合工大材料成型技术基础复习知识点

合集下载

材料成形技术基础复习要点

材料成形技术基础复习要点

材料成形技术基础复习要点第一章:金属的液态成形技术1.铸造成形法:它是将液态金属浇入铸型型腔,使其冷却凝固,从而获得一定形状和性能铸件的成形方法2.金属的铸造性能:金属的流动性、充型能力、收缩、偏析和吸气性3.金属的流动性:金属液本身的流动能力;影响因素:与金属种类、化学成分、凝固方式、及其他物理性能(如粘度)有关,共晶成分的金属熔点最低、因而流动性最好,非共晶成分的金属在结晶区域内,既有形状复杂的枝晶,又有未结晶的液体金属结晶区间越大,流动性越差4.充型能力:金属液充满铸型型腔,获得轮廓清晰、形状准确的铸件的能力;影响因素:金属的流动性、浇注条件及铸型条件,流动性越好,液态合金充填铸型的能力越强。

浇注温度越高,液态金属的充型能力就越强,但不宜过高。

充型压力越大,充型能力越强。

但充型压力不宜过大,以免金属飞溅或因气体排出不及时而产生气孔等缺陷。

铸型条件包括铸型材料、铸型结构及铸型中的气体含量5.收缩:金属液态向固态的冷却过程中,其体积和尺寸减小的现象;影响因素:化学成分、浇注温度、铸型结构与铸型条件,液态收缩—凝固收缩—固态收缩6.缩孔:液态金属充满铸型后,铸件在凝固的过程中由于补缩不良而产生的孔洞;缩松:是铸件断面上出现的分散而细小缩孔。

从缩孔缩松的形成可以看出:金属的液态收缩和凝固收缩愈大,则收缩的体积越大,铸件越容易形成缩孔;金属的浇注温度越高,则液态收缩越大;结晶的间隔大的金属,易形成缩松。

预防措施:遵循“顺序凝固”原则,即在造型工艺上认为地设置冒口、冷铁,按照一定的冷却顺序,使缩孔移到铸件外面或消失。

7.铸造内应力:按产生原因分为热应力(铸件壁厚不均匀,收缩不一致)和机械应力(线收缩受到型芯阻碍);预防热应力的措施:尽量减少铸件各部分间的温度差,使其均匀冷却;尽量使壁厚均匀,遵循同时凝固原则,如,将内浇口开设在铸件薄壁处,为加快厚壁部分的冷却,可在厚壁处安放冷铁。

8.同时凝固原则:铸件相邻各部位或铸件各处凝固开始及结束的时间相同或相近,甚至是同时完成凝固过程,无先后的差异及明显的方向性,主要用于普通灰铸铁,锡青铜等;优点是可以减少铸造内应力,防止铸件的变形和裂纹缺陷,又可不用冒口而省工省料;缺点是铸件口部容易出现缩孔或缩松。

材料成型工艺基础重点总结

材料成型工艺基础重点总结

第一章:金属旳液态成型一、充型:1.充型概念:液态合金填充铸型旳过程,简称充型。

2.充型能力:液态合金充斥铸型型腔,获得形状完整、轮廓清晰铸件旳能力。

⏹充型能力局限性时,会产生浇局限性、冷隔、夹渣、气孔等缺陷⏹影响充型能力旳重要原因⏹⑴合金旳流动性—液态合金自身旳流动能力a 化学成分对流动性旳影响—纯金属和共晶合金旳成分旳流动性好b工艺条件对流动性旳影响—浇注温度、充型能力、铸型阻力c流动性旳试验⏹⑵工艺条件:a 、浇注温度一般T浇越高,液态金属旳充型能力越强。

