0,2,x>0.当x≤0,由f=x,得x2+4x+2=x,解得x=-2,或x=-1;当x>0时,由f=x,得x=2.∴方程f=x有3个解.方法二由f=f且f=-2,可得f=x2+bx+c的对称轴是x=-2,且顶点为,于是可得到f的简图.方程f=x 的解的个数就是函数图象y=f与y=x的图象的交点的个数,所以有3个解.]变式迁移4解析函数f=x2+1,x≥0,1,x<0的图象如图所示:f>f⇔1-x2>2x1-x2>0,解得-1<x<2-1.课后练习区.c [定义域不同;定义域不同;对应关系不同;定义域相同,且对应关系相同;定义域不同.]2.c [有可能是没有交点的,如果有交点,那么对于x =1仅有一个函数值.]3.D [该分段函数的三段各自的值域为,[4,+∞),而3∈[0,4),∴f=x2=3,x=±3,而-1<x<2,∴x =3.]4.c5.D [由已知x2=1或x2=2,解之得,x=±1或x =±2,若1∈A,则A∩B={1},若1∉A,则A∩B=∅,故A∩B=∅或{1}.]6.1解析x≥2且x≤1,不存在;函数是特殊的映射;该图象是由离散的点组成的;该图象是两个不同的抛物线的两部分组成的,不是抛物线.故只有正确.7.7 31168.29.解令t=x+1,则x=t-1,∴f=22+1=2t2-4t+3,∴f=2x2-4x+3.………………………………………………………………………………………………∵2f-f=x+1,用-x去替换式子中的x,得2f-f=-x+1,……即有2fx-f-x=x+12f-x-fx=-x+1,解方程组消去f,得f=x3+1.……………………………………………………由f=1得22a+b=1,即2a+b=2;由f=x得xax+b=x,变形得x=0,解此方程得x=0或x=1-ba,…又∵方程有唯一解,∴1-ba=0,解得b=1,代入2a+b=2得a=12,∴f=2xx+2.……………………………………………………………………………0.解函数f的图象如图所示,……………………………………g=x2+2x-3 x≤-3或x≥10-3<x<1…………………………………………………1.解依题意,G=x+2,设利润函数为f,则f=-0.4x2+3.2x-2.8,0≤x≤5,8.2-x,x>5.………………………………………………要使工厂赢利,则有f>0.当0≤x≤5时,有-0.4x2+3.2x-2.8>0,得1<x<7,所以1<x≤5.………………………………………………………………当x>5时,有8.2-x>0,得x<8.2,所以5<x<8.2.综上所述,要使工厂赢利,应满足1<x<8.2,即产品应控制在大于100台小于820台的范围内.……………………………………………………………………………………当0≤x≤5时,f=-0.42+3.6.故当x=4时,f有最大值3.6.…………………………………………………………而当x>5时,f<8.2-5=3.2.所以当工厂生产400台产品时,赢利最大,x=4时,每台产品售价为R44= 2.4=240.……………………………………………………………………………。
2024届高考一轮复习数学教案(新人教B版):函数的概念及其表示
§2.1函数的概念及其表示考试要求 1.了解函数的含义.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并会简单的应用.知识梳理1.函数的概念给定两个非空实数集A与B,以及对应关系f,如果对于集合A中每一个实数x,在集合B中都有唯一确定的实数y与x对应,则称f为定义在集合A上的一个函数,记作y=f(x),x∈A. 2.函数的三要素(1)函数的三要素:定义域、对应关系、值域.(2)如果两个函数表达式表示的函数定义域相同,对应关系也相同,则称这两个函数表达式表示的就是同一个函数.3.函数的表示法表示函数的常用方法有解析法、图象法和列表法.4.分段函数如果一个函数,在其定义域内,对于自变量的不同取值区间,有不同的对应方式,则称其为分段函数.常用结论1.直线x=a与函数y=f(x)的图象至多有1个交点.2.在函数的定义中,非空数集A,B,A即为函数的定义域,值域为B的子集.3.分段函数虽由几个部分组成,但它表示的是一个函数.分段函数的定义域等于各段函数的定义域的并集,值域等于各段函数的值域的并集.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)若两个函数的定义域和值域相同,则这两个函数是同一个函数.(×)(2)函数y =f (x )的图象可以是一条封闭曲线.(×)(3)y =x 0与y =1是同一个函数.(×)(4)函数f (x )-1,x ≥0,2,x <0的定义域为R .(√)教材改编题1.(多选)下列所给图象是函数图象的是()答案CD 解析A 中,当x >0时,每一个x 的值对应两个不同的y 值,因此不是函数图象;B 中,当x =x 0时,y 的值有两个,因此不是函数图象;CD 中,每一个x 的值对应唯一的y 值,因此是函数图象.2.下列各组函数表示同一个函数的是()A .y =x -1与y =x 2-1x +1B .y =x -1与y =-1xC .y =2x 2与y =2xD .y =2x -1与v =2t -1答案D 解析y =x -1的定义域为R ,y =x 2-1x +1的定义域为{x |x ≠-1},定义域不同,不是同一个函数,故选项A 不正确;y =x -1=1x 与y =-1x的对应关系不同,不是同一个函数,故选项B 不正确;y =2x 2=2|x |与y =2x 的对应关系不同,不是同一个函数,故选项C 不正确;y =2x -1与v =2t -1的定义域都是(-∞,1)∪(1,+∞),对应关系也相同,所以是同一个函数,故选项D 正确.3.已知函数f (x )x ,x >0,x ,x ≤0,则函数f ()A .3B .-3 C.13D .-13答案C解析由题意可知,f ln 13=-ln 3,所以f f (-ln 3)=e -ln 3=13.题型一函数的定义域例1(1)函数y =ln (x +1)-x 2-3x +4的定义域为()A .(-4,-1)B .(-4,1)C .(-1,1)D .(-1,1]答案C解析+1>0,x 2-3x +4>0,解得-1<x <1,故定义域为(-1,1).(2)已知函数f (x )的定义域为(-4,-2),则函数g (x )=f (x -1)+x +2的定义域为________.答案[-2,-1)解析∵f (x )的定义域为(-4,-2),要使g (x )=f (x -1)+x +2有意义,4<x -1<-2,+2≥0,解得-2≤x <-1,∴函数g (x )的定义域为[-2,-1).思维升华(1)无论抽象函数的形式如何,已知定义域还是求定义域,均是指其中的x 的取值集合;(2)若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;(3)若复合函数f (g (x ))的定义域为[a ,b ],则函数f (x )的定义域为g (x )在[a ,b ]上的值域.跟踪训练1(1)函数f (x )=1ln (x -1)+3-x 的定义域为()A .(1,3]B .(1,2)∪(2,3]C .(1,3)∪(3,+∞)D .(-∞,3)答案B解析-1>0,-1≠1,-x ≥0,所以1<x <2或2<x ≤3,所以函数的定义域为(1,2)∪(2,3].(2)(2023·南阳检测)已知函数f (x )=lg 1-x 1+x ,则函数g (x )=f (x -1)+2x -1的定义域是()A .{x |x >2或x <0}|12≤x <2C .{x |x >2}|x ≥12答案B 解析要使f (x )=lg 1-x 1+x 有意义,则1-x 1+x>0,即(1-x )(1+x )>0,解得-1<x <1,所以函数f (x )的定义域为(-1,1).要使g (x )=f (x -1)+2x -1有意义,1<x -1<1,x -1≥0,解得12≤x <2,所以函数g (x )|12≤x <2题型二函数的解析式例2(1)已知f (1-sin x )=cos 2x ,求f (x )的解析式;(2)已知f x 2+1x2,求f (x )的解析式;(3)已知f (x )是一次函数且3f (x +1)-2f (x -1)=2x +17,求f (x )的解析式.(4)已知f (x )满足2f (x )+f (-x )=3x ,求f (x )的解析式.解(1)(换元法)设1-sin x =t ,t ∈[0,2],则sin x =1-t ,∵f (1-sin x )=cos 2x =1-sin 2x ,∴f (t )=1-(1-t )2=2t -t 2,t ∈[0,2].即f (x )=2x -x 2,x ∈[0,2].(2)(配凑法)∵f x 2+1x2=-2,∴f (x )=x 2-2,x ∈(-∞,-2]∪[2,+∞).(3)(待定系数法)∵f (x )是一次函数,可设f (x )=ax +b (a ≠0),∴3[a (x +1)+b ]-2[a (x -1)+b ]=2x +17.即ax +(5a +b )=2x +17,=2,a +b =17,=2,=7.∴f(x)的解析式是f(x)=2x+7.(4)(解方程组法)∵2f(x)+f(-x)=3x,①∴将x用-x替换,得2f(-x)+f(x)=-3x,②由①②解得f(x)=3x.思维升华函数解析式的求法(1)配凑法;(2)待定系数法;(3)换元法;(4)解方程组法.跟踪训练2(1)已知f(x-1)=x2+4x-5,则f(x)的解析式是() A.f(x)=x2+6x B.f(x)=x2+8x+7C.f(x)=x2+2x-3D.f(x)=x2+6x-10答案A解析f(x-1)=x2+4x-5,设x-1=t,x=t+1,则f(t)=(t+1)2+4(t+1)-5=t2+6t,故f(x)=x2+6x.(2)若f =x1-x,则f(x)=________.答案1x-1(x≠0且x≠1)解析f(x)=1x1-1x=1x-1(x≠0且x≠1).(3)已知函数f(x)满足f(x)+2f3x,则f(2)等于()A.-3B.3C.-1D.1答案A解析f(x)+2f3x,①则f2f(x)=-3x,②联立①②解得f(x)=-2x-x,则f(2)=-22-2=-3.题型三分段函数例3(1)已知函数f(x)x-1),x>0,ln(x+e)+2,x≤0,则f(2024)的值为() A.-1B.0C.1D.2答案C解析因为f (x )x -1),x >0,ln (x +e )+2,x ≤0,所以f (2024)=f (2023)=f (2022)=…=f (1),又f (1)=f (1-1)=f (0)=-ln(0+e)+2=-1+2=1,所以f (2024)=1.(2)已知函数f (x )x 2-3x +2,x <-1,x -3,x ≥-1,若f (a )=4,则实数a 的值是________;若f (a )≥2,则实数a 的取值范围是________.答案-2或5[-3,-1)∪[4,+∞)解析若f (a )=4,<-1,a 2-3a +2=4≥-1,a -3=4,解得a =-2或a =5.若f (a )≥2,<-1,a 2-3a +2≥2≥-1,a -3≥2,解得-3≤a <-1或a ≥4,∴a 的取值范围是[-3,-1)∪[4,+∞).思维升华分段函数求值问题的解题思路(1)求函数值:当出现f (f (a ))的形式时,应从内到外依次求值.(2)求自变量的值:先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验.跟踪训练3(1)已知函数f (x )+2,x ≤0,+1x ,x >0,若f (f (a ))=2,则a 等于()A .0或1B .-1或1C .0或-2D .-2或-1答案D 解析令f (a )=t ,则f (t )=2,可得t =0或t =1,当t =0时,即f (a )=0,显然a ≤0,因此a +2=0⇒a =-2,当t =1时,即f (a )=1,显然a ≤0,因此a +2=1⇒a =-1,综上所述,a =-2或-1.(2)(2023·重庆质检)已知函数f (x )2x ,x >1,2-1,x ≤1,则f (x )<f (x +1)的解集为________.答案-12,+∞解析当x ≤0时,x +1≤1,f (x )<f (x +1)等价于x 2-1<(x +1)2-1,解得-12<x ≤0;当0<x ≤1时,x +1>1,此时f (x )=x 2-1≤0,f (x +1)=log 2(x +1)>0,∴当0<x ≤1时,恒有f (x )<f (x +1);当x >1时,x +1>2,f (x )<f (x +1)等价于log 2x <log 2(x +1),此时也恒成立.综上,不等式f (x )<f (x +1)-12,+课时精练1.函数f (x )=lg(x -2)+1x -3的定义域是()A .(2,+∞)B .(2,3)C .(3,+∞)D .(2,3)∪(3,+∞)答案D 解析∵f (x )=lg(x -2)+1x -3,-2>0,-3≠0,解得x >2,且x ≠3,∴函数f (x )的定义域为(2,3)∪(3,+∞).2.(2023·北京模拟)已知集合A ={x |-2<x ≤1},B ={x |0<x ≤4},则下列对应关系中是从集合A 到集合B 的函数是()A .y =x +1B .y =e xC .y =x 2D .y =|x |答案B 解析对于A ,当x =-1时,由y =x +1得y =0,但0∉B ,故A 错误;对于B ,因为从A ={x |-2<x ≤1}中任取一个元素,通过y =e x 在B ={x |0<x ≤4}中都有唯一的元素与之对应,故B 正确;对于C ,当x =0时,由y =x 2得y =0,但0∉B ,故C 错误;对于D ,当x =0时,由y =|x |得y =0,但0∉B ,故D 错误.3.已知f (x 3)=lg x ,则f (10)的值为()A .1 B.310 C.13 D.1310答案C 解析令x 3=10,则x =1310,∴f (10)=lg 1310=13.4.图中的文物叫做“垂鳞纹圆壶”,是甘肃礼县出土的先秦时期的青铜器皿,其身流线自若、纹理分明,展现了古代中国精湛的制造技术.科研人员为了测量其容积,以恒定的流速向其内注水,恰好用时30秒注满,设注水过程中,壶中水面高度为h ,注水时间为t ,则下面选项中最符合h 关于t 的函数图象的是()答案A 解析水壶的结构:底端与上端细、中间粗,所以在注水恒定的情况下,开始水的高度增加的快,中间增加的慢,最后又变快,由图可知选项A 符合.5.函数y =1+x -1-2x 的值域为()-∞,32D.32,+∞答案B解析设1-2x =t ,则t ≥0,x =1-t 22所以y =1+1-t 22-t =12(-t 2-2t +3)=-12(t +1)2+2,因为t ≥0,所以y ≤32.所以函数y =1+x -1-2x ∞,32.6.已知函数f (x )x 2+2x +3,x ≤2,+log a x ,x >2(a >0且a ≠1),若函数f (x )的值域是(-∞,4],则实数a 的取值范围是()B.22,C .(1,2]D .(1,2)答案B 解析当x ≤2时,f (x )=-x 2+2x +3=-(x -1)2+4,当x =1时,f (x )=-x 2+2x +3取得最大值4,所以当x ≤2时,函数f (x )的值域是(-∞,4],所以当x >2时,函数f (x )=6+log a x 的值域为(-∞,4]的子集,当a >1时,f (x )=6+log a x 在(2,+∞)上单调递增,此时f (x )>f (2)=6+log a 2>6,不符合题意,当0<a <1时,f (x )=6+log a x 在(2,+∞)上单调递减,此时f (x )<f (2)=6+log a 2≤4,即log a 2≤-2,所以a 2≥12,可得22≤a <1,所以实数a 的取值范围是22,7.(多选)下列四个函数,定义域和值域相同的是()A .y =-x +1B .133,0,1,0x x y x x⎧≤⎪=⎨⎪>⎩C .y =ln|x |D .y =2x -1x -2答案ABD 解析对A ,函数的定义域和值域都是R ;对B ,根据分段函数和幂函数的性质,可知函数的定义域和值域都是R ;对C ,函数的定义域为(-∞,0)∪(0,+∞),值域为R ;对D ,因为函数y =2x -1x -2=2+3x -2,所以函数的定义域为(-∞,2)∪(2,+∞),值域为(-∞,2)∪(2,+∞).所以ABD 是定义域和值域相同的函数.8.(多选)函数概念最早是在17世纪由德国数学家莱布尼茨提出的,后又经历了贝努利、欧拉等人的改译.1821年法国数学家柯西给出了这样的定义:在某些变数存在着一定的关系,当一经给定其中某一变数的值,其他变数的值可随着确定时,则称最初的变数叫自变量,其他的变数叫做函数.德国数学家康托尔创立的集合论使得函数的概念更严谨.后人在此基础上构建了高中教材中的函数定义:“一般地,设A ,B 是两个非空的数集,如果按某种对应法则f ,对于集合A 中的每一个元素x ,在集合B 中都有唯一的元素y 和它对应,那么这样的对应叫做从A 到B 的一个函数”,则下列对应法则f 满足函数定义的有()A .f (x 2)=|x |B .f (x 2)=xC .f (cos x )=xD .f (e x )=x 答案AD 解析令t =x 2(t ≥0),f (t )=|±t |=t ,故A 符合函数定义;令t =x 2(t ≥0),f (t )=±t ,设t =4,f (t )=±2,一个自变量对应两个函数值,故B 不符合函数定义;设t =cos x ,当t =12时,x 可以取±π3等无数多个值,故C 不符合函数定义;令t =e x (t >0),f (t )=ln t ,故D 符合函数定义.9.已知函数f (x )x ,x <0,x -π),x >0,则f ________.答案12解析由已知得f f f f f =12.10.已知f (x )=x -1,则f (x )=________.答案x 2-1(x ≥0)解析令t =x ,则t ≥0,x =t 2,所以f (t )=t 2-1(t ≥0),即f (x )=x 2-1(x ≥0).11.已知函数f (x )的定义域为[-2,2],则函数g (x )=f (2x )+1-2x 的定义域为__________.答案[-1,0]解析2≤2x ≤2,-2x ≥0,解得-1≤x ≤0,所以函数g (x )的定义域是[-1,0].12.已知f (x )x +3,x >0,2-4,x ≤0,若f (a )=5,则实数a 的值是__________;若f (f (a ))≤5,则实数a 的取值范围是__________.答案1或-3[-5,-1]解析①当a >0时,2a +3=5,解得a =1;当a ≤0时,a 2-4=5,解得a =-3或a =3(舍).综上,a =1或-3.②设t =f (a ),由f (t )≤5得-3≤t ≤1.由-3≤f (a )≤1,解得-5≤a ≤-1.13.(2022·广州模拟)已知定义在R 上的函数f (x )满足,f (1-x )+2f (x )=x 2+1,则f (1)等于()A .-1B .1C .-13 D.13答案B解析∵定义在R 上的函数f (x )满足,f (1-x )+2f (x )=x 2+1,∴当x =0时,f (1)+2f (0)=1,①当x =1时,f (0)+2f (1)=2,②②×2-①,得3f (1)=3,解得f (1)=1.14.(2023·南昌模拟)已知函数f (x )3,x ≤0,x >0,若f (a -3)=f (a +2),则f (a )等于()A .2 B.2C .1D .0答案B解析作出函数f (x )的图象,如图所示.因为f (a -3)=f (a +2),且a -3<a +2,-3≤0,+2>0,即-2<a ≤3,此时f (a -3)=a -3+3=a ,f (a +2)=a +2,所以a =a +2,即a 2=a +2,解得a =2或a =-1(不满足a =a +2,舍去),则f (a )= 2.15.∀x∈R,用M(x)表示f(x),g(x)中最大者,M(x)={|x|-1,1-x2},若M(n)<1,则实数n 的取值范围是()A.(-2,2)B.(-2,0)∪(0,2)C.[-2,2]D.(-2,2)答案B解析当x≥0时,若x-1≥1-x2,则x≥1,当x<0时,若-x-1≥1-x2,则x≤-1,所以M(x)||-1,x≥1或x≤-1,1-x2,-1<x<1,若M(n)<1,则当-1<n<1时,1-n2<1⇒-n2<0⇒n≠0,即-1<n<0或0<n<1,当n≥1或n≤-1时,|n|-1<1,解得-2<n≤-1或1≤n<2,综上,-2<n<0或0<n<2.16.(多选)德国数学家狄利克雷在数学领域成就显著,以其名字命名的函数F(x)=1,x为有理数,0,x为无理数被称为狄利克雷函数.关于狄利克雷函数,下列说法正确的是() A.F(F(x))=0B.对任意x∈R,恒有F(x)=F(-x)成立C.任取一个不为0的实数T,F(x+T)=F(x)对任意实数x均成立D.存在三个点A(x1,F(x1)),B(x2,F(x2)),C(x3,F(x3)),使得△ABC为等边三角形答案BD解析∵当x为有理数时,F(x)=1,当x为无理数时,F(x)=0,当x为有理数时,F(F(x))=F(1)=1,当x为无理数时,F(F(x))=F(0)=1,所以F(F(x))=1恒成立,故A错误;因为有理数的相反数是有理数,无理数的相反数是无理数,所以对任意x∈R,恒有F(x)=F(-x)成立,故B正确;若x是有理数,T是有理数,则x+T是有理数;若x是有理数,T是无理数,则x+T是无理数;若x是无理数,则x+T是无理数或有理数,所以任取一个不为0的实数T,F(x+T)=F(x)不恒成立,故C错误;取x1=-33,x2=0,x3=33,可得F(x1)=0,F(x2)=1,F(x3)=0,所以A-33,0,B(0,1),C33,0△ABC为等边三角形,故D正确.。
高考数学一轮复习总教案:2.1函数的概念及表示法
第二章 函 数高考导航 考试要求重难点击 命题展望1.了解构成函数的三要素,会求一些简单函数的定义域和值域;了解映射的概念.2.在实际生活中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单运用.4.理解函数的单调性、最大值、最小值及其几何意义;结合具体函数,了解函数奇偶性的含义.5.会运用函数的图象理解和研究函数的性质.6.理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.7.理解指数函数的概念及其单调性,掌握指数函数通过的特殊点.8.理解对数的概念及其运算性质,知道用换底公式能将一般对数化成自然对数或常用对数;了解对数在简化运算中的作用.9.理解对数函数的概念及其单调性,掌握对数函数通过的特殊点.10.了解指数函数y =ax 与对数函数y =logax (a >0且a≠1)互为反函数.11.了解幂函数的概念,结合函数y =x , y =x2, y =x3 ,y =x 1, y =21x 的图象,了解它们的变化情况.12.结合二次函数的图象,了解函数的零点与方程的根的联系,判断一元二次方程根的存在性和根的个数.13.根据具体函数图象,能够用二分法求相应方程的近似解. 14.了解指数函数、对数函数以及幂函数的增长特征;知道直线上升、指数增长、对数增长等不同函数类型增长的含义. 15.了解指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型的广泛应用. 本章重点:1.函数的概念及其三要素; 2.函数的单调性、奇偶性及其几何意义;3.函数的最大(小)值;4.指数函数与对数函数的概念和性质;5.函数的图象及其变换;6.函数的零点与方程的根之间的关系;7.函数模型的建立及其应用. 本章难点:1.函数概念的理解;2.函数单调性的判断;3.函数图象的变换及其应用;4.指数函数与对数函数概念的理解及其性质运用;5.研究二次函数的零点与一元二次方程的根的关系;6.函数模型的建立及求解.高考对函数的考查,常以选择题和填空题来考查函数的概念和一些基本初等函数的图象和性质,解答题则往往不是简单地考查概念、公式和法则的应用,而是常与导数、不等式、数列、三角函数、解析几何等知识及实际问题结合起来进行综合考查,并渗透数学思想方法,突出考查函数与方程、数形结合、分类与整合、化归与转化等数学思想方法.知识网络2.1函数的概念及表示法典例精析题型一 求函数的解析式【例1】 (1)已知f(x +1)=x2+x +1,求f(x)的表达式; (2)已知f(x)+2f(-x)=3x2+5x +3,求f(x)的表达式. 【解析】(1)设x +1=t ,则x =t -1,代入得f(x)=(t -1)2+(t -1)+1=t2-t +1,所以f(x)=x2-x +1. (2)由f(x)+2f(-x)=3x2+5x +3,x 换成-x ,得f(-x)+2 f(x)=3x2-5x +3,解得f(x)=x2-5x +1.【点拨】已知f(x),g(x),求复合函数f[g(x)]的解析式,直接把f(x)中的x 换成g(x)即可,已知f[g(x)],求f(x)的解析式,常常是设g(x)=t ,或者在f[g(x)]中凑出g(x),再把g(x)换成x.【变式训练1】已知f(x x+-11)=2211x x +-,求f(x)的解析式.【解析】设x x +-11=t ,则x =t t +-11,所以f(t)=22)11(1)11(1t t t t +-++--=212t t +, 所以f(x)=212x x+(x≠-1).题型二 求函数的定义域【例2】(1)求函数y =229)2lg(x x x --的定义域;(2)已知f(x)的定义域为[-2,4],求f(x2-3x)的定义域. 【解析】(1)要使函数有意义,则只需要⎩⎨⎧>->-,09,0222x x x 即⎩⎨⎧<<-<>,33,02x x x 或解得-3<x <0或2<x <3,故所求的定义域为(-3,0)∪(2,3). (2)依题意,只需-2≤x2-3x≤4,解得-1≤x≤1或2≤x≤4,故f(x2-3x)的定义域为[-1,1]∪[2,4]. 【点拨】有解析式的函数的定义域是使解析式有意义的自变量的取值范围,往往列不等式组求解.对于抽象函数f[g(x)]的定义域要把g(x)当作f(x)中的x 来对待. 【变式训练2】已知函数f(2x)的定义域为[-1,1],求f(log2x)的定义域.【解析】因为y =f(2x)的定义域为[-1,1],即-1≤x≤1时2-1≤2x≤21,所以y =f(x)的定义域为[12,2].令12≤log2x≤2,所以2≤x≤22=4,故所求y =f(log2x)的定义域为[2,4].题型三 由实际问题给出的函数【例3】 用长为l 的铁丝弯成下部为矩形,上部为半圆形的框架(如图),若矩形底部长为2x ,求此框围成的面积y 与x 的函数关系式,并指出其定义域.【解析】由题意知,此框架围成的面积是由一个矩形和一个半圆组成的图形的面积,而矩形的长AB =2x ,设宽为a ,则有2x +2a +πx =l ,即a =2l -2πx -x ,半圆的半径为x , 所以y =22πx +(2l -π2x -x)·2x =-(2+π2)x2+lx.由实际意义知2l -π2x -x >0,因x >0,解得0<x <π+2l.即函数y =-(2+π2)x2+lx 的定义域是{x|0<x <π+2l}.【点拨】求由实际问题确定的定义域时,除考虑函数的解析式有意义外,还要考虑使实际问题有意义.如本题使函数解析式有意义的x 的取值范围是x ∈R ,但实际问题的意义是矩形的边长为正数,而边长是用变量x 表示的,这就是实际问题对变量的制约.【变式训练3】一张正方形的纸片,剪去两个一样的小矩形得到一个“E”形图案,如图所示,设小矩形的长、宽分别为x 、y ,剪去部分的面积为20,若2≤x≤10,记y =f(x),则y =f(x)的图象是( ) 【解析】由题意得y =10x(2≤x≤10),选A. 题型四 分段函数【例4】 已知函数f(x)=⎩⎨⎧≥+<+).0(1),0(32x x x x(1)求f(1)+f(-1)的值; (2)若f(a)=1,求a 的值;(3)若f(x)>2,求x 的取值范围.【解析】(1)由题意,得f(1)=2,f(-1)=2,所以f(1)+f(-1)=4. (2)当a <0时,f(a)=a +3=1,解得a =-2;当a≥0时,f(a)=a2+1=1,解得a =0.所以a =-2或a =0. (3)当x <0时,f(x)=x +3>2,解得-1<x <0; 当x≥0时,f(x)=x2+1>2,解得x >1. 所以x 的取值范围是-1<x <0或x >1.【点拨】分段函数中,x 在不同的范围内取值时,其对应的函数关系式不同.因此,分段函数往往需要分段处理.【变式训练4】已知函数f(x)=⎪⎩⎪⎨⎧>+-≤<.10,621,100|,lg |x x x x 若a ,b ,c 互不相等,且f(a)=f(b)=f(c),则abc 的取值范围是( )A.(1,10)B.(5,6)C.(10,12)D.(20,24)【解析】不妨设a <b <c ,由f(a)=f(b)=f(c)及f(x)图象知110<a <1<b <10<c <12,所以-lg a =lg b =-12c +6,所以ab =1,所以abc 的范围为(10,12),故选C.总结提高1.在函数三要素中,定义域是灵魂,对应法则是核心,因为值域由定义域和对应法则确定,所以两个函数当且仅当定义域与对应法则均相同时才表示同一个函数,而值域相同是两函数为同一函数的必要非充分条件.2.若一个函数在其定义域不同的子集上,解析式不同,则可用分段函数的形式表示.3.函数的三种表示法各有利弊,一般情况下,研究函数要求出函数的解析式,通过解析式来解题.求函数解析式的方法有:配方法、观察法、换元法和待定系数法等.。
2021版高考数学一轮复习 第二章 函数 2.1 函数及其表示教学案 苏教版
第二章函数全国卷五年考情图解高考命题规律把握1.考查形式本章在高考中一般为2~3个客观题.2.考查内容高考中基础题主要考查对基础知识和基本方法的掌握.主要涉及函数奇偶性的判断,函数的图象,函数的奇偶性、单调性及周期性综合,指数、对数运算以及指数、对数函数的图象与性质,分段函数求函数值等.3.备考策略(1)重视函数的概念和基本性质的理解:深刻把握函数的定义域、值域、单调性、奇偶性、零点等概念.研究函数的性质,注意分析函数解析式的特征,同时注意函数图象的作用. (2)重视对基本初等函数的研究,复习时通过选择、填空题加以训练和巩固,将问题和方法进行归纳整理.第一节函数及其表示[最新考纲] 1.了解构成函数的要素,会求一些简单函数的定义域和值域.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用(函数分段不超过三段).1.函数的概念函数映射两集合A,B设A,B是非空的数集设A,B是非空的集合对应关系f:A→B 如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应名称称f:A→B为从集合A到集合B的一个函数称对应f:A→B为从集合A到集合B的一个映射记法y=f(x),x∈A 映射f:A→B(1)函数的定义域、值域:在函数y=f(x),x∈A中,所有的输入值x组成的集合A叫做函数y=f(x)的定义域.若A是函数y=f(x)的定义域,则对于A中的每一个x,都有一个输出值y与之对应.所有输出值y组成的集合称为函数的值域.函数的值域可以用集合{y|y=f(x),x∈A}表示.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.(4)函数的表示法表示函数的常用方法有:解析法、图象法、列表法.3.分段函数若函数在其定义域内不同部分上,有不同的解析表达式,这样的函数叫做分段函数.分段函数虽然由几部分组成,但是它表示的是一个函数.[常用结论]1.常见函数的定义域(1)分式函数中分母不等于0.(2)偶次根式函数的被开方式大于或等于0.(3)一次函数、二次函数的定义域为R.(4)零次幂的底数不能为0.(5)y=a x(a>0且a≠1),y=sin x,y=cos x的定义域均为R.(6)y=log a x(a>0,a≠1)的定义域为{x|x>0}.(7)y=tan x的定义域为.2.基本初等函数的值域(1)y=kx+b(k≠0)的值域是R.(2)y =ax 2+bx +c (a ≠0)的值域:当a >0时,值域为⎣⎢⎡⎭⎪⎫4ac -b 24a ,+∞;当a <0时,值域为⎝⎛⎦⎥⎤-∞,4ac -b 24a .(3)y =k x(k ≠0)的值域是{y |y ≠0}.(4)y =a x(a >0且a ≠1)的值域是(0,+∞). (5)y =log a x (a >0且a ≠1)的值域是R .一、思考辨析(正确的打“√”,错误的打“×”) (1)对于函数f :A →B ,其值域是集合B . ( )(2)若两个函数的定义域与值域相同,则这两个函数是相等函数. ( )(3)函数f (x )=x 2,x ∈[-1,2]的值域为[0,4]. ( )(4)若A =R ,B =(0,+∞),f :x →y =|x |,则对应f 可看作从A 到B 的映射.( )(5)分段函数是由两个或几个函数组成的. ( ) [答案](1)× (2)× (3)√ (4)× (5)× 二、教材改编1.若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )A B C DB [由函数定义可知,选项B 正确.] 2.函数y =2x -3+1x -3的定义域为( ) A.⎣⎢⎡⎭⎪⎫32,+∞ B .(-∞,3)∪(3,+∞) C.⎣⎢⎡⎭⎪⎫32,3∪(3,+∞) D .(3,+∞)C [由题意知⎩⎪⎨⎪⎧2x -3≥0,x -3≠0,解得x ≥32且x ≠3.]3.下列函数中,与函数y =x +1是相等函数的是( )A .y =(x +1)2B .y =3x 3+1 C .y =x 2x+1D .y =x 2+1B [y =3x 3+1=x +1,且函数定义域为R ,故选B.]4.设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x,x >1,则f (f (3))=________.139 [f (3)=23,f (f (3))=f ⎝ ⎛⎭⎪⎫23=⎝ ⎛⎭⎪⎫232+1=49+1=139.]5.已知函数f (x )=2x +1,若f (a )=5,则实数a 的值为________. 12 [由f (a )=5得2a +1=5,解得a =12.]考点1 求函数的定义域已知函数解析式求定义域已知函数的具体解析式求定义域的方法(1)若f (x )是由一些基本初等函数通过四则运算构成的,则它的定义域为各基本初等函数的定义域的交集.(2)复合函数的定义域:先由外层函数的定义域确定内层函数的值域,从而确定对应的内层函数自变量的取值范围,还需要确定内层函数的定义域,两者取交集即可.1.(2019·济南模拟)函数y =x ln(2-x )的定义域为( )A .(0,2)B .[0,2)C .(0,1]D .[0,2]B [由题意知,x ≥0且2-x >0,解得0≤x <2, 故其定义域是[0,2).] 2.函数f (x )=1log 2x2-1的定义域为________.⎝ ⎛⎭⎪⎫0,12∪(2,+∞) [要使函数f (x )有意义,则(log 2x )2-1>0,即log 2x >1或log 2x <-1,解得x >2或0<x <12,故所求函数的定义域是⎝ ⎛⎭⎪⎫0,12∪(2,+∞).][逆向问题] 若函数f (x )=ax 2+abx +b 的定义域为{x |1≤x ≤2},则a +b 的值为________.-92 [∵函数f (x )=ax 2+abx +b 的定义域为{x |1≤x ≤2}. ∴不等式ax 2+abx +b ≥0的解集为{x |1≤x ≤2}. 可知a <0,不等式化为a (x -1)(x -2)≥0, 即ax 2-3ax +2a ≥0.∴⎩⎪⎨⎪⎧-3a =ab ,2a =b ,即⎩⎪⎨⎪⎧b =-3,a =-32.∴a +b =-92.]求函数定义域时,对函数解析式先不要化简,求出定义域后,一定要将其写成集合或区间的形式.若用区间表示,不能用“或”连接,而应该用并集符合“∪”连接.(如T 2).抽象函数的定义域 抽象函数的定义域的求法(1)若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由a ≤g (x )≤b 求出.(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域.已知函数f (x )的定义域是[0,4],则f (x +1)+f (x -1)的定义域是________.[1,3] [由题意知⎩⎪⎨⎪⎧0≤x +1≤4,0≤x -1≤4,解得1≤x ≤3.故f (x +1)+f (x -1)的定义域为[1,3].][逆向问题] 已知函数y =f (x 2-1)的定义域为[-3,3],则函数y =f (x )的定义域为________.[-1,2] [因为y =f (x 2-1)的定义域为[-3,3],所以x ∈[-3,3],x 2-1∈[-1,2],所以y =f (x )的定义域为[-1,2].]函数f (g (x ))的定义域指的是自变量x 的取值范围,而不是g (x )的取值范围.(如本例[逆向问题])1.函数f (x )=3x 21-x +lg(3x +1)的定义域是( )A.⎝ ⎛⎭⎪⎫-13,1B.⎝ ⎛⎭⎪⎫-13,+∞C.⎝ ⎛⎭⎪⎫-13,13 D.⎝⎛⎭⎪⎫-∞,13A [由题意可知⎩⎪⎨⎪⎧1-x >0,3x +1>0,解得⎩⎪⎨⎪⎧x <1,x >-13,∴-13<x <1,故选A.]2.函数f (x -1)的定义域为[0,2 020],则函数g (x )=f x +1x -1的定义域为________.