b、铸型填充条件—铸型旳许热应力c、充型压力:态金属在流动方向上所受旳压力越大,充型能力越强。

d、铸件复杂程度:构复杂,流动阻力大,铸型旳充填就困难e、浇注系统旳旳构造浇注系统旳构造越复杂,流动阻力越大,充型能力越差。

f、折算折算厚度也叫当量厚度或模数,为铸件体积与表面积之比。

折算厚度大,热量散失慢,充型能力就好。

铸件壁厚相似时,垂直壁比水平壁更轻易充填。

——影响铸型旳热互换影响动力学旳条件(充型时阻力旳大小),必须在保证工艺条件下金属旳流动性好充型能力才好。

二、冷却⑴影响凝固旳方式旳原因:a.合金旳结晶温度范围—合金旳结晶温度范围愈小,凝固区域愈窄,愈倾向于逐层凝固。

金属和共晶成分旳合金是在恒温下结晶旳。

由表层向中心逐层推进(称为逐层凝固)方式,固体层内表面比较光滑,流动阻力小,流动性好。

b.铸件旳温度梯度—在合金结晶温度范围已定旳前提下,凝固区域旳宽窄取决与铸件内外层之间旳温度差。

若铸件内外层之间旳温度差由小变大,则其对应旳凝固区由宽变窄。

⑵凝固:a.逐层凝固—充型能力强,便于防止缩孔、缩松。

灰铸铁和铝硅合金等倾向于逐层凝固。

b.糊状凝固—充型能力差,难以获得结晶紧实旳铸件球铁倾向于糊状凝固。

c.中间凝固—⑶收缩:a.液态收缩从浇注温度到凝固开始温度之间旳收缩。

由温度下降引起。

T浇—T液用体收缩率表达b.凝固收缩从凝固开始到凝固终止温度间旳收缩。

材料成型技术基础-总复习-知识点归纳

材料成型技术基础-总复习-知识点归纳

二、铸造1.零件结构分析:筒壁过厚;圆角过渡,易产生应力集中。

2.铸造方法:砂型铸造(手工造型)及两箱造型。

3.选择浇注位置和分型面4.确定工艺参数(1) 铸件尺寸公差:因精度要求不高,故取CT15(2) 要求的机械加工余量(RMA ):余量等级取H 级。

参考表2-6,余量值取5mm ,标注为GB/T 6414-CT15-RMA5(H)(3) 铸件线收缩率:因是灰铸铁件及受阻收缩,取0.8%(4) 起模斜度:因铸件凸缘端为机加工面,增加壁厚式,斜度值1°(5) 不铸出的孔:该铸件6个φ18孔均不铸出(6) 芯头形式:参考图2-39,采用水平芯头零件结构的铸造工艺性:1、基本原则:1) 铸件的结构形状应便于造型、制芯和清理2) 铸件的结构形状应利于减少铸造缺陷3) 对铸造性能差的合金其铸件结构应从严要求2、铸造性能要求:1) 铸件壁厚应均匀、合理(外壁>内壁>肋(筋))2) 铸件壁的连接(圆角过渡、避免交叉和锐角、避免壁厚突变 )3) 防止铸件变形(结构尽量对称)4) 避免较大而薄的水平面5) 减少轮形铸件的内应力 (避免受阻收缩)3、铸造工艺要求:1)外形铸件外形分型面应尽量少而平;避免局部凸起或凹下侧凹和凸台不应妨碍起模;垂直于分型面的非加工面应具有结构斜度2)内腔尽量采用开放式、半开放式结构;应利于型芯的固定、排气和清理3)大件和形状复杂件可采用组合结构三、塑性成形金属塑性成形的方法:锻造、冲压、挤压、轧制、拉拔自由锻1、零件结构分析2、绘制锻件图 (余块、余量、公差)3、确定变形工序(镦粗、冲孔、芯轴、拔长、弯曲、切肩、锻台阶)4、计算坯料质量(mo= (md+mc+mq) (1+δ))和尺寸 (首工序镦粗:D0≥0.8 拔长:D0≥ 零件结构的自由锻工艺性1)应避免锥形或楔形,尽量采用圆柱面和平行面,以利于锻造2)各表面交接处应避免弧线和曲线,尽量采用直线或圆,以利于锻制3)应避免肋板或凸台,以利于减少余块和简化锻造工艺4)大件和形状复杂的锻件,可采用锻—焊,锻—螺纹联接等组合结构模锻1、零件结构分析(分模面、结构斜度、圆角过渡、腹板厚度)2、绘制锻件图(余块、机械加工余量、锻件公差、模锻斜度、模锻圆角)3、确定变形工步(镦粗、拔长、滚压、弯曲、预锻、终锻)4、修整工序选择(切边、冲连皮、校正、热处理(正火或退火)、清理) 30V max Dy零件结构的模锻工艺性1)应有合理的分模面,以保证锻件从模膛中取出又利于金属填充、减少余块和易于制模2)与分模面垂直的非加工面应有结构斜度,以利于从模膛中取出锻件(圆角过渡,利金属流动,防应力集中)3)应避免肋的设置过密或高宽比过大,利于金属充填模膛4)应避免腹板过薄,以减小变形抗力以及利于金属填充模膛5)应尽量避免深孔或多孔结构,以利于制模和减少余块6)形状复杂性件宜采用锻—焊、锻—螺纹联接等组合结构,以利于模具和减少余块冲压(冲裁、弯曲、拉深、缩口、起伏和翻孔)冲裁:落料模:D凹≈(Dmin)D凸≈(D凹-Zmin)冲孔模:d凸≈(dmax)d凹≈(d凸+Zmin)弯曲:工件内侧圆角半径≥凸模圆角半径、弯曲件毛坯长度拉伸:拉深间隙、拉伸模尺寸、毛坯直径、拉深次数冲压工序:1)带孔平板件:单工序:先落料后冲孔,连续模:先冲孔后落料2)带孔的弯曲件或拉深件:热处理、拉深/弯曲、冲孔3)形状复杂的弯曲件:先弯两端、两侧,后弯中间模具:单工序模、复合模、连续模1、零件结构分析:孔边距过小,宜加大2、冲裁间隙:取大间隙Z/2=(10%~12.5%)δ故Z=0.30~0.38mm模具刃口尺寸:落料模:D凹≈(Dmin)=33.2 D凸≈(D凹-Zmin)=32.9冲孔模:d凸≈(dmax)=26.7 d凹≈(d凸+Zmin)=273、冲压工序选择工序类型:平板件,冲孔和落料工序工序顺序:大批量,先冲孔后落料4、模具类型:精度要求不高且为大批量生产,采用连续模零件结构的冲压工艺性1)材料:尽量选用价格较低的材料2)精度和表面质量:3)冲压件的形状和尺寸1)冲裁件:①形状尽可能简单、对称②圆弧过渡、避免锐角③注意孔形、孔径、孔位2)弯曲件:①形状②h、a、c≥2δ、l≥r+(1~2)δ、R/r≥0.5δ③冲孔槽防止孔变形④位置3)拉深件:①形状②转角l≥R/r+0.5δ、R≥2~4δ、r≥2δ③位置④组合工艺、切口工艺四、连接成形焊接头力学性能:相变重结晶区、焊缝金属区、母材、不完全重结晶区、熔合区、过热区焊接残余应力:调节1)设:减少焊缝的数量和尺寸并避免焊缝密集和交叉;采用刚性较小的接头2)工:合理的焊接顺序(先内后外、先短后长、交叉处不起头收尾)、降低焊接接头的刚性、加热减应区、锤击焊缝、预热和后热2、消除:1)去应力退火2)机械拉伸法3)温差拉伸法4)振动法3、焊接残余变形控制和矫正:(收缩变形、角变形、弯曲变形、扭曲变形、失稳变形)1)设:尽量减少焊缝的数量和尺寸,合理选用焊缝的截面形状2、合理安排焊缝位置2)工:反变形法、刚性固定法、合理选用焊接方法和焊接规范、选用合理的装配焊接顺序材料的焊接性:(材料的化学成分、焊接方法、焊接材料、焊件结构类型、服役要求)焊接性评价:碳当量、冷裂纹敏感系数公式金属材料的焊接:1、碳钢:(①淬硬组织、裂纹;②预热和后热;③低氢型焊条、碱度较高的焊剂;④去应力退火或高温回火)1)低碳钢、强度低的低合金结构钢:各种方法,无需采用任何工艺措施方便施焊2)中碳钢:①易②③④小电流、低焊速和多层焊。

材料成型技术基础知识点总结

材料成型技术基础知识点总结

材料成型技术基础知识点总结第一章铸造铸造是一种制造零件的方法,它将液态金属填充到型腔中,待其凝固冷却后,获得所需形状和尺寸的毛坯或零件。

填充铸型的过程称为充型,而液态合金充满型腔,形成轮廓清晰、形状和尺寸符合要求的优质铸件的能力被称为充型能力。

影响充型能力的因素包括金属液本身的流动能力(合金流动性)、浇注条件(浇注温度、充型压力)以及铸型条件(铸型蓄热能力、铸型温度、铸型中的气体、铸件结构)。

流动性是熔融金属的流动能力,是液态金属固有的属性。

影响合金流动性的因素包括合金种类(与合金的熔点、导热率、合金液的粘度等物理性能有关)、化学成份(纯金属和共晶成分的合金流动性最好)以及杂质和含气量(杂质增加粘度,流动性下降;含气量少,流动性好)。

金属的凝固方式包括逐层凝固方式、体积凝固方式或称“糊状凝固方式”以及中间凝固方式。

收缩是液态合金在凝固和冷却过程中,体积和尺寸减小的现象。

收缩能使铸件产生缩孔、缩松、裂纹、变形和内应力等缺陷。

合金的收缩可分为三个阶段:液态收缩、凝固收缩和固态收缩。

液态收缩和凝固收缩通常以体积收缩率表示,是铸件产生缩孔、缩松缺陷的基本原因。

合金的固态收缩通常用线收缩率来表示,是铸件产生内应力、裂纹和变形等缺陷的主要原因。

影响收缩的因素包括化学成分(碳素钢随含碳量增加,凝固收缩增加,而固态收缩略减)、浇注温度(浇注温度愈高,过热度愈大,合金的液态收缩增加)、铸件结构(铸型中的铸件冷却时,因形状和尺寸不同,各部分的冷却速度不同,结果对铸件收缩产生阻碍)以及铸型和型芯对铸件的收缩也产生机械阻力。

缩孔和缩松是铸件凝固结束后常常在某些部位出现孔洞,按照孔洞的大小和分布可分为缩孔和缩松。

缩孔的形成主要出现在金属在恒温或很窄温度范围内结晶,铸件壁呈逐层凝固方式的条件下。

缩松的形成主要出现在呈糊状凝固方式的合金中或断面较大的铸件壁中,是被树枝状晶体分隔开的液体区难以得到补缩所致。

合金的液态收缩和凝固收缩越大,浇注温度越高,铸件的壁越厚,缩孔的容积就越大。

合工大版《材料成型原理》课程学习笔记

合工大版《材料成型原理》课程学习笔记

焊接冶金学1.★熔合比(dilution) 的影响焊缝金属中局部熔化的母材所占的比例称为熔合比。

Ab-熔化母材的面积Ad-熔敷金属的面积C0=θCb+(1- θ)Ce --(1)若考虑焊条中的合金元素有损失,而母材中的合金元素无损失,则焊缝金属中合金元素的实际浓度Cw为:Cw= θCb+(1- θ)Cd --(2)式中符号含义:Cb -该元素在母材中的质量百分浓度(%)Ce-该元素在焊条中的质量百分浓度(%)Cd-熔敷金属(焊接得到的没有母材成分的金属)中该元素的实际质量百分比(%)一含Ni9%的钢板,采用成分为80%Ni-20%Cr的焊丝进行焊接,若熔合比为40%,试问,焊缝中合金元素的大致含量是多少?焊缝成分中,母材贡献40%,焊丝贡献60%。

熔渣碱性的强弱程度。

碱度的倒数即为酸度。

分子理论对碱度的定义:提供自由氧离子O2-接受自由氧离子O2-的氧化物称为酸性氧化物,如SiO2。

理论上,当B>1时,为碱性渣当B<1时,为酸性渣当B=1时,为中性渣3.合金过渡系数是指合金元素在熔敷金属中的实际含量与它在焊材中的原始含量之比,反映了合金元素利用率的高低。

=Cd/Ce =Cd/(Ccw+kbCco)式中:Cd ------合金元素在熔敷金属中的含量Ce-------合金元素的原始含量(焊条中的)Cco-------合金元素在药皮中的含量Ccw-------合金元素在焊芯中的含量Kb-------药皮重量系数(单位长度上药皮与焊芯的质量之比) 在同一种焊材中,不同元素过渡系数不同。