[-2,1)∪(1,2 018] [∵函数f (x -1)的定义域为[0,2 020],∴-1≤x -1≤2 019.∴要使函数g (x )有意义,则⎩⎪⎨⎪⎧-1≤x +1≤2 019,x -1≠0,解得-2≤x ≤2 018且x ≠1.∴函数g (x )的定义域为[-2,1)∪(1,2 018].]3.若函数f (x )=x 2+ax +1的定义域为实数集R ,则实数a 的取值范围为________. [-2,2] [∵函数f (x )=x 2+ax +1的定义域为R , ∴a 2-4≤0,即-2≤a ≤2.]考点2 求函数的解析式求函数解析式的4种方法及适用条件(1)待定系数法先设出含有待定系数的解析式,再利用恒等式的性质,或将已知条件代入,建立方程(组),通过解方程(组)求出相应的待定系数.(2)换元法对于形如y =f (g (x ))的函数解析式,令t =g (x ),从中求出x =φ(t ),然后代入表达式求出f (t ),再将t 换成x ,得到f (x )的解析式,要注意新元的取值范围.(3)配凑法由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式.(4)解方程组法已知关于f (x )与f ⎝ ⎛⎭⎪⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).(1)[一题多解]已知二次函数f (2x +1)=4x 2-6x +5,求f (x );(2)已知函数f (x )满足f (-x )+2f (x )=2x,求f (x ). [解](1)法一:(待定系数法)因为f (x )是二次函数,所以设f (x )=ax 2+bx +c (a ≠0),则f (2x +1)=a (2x +1)2+b (2x+1)+c =4ax 2+(4a +2b )x +a +b +c .因为f (2x +1)=4x 2-6x +5, 所以⎩⎪⎨⎪⎧4a =4,4a +2b =-6,a +b +c =5,解得⎩⎪⎨⎪⎧a =1,b =-5,c =9,所以f (x )=x 2-5x +9(x ∈R ). 法二:(换元法)令2x +1=t (t ∈R ),则x =t -12,所以f (t )=4⎝⎛⎭⎪⎫t -122-6·t -12+5=t 2-5t +9(t ∈R ), 所以f (x )=x 2-5x +9(x ∈R ). 法三:(配凑法)因为f (2x +1)=4x 2-6x +5=(2x +1)2-10x +4=(2x +1)2-5(2x +1)+9,所以f (x )=x 2-5x +9(x ∈R ).(2)(解方程组法) 由f (-x )+2f (x )=2x, ① 得f (x )+2f (-x )=2-x, ②①×2-②,得3f (x )=2x +1-2-x,即f (x )=2x +1-2-x3. 故f (x )的解析式是f (x )=2x +1-2-x3(x ∈R ). 谨防求函数解析式的2种失误(1)在求函数解析式时,一定要注意自变量的范围,也就是定义域问题.求出解析式后要标注x 的取值范围.(2)利用换元法求解析式时要注意新元的取值范围.如已知f (x )=x +1,求函数f (x )的解析式,可通过换元的方法得f (x )=x 2+1,函数f (x )的定义域是[0,+∞),而不是(-∞,+∞).1.如果f ⎝ ⎛⎭⎪⎫1x =x 1-x ,则当x ≠0且x ≠1时,f (x )等于( )A.1xB.1x -1C.11-xD.1x-1B [(换元法求解)令1x =t ,得x =1t(t ≠0且t ≠1),∴f (t )=1t 1-1t=1t -1(t ≠0且t ≠1),∴f (x )=1x -1(x ≠0且x ≠1).] 2.已知f ⎝ ⎛⎭⎪⎫1+x x =x 2+1x 2+1x ,则f (x )=( )A .(x +1)2B .(x -1)2C .x 2-x +1D .x 2+x +1C [(配凑法求解)f ⎝⎛⎭⎪⎫1+x x =x 2+1x 2+1x =⎝ ⎛⎭⎪⎫x +1x 2-x +1x +1,所以f (x )=x 2-x +1.]3.已知f (x )满足2f (x )+f ⎝ ⎛⎭⎪⎫1x=3x ,则f (x )=________. 2x -1x(x ≠0) [(解方程组法求解)∵2f (x )+f ⎝ ⎛⎭⎪⎫1x =3x ,①把①中的x 换成1x,得2f ⎝ ⎛⎭⎪⎫1x +f (x )=3x.②联立①②可得⎩⎪⎨⎪⎧2f x +f ⎝ ⎛⎭⎪⎫1x =3x ,2f ⎝ ⎛⎭⎪⎫1x +f x =3x ,解此方程组可得f (x )=2x -1x(x ≠0).]4.已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x )的解析式. [解] (待定系数法求解)设f (x )=ax 2+bx +c (a ≠0),由f (0)=0,知c =0,f (x )=ax 2+bx ,又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x (x ∈R ).考点3 分段函数求函数值解决分段函数有关问题的关键是“分段归类”,即自变量的取值属于哪一段范围,就用哪一段的解析式来解决问题.(1)(2019·合肥模拟)已知函数f (x )=⎩⎪⎨⎪⎧x +1x -2,x >2,x 2+2,x ≤2,则f (f (1))=( )A .-12B .2C .4D .11(2)(2019·石家庄模拟)已知f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,a x+b ,x ≤0(0<a <1),且f (-2)=5,f (-1)=3,则f (f (-3))=( )A .-2B .2C .3D .-3(1)C (2)B [(1)因为f (1)=12+2=3,所以f (f (1))=f (3)=3+13-2=4.故选C.(2)由题意得,f (-2)=a -2+b =5,① f (-1)=a -1+b =3,②联立①②,结合0<a <1,得a =12,b =1,所以f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,⎝ ⎛⎭⎪⎫12x+1,x ≤0,则f (-3)=⎝ ⎛⎭⎪⎫12-3+1=9,f (f (-3))=f (9)=log 39=2,故选B.] 求分段函数的函数值的策略(1)求分段函数的函数值时,要先确定要求值的自变量属于哪一区间,然后代入该区间对应的解析式求值.(2)当出现f (f (a ))的形式时,应从内到外依次求值.(3)当自变量的值所在区间不确定时,要分类讨论,分类标准应参照分段函数不同段的端点.[教师备选例题]已知函数f (x )=⎩⎪⎨⎪⎧2c os πx ,x ≤0,f x -1+1,x >0,则f ⎝ ⎛⎭⎪⎫43的值为( )A .-1B .1 C.32 D.52B [依题意得f ⎝ ⎛⎭⎪⎫43=f ⎝ ⎛⎭⎪⎫13+1=f ⎝ ⎛⎭⎪⎫-23+1+1=2cos ⎝ ⎛⎭⎪⎫-2π3+2=2×⎝ ⎛⎭⎪⎫-12+2=1.故选B.]求参数或自变量的值解决此类问题时,先在分段函数的各段上分别求解,然后将求出的值或范围与该段函数的自变量的取值范围求交集,最后将各段的结果合起来(取并集)即可.(1)已知函数f (x )=⎩⎪⎨⎪⎧2x-2,x ≤1,-log 2x +1,x >1,且f (a )=-3,则f (6-a )=________.(2)设函数f (x )=⎩⎪⎨⎪⎧x 2+2x +2,x ≤0,-x 2,x >0.若f (f (a ))=2,则a =________.(1)-32 (2)2 [(1)当a ≤1时,f (a )=2a-2=-3,无解;当a >1时,由f (a )=-log 2(a +1)=-3,得a +1=8, 解得a =7,所以f (6-a )=f (-1)=2-1-2=-32.(2)当a >0时,f (a )=-a 2<0,f (f (a ))=a 4-2a 2+2=2,得a =2(a =0与a =-2舍去).当a ≤0时,f (a )=a 2+2a +2=(a +1)2+1>0,f (f (a ))=-(a 2+2a +2)2=2,此方程无解.故a = 2.]求解本题的关键是就a 的取值讨论f (a )的情形,另本题也可作出f (x )的图象,数形结合求解,即f (a )=0或f (a )=-2,从而求得a 的值.分段函数与方程、不等式问题解由分段函数构成的不等式,一般要根据分段函数的不同分段区间进行分类讨论.如果分段函数的图象比较容易画出,也可以画出函数图象后,结合图象求解.(2019·深圳模拟)已知函数f (x )=⎩⎪⎨⎪⎧x -4,x ≥2,x 2-4x +3,x <2.则不等式f (x )<0的解集是________.(1,4) [不等式f (x )<0等价于⎩⎪⎨⎪⎧x ≥2,x -4<0或⎩⎪⎨⎪⎧x <2,x 2-4x +3<0,即2≤x <4或1<x <2,故不等式f (x )<0的解集为(1,4).]本例借助图象较直观地求解得出不等式的解集,另注意求解时要思考全面,需考虑变量可能落在同一区间,也可能落在不同区间的情况.[教师备选例题]设函数f (x )=⎩⎪⎨⎪⎧ x +1,x ≤0,2x ,x >0则满足f (x )+f ⎝ ⎛⎭⎪⎫x -12>1的x 的取值范围是________.⎝ ⎛⎭⎪⎫-14,+∞ [根据分段函数的性质分情况讨论,当x ≤0时,则f (x )+f ⎝ ⎛⎭⎪⎫x -12=x +1+x -12+1>1,解得-14<x ≤0.当x >0时,根据指数函数的图象和性质以及一次函数的性质与图象可得,f (x )+f ⎝ ⎛⎭⎪⎫x -12>1恒成立,所以x 的取值范围是⎝ ⎛⎭⎪⎫-14,+∞.] 1.已知f (x )=⎩⎪⎨⎪⎧ 2x ,x >0,f x +1,x ≤0,则f ⎝ ⎛⎭⎪⎫43+f ⎝ ⎛⎭⎪⎫-43的值等于( )A .-2B .4C .2D .-4B [由题意得f ⎝ ⎛⎭⎪⎫43=2×43=83, f ⎝ ⎛⎭⎪⎫-43=f ⎝ ⎛⎭⎪⎫-13=f ⎝ ⎛⎭⎪⎫23=2×23=43, 所以f ⎝ ⎛⎭⎪⎫43+f ⎝ ⎛⎭⎪⎫-43=4.] 2.已知函数f (x )=⎩⎪⎨⎪⎧ 2x ,x ≤0,|log 2x |,x >0,则使f (x )=2的x 的集合是( ) A.⎩⎨⎧⎭⎬⎫14,4 B .{1,4} C.⎩⎨⎧⎭⎬⎫1,14 D.⎩⎨⎧⎭⎬⎫1,14,4 A [由f (x )=2得①⎩⎪⎨⎪⎧ 2x =2,x ≤0或②⎩⎪⎨⎪⎧ |log 2x |=2,x >0.由①知无解.由②得x =14或x =4.故选A.]3.(2018·全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧ 2-x ,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)D [当x ≤0时,函数f (x )=2-x是减函数,则f (x )≥f (0)=1.作出f (x )的大致图象如图所示,结合图象可知,要使f (x +1)<f (2x ),则需⎩⎪⎨⎪⎧ x +1<0,2x <0,2x <x +1或⎩⎪⎨⎪⎧ x +1≥0,2x <0,所以x <0,故选D.] 课外素养提升① 数学抽象——函数的新定义问题念,然后在快速理解的基础上,解决新问题.【典例】 (2019·深圳模拟)在平面直角坐标系中,横坐标、纵坐标均为整数的点称为整点,若函数f (x )的图象恰好经过n (n ∈N *)个整点,则称函数f (x )为n 阶整点函数.给出下列函数:①f (x )=sin 2x ;②g (x )=x 3; ③h (x )=⎝ ⎛⎭⎪⎫13x;④φ(x )=ln x . 其中是一阶整点函数的是( )A .①②③④B .①③④C .①④D .④ C [对于函数f (x )=sin 2x ,它的图象(图略)只经过一个整点(0,0),所以它是一阶整点函数,排除D ;对于函数g (x )=x 3,它的图象(图略)经过整点(0,0),(1,1),…,所以它不是一阶整点函数,排除A ; 对于函数h (x )=⎝ ⎛⎭⎪⎫13x,它的图象(图略)经过整点(0,1),(-1,3),…,所以它不是一阶整点函数,排除B.故选C.][评析] 本题意在考查考生的数学抽象、逻辑推理、数学运算、直观想象等核心素养.破解新定义函数题的关键是:紧扣新定义的函数的含义,学会语言的翻译、新旧知识的转化,便可使问题顺利获解.如本例,若能把新定义的一阶整点函数转化为函数f (x )的图象恰好经过1个整点,问题便迎刃而解.【素养提升练习】 1.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“同族函数”,则函数解析式为y=x2+1,值域为{1,3}的同族函数有( ) A.1个B.2个 C.3个D.4个C[由x2+1=1得x=0,由x2+1=3得x=±2,所以函数的定义域可以是{0,2},{0,-2},{0,2,-2},故值域为{1,3}的同族函数共有3个.]2.若定义在R上的函数f(x)当且仅当存在有限个非零自变量x,使得f(-x)=f(x),则称f(x)为“类偶函数”,则下列函数中为类偶函数的是( )A.f(x)=cos x B.f(x)=sin xC.f(x)=x2-2x D.f(x)=x3-2xD[A中函数为偶函数,则在定义域内均满足f(x)=f(-x),不符合题意;B中,当x =kπ(k∈Z)时,满足f(x)=f(-x),不符合题意;C中,由f(x)=f(-x),得x2-2x=x2+2x,解得x=0,不符合题意;D中,由f(x)=f(-x),得x3-2x=-x3+2x,解得x=0或x =±2,满足题意,故选D.]。
高三数学一轮复习精品教案8:2.1 函数及其表示教学设计
2.1 函数及其表示目标定位1. 了解映射的概念,在此基础上加深对函数概念的理解。
2.能根据函数的二要素判断两个函数是否为同一函数。
3.理解分段函数的意义。
4.掌握函数的三种表示方法。
知识梳理1. 设集合A是一个非空的数集,对A内任意数x,按照确定的法则f,都有,则这种对应关系叫做集合A的一个函数。
记作:。
2.确定一个函数只需两个要素:。
3.设A、B是两个非空的集合,如果按照某种对应法则f,对A内任意一个元素x,在B 内,则称f是集合A到集合B的映射。
4.函数的三种表示方法是:。
课堂互动知识点1 函数的概念函数的定义有各种不同的形式,不管哪种形式其中最核心的内容都是“对于任意的一个数x,按照确定的法则f,都有惟一确定的数值y与它对应”,“惟一”是其中的关键字。
在处理有关函数的概念的问题时,必须切实把握“惟一”二字。
『例题1』下列各图象不能表示函数图象的是『分析』根据函数的定义,对于任意的一个数x,按照确定的法则f,都有惟一确定的数值y与它对应,而在D中对于的x可能有两个y值与它对应,所以D不能表示函数图象。
『答案』D『点评』在解决考查函数的概念的题目时,必须把握两点:一是定义域非空数集(当然值域也非空数集);二是对于任意的一个数x,按照确定的法则f,都有惟一确定的数值y与它对应(必须是惟一的)。
巩固练习 以下四组函数中,表示同一函数的是A .2)(|,|)(t t g x x f ==B .22)()(,)(x x g x x f ==C .1)(,11)(2+=--=x x g x x x f D .1)(,11)(2-=-⋅+=x x g x x x f 知识点2 函数的表示法函数的表示方法是函数的外在表现形式,在三种形式中最重要的是解析法、图象法(这两种表示方法必须既要能读懂,又要能用它们熟练地表示函数),列表法在以前的考查中主要是能读懂列表法表示的函数和列表法画函数图象,一般不要求学生用列表的方法表示函数。
高三数学一轮复习精品学案2:2.1 函数及其表示
2.1 函数及其表示考纲要求1.了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单地应用.知识梳理:1.函数与映射的概念函数映射两集合A,B设A,B是两个非空____设A,B是两个非空____对应关系f:A→B 如果按照某种确定的对应关系f,使对于集合A中的____一个____,在集合B中____________的____和它对应如果按某一个确定的对应关系f,使对于集合A中的____一个______在集合B中__________的______与之对应名称称________为从集合A到集合B的一个函数称对应______为从集合A到集合B的一个映射记法y=f(x),(x∈A,y∈B)对应f:A→B是一个映射2.函数的有关概念(1)函数的定义域、值域.在函数y=f(x),x∈A中,x叫做自变量,__________叫做函数的定义域;与x的值相对应的y值叫做函数值,__________叫做函数的值域,显然,值域是集合B的子集.(2)函数的三要素:__________、__________和__________.3.函数的表示方法表示函数的常用方法有__________、__________和__________.4.分段函数若函数在其定义域的不同子集上,因__________不同而分别用几个不同的式子来表示,这种函数称为分段函数.分段函数的定义域等于各段函数的定义域的__________,其值域等于各段函数的值域的__________,分段函数虽由几个部分组成,但它表示的是一个函数.基础自测:1.设f,g都是从A到A的映射(其中A={1,2,3}),其对应关系如下表:x 1 2 3 f 3 1 2 g321则f (g (3))等于( ). A .1 B .2 C .3 D .不存在2.集合A ={x |0≤x ≤4},B ={y |0≤y ≤2},下列不表示从A 到B 的函数的是( ). A .f :x →y =12xB .f :x →y =13xC .f :x →y =23xD .f :x →y =x3.下列各函数中,表示同一个函数的是( ). A .f (x )=lg x 2,g (x )=2lg xB .f (x )=lg x +1x -1,g (x )=lg(x +1)-lg(x -1)C .f (u )=1+u1-u,g (v )=1+v1-vD .f (x )=x ,g (x )=x 2 4.(2012山东高考)函数f (x )=1ln x +1+4-x 2的定义域为( ). A .『-2,0)∪(0,2』 B .(-1,0)∪(0,2』 C .『-2,2』 D .(-1,2』5.已知函数f (x )=⎩⎪⎨⎪⎧3x ,x ≤1,-x ,x >1,若f (x )=2,则x 等于( ).A .log 32B .-2C .log 32或-2D .2 探究突破: 一、函数的概念『例1-1』已知a ,b 为实数,集合M =⎩⎨⎧⎭⎬⎫b a ,1,N ={a,0},f :x →x 表示把M 中的元素x 映射到集合N 中仍为x ,则a +b 等于( ).A .-1B .0C .1D .±1『例1-2』设函数f (x )(x ∈N )表示x 除以2的余数,函数g (x )(x ∈N )表示x 除以3的余数,则对任意的x ∈N ,给出以下式子:①f (x )≠g (x );②g (2x )=2g (x ); ③f (2x )=0;④f (x )+f (x +3)=1.