同一种元素在不同的焊材中过渡系数也不同。

焊缝金属化学成分的计算药皮类型主要成分典型型号,牌号备注氧化钛型(或钛型)TiO2 E4313(J421)氧化钛钙型(钛钙型)TiO2,碳酸钙E4303(J422)钛铁矿型钛铁矿E4301(J423)氧化铁型铁矿石E4320(J424)纤维素型有机物E5011(J505)低氢型大理石,萤石E5015(J507)石墨型石墨EZNi(Z308) 铸铁焊条盐基型氟盐,氯盐用于铝合金焊条B=∑∑碱性氧化物的摩尔分数酸性氧化物的摩尔分数bb dAA Aθ=+η=Cd/Ce =Cd/(Ccw+kbCco) Cw= θCb+(1- θ)Cd已知η, Ccw ,kb ,Cco 可求出 Cw 。

材料成型基础大纲

材料成型基础大纲

材料成型基础考试知识点(模具塑工)1、液态金属的结构液态金属是由许多“原子集团”组成,其中原子呈与原固体“显微晶体”类似的规则排列。

热运动剧烈,原子集团时散时聚,空位较多。

可将液态金属的结构总结为:“近程有序,远程无序”+“能量起伏、结构起伏、成分起伏”。

液态金属结构特点1)液态金属是由游动的原子集团构成。

2)液态金属中的原子热运动强烈,原子所具有的能量各不相同,且瞬息万变,这种原子间能量的不均匀性,成为能量起伏。

3)由于液态原子处于能量起伏之中,原子团是时聚时散,时大时小,此起彼伏的,成为结构起伏。

4)对于多元素液态金属而言,同一种元素在不同原子团中的分布量不同,也随着原子的热运动瞬息万变,这种现象称为成分起伏。

2、液态金属的充形能力和流动性1)充形能力:液态金属充满型腔,获得形状完整、轮廓清晰的铸件的能力。

2)流动性:液态金属本身的流动能力。

影响充形能力的因素:液态金属的流动性(金属)、铸型、浇筑条件、铸件结构。

3、铸件的凝固方式金属或合金在铸型中凝固时,可以分为三个典型的区域:1)液相区2)固液两相区3)固相区三种凝固方式:逐层凝固、体积凝固、中间凝固1)逐层凝固:铸件凝固过程中,液体和固体之前有明显的界限分开,液体向固体转变。

固体逐层加厚,这种方式称为逐层凝固。

(纯金属是典型的逐层凝固)2)体积凝固:宽结晶温度范围的合金在凝固过程中,液体和固体之前的凝固区域很宽,甚至贯穿铸件的整个断面,这种方式称为体积凝固。

3)中间凝固:介于上两者之前的凝固方式。

影响凝固方式的因素:1)结晶温度范围的影响:结晶温度范围增加,凝固由逐层凝固向体积凝固发展;结晶范围范围剑侠,凝固由体积凝固向逐层凝固发展。

2)温度梯度的影响:温度梯度增加,凝固向逐层凝固发展;温度梯度减小,凝固向体积凝固发展。

4、铸造合金的收缩铸造合金从液态冷却到室温的过程中,其体积和尺寸缩减的现象称为收缩,他主要包括液态收缩、凝固收缩和固态收缩三个阶段。

合工大材料成型复习题

合工大材料成型复习题

第二章1、什么是金属液的充型能力?影响金属充型能力的因素有哪三个?金属液充满铸型型腔,获得轮廓清晰、形状准确的铸件的能力金属的流动性、铸型条件、浇注条件2、影响金属流动性的因素有哪些?金属的凝固方式有哪三种?合金成分、合金的质量热容、密度和热导率逐层凝固、糊状凝固、中间凝固3、何种金属的流动性最好?该金属呈何种凝固方式?灰铸铁逐层凝固4、影响充型能力的铸型条件有哪三个?铸型的蓄热系数、铸型温度、铸型中的气体5、铸造时,金属的收缩可分为哪三个阶段?什么收缩阶段易产生缩孔和缩松?什么收缩阶段易产生应力、变形和裂纹?液态收缩、凝固收缩、固态收缩液态收缩和凝固收缩阶段易产生缩孔和缩松,固态收缩阶段易产生应力、变形和裂纹。

6、何种合金易缩孔,何种合金易缩松;多出现于铸件的哪些部位?缩孔:纯金属、共晶合金和凝固范围窄的合金凝固呈逐层凝固,易产生缩孔。

位置:铸件最后凝固部位缩松:凝固温度范围较宽的金属。

位置:铸件的轴线附近和热节部位。

7、什么是铸造应力?什么是热应力?铸件上何处产生拉应力?何处产生压应力?铸造应力:铸件在凝固和冷却过程中由受阻收缩、热作用和相变等因素引起的内应力热应力:铸件在凝固和冷却过程中,不同部位由于温差造成不均匀收缩而引起的铸造应力。

先冷处受压,后冷处受拉8、P88 思考作业题2-5,2-69、缩孔和缩松的防止措施主要有哪两种?1)采用顺序凝固原则顺序凝固是使铸件按规定方向从一部分到另一部分依次凝固的原则,通常用于收缩较大、凝固温度范围较小的合金2)加压补缩将铸型置于压力罐中,浇注后使铸件在压力下凝固可显著减少显微缩松10、减小和消除热应力的方法有哪几种?1)合理设计铸件结构铸件壁厚应均匀且减少热节。

壁与壁间的连接应尽量采用圆角过渡,以免因产生应力集中而开裂。

2)采用同时凝固原则使型腔内各部分金属液温差很小,同时进行凝固。

将内浇道开于薄部,必要时在厚部或热节处设置冷铁。

适用于收缩较小的合金、倾向于糊状凝固的合金、气密性要求不高的铸件、壁厚均匀的薄壁铸件3)去应力退火一般为Ac1-(100~200) ℃,经保温后随炉冷却至200~300℃后出炉空冷11、何时产生热裂纹?何时产生冷裂纹?试分别简述热裂纹和冷裂纹的特征。

材料成型技术基础知识点总结

材料成型技术基础知识点总结

材料成型技术基础知识点总结材料成型技术是指利用压力、温度和时间等因素,通过给予物质以一定的形状,以获得具备特定功能和要求的制品的一种技术方法。

材料成型技术在各个行业的制造过程中起着重要的作用。

下面将对材料成型技术的基础知识点进行总结。

1.材料成型的分类:材料成型可分为热成型和冷成型两类。

热成型是指在高温下进行的成型过程,包括热压、热拉伸、热挤压等。

冷成型是指在常温下进行的成型过程,包括冷弯、冷挤压、冷拔等。

2.材料成型的原理:材料成型的基本原理是通过对材料施加力和热量,使其发生塑性变形,进而得到所需形状和尺寸的制品。

材料成型的力学过程包括拉伸、挤压、弯曲、剪切等。

热量作用主要是为了降低材料的硬度,提高其变形能力。

3.材料成型工艺:材料成型的工艺包括模具设计、加工设备的选择与调试、成型过程的操作等。

模具是材料成型的关键工具,模具的设计要考虑到材料的特性、形状和尺寸的要求。

加工设备的选择与调试要根据材料的成型要求和加工量来确定。

成型过程的操作要严格控制力和热的加工参数,保证制品的质量。

4.材料成型的性能影响因素:材料成型的性能受到许多因素的影响,包括材料的物理和化学性质、成型工艺的参数、设备的性能等。

材料的性能对成型工艺的选择和制品的质量有着重要影响。

成型工艺的参数如温度、压力、速度等也会对成品的性能产生影响。

设备的性能如精度、刚度、压力等也会影响到成型的结果。

5.材料成型的应用:材料成型技术广泛应用于诸多领域,如汽车制造、航空航天、电子、建筑等。

汽车制造中的车身、发动机零部件等都需要经过冲压成型、挤压成型等工艺。

航空航天中的飞机壳体、涡轮叶片等也需要通过成型工艺进行制作。

电子产品中的外壳、散热器等也需要通过成型技术来获得所需的形状。

建筑领域中的钢结构、混凝土构件等亦需要经过成型工艺来生产。

综上所述,材料成型技术是制造过程中不可或缺的一部分。

通过了解材料成型的分类、原理、工艺、性能影响因素和应用,可以更好地理解和应用材料成型技术,提高制品的质量和生产效率。

材料成型技术基础复习

材料成型技术基础复习

1.塑性成形是利用金属的塑性,在外力作用下使金属发生塑性变形,从而获得所需要形状和性能产品的一种加工方法2.单晶体:晶格位向相同的一群同类型晶胞聚合在一起,组成单晶体。

3.各向异性:单晶体由于不同晶面和晶向上原子排列不同,使原子的密度和原子间的结合力强弱不同,因而在不同方向上其机械、物理和化学性能不同。

4.多晶体:工业用金属是由许多尺寸很小,位向不同的小的单晶体组成。

5.滑移:在剪应力的作用下,晶体的一部分相对于另一部分,沿着一定的晶面和晶向产生移动。

产生滑移的晶面和晶向,分别称为滑移面和滑移方向。

6.滑移系:通常每一种晶格有几个可能产生滑移的晶面,即同时存在几个滑移面;而每一个滑移面,又同时存在几个滑移方向。

一个滑移面和其上一个滑移方向,构成一个滑移系。

7.单晶体塑性变形的另一种方式叫双晶,又叫孪晶。

8.孪生:单晶体在剪应力作用下,晶体一部分对应一定的晶面(双晶面),沿一定的方向,进行相对移动。

结果使晶体的变形部分与未变形部分以双晶面为对称面互相对称。

9.冷成形—冷塑性成形、冷变形:金属在回复、再结晶温度以下的一种成形方法,通常在变形过程中会出现位错密度上升、发生加工硬化的现象。

10.热成形—热塑性成形、热变形:金属在再结晶温度以上进行的成形方法,通常变形过程材料软化占优势。

11.加工硬化—应变硬化:金属在低于再结晶温度时,由于塑性应变而产生塑性降低、强度和硬度增加的现象。

12.静态回复:当加热温度不高时,晶体内只有间隙原子和空位的运动。

这时变形金属晶粒的外形无明显变化,仍呈纤维状,只消除了晶格畸变,其机械性能几乎无变化,物理化学性能则大部分恢复。

随着温度的升高,原子具有了较大的活动能力,位错开始运动。

实质上是原子从高能态的混乱排列向低能态的规则排列转变的过程,结果是晶体的内应力大大下降,强度稍有下降,塑性稍有提高。

13.静态再结晶:变形金属加热到较高温度时,由于原子获得了更大的活动能力,首先在变形晶粒的晶界或滑移带、峦晶带等变形剧烈的地区产生晶核,即为一些原子规则排列的小晶块,然后晶核逐渐长大,成为具有正常晶格的新晶粒,新晶粒长大到彼此边界相遇,过程结束,这一生核、长大的过程称为再结晶。

材料成形技术基础知识点总结

材料成形技术基础知识点总结

材料成形技术基础知识点总结1.材料成形的基本原理:材料成形是通过施加外力使材料发生形状和/或尺寸改变的过程。

常见的成形方法包括压力成形、热成形、热力复合成形等。

不同的成形方法有不同的原理和适用范围,可以选择最适合的方法进行成形。

2.压力成形技术:压力成形是指通过施加压力使材料发生形状和/或尺寸改变的成形方法。

常见的压力成形技术包括锻造、压力铸造、挤压、拉伸、冲压等。

这些技术可以用于加工金属材料和非金属材料,具有高效率和高精度的特点。

3.热成形技术:热成形是指通过加热材料使其变软,然后进行形状和/或尺寸改变的成形方法。

常见的热成形技术包括热压缩、热拉伸、热挤压、热转锻等。

热成形可以用于加工高温材料和难塑料材料,可以提高材料的可塑性和改善成形效果。

4.热力复合成形技术:热力复合成形是指通过加热和施加压力使两个或多个材料发生结合的成形方法。

常见的热力复合成形技术包括焊接、热压焊、热胶合等。

这些技术可以用于加工复合材料,可以获得更强的接合强度和更好的接合效果。

5.材料成形工艺的设计:材料成形工艺的设计是指根据产品的要求和材料的性能选择合适的成形方法,并确定合理的工艺参数。

工艺参数包括温度、压力、速度等,对成形效果和产品质量具有重要影响。

工艺设计需要考虑材料的可塑性、成形难度、成形精度等因素,可以通过实验和数值模拟来优化设计。

6.材料成形工具的设计与制造:材料成形工具是实现成形过程的重要设备,需要根据产品的形状和尺寸设计相应的工具。

工具设计包括毛坯设计、凸模设计、模具结构设计等。

材料成形工具的制造需要精密的加工工艺和高质量的材料,可以采用数控加工、电火花等先进技术来提高工具的精度和寿命。

7.材料成形过程的监测与控制:材料成形过程需要对温度、压力、力量、速度等进行监测和控制,以确保成形效果和产品质量的稳定。

常用的监测和控制技术包括传感器、自动控制系统等。

这些技术可以实时监测成形过程的参数,并根据需求调整工艺参数,以达到最佳的成形效果。

【精品】合工大材料成型复习题.doc

【精品】合工大材料成型复习题.doc

1、2、3、何种金属的流动性最好?该金属呈何种凝固方式? 5、第二章什么是金属液的充型能力?影响金属充型能力的因素有哪三个?金属液充满铸熨型腔,获得轮廓清晰、形状准确的铸件的能力金属的流动性、铸型条件、浇注条件影响金属流动性的因素有哪些?金属的凝固方式有哪三种?合金成分、合金的质量热容、密度和热导率逐层凝固、糊状凝固、屮间凝同灰铸铁逐层凝同4>影响充型能力的铸型条件有哪三个?铸型的蓄热系数、铸型温度、铸型中的气体铸造时,金属的收缩可分为哪三个阶段?什么收缩阶段易产生缩孔和缩松?什么收缩阶段易产生应力、变形和裂纹?液态收缩、凝固收缩、固态收缩液态收缩和凝固收缩阶段易产生缩孔和缩松,固态收缩阶段易产生应力、变形和裂纹。

6、何种合金易缩孔,何种合金易缩松;多出现于铸件的哪些部位?缩孔:纯金属、共晶合金和凝固范围窄的合金凝固呈逐层凝固,易产生缩孔。

位置:铸件最后凝固部位缩松:凝恆I温度范围较宽的金属。

位置:铸件的轴线附近和热节部位。

7.什么是铸造应力?什么是热应力?铸件上何处产生拉应力?何处产生压应力?铸造应力:铸件在凝固和冷却过程中由受阻收缩、热作用和相变等因素引起的内应力热应力:铸件在凝固和冷却过程屮,不同部位由于温芳造成不均匀收缩而引起的铸造应力。

先冷处受压,后冷处受拉8、P88思考作业题2-5, 2-69、缩孔和缩松的防止措施主要有哪两种?1)采用顺序凝固原则顺序凝固是使铸件按规定方向从一部分到另一部分依次凝固的原则,通常用于收缩较大、凝固温度范围较小的合金2)加压补缩将铸型置于压力罐屮,浇注后使铸件在压力下凝尚可显著减少显微缩松10、减小和消除热应力的方法有哪几种?1)合理设计铸件结构铸件壁厚应均匀且减少热节。

壁与壁间的连接应尽量采用圆角过渡,以免因产生应力集屮而开裂。

2)采用同时凝固原则使型腔内各部分金属液温差很小,同时进行凝間。

将内浇道开于薄部,必要时在厚部或热节处设置冷铁。

适用于收缩较小的合金、倾向于糊状凝固的合金、气密性要求不高的铸件、壁厚均匀的薄壁铸件3)去应力退火一般为Acl-(100〜200)°C,经保温后随炉冷却至20()〜30CTC后出炉空冷11、何时产生热裂纹?何时产生冷裂纹?试分别简述热裂纹和冷裂纹的特征。