其中正确的式子编号是__________.(写出所有符合要求的式子编号). 『例1-3』以下给出的同组函数中,是否表示同一函数?为什么? (1)f 1:y =xx;f 2: y =1.(2)f 1:y =|x |;f 2:y =⎩⎪⎨⎪⎧x ,x >0,-x ,x <0.(3)f 1:y =⎩⎪⎨⎪⎧1,x ≤1,2,1<x <2,3,x ≥2,f 2:x x ≤1 1<x <2 x ≥2 y123(4)f 1:y =2x ;f 2:如图所示.方法提炼1.要检验两个变量之间是否存在函数关系,只需检验:(1)定义域和对应关系是否给出;(2)根据给出的对应关系,自变量x 在其定义域中的每一个值,是否都能找到唯一的函数值y 与之对应.2.判断两个函数是否相同,要先看定义域是否一致,若定义域一致,再看对应法则是否一致,由此即可判断.二、求函数的解析式 『例2-1』若函数f (x )=xax +b(a ≠0),f (2)=1,又方程f (x )=x 有唯一解,则f (x )=__________.『例2-2』若2f (x )-f (-x )=x +1,求f (x ).『例2-3』已知y =f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2x +x 2. (1)求x >0时,f (x )的解析式;(2)若关于x 的方程f (x )=2a 2+a 有三个不同的解,求a 的取值范围. 方法提炼函数解析式的求法:1.凑配法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的表达式;2.待定系数法:若已知函数的类型(如一次函数、二次函数),可用待定系数法; 3.换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围; 4.方程思想:已知关于f (x )与f ⎝⎛⎭⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).提醒:因为函数的解析式相同,定义域不同,则为不相同的函数,因此求函数的解析式时,如果定义域不是R ,一定要注明函数的定义域,否则会导致错误.请做演练巩固提升1三、分段函数及其应用『例3』(2012江苏高考)设f (x )是定义在R 上且周期为2的函数,在区间『-1,1』上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫32,则a +3b 的值为__________. 方法提炼解决分段函数问题的基本原则是分段进行,即自变量的取值范围属于哪一段范围,就用这一段的解析式来解决.请做演练巩固提升3考题研析:忽略分段函数中自变量的取值范围而致误『典例』设函数f (x )=⎩⎪⎨⎪⎧x 2+bx +c ,x ≤0,2,x >0,若f (-2)=f (0),f (-1)=-3,求关于x 的方程f (x )=x 的解.错『答案』当x ≤0时,f (x )=x 2+bx +c . 因为f (-2)=f (0),f (-1)=-3,所以⎩⎪⎨⎪⎧ -22-2b +c =c ,-12-b +c =-3,解得⎩⎪⎨⎪⎧b =2,c =-2.所以f (x )=⎩⎪⎨⎪⎧x 2+2x -2,x ≤0,2,x >0.当x ≤0时,由f (x )=x 得x 2+2x -2=x 得x =-2或x =1. 当x >0时,由f (x )=x 得x =2. 所以方程f (x )=x 的解为:-2,1,2.分析:(1)条件中f (-2),f (0),f (-1)所适合的解析式是f (x )=x 2+bx +c ,所以可构建方程组求出b ,c 的值.(2)在方程f (x )=x 中,f (x )用哪个解析式,要进行分类讨论.正『答案』当x ≤0时,f (x )=x 2+bx +c , 因为f (-2)=f (0),f (-1)=-3,∴⎩⎪⎨⎪⎧-22-2b +c =c ,-12-b +c =-3,解得⎩⎪⎨⎪⎧b =2,c =-2. ∴f (x )=⎩⎪⎨⎪⎧x 2+2x -2,x ≤0,2,x >0.当x ≤0时,由f (x )=x 得,x 2+2x -2=x , 得x =-2或x =1.由于x =1>0,所以舍去. 当x >0时,由f (x )=x 得x =2, 所以方程f (x )=x 的解为-2,2.答题指导:1.对于分段函数问题,是高考的热点.在解决分段函数问题时,要注意自变量的限制条件.2.就本题而言,当x ≤0时,由f (x )=x 得出两个x 值,但其中的x =1不符合要求,错解中没有舍去此值,因而导致了增解.分段函数问题分段求解,但一定注意各段的限制条件.巩固提升:1.已知f ⎝⎛⎭⎫2x +1=lg x ,则f (x )=( ). A .lg 1x B .lg 1x -1C .lg 2x -1D .lg 1x -22.已知函数f (x )=lg x ,若f (ab )=1,则f (a 2)+f (b 2)=__________. 3.(2012陕西高考)设函数f (x )=⎩⎪⎨⎪⎧x ,x ≥0,⎝ ⎛⎭⎪⎫12x ,x <0,则f (f (-4))=______.4.设g (x )是定义在R 上、以1为周期的函数.若函数f (x )=x +g (x )在区间『0,1』上的值域为『-2,5』,则f (x )在区间『0,3』上的值域为__________.5.对a ,b ∈R ,记min{a ,b }=⎩⎪⎨⎪⎧a ,a <b ,b ,a ≥b ,函数f (x )=min ⎩⎨⎧⎭⎬⎫12x ,-|x -1|+2(x ∈R )的最大值为________.——★ 参 考 答 案 ★——基础梳理自测 知识梳理1.数集 集合 任意 数x 都有唯一确定 数f (x ) 任意 元素x 都有唯一确定 元素y f :A →B f :A →B2.(1)x 的取值范围A 函数值的集合{f (x )|x ∈A } (2)定义域 值域 对应关系 3.解析法 列表法 图象法 4.对应法则 并集 并集 基础自测1.C 『解析』由题中表格可知g (3)=1, ∴f (g (3))=f (1)=3.故选C.2.C 『解析』依据函数的概念,集合A 中任一元素在集合B 中都有唯一确定的元素与之对应,选项C 不符合.3.C 『解析』选项A 和B 定义域不同,选项D 对应法则不同. 4.B 『解析』由⎩⎪⎨⎪⎧ln(x +1)≠0,x +1>0,4-x 2≥0得⎩⎪⎨⎪⎧x ≠0,x >-1,-2≤x ≤2,所以定义域为(-1,0)∪(0,2』. 5.A 『解析』当x ≤1时,3x =2, ∴x =log 32;当x >1时,-x =2,∴x =-2(舍去). ∴x =log 32. 考点探究突破『例1-1』 C 『解析』a =1,b =0, ∴a +b =1.『例1-2』 ③④ 『解析』当x 是6的倍数时,可知f (x )=g (x )=0,所以①不正确;容易得到当x =2时,g (2x )=g (4)=1,而2g (x )=2g (2)=4,所以g (2x )≠2g (x ),故②错误;当x ∈N 时,2x 一定是偶数,所以f (2x )=0正确;当x ∈N 时,x 和x +3中必有一个为奇数、一个为偶数,所以f (x )和f (x +3)中有一个为0、一个为1,所以f (x )+f (x +3)=1正确.『例1-3』『答案』(1)不同函数.f 1(x )的定义域为{x ∈R |x ≠0},f 2(x )的定义域为R .(2)不同函数.f 1(x )的定义域为R ,f 2(x )的定义域为{x ∈R |x ≠0}.(3)同一函数.x 与y 的对应关系完全相同且定义域相同,它们是同一函数的不同表示方式.(4)同一函数.理由同(3).『例2-1』2x x +2 『解析』由f (2)=1得22a +b =1,即2a +b =2;由f (x )=x 得xax +b=x , 变形得x ⎝⎛⎭⎫1ax +b -1=0,解此方程得x =0或x =1-ba ,又∵方程有唯一解, ∴1-ba=0,解得b =1, 代入2a +b =2得a =12,∴f (x )=2xx +2.『例2-2』『答案』∵2f (x )-f (-x )=x +1,用-x 去替换式子中的x , 得2f (-x )-f (x )=-x +1.即有⎩⎪⎨⎪⎧2f (x )-f (-x )=x +1,2f (-x )-f (x )=-x +1.解方程组消去f (-x ),得f (x )=x3+1.『例2-3』『答案』(1)任取x >0,则-x <0, ∴f (-x )=-2x +(-x )2=x 2-2x . ∵f (x )是奇函数, ∴f (x )=-f (-x )=2x -x 2. 故x >0时,f (x )=2x -x 2.(2)∵方程f (x )=2a 2+a 有三个不同的解, ∴-1<2a 2+a <1. ∴-1<a <12.『例3』-10 『解析』因为f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫32,函数f (x )的周期为2,所以f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫32-2=f ⎝⎛⎭⎫-12,根据f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,得到3a +2b =-2,又f (1)=f (-1),得到-a +1=b +22,即2a +b =0,结合上面的式子解得a =2,b =-4,所以a +3b =-10.演练巩固提升1.C 『解析』令t =2x +1,则x =2t -1,∴f (t )=lg 2t -1,即f (x )=lg 2x -1, 故选C.2.2 『解析』因为f (x )=lg x ,f (ab )=1,所以lg ab =1,所以f (a 2)+f (b 2)=lg a 2+lg b 2=lg a 2b 2=2lg ab =2.3.4 『解析』∵f (-4)=⎝⎛⎭⎫12-4=16, ∴f (f (-4))=f (16)=16=4.4.『-2,7』 『解析』设x 1∈『0,1』,f (x 1)=x 1+g (x 1)∈『-2,5』. ∵函数g (x )是以1为周期的函数,∴当x 2∈『1,2』时,f (x 2)=f (x 1+1)=x 1+1+g (x 1)∈『-1,6』. 当x 3∈『2,3』时,f (x 3)=f (x 1+2)=x 1+2+g (x 1)∈『0,7』. 综上可知,当x ∈『0,3』时,f (x )∈『-2,7』.5.1 『解析』y =f (x )是y =12x 与y =-|x -1|+2两者中的较小者,数形结合可知,函数的最大值为1.。
2022数学第二章函数2
第二章函数2.1函数及其表示必备知识预案自诊知识梳理1.函数与映射的概念2。
函数的有关概念(1)函数的定义域、值域在函数y=f(x),x∈A中,x叫做自变量,叫做函数的定义域;与x的值相对应的y值叫做函数值,叫做函数的值域,显然,值域是集合B的子集.(2)函数的三要素:、和.(3)相等函数:如果两个函数的相同,并且完全一致,那么我们就称这两个函数相等.3。
函数的表示方法表示函数的常用方法有、和.4.分段函数(1)定义:如果一个函数,在其定义域内,对于自变量的不同取值区间,有不同的对应方式,则称其为分段函数。
(2)分段函数的相关结论①分段函数虽然由几个部分组成,但是它表示的是一个函数.②分段函数的定义域等于各段函数的定义域的并集,值域等于各段函数的值域的并集。
1。
映射:(1)映射是函数的推广,函数是特殊的映射,A,B为非空数集的映射就是函数;(2)映射问题允许多对一,但不允许一对多。
2。
判断两个函数相等的依据是两个函数的定义域和对应关系完全一致。
考点自诊1。
判断下列结论是否正确,正确的画“√”,错误的画“×”。
(1)函数是其定义域到值域的映射.()(2)函数y=f(x)的图象与直线x=1有两个交点.()(3)定义域相同,值域也相同的两个函数一定是相等函数.()(4)对于函数f:A→B,其值域是集合B.()(5)分段函数是由两个或几个函数组成的.()+ln x的定义域是.2.(2020北京,11)函数f(x)=1x+13.已知f,g都是从A到A的映射(其中A={1,2,3}),其对应关系如下表:则f(g(3))等于()2022 2.1A.1 B。
2 C.3 D。
不存在4。
(2020辽宁大连模拟,文2)设函数f(x)={1-x2,x≤1,x2+x-2,x>1,则f1 f(2)的值为()A.1516B。
—2716C.89D.185。
如图表示的是从集合A到集合B的对应,其中是映射,是函数.关键能力学案突破考点函数及其有关的概念【例1】以下给出的同组函数中,表示相等函数的有.(只填序号)①f1(x)=xx,f2(x)=1;②f1(x)={1,x≤1,2,1<x<2,3,x≥2,f2(x):③f1(x)=2x,f2(x):如图所示。
版高考数学一轮复习 2.1函数及其表示精品学案
2013版高三数学一轮精品复习学案:函数、导数及其应用【知识特点】1.函数、导数及其应用是高中数学的重要内容,本章主要包括函数的概念及其性质,基本初等函数Ⅰ(指数函数、对数函数、幂函数),导数的概念,导数及其几何意义,导数与函数的单调性、最值,导数在实际问题中的应用等内容。
2.本章内容集中体现了函数与方程、数形结合、分类讨论的思想方法,函数的类型较多,概念、公式较多,具有较强的综合性。
【重点关注】1.函数的概念及其性质(单调性、奇偶性、周期性、对称性)是高考考查的主要内容,函数的定义域、解析式、值域是高考考查重点,函数性质的综合考查在历年考试中久考不衰,应重点研究。
2.函数的图象及其变换既是高考考查的重点,又是学生学习的一个难点,应注意区分各函数的图象及图象的变换,利用图象来研究性质。
3.导数的几何意义,导数在函数的最值及单调性方面的应用是高中数学的一个重点内容,也是高等数学的必修内容,是近几年高考的一大热点,复习时应引起足够的重视。
4.注意思想方法的应用。
数形结合思想、函数与方程的思想、分类讨论思想在各种题型中均有体现,应引起重视。
【地位与作用】一、函数在高考中的地位与作用从近几年的全国各地的高考试题中可以看出,近几年高考在函数中的考查有如下特点:1、知识点的考查情况①映射与函数:以考查概念与运算为主,部分涉及新定义运算;②定义域、值域、解析式是考查的重点,而且比较稳定,有时结合其它知识点(一本部分内容为背景),分段函数较多、花样翻新;③函数的单调性在历年考试中久考不衰,且比例有上升趋势,和导函数联系较多;④函数的奇偶性主要和单调性、不等式、最值、三角函数等综合,与周期性、对称性、抽象函数等问题联系较多;⑤反函数出现在选择题、填空题中,考反函数概念运算可能性较大,若出现在解答题中,则必定与单调性、奇偶性、不等式、导函数等知识综合,难度较大;⑥二次函数问题是每年的必考题,一方面直接考查二次函数,另一方面是利用二次函数的性质解题,三个“二次”问题(即二次函数、二次方程、二次不等式)是函数考试题中永恒的主题⑦指数函数与对数函数以基本概念、性质为主设计试题,考查指数、对数的定义域、值域、单调性和运算,选择、填空题属中等难度,若解答题涉及到指、对数函数,往往难度会上升;⑧函数的图像与最值每年必考,体现“形是数的直观反映,数是形的抽象概括”,是数学思想方法中的数相结合思想的最直接的表现形式,尤其是函数y=x+a/x(a>0)的图像和性质,从未间断过;⑨函数应用题与综合应用题是最能体现考生函数水平的试题:一次函数、二次函数、y=x+a/x (a>0)型、指数型、对数型与现实生活相结合,考查学生的建模能力,而函数与数列、不等式、导函数等众多知识的交汇已经成为函数综合应用中的典型问题。
高考数学一轮复习 2.1函数及其表示学案(无答案) 学案
§2.1 函数及其表示学考考查重点 1.考查函数的定义域、值域、解析式的求法;2.考查分段函数的简单应用;3.由于函数的基础性强,渗透面广,所以会与其他知识结合考查.本节复习目标 1.在研究函数问题时,要树立“定义域优先”的观点;2.掌握求函数解析式的基本方法;3.结合分段函数深刻理解函数的概念. 教材链接·自主学习 1. 函数的基本概念(1)函数的定义设A ,B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f :A→B 为从集合A 到集合B 的一个函数,记作_________ (2)函数的定义域、值域在函数y =f(x),x∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的______;与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的_______.显然,值域是集合B 的子集. (3)函数的三要素:___________、____________和___________. (4)函数的表示法表示函数的常用方法有__________、___________、__________. 2. 映射的概念设A 、B 是两个非空集合,如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A→B 为从集合A 到集合B 的一个_________. 3. 函数解析式的求法求函数解析式常用方法有__________、___________、___________、____________. 4. 常见函数定义域的求法(1)分式函数中分母_________. (2)偶次根式函数被开方式______________. (3)一次函数、二次函数的定义域为R .(4)y =a x(a >0且a ≠1),y =sin x ,y =cos x ,定义域均为R .(5)y =tan x 的定义域为⎩⎨⎧⎭⎬⎫x |x ∈R 且x ≠k π+π2,k ∈Z .(6)函数f (x )=x a的定义域为{x |x ∈R 且x ≠0}. 基础知识·自我测试1.设函数f (x )=41-x ,若f (a )=2,则实数a =________.2. (课本改编题)给出四个命题:①函数是其定义域到值域的映射;②f (x )=x -2+2-x 是函数;③函数y =2x (x ∈N )的图象是一条直线;④f (x )=x 2x与g (x )=x 是同一个函数.其中正确命题的序号有________.3. 函数y =f (x )的图象如图所示,那么,f (x )的定义域是________;值域是________;其中只与x 的一个值对应的y 值的范围是________.4.下列函数中,与函数y =13x定义域相同的函数为 ( )A .y =1sin xB .y =ln x xC .y =x e xD .y =sin x x5.设f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=⎩⎪⎨⎪⎧1,x 为有理数,0,x 为无理数,则f (g (π))的值为 ( )A .1B .0C .-1D .π 题型分类·深度剖析 题型一 函数的概念 例1 有以下判断:(1)f (x )=|x |x 与g (x )=⎩⎪⎨⎪⎧1 x ≥0-1 x <0表示同一函数;(2)函数y =f (x )的图象与直线x =1的交点最多有1个; (3)f (x )=x 2-2x +1与g (t )=t 2-2t +1是同一函数;(4)若f (x )=|x -1|-|x |,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=0.其中正确判断的序号是________.变式训练1: 下列各组函数中,表示同一函数的是 ( )A .f (x )=|x |,g (x )=x 2B .f (x )=x 2,g (x )=(x )2C .f (x )=x 2-1x -1,g (x )=x +1 D .f (x )=x +1·x -1,g (x )=x 2-1题型二 求函数的解析式【例2】 (1)已知f ⎝ ⎛⎭⎪⎫2x+1=lg x ,求f (x );(2)设y =f (x )是二次函数,方程f (x )=0有两个相等实根,且f ′(x )=2x +2,求f (x )的解析式; (3)定义在(-1,1)内的函数f (x )满足2f (x )-f (-x )=lg(x +1),求函数f (x )的解析式.变式训练2:给出下列两个条件: (1)f (x +1)=x +2x ;(2)f (x )为二次函数且f (0)=3,f (x +2)-f (x )=4x +2.试分别求出f (x )的解析式.题型三 函数的定义域 【例3】 (1)函数y =lnx +1-x 2-3x +4的定义域为______________. (2)若函数y =f (x )的定义域是[0,2],则函数g (x )=f 2xx -1的定义域是 ( ) A .[0,1] B .[0,1) C .[0,1)∪(1,4] D .(0,1)变式训练3: (1)若函数f (x )=x -4mx 2+4mx +3的定义域为R ,则实数m 的取值范围是__________.(2)已知f (x )的定义域是[0,4],则f (x +1)+f (x -1)的定义域是__________.题型四 分段函数【例4】 定义在R 上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧log 21-x , x ≤0,f x -1-f x -2, x >0,则f (2 014)的值为________.变式训练4:设函数f (x )=⎩⎪⎨⎪⎧2-x,x ≤2,log 81x ,x >2,则满足f (x )=14的x 值为( )A .2B .3C .2或3D .-2。
高考数学一轮复习 第二章 函数 2.1 函数及其表示学案
§2.1函数及其表示考纲解读考点考纲内容要求浙江省五年高考统计2013 2014 2015 2016 20171.函数的概念及其表示1.了解函数、映射的概念,会求一些简单的函数定义域和值域.2.理解函数的三种表示法:解析法、图象法和列表法.3.理解函数的最大(小)值及其几何意义,并能求函数的最大(小)值.理解17,4分21(2),7分22(2),7分11(文),4分17(文),4分21(文),约4分22(文),约5分6,5分10,5分22,14分10(文),5分7,5分18,15分18,约5分2.分段函数及其应用了解简单的分段函数,并能简单应用.了解8,5分22(2),4分15,4分15(文),4分10,6分12(文),6分18,15分18,15分17,4分分析解读 1.考查重点仍为函数的表示法,分段函数等基本知识点,考查形式有两种,一种是给出分段函数表达式,求相应的函数值或相应的参数值(例: 2014浙江15题);另一种是定义一种运算,给出函数关系式考查相关数学知识(例: 2015浙江7题).2.了解构成函数的要素,会求一些简单函数的定义域和值域,能运用求值域的方法解决最值问题.3.函数值域和最值是高考考查的重点,常以本节内容为背景结合其他知识进行考查,如解析式与函数最值相结合(例:2015浙江10题),函数最值与向量相结合(例:2013浙江17题).4.预计2019年高考中,考查分段函数及其应用、函数值域与最值的可能性很大,特别是对与不等式、函数单调性相结合的考查,复习时应引起重视.五年高考考点一函数的概念及其表示1.(2015浙江,7,5分)存在函数f(x)满足:对于任意x∈R都有( )A.f(sin 2x)=sin xB.f(sin 2x)=x2+xC.f(x2+1)=|x+1|D.f(x2+2x)=|x+1|答案 D2.(2014江西,2,5分)函数f(x)=ln(x2-x)的定义域为( )A.(0,1)B.[0,1]C.(-∞,0)∪(1,+∞)D.(-∞,0]∪[1,+∞)答案 C3.(2014江西,3,5分)已知函数f(x)=5|x|,g(x)=ax2-x(a∈R).若f[g(1)]=1,则a=( )A.1B.2C.3D.-1答案 A4.(2014山东,3,5分)函数f(x)=的定义域为( )A. B.(2,+∞)C.∪(2,+∞)D.∪[2,+∞)答案 C5.(2013浙江文,11,4分)已知函数f(x)=.若f(a)=3,则实数a= .答案106.(2016江苏,5,5分)函数y=的定义域是.答案[-3,1]教师用书专用(7—8)7.(2013江西,2,5分)函数y=ln(1-x)的定义域为( )A.(0,1)B.[0,1)C.(0,1]D.[0,1]答案 B8.(2014四川,15,5分)以A表示值域为R的函数组成的集合,B表示具有如下性质的函数φ(x)组成的集合:对于函数φ(x),存在一个正数M,使得函数φ(x)的值域包含于区间[-M,M].例如,当φ1(x)=x3,φ2(x)=sin x 时,φ1(x)∈A,φ2(x)∈B.现有如下命题:①设函数f(x)的定义域为D,则“f(x)∈A”的充要条件是“∀b∈R,∃a∈D,f(a)=b”;②函数f(x)∈B的充要条件是f(x)有最大值和最小值;③若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)+g(x)∉B;④若函数f(x)=aln(x+2)+(x>-2,a∈R)有最大值,则f(x)∈B.其中的真命题有.(写出所有真命题的序号)答案①③④考点二分段函数及其应用1.(2017山东文,9,5分)设f(x)=若f(a)=f(a+1),则f=( )A.2B.4C.6D.8答案 C2.(2015课标Ⅱ,5,5分)设函数f(x)=则f(-2)+f(log212)=( )A.3B.6C.9D.12答案 C3.(2015山东,10,5分)设函数f(x)=则满足f(f(a))=2f(a)的a的取值范围是( )A. B.[0,1] C. D.[1,+∞)答案 C4.(2015浙江,10,6分)已知函数f(x)=则f(f(-3))= ,f(x)的最小值是.答案0;2-35.(2014浙江,15,4分)设函数f(x)=若f(f(a))≤2,则实数a的取值范围是.答案(-∞,]6.(2014浙江文,15,4分)设函数f(x)=若f(f(a))=2,则a= .答案7.(2017课标全国Ⅲ文,16,5分)设函数f(x)=则满足f(x)+f >1的x的取值范围是.答案8.(2016浙江,18,15分)已知a≥3,函数F(x)=min{2|x-1|,x2-2ax+4a-2},其中min{p,q}=(1)求使得等式F(x)=x2-2ax+4a-2成立的x的取值范围;(2)(i)求F(x)的最小值m(a);(ii)求F(x)在区间[0,6]上的最大值M(a).解析(1)由于a≥3,故当x≤1时,(x2-2ax+4a-2)-2|x-1|=x2+2(a-1)(2-x)>0,当x>1时,(x2-2ax+4a-2)-2|x-1|=(x-2)(x-2a).所以,使得等式F(x)=x2-2ax+4a-2成立的x的取值范围为[2,2a].(2)(i)设函数f(x)=2|x-1|,g(x)=x2-2ax+4a-2,则f(x)min=f(1)=0,g(x)min=g(a)=-a2+4a-2,所以,由F(x)的定义知m(a)=min{f(1),g(a)},即m(a)=(ii)当0≤x≤2时,F(x)≤f(x)≤ma x{f(0),f(2)}=2=F(2),当2≤x≤6时,F(x)≤g(x)≤max{g(2),g(6)}=max{2,34-8a}=max{F(2),F(6)}.所以,M(a)=9.(2015浙江,18,15分)已知函数f(x)=x2+ax+b(a,b∈R),记M(a,b)是|f(x)|在区间[-1,1]上的最大值.(1)证明:当|a|≥2时,M(a,b)≥2;(2)当a,b满足M(a,b)≤2时,求|a|+|b|的最大值.解析(1)证明:由f(x)=+b-,得对称轴为直线x=-.由|a|≥2,得≥1,故f(x)在[-1,1]上单调,所以M(a,b)=max{|f(1)|,|f(-1)|}.当a≥2时,由f(1)-f(-1)=2a≥4,得max{f(1),-f(-1)}≥2,即M(a,b)≥2.当a≤-2时,由f(-1)-f(1)=-2a≥4,得max{f(-1),-f(1)}≥2,即M(a,b)≥2.综上,当|a|≥2时,M(a,b)≥2.(2)由M(a,b)≤2得|1+a+b|=|f(1)|≤2,|1-a+b|=|f(-1)|≤2,故|a+b|≤3,|a-b|≤3,由|a|+|b|=得|a|+|b|≤3.当a=2,b=-1时,|a|+|b|=3,且|x2+2x-1|在[-1,1]上的最大值为2,即M(2,-1)=2.所以|a|+|b|的最大值为3.教师用书专用(10—12)10.(2015湖北,6,5分)已知符号函数sgn x=f(x)是R上的增函数,g(x)=f(x)-f(ax)(a>1),则( )A.sgn[g(x)]=sgn xB.sgn[g(x)]=-sgn xC.sgn[g(x)]=sgn[f(x)]D.sgn[g(x)]=-sgn[f(x)]答案 B11.(2014福建,7,5分)已知函数f(x)=则下列结论正确的是( )A.f(x)是偶函数B.f(x)是增函数C.f(x)是周期函数D.f(x)的值域为[-1,+∞)答案 D12.(2015浙江文,12,6分)已知函数f(x)=则f(f(-2))= , f(x)的最小值是. 答案-;2-6三年模拟A组2016—2018年模拟·基础题组考点一函数的概念及其表示1.(2018浙江名校协作体期初,9)函数y=x+的值域为( )A.[1+,+∞)B.(,+∞)C.[,+∞)D.(1,+∞)答案 D考点二分段函数及其应用2.(2018浙江“七彩阳光”联盟期中,10)已知函数f(x)=函数g(x)=asin-2a+3(a>0).若存在x1,x2∈[0,1],使得f(x1)=g(x2)成立,则实数a的取值范围是( )A. B.C. D.(0,2]答案 A3.( 2017浙江宁波期末,3)函数f(x)=则f[f(2)]=( )A.-2B.-1C.-2D.0答案 B4.(2017浙江宁波二模(5月),14)定义max{a,b}=已知函数f(x)=max{|2x-1|,ax2+b},其中a<0,b∈R.若f(0)=b,则实数b的范围为;若f(x)的最小值为1,则a+b= .答案[1,+∞);15.(2017浙江“七彩阳光”新高考研究联盟测试,16)已知函数f(x)=的值域为R,则实数a的取值范围是.答案[0,2)6.(2016浙江镇海中学测试(六),9)已知函数f(x)=则f= ;若f(f(t))∈[-1,0],则t 的取值范围是.答案0;∪[-1,0]∪∪[,2]B组2016—2018年模拟·提升题组一、选择题1.(2017浙江温州模拟(2月),10)已知定义在实数集R上的函数f(x)满足f(x+1)=+,则f(0)+f(2 017)的最大值为( )A.1-B.1+C.D.答案 B2.(2017浙江湖州期末调研,1)已知f(x)是R上的奇函数,当x≥0时, f(x)=则函数y=f(x)+的所有零点之和是( )A.1-B.-1C.5-D.-5答案 B二、填空题3.(2018浙江杭州地区重点中学第一学期期中,16)若函数f(x)=(-x2-2x+3)(x2+ax+b)的图象关于直线x=-2对称,则f(x)的值域为.答案(-∞,16]4.(2018浙江重点中学12月联考,17)已知a∈R,函数f(x)=若存在三个互不相等的实数x1,x2,x3,使得===-e成立,则a的取值范围是.答案(-∞,-2)5.(2017浙江名校(镇海中学)交流卷二,16)已知定义域和值域都为R的函数f(x)满足f[f(x)+f(y)]=2f(x)+4y-3,则当x>0时,函数f(x)的取值范围是.答案(-1,+∞)6.(2016浙江宁波一模,12)对于定义在R上的函数f(x),若存在实数a,使得f(a+x)·f(a-x)=1对任意实数恒成立,则称f(x)为关于a的“倒函数”.已知定义在R上的函数f(x)是关于0和1的“倒函数”,且当x∈[0,1]时, f(x)的取值范围为[1,2],则当x∈[1,2]时,f(x)的取值范围为,当x∈[-2 016,2 016]时, f(x)的取值范围为.答案;C组2016—2018年模拟·方法题组方法1 求函数定义域的解题策略1.求下列函数的定义域:(1)y=+;(2)y=+(5x-4)0.解析(1)由得所以函数的定义域为{x|x<-2或-2<x≤-1或1≤x<2或x>2}.(2)由得所以函数的定义域为.2.若函数f(2x)的定义域是[-1,1],求函数f(log2x)的定义域.解析由函数f(2x)的定义域是[-1,1]得-1≤x≤1,所以≤2x≤2,即函数f(x)的定义域为.令≤log2x≤2,解得≤x≤4,所以函数f(log2x)的定义域为[,4].方法2 求函数解析式的解题策略3.(2017浙江名校(诸暨中学)交流卷四,16)f(x)是定义在R上的函数,若f(1)=504,对任意的x∈R,满足f(x+4)-f(x)≤2(x+1)及f(x+12)-f(x)≥6(x+5),则= .答案 2 0174.已知函数f(x)满足:当x≠0时,都有f=x3-,求f(x)的解析式.解析∵x3-==,∴f=,∴f(x)=x(x2+3)=x3+3x.又函数y=x-的值域为R,故f(x)的解析式为f(x)=x3+3x(x∈R).5.已知定义在R上的函数f(x)满足:对于任意的实数x,y,都有(x-1)f(y)+(y-1)f(x)=2f(x)f(y)-2x-2y-4,求函数f(x)的解析式.解析令y=x,得2(x-1)f(x)=2f 2(x)-4x-4,即f 2(x)-(x-1)f(x)-2(x+1)=0.解关于f(x)的一元二次方程,得f(x)=x+1或f(x)=-2.6.(2017浙江金华十校调研,20)已知函数f(x)=(1)求f及x∈[2,3]时函数f(x)的解析式;(2)若f(x)≤对任意x∈(0,3]恒成立,求实数k的最小值.解析(1)f=-f=f=×=.当x∈[2,3]时,x-2∈[0,1],所以f(x)=[(x-2)-(x-2)2]=(x-2)(3-x).(2)要使f(x)≤,x∈(0,3]恒成立,只需k≥[xf(x)]max,x∈(0,3]即可.①当x∈(0,1]时,f(x)=x-x2,则对任意x∈(0,1],xf(x)=x2-x3.令h(x)=x2-x3,则h(x)max=h=;②当x∈(1,2]时,xf(x)=-x[(x-1)-(x-1)2]=x(x-1)(x-2)≤0;③当x∈(2,3]时,xf(x)=x[(x-2)-(x-2)2],令x-2=t∈(0,1],记g(t)=(t+2)(t-t2),t∈(0,1].则g'(t)=-(3t2+2t-2),令g'(t)=0,得t0=(负值舍去),故存在t0=,使得函数g(t)在t=t0处取得最大值.又>,所以当k≥时,f(x)≤对任意x∈(0,3]恒成立,故k的最小值为.方法3 分段函数的解题策略7.(2017浙江模拟训练冲刺卷五,11)设函数f(x)=若f(-4)=f(0), f(-2)=-2,则b+c= ;方程f(x)=x的所有实根的和为.答案6;-1。
高考数学一轮复习 第2章 函数、导数及其应用 2.1 函数及其表示学案 文
2.1 函数及其表示[知识梳理]1.函数与映射2.函数的有关概念(1)函数的定义域、值域在函数y=f(x),x∈A中,其中所有x组成的集合A称为函数y=f(x)的定义域;将所有y组成的集合叫做函数y=f(x)的值域.(2)函数的三要素:定义域、对应关系和值域.(3)函数的表示法表示函数的常用方法有解析法、图象法和列表法.3.分段函数(1)若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.(2)分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.4.必记结论函数与映射的相关结论(1)相等函数如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数相等.(2)映射的个数若集合A中有m个元素,集合B中有n个元素,则从集合A到集合B的映射共有n m个.(3)与x轴垂直的直线和一个函数的图象至多有1个交点.[诊断自测]1.概念思辨(1)函数y=f(x)的图象与直线x=a最多有2个交点.( )(2)函数f(x)=x2-2x与g(t)=t2-2t是同一函数.( )(3)若A=R,B={x|x>0},f:x→y=|x|,其对应是从A到B的映射.( )(4)f(x-1)=x,则f(x)=(x+1)2(x≥-1).( )答案(1)×(2)√(3)×(4)√2.教材衍化(1)(必修A1P23T2)下列四个图形中,不是以x为自变量的函数的图象是( )答案 C解析由函数定义知,定义域内的每一个x都有唯一函数值与之对应,A,B,D选项中的图象都符合;C项中对于大于零的x而言,有两个不同的值与之对应,不符合函数定义.故选C.(2)(必修A1P18例2)下列四组函数中,表示相等函数的一组是( )A.f(x)=|x|,g(x)=x2B.f(x)=x2,g(x)=(x)2C .f (x )=x 2-1x -1,g (x )=x +1D .f (x )=x +1·x -1,g (x )=x 2-1 答案 A解析 A 项,函数g (x )=x 2=|x |,两个函数的对应法则和定义域相同,是相等函数;B 项,函数f (x )=x 2=|x |,g (x )=x (x ≥0),两个函数的对应法则和定义域不相同,不是相等函数;C 项,函数f (x )=x 2-1x -1的定义域为{x |x ≠1},g (x )=x +1的定义域为R ,两个函数的定义域不相同,不是相等函数;D 项,由⎩⎪⎨⎪⎧x +1≥0,x -1≥0,解得x ≥1,即函数f (x )的定义域为{x |x ≥1}.由x 2-1≥0,解得x ≥1或x ≤-1,即g (x )的定义域为{x |x ≥1或x ≤-1},两个函数的定义域不相同,不是相等函数.故选A.3.小题热身(1)(2018·广东深圳模拟)函数y =-x 2-x +2ln x 的定义域为( )A .(-2,1)B .[-2,1]C .(0,1)D .(0,1]答案 C解析 由题意得⎩⎪⎨⎪⎧-x 2-x +2≥0,x >0,ln x ≠0,解得0<x <1.故选C.