《材料成型》基础知识点

《材料成型》基础知识点

《材料成型》基础知识点《材料成型》基础知识点1.简述铸造生产中改善合金充型能力的主要措施。

(1)适当提高浇注温度。

(2)保证适当的充型压力。

(3)使用蓄热能力弱的造型材料。

如砂型。

(4)预热铸型。

(5)使铸型具有良好的透气性。

2.简述缩孔产生的原因及防止措施。

凝固温度区间小的合金充满型腔后,由于逐层凝固,铸件表层迅速凝固成一硬壳层,而内部液体温度较高。

随温度下降,凝固层加厚,内部剩余液体由于液态收缩和补充凝固层的凝固收缩,体积减小,液面下降,铸件内部产生空隙,形成缩孔。

措施:(1)使铸件实现“定向凝固”,按放冒口。

(2)合理使用冷铁。

3.简述缩松产生的原因及防止措施。

出现在呈糊状凝固方式的合金中或断面较大的铸件中,被树枝状晶体分隔开的液体区难以得到补缩所致。

措施:(1)、尽量选用凝固区域小的合金或共晶合金。

(2)、增大铸件的冷却速度,使铸件以逐层凝固方式进行凝固。

(3)、加大结晶压力。

(不清楚)4.缩孔与缩松对铸件质量有何影响?为何缩孔比缩松较容易防止?缩孔和缩松使铸件的有效承载面积减少,且在孔洞部位易产生应力集中,使铸件力学性能下降;缩孔和缩松使铸件的气密性、物理性能和化学性能下降。

缩孔可以采用顺序凝固通过安放冒口,将缩孔转移到冒口之中,最后将冒口切除,就可以获得致密的铸件。

而铸件产生缩松时,由于发达的树枝晶布满了整个截面而使冒口的补缩通道受阻,因此即使采用顺序凝固安放冒口也很无法消除。

5.什么是定向凝固原则?什么是同时凝固原则?各需采用什么措施来实现?上述两种凝固原则各适用于哪种场合?定向凝固就是在铸件上可能出现缩孔的厚大部位安放冒口,使铸件上远离冒口的部位先凝固然后是靠近冒口的部位凝固,最后才是冒口本身的凝固。

同时凝固,就是采取必要的工艺措施,使铸件各部分冷却速度尽量一致。

实现定向凝固的措施是:设置冒口;合理使用冷铁。

它广泛应用于收缩大或壁厚差较大的易产生缩孔的铸件,如铸钢、高强度铸铁和可锻铸铁等。

材料成形技术基础知识点总结

材料成形技术基础知识点总结

铸造:将熔融的液体浇注到与零件的形状相适应的铸型型腔中,冷却后获得逐渐的工艺方法。

1、铸造的实质利用了液体的流动形成。

2、铸造的特点A 适应性大(铸件分量、合金种类、零件形状都不受限制);B 成本低C 工序多,质量不稳定,废品率高D 力学性能较同样材料的锻件差。

力学性能差的原因是:铸造毛胚的晶粒粗大,组织疏松, 成份不均匀3、铸造的应用铸造毛胚主要用于受力较小,形状复杂(特别是腔内复杂)或者简单、分量较大的零件毛胚。

1、铸件的凝固(1)铸造合金的结晶结晶过程是由液态到固态晶体的转变过程.它由晶核的形成和长大两部份组成。

通常情况下,铸件的结晶有如下特点:A 以非均质形核为主B 以枝状晶方式生长为主.结晶过程中,晶核数目的多少是影响晶粒度大小的重要因素,因此可通过增加晶核数目来细化晶粒. 晶体生长方式决定了最终的晶体形貌,不同晶体生长方式可得到枝状晶、柱状晶、等轴晶或者混合组织等.(2)铸件的凝固方式逐渐的凝固方式有三种类型:A 逐层凝固B 糊状凝固C 中间凝固2、合金的铸造性能(1)流动性合金的流动性即为液态合金的充型能力,是合金本身的性能。

它反映了液态金属的充型能力,但液态金属的充型能力除与流动性有关,还与外界条件如铸型性质、浇注条件和铸件结构等因素有关,是各种因素的综合反映。

生产上改善合金的充型能力可以从一下各方面着手:A 选择挨近共晶成份的趋于逐层凝固的合金,它们的流动性好;B 提高浇注温度,延长金属流动时间;C 提高充填能力D 设置出气冒口,减少型内气体,降低金属液流动时阻力。

(2)收缩性A 缩孔、缩松形成与铸件的液态收缩和凝固收缩的过程中.对于逐层凝固的合金由于固液两相共存区很小甚至没有,液固界面泾渭分明,已凝固区域的收缩就能顺利得到相邻液相的补充,如果最后凝固出的金属得不到液态金属的补充,就会在该处形成一个集中的缩孔。

适当控制凝固顺序,让铸件按远离冒口部份最先凝固,然后朝冒口方向凝固, 最后才是冒口本身的凝固(即顺序凝固方式) ,就把缩孔转移到最后凝固的部位—- 冒口中去,而去除冒口后的铸件则是所要的致密铸件。

材料成型技术基础知识点

材料成型技术基础知识点

第一章铸造1 铸造通常是将液态金属浇注到与零件的形状、尺寸相适应的铸型型腔中,待其冷却凝固后,以获得毛坯或零件的生产方法。

2 铸造的特点(1)较强的适应性(铸件形状、质量、尺寸、材料不受限制)(2)良好的经济性(3)铸件力学性能较差、质量不够稳定(4)铸造生产条件和环境差(铸造生产过程中、混沙、造型、清沙过程中产生大量的粉尘,熔炼浇注温度很高,铸造过程中还有大量的烟雾、刺激性气体产生,工人劳动强度很大)3 铸件被广泛应用于国防军工、航空航天、矿山冶金、交通运输工具、石化通用设备、农业机械、建筑机械等领域。

4 液态金属的充型能力:液态金属充满铸型型腔,获得形状完整、轮廓清晰的铸件的能力5 影响充型能力的主要因素有:液态金属的流动性、铸型性质、浇注条件以及铸件结构等6 金属的凝固方式:逐层凝固、体积凝固、中间凝固。

7 铸件在冷却过程中,体积和尺寸缩小的现象叫做收缩,收缩性是铸造合金固有的物理性质。

8 金属从液态冷却到室温,要经历三个相互联系的收缩阶段(1)液态收缩-----从浇注温度冷却至凝固开始温度之间的收缩(2)凝固收缩-----从凝固开始温度冷却至凝固结束温度之间的收缩(3)固体收缩-----从凝固完毕时的温度冷却至室温之间的收缩9 影响铸件收缩的主要因素有:化学成分、浇注温度、铸件结构、铸型条件等。

10 铸造的内应力分为:热应力、相变应力、收缩应力。

(1)热应力是铸件在凝固和冷却过程中,不同部位由于收缩不均衡而引起的应力(2)相变应力是由于固态相变,各部分体积发生不均衡变化引起的应力(3)收缩应力是由于铸型、型芯等阻碍铸件的收缩产生的应力,收缩应力一般使铸件产生拉伸或剪切应力。

11热裂是在铸件凝固末期高温下形成的裂纹;12冷裂是铸件在低温时形成的裂纹。

13防止冷裂和热裂的主要方法是减小铸造内应力。

14灰口铸铁的性能特点:熔点较低,凝固温度范围小,流动性好,凝固收缩小,具有良好的铸造性能,综合机械性能低,抗压强度比抗拉强度高3-4倍。

材料成型技术基础复习提纲整理

材料成型技术基础复习提纲整理

第一章绪论1、现代制造过程的分类(质量增加、质量不变、质量减少)。

2、那几种机械制造过程属于质量增加(不变、减少)过程.(1)质量不变的基本过程主要包括加热、熔化、凝固、铸造、锻压(弹性变形、塑性变形、塑性流动)、浇灌、运输等。

(2)质量减少过程材料的4种基本去除方法:切削过程;磨料切割、喷液切割、热力切割与激光切割、化学腐蚀等;超声波加工、电火花加工和电解加工;落料、冲孔、剪切等金属成形过程.(3)材料经过渗碳、渗氮、氰化处理、气相沉积、喷涂、电镀、刷镀等表面处理及快速原型制造方法属于质量增加过程.第二章液态金属材料铸造成形技术过程1、液态金属冲型能力和流动性的定义及其衡量方法液态金属充满铸型型腔,获得形状完整、轮廓清晰的铸件的能力,称为液态金属充填铸型的能力,简称液态金属的充型能力。