(2)若函数f (x )=⎩⎪⎨⎪⎧2x +2,x ≤0,2x-4,x >0,则f [f (1)]的值为( )A .-10B .10C .-2D .2答案 C解析 因为f (1)=-2,所以f (-2)=-2.故选C.题型1 函数的概念典例1 集合A ={x |0≤x ≤4},B ={y |0≤y ≤2},下列不表示从A 到B 的函数的是( )A .f :x →y =12xB .f :x →y =13xC .f :x →y =23xD .f :x →y =x用定义法.答案 C解析 依据函数概念,集合A 中任一元素在集合B 中都有唯一确定的元素与之对应.选项C 不符合,因为当x =4时,y =83∉B .故选C.典例2 (2018·秦都区校级月考)判断下列各组中的两个函数是同一函数的是( ) ①y 1=(x +3)(x -5)x +3,y 2=x -5;②f (x )=x ,g (x )=x 2; ③f (x )=x ,g (x )=3x 3;④f 1(x )=(2x -5)2,f 2(x )=2x -5. A .①② B .②③ C .③D .③④用定义法.答案 C解析 对于①,y 1=(x +3)(x -5)x +3=x -5(x ≠-3),与y 2=x -5(x ∈R )的定义域不同,不是同一函数.对于②,f (x )=x ,与g (x )=x 2=|x |的对应关系不同,不是同一函数.对于③,f (x )=x (x ∈R ),与g (x )=3x 3=x (x ∈R )的定义域相同,对应关系也相同,是同一函数.对于④,f 1(x )=(2x -5)2=2x -5⎝ ⎛⎭⎪⎫x ≥52,与f 2(x )=2x -5(x ∈R )的定义域不同,不是同一函数. 综上,以上是同一函数的是③.故选C. 方法技巧与函数概念有关问题的解题策略1.判断一个对应关系是否是函数关系,就看这个对应关系是否满足函数定义中“定义域内的任意一个自变量的值都有唯一确定的函数值”这个核心点.见典例1.2.两个函数是否是相等函数,取决于它们的定义域和对应关系是否相同,只有当两个函数的定义域和对应关系完全相同时,才表示相等函数.见典例2.冲关针对训练1.下列图象可以表示以M ={x |0≤x ≤1}为定义域,以N ={x |0≤x ≤1}为值域的函数的是( )答案 C解析 A 选项中的值域不对,B 选项中的定义域错误,D 选项不是函数的图象,由函数的定义可知选项C 正确.故选C.2.下列函数中一定是同一函数的是________. ①y =x 与y =a log ax;②y =2x +1-2x与y =2x;③f (u )=1+u1-u,f (v )= 1+v1-v; ④y =f (x )与y =f (x +1). 答案 ②③ 解析 ①y =x 与y =a log ax定义域不同.②y =2x +1-2x=2x(2-1)=2x相同.③f (u )与f (v )的定义域及对应法则均相同. ④对应法则不相同.题型2 函数的定义域典例1 (2015·湖北高考)函数f (x )=4-|x |+lg x 2-5x +6x -3的定义域为( )A .(2,3)B .(2,4]C .(2,3)∪(3,4]D .(-1,3)∪(3,6]列不等式组求解.答案 C解析 依题意,知⎩⎪⎨⎪⎧4-|x |≥0,x 2-5x +6x -3>0,即⎩⎪⎨⎪⎧|x |≤4,(x -3)(x -2)x -3>0,解之得2<x <3或3<x ≤4,即函数的定义域为(2,3)∪(3,4].故选C.典例2 已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( )A .(-1,1)B .⎝⎛⎭⎪⎫-1,-12 C .(-1,0)D .⎝ ⎛⎭⎪⎫12,1已知f (x ),x ∈[a ,b ],求f [g (x )]的定义域,则a <g (x )<b .答案 B解析 由函数f (x )的定义域为(-1,0),则使函数f (2x +1)有意义,需满足-1<2x +1<0,解得-1<x <-12,即所求函数的定义域为⎝⎛⎭⎪⎫-1,-12.故选B. [结论探究] 典例2中条件不变,求函数g (x )=f (2x +1)+f (3x +1)的定义域. 解 函数f (3x +1)有意义,需-1<3x +1<0,解得-23<x <-13,又由f (2x +1)有意义,解得-1<x <-12,所以可知g (x )的定义域为⎝ ⎛⎭⎪⎫-23,-12.[条件探究] 若典例2中条件变为:“函数f (x -1)的定义域为(-1,0)”,则结果如何?解 因为f (x -1)的定义域为(-1,0),即-1<x <0,所以-2<x -1<-1,故f (x )的定义域为(-2,-1),则使函数f (2x +1)有意义,需满足-2<2x +1<-1,解得-32<x <-1.所以所求函数的定义域为⎝ ⎛⎭⎪⎫-32,-1.方法技巧1.求函数定义域的三种常考类型及求解策略(1)已知函数的解析式:构建使解析式有意义的不等式(组)求解.见典例1. (2)抽象函数(见典例2)①若已知函数f (x )的定义域为[a ,b ],则复合函数f [g (x )]的定义域由a ≤g (x )≤b 求出.②若已知函数f [g (x )]的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域.(3)实际问题:既要使构建的函数解析式有意义,又要考虑实际问题的要求. 2.求函数定义域的注意点(1)不要对解析式进行化简变形,以免定义域变化.(2)当一个函数由有限个基本初等函数的和、差、积、商的形式构成时,定义域一般是各个基本初等函数定义域的交集.(3)定义域是一个集合,要用集合或区间表示,若用区间表示,不能用“或”连接,而应该用并集符号“∪”连接.冲关针对训练1.(2017·临川模拟)已知函数y =f (x +1)的定义域是[-2,3],则y =f (2x -1)的定义域是( )A .[-3,7]B .[-1,4]C .[-5,5]D .⎣⎢⎡⎦⎥⎤0,52 答案 D解析 由y =f (x +1)定义域[-2,3]得y =f (x )定义域为[-1,4],所以-1≤2x -1≤4,解得0≤x ≤52.故选D.2.(2018·石河子月考)已知函数y =f (x )的定义域是(-∞,1),则y =f (x -1)+2-x2x 2-3x -2的定义域是( )A.⎝⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎭⎪⎫-12,2 B .(-∞,1) C.⎝ ⎛⎭⎪⎫-∞,12∪⎝ ⎛⎭⎪⎫12,1 D .(-∞,2)答案 A解析 ∵函数y =f (x )的定义域是(-∞,1),∴y =f (x -1)+2-x2x 2-3x -2中,自变量x 应满足⎩⎪⎨⎪⎧x -1<1,2-x ≥0,2x 2-3x -2≠0,解得⎩⎪⎨⎪⎧x <2,x ≤2,x ≠-12或x ≠2,即x <2且x ≠-12,∴f (x )的定义域是⎝ ⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎭⎪⎫-12,2.故选A. 题型3 求函数的解析式典例1已知f ⎝⎛⎭⎪⎫x +1x =x 2+1x2,求f (x )的解析式.配凑法.解 f ⎝⎛⎭⎪⎫x +1x =x 2+1x2=⎝ ⎛⎭⎪⎫x +1x 2-2,故f (x )=x 2-2,且x ≤-2或x ≥2.典例2已知f ⎝⎛⎭⎪⎫2x +1=lg x ,求f (x )的解析式.换元法.解 令t =2x +1>1,得x =2t -1,所以f (t )=lg 2t -1,即f (x )=lg 2x -1(x >1).典例3 已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x ).待定系数法.解 设f (x )=ax 2+bx +c ,由f (0)=0,得c =0,对f (x +1)=a (x +1)2+b (x +1),f (x )+x +1=ax 2+bx +x +1,即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,得a =b =12.所以f (x )=12x 2+12x (x ∈R ). 典例4 已知函数f (x )的定义域为(0,+∞),且f (x )=2f ⎝ ⎛⎭⎪⎫1x x -1,求f (x ).方程组法.解 由f (x )=2f ⎝ ⎛⎭⎪⎫1xx -1,得 f ⎝ ⎛⎭⎪⎫1x =2f (x )·1x-1,消掉f ⎝ ⎛⎭⎪⎫1x ,可得f (x )=23x +13.方法技巧函数解析式的常见求法1.配凑法.已知f [h (x )]=g (x ),求f (x )的问题,往往把右边的g (x )整理成或配凑成只含h (x )的式子,然后用x 将h (x )代换.见典例1.2.待定系数法.已知函数的类型(如一次函数、二次函数)可用待定系数法.见典例3. 3.换元法.已知f [h (x )]=g (x ),求f (x )时,往往可设h (x )=t ,从中解出x ,代入g (x )进行换元.应用换元法时要注意新元的取值范围.见典例2.4.方程组法.已知f (x )满足某个等式,这个等式除f (x )是未知量外,还有其他未知量,如f ⎝ ⎛⎭⎪⎫1x,f (-x )等,可根据已知等式再构造其他等式组成方程组,通过解方程组求出f (x ).见典例4.冲关针对训练1.(2018·衢州期末)已知f (x )是(0,+∞)上的增函数,若f [f (x )-ln x ]=1,则f (e)=( )A .2B .1C .0D .e答案 A解析 根据题意,f (x )是(0,+∞)上的增函数,且f [f (x )-ln x ]=1,则f (x )-ln x 为定值,设f (x )-ln x =t ,t 为常数,则f (x )=ln x +t 且f (t )=1, 即有ln t +t =1,解得t =1, 则f (x )=ln x +1,则f (e)=ln e +1=2.故选A.2.已知二次函数f (2x +1)=4x 2-6x +5,求f (x ). 解 解法一:(换元法)令2x +1=t (t ∈R ),则x =t -12,所以f (t )=4⎝⎛⎭⎪⎫t -122-6·t -12+5=t 2-5t +9(t ∈R ),所以f (x )=x 2-5x +9(x ∈R ).解法二:(配凑法)因为f (2x +1)=4x 2-6x +5=(2x +1)2-10x +4=(2x +1)2-5(2x +1)+9,所以f (x )=x 2-5x +9(x ∈R ).解法三:(待定系数法)因为f (x )是二次函数,所以设f (x )=ax 2+bx +c (a ≠0),则f (2x +1)=a (2x +1)2+b (2x +1)+c =4ax 2+(4a +2b )x +a +b +c .因为f (2x +1)=4x 2-6x +5,所以⎩⎪⎨⎪⎧4a =4,4a +2b =-6,a +b +c =5,解得⎩⎪⎨⎪⎧a =1,b =-5,c =9,所以f (x )=x 2-5x +9(x ∈R ).3.已知f (x )满足2f (x )+f ⎝ ⎛⎭⎪⎫1x=3x -1,求f (x ).解 (消元法)已知2f (x )+f ⎝ ⎛⎭⎪⎫1x =3x -1,①以1x代替①式中的x (x ≠0),得2f ⎝ ⎛⎭⎪⎫1x +f (x )=3x-1,②①×2-②得3f (x )=6x -3x-1,故f (x )=2x -1x -13(x ≠0).题型4 求函数的值域角度1 分式型典例 求f (x )=5x -14x +2,x ∈[-3,-1]的值域.分离常数法.解 由y =5x -14x +2可得y =54-74(2x +1).∵-3≤x ≤-1, ∴720≤-74(2x +1)≤74, ∴85≤y ≤3,即y ∈⎣⎢⎡⎦⎥⎤85,3. 角度2 根式型典例 求函数的值域. (1)y =2x +1-2x ; (2)y =x +4+9-x 2.(1)用换元法,配方法;(2)用三角换元法.解 (1)令t =1-2x ,则x =1-t22.∴y =-t 2+t +1=-⎝ ⎛⎭⎪⎫t -122+54(t ≥0).∴当t =12,即x =38时,y 取最大值,y max =54,且y 无最小值,∴函数的值域为⎝ ⎛⎦⎥⎤-∞,54.(2)令x =3cos θ,θ∈[0,π],则y =3cos θ+4+3sin θ=32sin ⎝ ⎛⎭⎪⎫θ+π4+4.∵0≤θ≤π, ∴π4≤θ+π4≤5π4, ∴-22≤sin ⎝⎛⎭⎪⎫θ+π4≤1.∴1≤y ≤32+4,∴函数的值域为[1,32+4]. 角度3 对勾型函数典例 求y =log 3x +log x 3-1的值域.用分类讨论法.解 y =log 3x +log x 3-1,变形得y =log 3x +1log 3x -1.①当log 3x >0,即x >1时,y =log 3x +1log 3x -1≥2-1=1,当且仅当log 3x =1,即x =3时取“=”. ②当log 3x <0,即0<x <1时,y ≤-2-1=-3. 当且仅当log 3x =-1,即x =13时取“=”.综上所述,原函数的值域为(-∞,-3]∪[1,+∞). 角度4 单调性型典例 函数f (x )=log 2(3x+1)的值域为( ) A .(0,+∞) B .[0,+∞) C .(1,+∞)D .[1,+∞)本题用复合函数“同增异减”的单调性原则求解.答案 A解析 根据对数函数的定义可知,真数3x+1>0恒成立,解得x ∈R . 因此,该函数的定义域为R ,原函数f (x )=log 2(3x+1)是由对数函数y =log 2t 和t =3x+1复合的复合函数, 由复合函数的单调性定义(同增异减)知道,原函数在定义域R 上是单调递增的.根据指数函数的性质可知,3x >0,所以,3x+1>1, 所以f (x )=log 2(3x+1)>log 21=0.故选A. 角度5 有界性型典例求函数y =1-2x1+2x 的值域.本题用转化法.解 由y =1-2x1+2x 可得2x=1-y 1+y . 由指数函数y =2x的有界性可知2x>0, ∴1-y1+y>0,解得-1<y <1. 所以函数的值域为(-1,1). 角度6 数形结合型典例 求函数y =sin x +1x -1,x ∈⎣⎢⎡⎦⎥⎤π2,π的值域.本题用数形结合法.解 函数y =sin x +1x -1的值域可看作由点A (x ,sin x ),B (1,-1)两点决定的斜率,B (1,-1)是定点,A (x ,sin x )在曲线y =sin x ,x ∈⎣⎢⎡⎦⎥⎤π2,π上,如图. ∴k BP ≤y ≤k BQ ,即1π-1≤y ≤4π-2.方法技巧求函数值域的常用方法1.分离常数法(见角度1典例) 2.配方法(见角度2典例(1)) 3.换元法(见角度2典例(2)) (1)代数换元;(2)三角换元.4.有界性法(见角度5典例) 5.数形结合法(见角度6典例) 6.基本不等式法(见角度3典例) 7.利用函数的单调性(见角度4典例) 冲关针对训练 求下列函数的值域: (1)f (x )=⎝ ⎛⎭⎪⎫12x 2-2x +2; (2)y =(x +3)2+16+(x -5)2+4. 解 (1)∵x 2-2x +2=(x -1)2+1≥1, 0<⎝ ⎛⎭⎪⎫12x 2-2x +2≤12,∴函数f (x )=⎝ ⎛⎭⎪⎫12x 2-2x +2的值域是⎝ ⎛⎦⎥⎤0,12.(2)(数形结合法)如图,函数y =(x +3)2+16+(x -5)2+4的几何意义为平面内一点P (x,0)到点A (-3,4)和点B (5,2)的距离之和.由平面解析几何知识,找出B 关于x 轴的对称点B ′(5,-2),连接AB ′交x 轴于一点P ,此时距离之和最小,∴y min =|AB ′|=82+62=10,又y 无最大值,所以y ∈[10,+∞).题型5 分段函数角度1 求分段函数的函数值典例 (2015·全国卷Ⅱ)设函数f (x )=⎩⎪⎨⎪⎧1+log 2(2-x ),x <1,2x -1,x ≥1,则f (-2)+f (log 212)=( )A .3B .6C .9D .12确定自变量所在区间,代入相应解析式.答案 C解析 ∵-2<1,log 212>1,∴f (-2)=1+log 2[2-(-2)]=3;f (log 212)=2log 212-1=2log 26=6.∴f (-2)+f (log 212)=9.故选C. 角度2 求参数的值典例 (2018·襄阳联考)已知函数f (x )=⎩⎪⎨⎪⎧2x-2,x ≤1,-log 2(x +1),x >1,且f (a )=-3,则f [f (14-a )]=________.本题用方程思想求a ,再根据区间分类讨论,由内到外,逐层求解.答案 -158解析 当a ≤1时,f (a )=2a-2=-3无解;当a >1时,由f (a )=-log 2(a +1)=-3,得a +1=8,解得a =7,所以f [f (14-a )]=f [f (7)]=f (-3)=2-3-2=-158.角度3 分段函数与不等式的交汇典例 已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x ≤0,ln (x +1),x >0.若|f (x )|≥ax ,则a 的取值范围是( )A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0]本题用数形结合思想方法、分离常数法.答案 D解析 由题意作出y =|f (x )|的图象:由图象易知,当a >0时,y =ax 与y =ln (x +1)的图象在x >0时必有交点,所以当a ≤0,x ≥0时,|f (x )|≥ax 显然成立;当x <0时,要使|f (x )|=x 2-2x ≥ax 恒成立, 则a ≥x -2恒成立,又x -2<-2,∴a ≥-2. 综上,-2≤a ≤0.故选D. 方法技巧分段函数问题的常见类型及解题策略1.求函数值.弄清自变量所在区间,然后代入对应的解析式,求“层层套”的函数值,要从最内层逐层往外计算.见角度2典例.2.求参数.“分段处理”,采用代入法列出各区间上的方程或不等式.见角度2典例. 3.解不等式.根据分段函数中自变量取值范围的界定,代入相应的解析式求解,但要注意取值范围的大前提.见角度3典例.4.数形结合法也是解决分段函数问题的重要方法,在解决选择填空问题中经常使用,而且解题速度更快更准.见角度3典例.冲关针对训练1.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x ,x <0,x 2-2x ,x ≥0.若f (-a )+f (a )≤0,则实数a 的取值范围是( )A .[-1,1]B .[-2,0]C .[0,2]D .[-2,2]答案 D解析 依题意可知⎩⎪⎨⎪⎧a ≥0,a 2-2a +(-a )2+2(-a )≤0或⎩⎪⎨⎪⎧a <0,(-a )2-2(-a )+a 2+2a ≤0,解得a ∈[-2,2].故选D.2.已知函数f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x -2,x ≤0,f (x -2)+1,x >0,则f (2018)=________.