液态金属的充型能力通常用铸件的最小壁厚来表示.液态金属自身的流动能力称为“流动性".液态金属流动性用浇注流动性试样的方法来衡量。

在生产和科学研究中应用最多的是螺旋形试样.2、影响液态金属冲型能力的因素(金属性质、铸型性质、浇注条件、铸件结构)(1)金属的流动性:流动性好的液态金属,充型能力强,易于充满薄而复杂的型腔,有利于金属液中气体、杂质的上浮并排除,有利于对铸件凝固时的收缩进行补缩。

流动性不好的液态金属,充型能力弱,铸件易产生浇不足、冷隔、气孔、夹杂、缩孔、热裂等缺陷。

(2)铸型性质:铸型的蓄热系数b(表示铸型从其中的金属液吸取并储存在本身中热量的能力)愈大,铸型的激冷能力就愈强,金属液于其中保持液态的时间就愈短,充型能力下降。

(3)浇注条件:浇注温度对液态金属的充型能力有决定性的影响。

浇注温度越高,充型能力越好。

在一定温度范围内,充型能力随浇注温度的提高而直线上升,超过某界限后,由于吸气,氧化严重,充型能力的提高幅度减小。

液态金属在流动方向上所受压力(充型压头)越大,充型能力就越好。

但金属液的静压头过大或充型速度过高时,不仅发生喷射和飞溅现象,使金属氧化和产生”铁豆”缺陷,而且型腔中气体来不及排出,反压力增加,造成“浇不足”或“冷隔”缺陷。

材料成型技术基础复习重点

材料成型技术基础复习重点

1.11.常用的力学性能判据各用什么符号表示?它们的物理含义各是什么?塑性,弹性,刚度,强度,硬度,韧性1.2金属的结晶:即液态金属凝固时原子占据晶格的规定位置形成晶体的过程。

细化晶粒的方法:生产中常采用加入形核剂、增大过冷度、动力学法等来细化晶粒,以改善金属材料性能。

合金的晶体结构比纯金属复杂,根据组成合金的组元相互之间作用方式不同,可以形成固溶体、金属化合物和机械混合物三种结构。

固溶强化:通过溶入某种溶质元素形成固溶体而使金属的强度、硬度升高的现象。

1.3铁碳合金的基本组织有铁素体、奥氏体、渗碳体、珠光体和莱氏体1.4钢的牌号和分类影响铸铁石墨化的因素主要有化学成分和冷却速度1.5塑料即以高聚物为主要成分,并在加工为成品的某阶段可流动成形的材料。

热塑性塑料:即具有热塑性的材料,在塑料整个特征温度范围内,能反复加热软化和反复加热硬化,且在软化状态通过流动能反复模塑为制品。

热固性塑料:即具有热固性的塑料,加热或通过其他方法,能变成基本不溶、不熔的产物。

橡胶橡胶是可改性或已被改性为某种状态的弹性体。

1.6复合材料:由两种或两种以上性质不同的材料复合而成的多相材料。

通常是其中某一组成物为基体,而另一组成物为增强体,用以提高强度和韧性等。

1.8工程材料的发展趋势据预测,21世纪初期,金属材料在工程材料中仍将占主导地位,其中钢铁仍是产量最大、覆盖面最广的工程材料,但非金属材料和复合材料的发展会更加迅速。

今后材料发展的总趋势是:以高性能和可持续发展为目标的传统材料的改造及以高度集成化、微细化和复合化为特征的新一代材料的开发。

2.0材料的凝固理论凝固:由液态转变为固态的过程。

结晶:结晶是指从原子不规则排列的液态转变为原子规则排列的晶体状态的过程。

粗糙界面:微观粗糙、宏观光滑;将生长成为光滑的树枝;大部分金属属于此类光滑界面:微观光滑、宏观粗糙;将生长成为有棱角的晶体;非金属、类金属(Bi、Sb、Si)属于此类偏析:金属凝固过程中发生化学成分不均匀的现象宏观偏析通常指整个铸锭或铸件在大于晶粒尺度的大范围内产生的成分不均匀的现象2.1铸件凝固组织:宏观上指的是铸态晶粒的形态、大小、取向和分布等情况,铸件的凝固组织是由合金的成分和铸造条件决定的。

材料成型技术基础知识点含答案

材料成型技术基础知识点含答案

知识点11、凝固成形的方法包括砂型铸造、金属型铸造、压力铸造、熔模铸造等。

2、宏观偏析可分为正常偏析,逆偏析和密度偏析等。

3、进行铸件设计时,不仅要保证其工作性能和力学性能要求,还必须认真考虑铸造工艺和合金铸造性能对铸件结构的要求。

4、铸件的缺陷类型包括缩孔、缩松、裂纹、变形等。

5、冲压模具工作零件是指对坯料直接进行加工的零件;定位零件是指用来确定加工中坯料正确位置的零件。

6、挤压按金属的流动方向和凸模的运动方向可分为正挤压、反挤压、复合挤压、径向挤压。

7、手工电弧焊焊条药皮的主要作用有保护作用、冶金作用、提高焊接工艺性能。

8、焊接残余变形总体变形分纵向收缩变形、横向收缩变形、弯曲变形和扭曲变形。

9、氩弧焊按电极可分为钨极氩弧焊和熔化极氩弧焊两种.10、形核时,仅依靠液相内部自发形核的过程,一般需要较大的过冷度才能得以完成;而实际凝固过程中,往往依靠外来质点或容器壁面形核,这就是所谓的非自发形核过程。

11、一般凝固温度间隔大的合金,其铸件往往倾向于糊状凝固,否则倾向于逐层凝固。

12、焊接接头由焊缝和热影响区两部分组成.13、挤压成形按成形温度可分为热挤压、温挤压、冷挤压。

14、材料的体积变化是由应力球张量引起的,材料的塑性变形是由应力偏张量引起的。

15、焊接内应力按其产生的原因可分为:热应力、相变应力和机械阻碍应力。

16液态金属凝固方式一般由合金固液相线温度间隔和凝固件断面温度梯度两个因素决定。

17、晶体生长方式决定于固一液界面结构。

一般粗糙界面对应于连续长大;光滑界面对应于侧面长大。

18.设计铸造模样时,要考虑加工余量,收缩余量,起模斜度和铸造圆角等四个方面.19.焊条的选用原则是,结构钢按等强度原则选择,不锈钢和耐热钢按同成分原则选择.20.合金的凝固温度范围越宽的合金,其铸造性能越差 ,越容易形成缩松缺陷.21.合金在凝固过程中的收缩可分为三个阶段,依次为液态收缩,凝固收缩,固态收缩 .22.冲压的基本工序有冲裁,弯曲,拉深,成形等.23.常见焊接缺陷主要有焊接裂纹,未焊透,气孔,夹渣,咬边等.24.焊缝的主要接头形式有对接接头,角接接头, T形接头,搭接接头等四种.25.锻造加热时的常见缺陷有过热,过烧,脱碳,氧化开裂等.26.铸造时设置冒口的作用是补缩、排气、集渣 ,设置冷铁的作用是加大铸件某一部分的冷却速度,调节铸件的凝固顺序 .27.金属坯料经热变形后会形成再结晶组织,且变形程度愈大,这种组织愈粗大 ,它使金属的机械性能能带来力学性能下降.28.按焊条药皮的类型,电焊条可分为酸性焊条和碱性焊条两大类.知识点21、为什么说非自发形核比自发形核容易?(所需的临界形核功小,因而对能量起伏的要求小;非自发形核借助外来杂质或衬底,有利于形核)2、逐层凝固与糊状凝固之间有何区别?(其凝固的温度范围不同,逐层凝固的温度范围窄,而糊状凝固的温度相对较宽,其凝固后所得组织也不同)3、焊接热过程的特点是什么?(体积小,冷却速度大;过热温度高;对流强烈;动态下凝固)4、多道焊为什么可以提高焊缝金属的塑性?(后一道焊接对前一道有预热作用)5、米泽斯屈服准则与屈雷斯加屈服准则有何差别?在什么状态下两个屈服准则相同?*(轴对称状态)什么状态下差别最大?(平面状态)6、铸铁合金中石墨形态共有几种?一般可通过什么方法改变石墨形态?7、板料成型模具一般有哪几部分组成(凹凸模)?每部分各起到什么作用?8、锤上模锻(上模具固定在垂头上,下模具固定在衡垫,通过上模的运动直接对坯料施加力来获得所需形状尺寸)与压力机(锻造力是压力,变形程度低,可以锻造低塑性材料;锻造时行程不变,每个变形工步在一次行程中完成,便于机械化、自动化;滑块精度高,起模斜度,加工余量锻造公差小;振动和噪声小,改善了劳动条件)模锻变形特点有何不同?9、手工电弧焊的原理(利用电能在焊条与工件间产生的电弧热将焊条和工件熔化而焊接。

合工大材料成型技术基础复习知识点

合工大材料成型技术基础复习知识点

材料成型技术基础第二章铸造一、铸造的定义、优点、缺点:铸造指熔融金属、制造铸型并将熔融金属浇入铸型凝固后,获得具有一定形状、尺寸和性能的金属零件或毛坯的成型方法。

优点:铸造的工艺适应性强,铸件的结构形状和尺寸几乎不受限制;工业上常用的合金几乎都能铸造;铸造原材料来源广泛,价格低廉,设备投资少;铸造适于制造形状复杂、特别是内腔形状复杂的零件或毛坯,尤其是要求承压、抗振或耐磨的零件。

缺点:铸件的质量取决于成形工艺、铸型材料、合金的熔炼与浇注等诸多因素,易出现浇不到、缩孔、气孔、裂纹等缺陷,且往往组织疏松,晶粒粗大。

二、充型能力的定义、影响它的三个因素:金属液的充型能力指金属液充满铸型型腔,获得轮廓清晰、形状准确的铸件的能力。

影响因素:①金属的流动性;②铸型条件;③浇注条件。

三、影响流动性的因素;纯金属和共晶成分合金呈逐层凝固流动性最好;影响充型能力的铸型的三个条件;浇注温度和压力对充型能力是如何影响的:影响流动性的因素:①合金成分:纯金属和共晶成分的合金,结晶过程呈逐层凝固方式,流动性好;非共晶成分的合金,呈中间凝固方式,流动性较差;凝固温度范围过大,铸件断面呈糊状凝固方式,流动性最差。

结晶温度范围越窄,合金流动性越好。

②合金的质量热容、密度和热导率:合金质量热容和密度越大、热导率越小,流动性越好。

影响充型能力的铸型的三个条件:①铸型的蓄热系数:铸型从其中金属液吸收并储存热量的能力。

蓄热系数越大,金属液保持液态时间短,充型能力越低。

(在型腔喷涂涂料,减小蓄热系数)②铸型温度:铸型温度越高,有利于提高充型能力。

③铸型中的气体:铸型的发气量过大且排气能力不足,就会使型腔中气压增大,阻碍充型。

浇注温度和压力对充型能力的影响:①浇注温度:提高浇注温度,延长保持液态的时间,从而提高流动性。

温度不能过高,否则金属液吸气增多,氧化严重,增大了缩孔、气孔、粘砂等缺陷倾向。

②充型压力(流动方向上的压力):充型压力越大,流动性越好。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料成型技术基础第二章铸造一、铸造的定义、优点、缺点:铸造指熔融金属、制造铸型并将熔融金属浇入铸型凝固后,获得具有一定形状、尺寸和性能的金属零件或毛坯的成型方法。

优点:铸造的工艺适应性强,铸件的结构形状和尺寸几乎不受限制;工业上常用的合金几乎都能铸造;铸造原材料来源广泛,价格低廉,设备投资少;铸造适于制造形状复杂、特别是内腔形状复杂的零件或毛坯,尤其是要求承压、抗振或耐磨的零件。

缺点:铸件的质量取决于成形工艺、铸型材料、合金的熔炼与浇注等诸多因素,易出现浇不到、缩孔、气孔、裂纹等缺陷,且往往组织疏松,晶粒粗大。

二、充型能力的定义、影响它的三个因素:金属液的充型能力指金属液充满铸型型腔,获得轮廓清晰、形状准确的铸件的能力。

影响因素:①金属的流动性;②铸型条件;③浇注条件。

三、影响流动性的因素;纯金属和共晶成分合金呈逐层凝固流动性最好;影响充型能力的铸型的三个条件;浇注温度和压力对充型能力是如何影响的:影响流动性的因素:①合金成分:纯金属和共晶成分的合金,结晶过程呈逐层凝固方式,流动性好;非共晶成分的合金,呈中间凝固方式,流动性较差;凝固温度范围过大,铸件断面呈糊状凝固方式,流动性最差。

结晶温度范围越窄,合金流动性越好。

②合金的质量热容、密度和热导率:合金质量热容和密度越大、热导率越小,流动性越好。

影响充型能力的铸型的三个条件:①铸型的蓄热系数:铸型从其中金属液吸收并储存热量的能力。

蓄热系数越大,金属液保持液态时间短,充型能力越低。

(在型腔喷涂涂料,减小蓄热系数)②铸型温度:铸型温度越高,有利于提高充型能力。

③铸型中的气体:铸型的发气量过大且排气能力不足,就会使型腔中气压增大,阻碍充型。

浇注温度和压力对充型能力的影响:①浇注温度:提高浇注温度,延长保持液态的时间,从而提高流动性。

温度不能过高,否则金属液吸气增多,氧化严重,增大了缩孔、气孔、粘砂等缺陷倾向。

②充型压力(流动方向上的压力):充型压力越大,流动性越好。

但充型压力不宜过大,以免金属飞溅,加剧氧化,气体来不及排出产生气孔、浇不到等缺陷。

四、铸造时液态和凝固收缩易产生缩孔和缩松;固态收缩易产生应力、变形和裂纹:液态收缩(金属在液态时,由于温度降低而发生的体积收缩)和凝固收缩(熔融金属在凝固阶段的体积收缩)易残生缩孔和缩松;固态收缩(金属在固态时由于温度降低而发生的体积收缩)是铸件产生铸造应力并进而引起变形、裂纹等缺陷的主要原因。

五、何种合金易缩孔,何种合金易缩松;多出现于铸件的哪些部位:缩孔易出现于纯金属、共晶合金和凝固温度范围窄的合金(凝固时呈逐层凝固方式)。

出现于铸件最后凝固的部位。

缩松易出现于凝固温度范围越宽的金属。

出现于铸件的轴线附件和热节部位。

六、缩孔和缩松的防止措施。

顺序凝固的定义和应用场合:防止措施:①采用顺序凝固原则(设置冒口、冷铁);②加压补缩;顺序凝固是使铸件按规定方向从一部分到另一部分依次凝固的原则,经常是向着冒口(设置于铸件厚部)或内浇道(设置于铸件厚部)方向凝固。

对于热节部位,可设置冷铁以保证铸件顺序凝固。

应用场合:收缩较大、凝固温度范围较小的合金,如铸钢碳硅含量低的灰铸铁、铝青铜等合金、壁厚差别较大的铸件。

七、收缩应力的危害和减小措施:危害:铸件上某部位的收缩应力和热应力之和超过其抗拉压强度时,就可能产生裂纹。

减小措施:采取提高型芯砂的退让性,合理设置浇注系统和及时开箱落砂等措施。

八、热应力产生的原因。

能正确判断出铸件上何处产生拉应力、何处产生压应力:原因:铸件在凝固和冷却过程中,不同部位由于温差造成不均匀收缩而引起的铸造应力。

细杆受压(—)、粗杆受拉(+)细的部分拉长、粗的部分压短,细的一半在外侧。

九、减小和消除热应力的方法。

同时凝固的定义和应用场合:减小和消除:①合理设计铸型结构,壁厚均匀,减小热节,壁与壁间采用圆弧过度。

②采用同时凝固原则:使型腔内各部分金属液温差很小,同时进行凝固的原则。

内浇道开于薄部、铸件厚部或热节处设置冷铁。

③去应力退火。

应用场合:同时凝固适用于收缩较小的合金(碳硅含量高的灰铸铁)和结晶温度范围宽倾向于糊状凝固的合金,同时也适用于气密性要求不高的铸件和壁厚均匀的薄壁铸件。

十、能正确判断出铸件上何处产生何种变形,防止铸件变形的两种措施:防止变形措施:①减小和消除铸造应力;②反变形法;十一、冷裂纹和热裂纹的特征,何时产生、防止措施:热裂:特征:断面严重氧化、无金属光泽、裂纹沿晶粒边界产生和发展,外形曲折而不规则。