答案 1008解析 根据题意:f (2018)=f (2016)+1=f (2014)+2=…=f (2)+1008=f (0)+1009=1008.1.(2014·山东高考)函数f (x )=1(log 2x )2-1的定义域为( )A.⎝ ⎛⎭⎪⎫0,12 B .(2,+∞)C.⎝ ⎛⎭⎪⎫0,12∪(2,+∞) D.⎝ ⎛⎦⎥⎤0,12∪[2,+∞) 答案 C解析 要使函数f (x )有意义,需使(log 2x )2-1>0,即(log 2x )2>1,∴log 2x >1或log 2x <-1.解之得x >2或0<x <12.故f (x )的定义域为⎝ ⎛⎭⎪⎫0,12∪(2,+∞).故选C. 2.(2018·河北名校联盟联考)设函数f (x )是定义在R 上的奇函数,且f (x )=⎩⎪⎨⎪⎧log 3(x +1),x ≥0,g (x ),x <0,则g [f (-8)]=( )A .-1B .-2C .1D .2答案 A解析 ∵函数f (x )是定义在R 上的奇函数,且f (x )=⎩⎪⎨⎪⎧log 3(x +1),x ≥0,g (x ),x <0,∴f (-8)=-f (8)=-log 39=-2,∴g [f (-8)]=g (-2)=f (-2)=-f (2)=-log 33=-1.故选A.3.(2018·工农区模拟)函数y =x +1-1-x 的值域为( ) A .(-∞,2] B .[0,2] C .[-2,2] D .[-2,0]答案 C解析 要使函数有意义,需满足⎩⎪⎨⎪⎧x +1≥0,1-x ≥0,解得-1≤x ≤1,所以函数的定义域为[-1,1],根据函数的解析式,x 增大时,x +1增大,1-x 减小,-1-x 增大,所以y 增大,即该函数为增函数.所以最小值为f (-1)=-2,最大值为f (1)=2, 所以值域为[-2,2].故选C.4.(2017·全国卷Ⅲ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x,x >0,则满足f (x )+f ⎝ ⎛⎭⎪⎫x -12>1的x 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫-14,+∞ 解析 由题意知,可对不等式分x ≤0,0<x ≤12,x >12三段讨论.当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,∴-14<x ≤0.当0<x ≤12时,原不等式为2x+x +12>1,显然成立.当x >12时,原不等式为2x+2x -12>1,显然成立.综上可知,x >-14.[基础送分 提速狂刷练]一、选择题1.已知A ={x |x =n 2,n ∈N },给出下列关系式:①f (x )=x ;②f (x )=x 2;③f (x )=x 3;④f (x )=x 4;⑤f (x )=x 2+1,其中能够表示函数f :A →A 的个数是( )A .2B .3C .4D .5答案 C解析 对⑤,当x =1时,x 2+1∉A ,故⑤错误,由函数定义可知①②③④均正确.故选C.2.(2018·吉安四校联考)已知函数f (x )=⎩⎪⎨⎪⎧1-x 2(x ≤1),x 2+x -2(x >1),则f ⎣⎢⎡⎦⎥⎤1f (2)的值为( )A.1516B .89C .-2716D .18答案 A解析 f (2)=4,f ⎣⎢⎡⎦⎥⎤1f (2)=f ⎝ ⎛⎭⎪⎫14=1-⎝ ⎛⎭⎪⎫142=1516.故选A.3.已知f (x 5)=lg x ,则f (2)等于( ) A .lg 2 B .lg 32 C .lg 132D.15lg 2 答案 D解析 令x 5=t ,则x =t 15 (t >0),∴f (t )=lg t 15 =15lg t .∴f (2)=15lg 2.故选D.4.(2017·山西名校联考)设函数f (x )=lg (1-x ),则函数f [f (x )]的定义域为( ) A .(-9,+∞) B .(-9,1) C .[-9,+∞) D .[-9,1)答案 B解析 f [f (x )]=f [lg (1-x )]=lg [1-lg (1-x )],则⎩⎪⎨⎪⎧1-x >0,1-lg (1-x )>0⇒-9<x <1.故选B.5.若函数y =f (x )的定义域是[0,1],则函数F (x )=f (x +a )+f (2x +a )(0<a <1)的定义域是( )A.⎣⎢⎡⎦⎥⎤-a 2,1-a 2B .⎣⎢⎡⎦⎥⎤-a2,1-aC .[-a,1-a ] D.⎣⎢⎡⎦⎥⎤-a ,1-a 2答案 A解析 ⎩⎪⎨⎪⎧0≤x +a ≤1,0≤2x +a ≤1⇒-a 2≤x ≤1-a2.故选A.6.函数y =⎝ ⎛⎭⎪⎫121x 2+1 的值域为( )A.⎝ ⎛⎦⎥⎤-∞,12 B .⎣⎢⎡⎦⎥⎤12,1C.⎣⎢⎡⎭⎪⎫12,1D .⎣⎢⎡⎭⎪⎫12,+∞ 答案 C解析 由于x 2≥0,所以x 2+1≥1,所以0<1x 2+1≤1,结合函数y =⎝ ⎛⎭⎪⎫12x 在(0,1]上的图象可知函数y =⎝ ⎛⎭⎪⎫121x 2+1 的值域为⎣⎢⎡⎭⎪⎫12,1.故选C.7.(2018·黄冈联考)已知f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,a x+b ,x ≤0,且f (0)=2,f (-1)=3,则f [f (-3)]=( )A .-2B .2C .3D .-3答案 B解析 由题意得f (0)=a 0+b =1+b =2,解得b =1;f (-1)=a -1+b =a -1+1=3,解得a =12.故f (-3)=⎝ ⎛⎭⎪⎫12-3+1=9,从而f [f (-3)]=f (9)=log 39=2.故选B.8.(2018·银川模拟)已知具有性质:f ⎝ ⎛⎭⎪⎫1x=-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数:①y =x -1x ;②y =x +1x ;③y =⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x,x >1.其中满足“倒负”变换的函数是( ) A .①② B .①③ C .②③ D .①答案 B解析 对于①,f (x )=x -1x,f ⎝ ⎛⎭⎪⎫1x =1x -x =-f (x )满足;对于②,f ⎝ ⎛⎭⎪⎫1x =1x+x =f (x ),不满足;对于③,f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,0<1x <1,0,1x =1,-x ,1x >1,即f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x,x >1,0,x =1,-x ,0<x <1,故f ⎝ ⎛⎭⎪⎫1x=-f (x ),满足. 综上可知,满足“倒负”变换的函数是①③.故选B.9.(2018·铜陵一模)若函数f (x )图象上任意一点P (x ,y )皆满足y 2≥x 2,则f (x )的解析式可以是( )A .f (x )=x -1xB .f (x )=e x-1 C .f (x )=x +4xD .f (x )=tan x答案 C解析 A 项,当x =1时,f (x )=1-1=0,02≥12不成立;B 项,当x =-1时,f (x )=1e -1∈(-1,0),⎝ ⎛⎭⎪⎫1e -12≥(-1)2不成立;D 项,当x =5π4时,f (x )=1,12≥⎝ ⎛⎭⎪⎫5π42不成立;对于C ,f 2(x )=x 2+16x2+8>x 2,符合题意.故选C.10.(2017·山东模拟)设函数f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x,x ≥1.则满足f [f (a )]=2f (a )的a 的取值范围是( )A.⎣⎢⎡⎦⎥⎤23,1B .[0,1] C.⎣⎢⎡⎭⎪⎫23,+∞ D .[1,+∞)答案 C解析 ①当a <23时,f (a )=3a -1<1,f [f (a )]=3(3a -1)-1=9a -4,2f (a )=23a -1,显然f [f (a )]≠2f (a ).②当23≤a <1时,f (a )=3a -1≥1,f [f (a )]=23a -1,2f (a )=23a -1,故f [f (a )]=2f (a ).③当a ≥1时,f (a )=2a>1,f [f (a )]=22a,2f (a )=22a,故f [f (a )]=2f (a ).综合①②③知a ≥23.故选C.二、填空题11.已知x ∈N *,f (x )=⎩⎪⎨⎪⎧x 2-35,x ≥3,f (x +2),x <3,其值域设为D .给出下列数值:-26,-1,9,14,27,65,则其中属于集合D 的元素是________.(写出所有可能的数值)答案 -26,14,65解析 注意函数的定义域是N *,由分段函数解析式可知,所有自变量的函数值最终都是转化为大于等于3的对应自变量函数值计算的f (3)=9-35=-26,f (4)=16-35=-19,f (5)=25-35=-10,f (6)=36-35=1,f (7)=49-35=14,f (8)=64-35=29,f (9)=81-35=46,f (10)=100-35=65.故正确答案应填-26,14,65.12.(2018·厦门一模)已知函数f (x )=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,则实数a 的取值范围是________.答案 ⎣⎢⎡⎭⎪⎫0,12解析 当x ≥1时,f (x )=2x -1≥1,∵函数f (x )=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,∴当x <1时,(1-2a )x +3a 必须取遍(-∞,1)内的所有实数,则⎩⎪⎨⎪⎧1-2a >0,1-2a +3a ≥1,解得0≤a <12.13.定义:区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1.已知函数y =2|x |的定义域为[a ,b ],值域为[1,2],则区间[a ,b ]的长度的最大值与最小值的差为________.答案 1解析 [a ,b ]的长度取得最大值时[a ,b ]=[-1,1],区间[a ,b ]的长度取得最小值时[a ,b ]可取[0,1]或[-1,0],因此区间[a ,b ]的长度的最大值与最小值的差为1.14.(2018·绵阳二诊)现定义一种运算“⊕”:对任意实数a ,b ,a ⊕b =⎩⎪⎨⎪⎧b ,a -b ≥1,a ,a -b <1.设f (x )=(x 2-2x )⊕(x +3),若函数g (x )=f (x )+k 的图象与x 轴恰有两个公共点,则实数k 的取值范围是________.答案 (-8,-7]∪(-3,-2)∪{1}解析 因为(x 2-2x )-(x +3)-1=(x -4)(x +1),所以f (x )=(x 2-2x )⊕(x +3)=⎩⎪⎨⎪⎧x +3,x ∈(-∞,-1]∪[4,+∞),x 2-2x ,x ∈(-1,4).作出函数y =f (x )的图象如图所示.函数g (x )=f (x )+k 的图象与x 轴恰有两个公共点,即函数y =f (x )的图象与直线y =-k 有两个公共点,结合图象可得-k =-1 或2<-k <3或7≤-k <8,所以实数k 的取值范围是k ∈(-8,-7]∪(-3,-2)∪{1}.三、解答题15.(2018·福建六校联考)已知函数f (x )=log a (x +2)+log a (4-x )(a >0且a ≠1). (1)求函数f (x )的定义域;(2)若函数f (x )在区间[0,3]上的最小值为-2,求实数a 的值.解 (1)依题意得⎩⎪⎨⎪⎧x +2>0,4-x >0,解得-2<x <4,∴f (x )的定义域为(-2,4). (2)f (x )=log a (x +2)+log a (4-x ) =log a [(x +2)(4-x )],令t =(x +2)(4-x ),则可变形得t =-(x -1)2+9, ∵0≤x ≤3,∴5≤t ≤9, 若a >1,则log a 5≤log a t ≤log a 9,∴f (x )min =log a 5=-2,则a 2=15<1(舍去),若0<a <1,则log a 9≤log a t ≤log a 5, ∴f (x )min =log a 9=-2, 则a 2=19,又0<a <1,∴a =13.综上,得a =13.16.如果对∀x ,y ∈R 都有f (x +y )=f (x )·f (y ),且f (1)=2. (1)求f (2),f (3),f (4)的值; (2)求f (2)f (1)+f (4)f (3)+f (6)f (5)+…+f (2014)f (2013)+f (2016)f (2015)+f (2018)f (2017)的值. 解 (1)∵∀x ,y ∈R ,f (x +y )=f (x )·f (y ),且f (1)=2,∴f (2)=f (1+1)=f (1)·f (1)=22=4,f (3)=f (1+2)=f (1)·f (2)=23=8,f (4)=f (1+3)=f (1)·f (3)=24=16.(2)解法一:由(1)知f (2)f (1)=2,f (4)f (3)=2,f (6)f (5)=2,…,f (2018)f (2017)=2, 故原式=2×1009=2018.解法二:对∀x ,y ∈R 都有f (x +y )=f (x )·f (y )且f (1)=2,令x =n ,y =1,则f (n +1)=f (n )·f (1),即f (n +1)f (n )=f (1)=2,故f (2)f (1)=f (4)f (3)=…=f (2018)f (2017)=2,故原式=2×1009=2018.。
高中数学 高三一轮第二章第1课时 函数及其表示(学案)
1.函数的单调性(1)单调函数的定义增函数减函数定义在函数f(x)的定义域内的一个区间A上,如果对于任意两数x1,x2∈A当x1〈x2时,都有f(x1)<f(x2),那么,就称函数f(x)在区间A上是增加的当x1<x2时,都有f(x1)>f(x2),那么,就称函数f(x)在区间A上是减少的图像描自左向右看图像是上自左向右看图像是下如果函数y=f(x)在区间A上是增加的或是减少的,那么就称A为单调区间。
2。
函数的最值【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)在增函数与减函数的定义中,可以把“任意两数"改为“存在两数”.(×)(2)对于函数f(x),x∈D,若x1,x2∈D且(x1-x2)·[f(x1)-f(x2)]>0,则函数f(x)在D上是增函数.( √)(3)函数y=f(x)在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).( ×)(4)函数y=错误!的单调递减区间是(-∞,0)∪(0,+∞)。
( ×)(5)所有的单调函数都有最值。
( ×)(6)对于函数y=f(x),若f(1)〈f(3),则f(x)为增函数。
(×)1.下列函数中,在区间(0,+∞)内单调递减的是()A.y=错误!-xB.y=x2-xC。
y=ln x-x D。
y=e x-x答案A解析对于A,y1=错误!在(0,+∞)内是减函数,y2=x 在(0,+∞)内是增函数,则y=错误!-x在(0,+∞)内是减函数;B,C,D选项中的函数在(0,+∞)上均不单调.故选A.2。
若函数f(x)=|2x+a|的单调递增区间是[3,+∞),则a的值为()A.-2 B。
2 C.-6 D.6答案C解析由图像易知函数f(x)=|2x+a|的单调增区间是[-错误!,+∞),令-错误!=3,∴a=-6。
3.若函数y=ax与y=-错误!在(0,+∞)上都是减函数,则y=ax2+bx在(0,+∞)上是( )A.增函数B.减函数C.先增后减D。
高考数学一轮总复习 第二单元 函数 课时1 函数及其表示教案 文(含解析)
函数及其表示1.了解构成函数的要素,会求一些简单函数的定义域;了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用(函数分段不超过三段).知识梳理1.函数的概念(1)给定两个非空的数集A和B,如果按照某个对应关系f,对于A中任何一个数x,在B中都有唯一确定的数y与之对应,那么称f:A→B为从集合A到集合B的一个函数,记作y =f(x),x∈A,此时的x叫做自变量,集合A叫做函数的定义域,集合C={f(x)|x∈A}叫做函数的值域且C B.(2)函数有三个要素:定义域、值域和对应关系.2.函数的表示列表法:用表格的形式表示两个变量之间函数关系的方法,称为列表法.图象法:用图象把两个变量间的函数关系表示出来的方法,称为图象法.解析法:一个函数的对应关系可以用自变量的解析式表示出来,这种方法称为解析法.3.分段函数分段函数的定义:在定义域的不同部分,有不同的对应法则的函数称为分段函数.4.映射的概念如果两个非空集合A与B之间存在着对应关系f,而且对于A 中的每一个元素,B中总有唯一确定的元素y与之对应,就称这种对应是从集合A到集合B的映射.1.函数是一种特殊的映射,映射不一定是函数.从A到B的映射,A,B若不是数集,则这个映射便不是函数.2.分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集.热身练习1.考察下列图象:其中能够作为函数图象的是A,B,C .抓住函数的定义进行判断.对每一个x,都有唯一确定的y与之对应才构成函数关系,表现在图象上为在定义域范围内与x轴垂直的直线与图象有且只有1个交点,由此可知,A,B,C都能作为函数图象,D不能作为函数图象.2.(经典真题)已知函数f(x)=ax3-2x的图象过点(-1,4),则a=-2 .由f(x)=ax3-2x可得f(-1)=-a+2=4,所以a=-2.3.下列函数中,f (x )与g (x )表示同一函数是(D) A .f (x )=(x -1)0,g (x )=1 B .f (x )=x ,g (x )=x 2C .f (x )=x 2,g (x )=(x +1)2D .f (x )=|x |,g (x )=x 2A 的定义域不同,B 的值域不同,C 的对应法则不同,只有D 的定义域、值域、对应法则都相同.4.设f (x )=⎩⎪⎨⎪⎧1-x ,x ≥0,2x,x <0,则f [f (-2)]=(C)A .-1 B.14C.12D.32因为-2<0,所以f (-2)=2-2=14>0,所以f (14)=1-14=1-12=12. 5.已知函数满足f (x -1)=x 2-3,则f (2)的值为(B) A .-2 B .6 C .1 D .0(方法一)令x -1=t ,则x =t +1,所以f (t )=(t +1)2-3, 所以f (2)=(2+1)2-3=6.