何时产生:铸件在凝固后期或凝固后在较高温度下形成的裂纹。

冷裂:特征:穿过晶粒延伸到整个断面,有金属光泽或微呈氧化色,多为直线或圆滑曲线,常出现在受拉伸的部位,特别是应力集中处。

何时产生:铸件凝固后在较低温度下形成的裂纹。

防治措施:减小和消除铸造应力、严格限制铸铁和铸钢中硫、磷的含量,以降低其脆性。

十二、合金的铸造性能的定义,常用铸铁和钢的铸造性能及用其生产合格铸件需采取的措施:金属的铸造性能是指金属在铸造过程中获得外形准确、内部健全的铸件的能力。

灰铸铁:灰铸铁铸造性能优良,凝固温度范围窄,铁液流动性好。

凝固时有石墨析出,收缩小。

灰铸铁产生铸造缺陷的倾向最小。

生产时,采用同时凝固原则,无需设置冒口。

球墨铸铁:铸造性能位于灰铸铁与铸钢之间。

铁液流动性较差。

收缩量大,易产生缩孔、缩松缺陷。

生产时,设置冒口和冷铁,采用顺序凝固原则。

铸钢:铸钢的铸造性能差。

流动性差,易产生冷隔、浇不到、夹杂、气孔等缺陷。

收缩远大于铸铁,易产生缩孔、裂纹等缺陷。

生产时,设置冒口和冷铁,采用顺序凝固的原则。

十三、砂型铸造的造型方法可分为手工造型和机器造型两大类,各自的应用场合。

十四、铸造工艺图定义和作用、铸件图和铸型装配图的作用。

铸造工艺图:表达铸件分型面、浇冒口系统、浇注位置、工艺参数、型芯结构尺寸、控制凝固措施等的图样。

铸件图:又称为毛坯图,反映铸件实际形状、尺寸和技术要求的图样,是铸造生产、铸件检验和验收的主要依据。

铸型装配图:表示合型后铸件各组元间装配关系的工艺图。

十五、浇注位置和分型面的定义、选择原则,能正确选择:浇注位置是浇注时铸件在铸型内所处的位置。

①重要加工面和主要工作面应处于底面或侧面;②大平面应尽可能朝下或采用倾斜浇注;③薄壁部分应放在铸型的下部或侧面;④收缩大的铸件,为便于设置冒口,厚实部应位于上方。

分型面是铸型组元间的结合面。

①铸件的机加工面和基准面;②应尽量减少分型面数量,采用平面作为分型面;③尽量减少型芯、活块的数量;④主要型芯应尽量放在下半铸型中。

十六、铸造工艺参数:铸件尺寸公差、要求的机械加工余量(RMA)、铸件线收缩率、起模斜度、最小铸出孔和槽尺寸、芯头和芯座。

十七、能正确绘制铸造工艺图。

十八、合金的铸造性能和铸造工艺对零件结构各有何要求,具有改错能力。

铸造性能:1、铸件壁厚:①铸件壁厚应适当;②铸件壁厚应均匀;③内壁厚度应小于外壁;2、铸件壁的连接:①转角处应采用圆弧过度;②避免壁交叉和锐角连接;③应避免壁厚突变;3、防止铸件变形:力求壁厚均匀、结构对称或设置加强肋;4、避免较大的水平面;5、减小轮形铸件的内应力;铸造工艺:1、铸件外形:①应利于减少和简化铸型的分型面;②侧凹和凸台不应该妨碍起模;③垂直于分型面和非加工面应具有起模斜度。

2、铸件的内腔:①内腔形状应利于制芯或者省去型芯;②利于型芯的固定、排气和清理;③大件和形状复杂的可采用组合结构。

第三章金属的塑性成形一、塑性成形的定义、优点、缺点:金属的塑性成形是利用外力使金属发生塑性变形,使其改变形状、尺寸和改善性能、获得型材或锻压件的加工方法。

优点:①塑性成形使金属组织致密、晶粒细小、力学性能提高;②材料利用率高切削工作较小;③生产效率高;④毛坯或零件的精度较高。

缺点:制件形状较简单,模具投资较高。

二、单晶体塑性变形:滑移;多晶体塑性变形:晶内滑移;晶粒间的相对滑动和转动。

三、回复、再结晶定义、再结晶温度:回复:将冷成形后的金属加热至一定温度后,使原子回复到平衡位置,晶内残余应力大大减小的现象。

再结晶:塑性变形后金属被拉长了的晶粒重新生核、结晶,变为等轴晶粒的现象。

回复温度约为(0.25-0.30)T熔(T单位K)再结晶温度约为(0.4)T熔(T单位K)四、冷成形、热成形、温成形的温度界限及应用再结晶温度以上的为热成型,回复温度以下的为冷成型,位于回复温度到再结晶温度之间的为温成形。

冷成形应用:冷轧、冷锻、冷冲压、冷拔等,常用于制造半成品或成品。

热成形应用:热轧、热锻、热冲压、热拔等,常用于毛坯或半成品的制造。

温成形应用:温锻、温挤压、温拉拔等,用于尺寸较大、材料强度较高的零件或半成品制造。

五、镦粗与拔长的锻造比的计算式,锻造流线的形成原因,设计零件流线如何分布会较合理: 拔长:100>==L L A A y 镦粗:100>==H H A A y塑性杂质随着金属变形沿主要伸长方向呈带状分布,这样热锻后的金属组织就具有一定的方向性,通常称为锻造流线。

锻造流线分布:工作时最大正应力方向与流线方向一致,切应力方向与流线方向垂直,且流线沿零件轮廓分布而不被切断。

六、塑性成形性的衡量标准,影响因素:材料的塑性成形性常用塑性和变形抗力综合衡量。

影响因素:1、材料本质的影响:①化学成分,纯金属塑性成形性优于合金、钢中合金元素越多,塑性成形性越差。

②金属组织:固溶体组织优于机械混合物、细晶组织优于粗晶组织、热成型组织优于冷成型组织和铸态组织。

2、变形条件的影响:①变形温度(温度越高塑性越好);②应变速率(速率变大塑性从变差到变好呈抛物线);③应力状态(压应力多,塑性好,切应力多塑性差)七、自由锻造的特点、应用范围:自由锻即用简单的通用性工具,或在锻造设备的上、下钻间直接使坯料变形而获得所需的几何形状及内部质量锻件的加工方法。

自由锻设备的通用性好、工具简单;可锻大型件,锻件组织细密、力学性能好。

但操作技术要求高,生产效率低;锻件形状较简单、加工余量大、精密度底。

应用范围:自由锻主要用于单件、小批生产,且是特大型锻件唯一的生产方式。

八、正确绘制自由锻造的锻件图。

正确选择变形工步:锻件图是在零件图基础上考虑余块、机械加工余量、锻件公差等因素绘制的。

工步:盘块类:锻粗—冲孔;局部锻粗—冲孔;轴杆类:拔长;拔长—切肩—锻台阶;局部镦粗—拔长;圆筒类:锻粗—冲孔—芯轴拔长;圆环类:锻粗—冲孔—芯轴扩孔;弯曲类:拔长—弯曲;九、自由锻造零件结构设计:改正错误结构:①应避免锥面或楔形,尽量采用圆柱面或平行平面,以利于锻造;②各表面交接处应避免弧线或曲线,尽量采用直线或圆,以利于锻制;③应避免肋板或凸台;④大件和形状复杂的锻件,可采用锻—焊、锻—螺纹连接等组合结构,以利于锻造和机械加工。

相关文档
最新文档