(方法二)f (x -1)=(x -1)2+2(x -1)-2,所以f(x)=x2+2x-2,所以f(2)=22+2×2-2=6. (方法三)令x-1=2,则x=3,所以f(2)=32-3=6.求函数的定义域(1)函数f (x )=11-x +lg(1+x )的定义域是A .(-∞,-1)B .(1,+∞)C .(-1,1)∪(1,+∞) D.(-∞,+∞)(2)设函数f (x )=ln 1+x 1-x ,则函数g (x )=f (x 2)+f (1x)的定义域为____________.(1)要使f (x )有意义,则⎩⎪⎨⎪⎧1-x ≠0,x +1>0,解得x >-1且x ≠1.故函数f (x )的定义域为(-1,1)∪(1,+∞). (2)要使f (x )=ln 1+x 1-x 有意义,则1+x1-x >0,所以-1<x <1.则函数g (x )=f (x 2)+f (1x )的定义域为⎩⎪⎨⎪⎧-1<x2<1,-1<1x <1,所以x ∈(-2,-1)∪(1,2).(1)C (2)(-2,-1)∪(1,2) 求定义域的基本方法:①若函数是由一些基本初等函数通过四则运算而得到的,则它的定义域是各基本函数定义域的交集;②已知函数f (x )的定义域为D ,则f [g (x )]的定义域为满足g (x )∈D 的x 的取值范围.1.(1)函数f (x )=log 2(x 2+2x -3)的定义域是(D) A .[-3,1] B .(-3,1)C .(-∞,-3]∪[1,+∞) D.(-∞,-3)∪(1,+∞)(2)(2018·重庆模拟)已知函数f (x )的定义域为[-1,2],则函数y =f (x )+f (-x )的定义域是(A)A .[-1,1]B .[-2,2]C .[-1,2]D .(-2,1](1)要使函数有意义,只需x 2+2x -3>0, 即(x +3)(x -1)>0,解得x <-3或x >1. 故函数的定义域为(-∞,-3)∪(1,+∞). (2)因为f (x )的定义域为[-1,2],要使函数y =f (x )+f (-x )有意义,则⎩⎪⎨⎪⎧-1≤x ≤2,-1≤-x ≤2,解得-1≤x ≤1.所以y =f (x )+f (-x )的定义域为[-1,1].求函数的解析式(1)(2016·浙江卷)设函数f (x )=x 3+3x 2+1,已知a ≠0,且f (x )-f (a )=(x -b )(x-a )2,x ∈R ,则实数a =________,b =________.(2)已知f (1x +1)=x 2+1x 2+3x,则f (x )=___________________________.(1)先利用函数解析式将f (x )-f (a )=(x -b )(x -a )2的左边表示出来,再化简右边,然后利用多项式相等的条件求解即可.因为f (x )=x 3+3x 2+1,则f (a )=a 3+3a 2+1, 所以f (x )-f (a )=(x -b )(x -a )2=(x -b )(x 2-2ax +a 2) =x 3-(2a +b )x 2+(a 2+2ab )x -a 2b =x 3+3x 2-a 3-3a 2. 由此可得⎩⎪⎨⎪⎧ 2a +b =-3,a 2+2ab =0,a 3+3a 2=a 2b .①②③因为a ≠0,所以由②得a =-2b ,代入①式得b =1,a =-2.(2)令t =1x +1,则x =1t -1(t ≠1),于是f (t )=1t -12+11t -12+31t -1=1+(t -1)2+3(t -1)=t 2+t -1(t ≠1).所以f (x )=x 2+x -1(x ≠1).(1)-2 1 (2)x 2+x -1(x ≠1) 求函数解析式的常用方法:(1)待定系数法:若已知函数类型(如一次函数、二次函数、反比例函数及其他所有形式已知的函数),可用待定系数法;(2)换元法:已知复合函数f [g (x )]的解析式,可用换元法,此时要注意新元的取值范围.2.(1)已知f (x +1)=x +2x ,则f (x +1)= x 2+2x (x ≥0) .(2)已知函数f (x )是一次函数,且f (8)=15,f (14),f (5),f (2)成等比数列,则f (x )= 2x -1 .(1)设u =x +1≥1,则x =(u -1)2,所以f (u )=(u -1)2+2(u -1)=u 2-1, 所以f (x )=x 2-1(x ≥1),所以f (x +1)=(x +1)2-1=x 2+2x (x ≥0). (2)设f (x )=ax +b (a ≠0), 由f (8)=15,得8a +b =15,① 又f (14),f (5),f (2)成等比数列, 所以[f (5)]2=f (2)·f (14),得(5a +b )2=(14a +b )(2a +b )3a 2+6ab =0. 因为a ≠0,所以a =-2b ,②由①②得a =2,b =-1,所以f (x )=2x -1.分段函数(2017·山东卷)设f (x )=⎩⎨⎧x ,0<x <1,2x -1,x ≥1.若f (a )=f (a +1),则f (1a)=( )A .2B .4C .6D .8先由f (a )=f (a +1)求出a ,再求f (1a).求f (a )和f (a +1)时,将a ,a +1代入分段函数的哪一个表达式中?这就必须依据分段函数的定义域对a 进行分类讨论.若0<a <1,a +1>1,由f (a )=f (a +1)得a =2(a +1-1),所以a =14,所以f (1a)=f (4)=2×(4-1)=6.若a ≥1,a +1>1,由f (a )=f (a +1)得 2(a -1)=2(a +1-1),此方程无解. 综上,f (1a)=6.C(1)分段函数是一个函数,“分段求解”是解决分段函数的基本原则. (2)在求分段函数的值时,一定要注意自变量的值所在的区间,再代入相应的解析式,自变量的值不确定时,要分类讨论.3.(2018·全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧2-x,x ≤0,1, x >0,则满足f (x +1)<f (2x )的x 的取值范围是(D)A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)(方法一:利用分段函数分段求解)①当⎩⎪⎨⎪⎧ x +1≤0,2x ≤0,即x ≤-1时,f (x +1)<f (2x ),即为2-(x +1)<2-2x,即-(x +1)<-2x ,解得x <1.因此不等式的解集为(-∞,-1].②当⎩⎪⎨⎪⎧ x +1≤0,2x >0时,不等式组无解.③当⎩⎪⎨⎪⎧ x +1>0,2x ≤0,即-1<x ≤0时,f (x +1)<f (2x ),即1<2-2x,解得x <0.因此不等式的解集为(-1,0).④当⎩⎪⎨⎪⎧x +1>0,2x >0,即x >0时,f (x +1)=1,f (2x )=1,不合题意.综上,不等式f (x +1)<f (2x )的解集为(-∞,0). (方法二:借助函数图象求解)因为f (x )=⎩⎪⎨⎪⎧2-x,x ≤0,1, x >0,所以函数f (x )的图象如图所示.由图可知,当x +1≤0且2x ≤0时,函数f (x )为减函数, 故f (x +1)<f (2x )转化为x +1>2x .此时x ≤-1. 当2x <0且x +1>0时,f (2x )>1,f (x +1)=1, 满足f (x +1)<f (2x ).此时-1<x <0.综上,不等式f (x +1)<f (2x )的解集为(-∞,-1]∪(-1,0)=(-∞,0).1.函数的定义域是研究函数的基础依据,对函数性质的讨论,都必须在定义域上进行,求函数的定义域,主要掌握以下两种类型:(1)由解析式给出的函数,根据其定义域求出使函数有意义的自变量的取值范围.其主要依据是:①分式的分母不为0;②偶次方根的被开方数不小于0;③对数的真数大于0;④指数函数和对数函数的底数大于0且不等于1.(2)复合函数f[g(x)]的定义域:若f(x)的定义域为D,则满足g(x)∈D的x的集合是f[g(x)]的定义域.2.求函数的解析式主要掌握如下两种方法:(1)给出函数的特征,求函数的解析式,可用待定系数法,如函数是二次函数,可设函数为f(x)=ax2+bx+c(a≠0),其中a,b,c是待定系数,根据题设条件,列出方程组,解出a,b,c即可.(2)换元法求解析式,已知f[h(x)]=g(x),求f(x)的问题,往往可设h(x)=t,从中解出x,代入g(x)进行换元求解.但用换元法时,要注意新元的范围.3.分段函数问题要分段求解.如求分段函数f(x0)时,首先要判断x0属于定义域的哪个子集,然后代入相应的关系,当不能确定时,要注意分类讨论.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年高中数学一轮复习教学案第二章函数、导数及其应用第1节函数及其表示一.学习目标:1.了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用(函数分段不超过三段).二.学习重、难点:1.学习重点:会求一些简单函数的定义域和值域;2.学习难点:会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数. 三.学习方法:讲练结合四.自主复习:1.函数的基本概念(1)函数的定义设A,B是非空的______,如果按照某种确定的对应关系f,使对于集合A中的_____一个数x,在集合B中都有_________的数f(x)和它对应,那么就称f:A→B为从集合A 到集合B的一个函数,记作_________________.(2)函数的定义域、值域在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的________;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的______.显然,值域是集合B的子集.(3)函数的三要素:___________________________.(4)相等函数:如果两个函数的__________________完全一致,则这两个函数相等,这是判断两函数相等的依据.2.函数的表示法表示函数的常用方法有:________________________.3.映射的概念设A、B是两个非空集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中____________确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的_____________.4.函数与映射的关系由映射的定义可以看出,映射是______概念的推广,函数是一种特殊的映射,要注意构成函数的两个集合A,B必须是______________.五.复习前测:1.设f,g都是从A到A的映射(其中A={1,2,3}),其对应关系如下表:则f(g(3))A.1 B.2 C.3 D.不存在2.设集合A={a,b},B={0,1},则从A到B的映射共有()A.2个B.3个C.4个D.5个3.设f:x→x2是集合A到集合B的函数,如果集合B={1},则集合A不可能是() A.{1} B.{-1}C.{-1,1} D.∅4.已知f(1x )=x 2+5x ,则f(x)=__________.5.设函数f(x)=⎩⎪⎨⎪⎧-x ,x ≤0,x 2,x>0.若f(a)=4,则实数a =__________.要点点拨:1.相同函数的判断判断两个函数是否为相同的函数,应抓住两点:(1)定义域是否相同;(2)对应法则即解析式是否相同.其中,应先求得定义域,然后再将解析式化简.2.函数解析式的类型与求法(1)若已知函数的类型(如一次函数、二次函数),可用待定系数法.(2)已知复合函数f(g(x))的解析式,可用换元法,此时要注意自变量的取值范围. (3)已知f(x)满足某个等式,这个等式除f(x)是未知量外,还出现其他未知量,如f(-x)、f(1x)等,要根据已知等式再构造其他等式组成方程组,通过解方程组求出f(x).(4)求分段函数的解析式时,一定要明确自变量所属的范围,以便于选择与之对应的对应关系.六.复习过程:题型一:函数的基本概念[例1] 以下给出的同组函数中,是否表示同一函数?为什么? (1)f 1:y =xx;f 2:y =1.(2)f 1:y =⎩⎪⎨⎪⎧1 x ≤1,2 1<x<2,3 x ≥2;f 2:(3)f 12[规律总结](1)要检验两个变量之间是否存在函数关系,只需检验:①定义域和对应关系是否给出;②根据给出的对应关系,自变量x 在其定义域中的每一个值,是否都能找到唯一的函数值y 与之对应的.(2)判断两个函数是否相同,要先看定义域是否一致,若定义域一致,再看对应法则是否一致,由此即可判断.变式训练1已知f :x →sin x 是集合A (A ⊆[0,2π])到集合B ={0,12}的一个映射,则集合A 中的元素个数最多有( )A .4个B .5个C .6个D .7个题型二:求函数的解析式 [例2](1)已知f (2x+1)=lg x ,求f (x );(2)设y =f (x )是二次函数,方程f (x )=0有两个相等实根,且f ′(x )=2x +2,求f (x )的解析式.[思路点拨] 第(1)题利用换元法,第(2)题已知函数的结构特征,可运用待定系数法求解.[规律总结]1.本题(2)已知函数的类型,因此可用待定系数法求函数的解析式;(2)求函数解析式的主要方法有待定系数法、换元法等.如果已知函数解析式的类型时,可用待定系数法;已知复合函数f (f (x ))的表达式时,可用换元法,这时要注意“元”的取值范围;对于抽象函数可赋值、消元求函数的解析式,求函数的解析式一定要重视定义域,否则会导致错误.变式训练2设f (x )是R 上的函数,且满足f (0)=1,并且对任意实数x ,y ,有f (x -y )=f (x )-y (2x -y +1),求f (x ).题型三:分段函数及应用[例3] (2011·江苏高考卷)已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为__________.[思路点拨] 讨论1-a,1+a 与1的大小关系,确定f (1-a )与f (1+a )的表达式,建立关于a 的方程求解.[规律总结] 求分段函数的函数值时,应根据所给自变量的大小选择相应段的解析式求解,有时每段交替使用求值.若给出函数值或函数值的范围求自变量值或自变量的取值范围,应根据每一段的解析式分别求解,但要注意检验所求自变量值是否符合相应段的自变量的取值范围.变式训练3已知函数f (x )=⎩⎪⎨⎪⎧e x,x ≥0,-2x ,x <0,则关于x 的方程f (f (x ))+k =0,给出下列四个命题:①存在实数k ,使得方程恰有1个实根; ②存在实数k ,使得方程恰有2个不相等的实根; ③存在实数k ,使得方程恰有3个不相等的实根; ④存在实数k ,使得方程恰有4个不相等的实根.其中正确命题的序号是__________(把所有满足要求的命题序号都填上).创新探究——常考常新的分段函数[例题] (2011·天津高考)对实数a 和b ,定义运算“⊗”:a ⊗b =⎩⎪⎨⎪⎧a ,a -b ≤1,b ,a -b >1.设函数f (x )=(x 2-2)⊗(x -1),x ∈R .若函数y =f (x )-c 的图象与x 轴恰有两个公共点,则实数c 的取值范围是( )A .(-1,1]∪(2,+∞)B .(-2,-1]∪(1,2]C .(-∞,-2)∪(1,2]D .[-2,-1]链接高考:1.(2012·安徽)下列函数中,不满足f (2x )=2f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +1 D .f (x )=-x2.(2012·江西)若函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,lg x ,x >1,则f (f (10))=( )A .lg101B .2C .1D .03.(2012·江苏)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f (12)=f (32),则a +3b 的值为__________.七.反馈练习:1.下列四个图象中,是函数图象的是( )A .(1)B .(1)(3)(4)C .(1)(2)(3)D .(3)(4)2.下表表示y 是x 的函数,则函数的值域是( )C .(0,20]D .{2,3,4,5}3.设函数f (x )=⎩⎨⎧x ,x ≥0,-x ,x <0,若f (a )+f (-1)=2,则a =( )A .-3B .±3C .-1D .±14.定义x ⊗y =x 3-y ,则h ⊗(h ⊗h )=( ) A .-h B .0 C .hD .h 35.设A ={0,1,2,4},B ={12,0,1,2,6,8},则下列对应关系能构成A 到B 的映射的是( )A .f :x →x 3-1B .f :x →(x -1)2C .f :x →2x -1D .f :x →2x6.定义在R 上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧log 2(1-x ),x ≤0,f (x -1)-f (x -2),x >0,则f (2013)的值为( ) A .-1 B .0 C .1 D .27.已知f (x -1x )=x 2+1x 2,则函数f (3)=__________.8.设f (x )=⎩⎪⎨⎪⎧lg x ,x >0,10x ,x ≤0,则f (f (-2))=__________.9.设M 是由满足下列性质的函数f (x )构成的集合:在定义域内存在x 0,使得f (x 0+1)=f (x 0)+f (1)成立.已知下列函数:①f (x )=1x;②f (x )=2x ;③f (x )=lg(x 2+2);④f (x )=cosπx .其中属于集合M 的函数是__________.(写出所有满足要求的函数的序号)10.已知f (x )是二次函数,若f (0)=0,且f (x +1)=f (x )+x +1.(1)求函数f (x )的解析式.(2)求函数y =f (x 2-2)的值域.11.我国是水资源相对匮乏的国家,为鼓励节约用水,某市打算制定一项水费措施,规定每季度每人用水不超过5吨时,每吨水费的价格(基本消费价)为1.3元,若超过5吨而不超过6吨时,超过部分的水费加收200%,若超过6吨而不超过7吨时,超过部分的水费加收400%,如果某人本季度实际用水量为x (x ≤7)吨,试计算本季度他应缴纳的水费.12.已知函数f (x )是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有xf (x +1)=(1+x )f (x ),求f (f (52))的值.八.思维总结:九.自我评价:1.你对本章的复习的自我评价如何?A .很好B .一般C . 不太好2.你认为在这章复习中还有哪些知识漏洞?。