新人教版中考数学总复习资料
(完整版)人教版初中数学总复习资料.doc
中考数学总复习资料数与代数1・数与式⑴有理数:有限或不限循环性数(无理数:无限不循环小数) ⑵数轴:“三要素”⑶相反数⑷绝对值:I a I = a (a ≥0)∣ a ∣ =-a (^<O)⑸倒数⑹指数①零指数:a0=1 ( a≠ 0)②负整指数: (a≠ 0,n是正整数)⑺完全平方公式:(a b) 2 a2 2ab b 2(8)平方差公式:(a+b) (a⅛ ) =a2b2(9)幕的运算性质:φ a m∙ a n = a m n② a m÷ a n = a m n (3)(a 111 ) n = a m n @ feb)n =a n b n⑤G)"人(10)科学记数法:a IO n( l≤a<10,n是整数)b b(11)算术平方根、平方根、立方根、a m a(12)_ & — (b d ------------------ n 0) 等比性质:e ffl- 七b d n b d Hb2・方程与不等式⑴一元二次方程①定义及一般形式:ax 2 bx c Ofe 0)②解法:1 •直接开平方法.2.配方法3•公式法:Xi,2 —b⅛2丄------- (b 2 4ac 0)2a4.因式分解法・③根的判别式:b2 4ac > 0,有两个解。
b2 4ac V O,无解。
b2 4ac = 0,有1 个解。
④维达定理: Xl X2 ,Xl X2 aa⑤常用等式: Xl2X22(XI X2 ) 22xi X2(xi X2 )2(XI X2 ) 2 4 Xl X2⑥应用题1.行程问题■■相遇问题、追及问题、水中航行:V顺船速水速;V逆船速水速2.增长率问题:起始数(1+X)二终止数3•工程问题:工作量二工作效率X工作时间(常把工作量看着单位“ 1”)。
4.几何问题⑵分式方程(注意检验)由增根求参数的值:①将原方程化为整式方程②将增根带入化间后的整式方程,求出参数的值。
中考数学知识点归纳人教版
中考数学知识点归纳人教版
中考数学是中学阶段数学知识的重要总结,涵盖了代数、几何、统计与概率等多个领域。
以下是人教版中考数学知识点的归纳:
一、数与代数
1. 实数:包括有理数和无理数,理解实数的性质和运算规则。
2. 代数式:包括整式和分式,掌握代数式的运算法则和化简技巧。
3. 方程与不等式:一元一次方程、一元二次方程、分式方程的解法,以及不等式的解集。
4. 函数:一次函数、反比例函数、二次函数的性质和图像,理解函数的基本概念和应用。
二、几何
1. 平面图形:包括线段、角、三角形、四边形、圆等,掌握其性质和计算方法。
2. 立体图形:包括立体图形的表面积和体积计算。
3. 图形的变换:包括平移、旋转、反射等,理解图形变换的基本概念和性质。
4. 相似与全等:理解相似图形和全等图形的性质,掌握证明方法。
三、统计与概率
1. 数据的收集与处理:包括数据的收集、整理和描述,掌握统计图表的绘制。
2. 概率:理解概率的基本概念,掌握概率的计算方法。
四、综合应用
1. 数学建模:将数学知识应用于解决实际问题,培养解决实际问题的能力。
2. 数学思维:包括逻辑推理、抽象思维等,提高学生的数学思维能力。
结束语
通过以上对中考数学知识点的归纳,我们可以看出,中考数学不仅要
求学生掌握基础的数学知识,更注重培养学生的数学思维和解决实际
问题的能力。
希望同学们能够系统地复习这些知识点,为中考做好充
分的准备。
(人教版)中考数学复习(全部)专题练习汇总
第1讲:实数概念与运算
一、夯实基础
1、绝对值是6的数是________
2、 的倒数是________________。
3、2的平方根是_________.
4、下列四个实数中,比-1小的数是( )
A.-2B.0C.1D.2
5、在下列实数中,无理数是( )
A.2 B.0 C. D.
A.①×3-②×2,消去x
B.①×2-②×3,消去y
C.①×(-3)+②×2,消去x
D.①×2-②×(-3),消去y
4.与方程3x+4y=1 6联立组成方程组的解是 的方程是( ).
A. +3y=7B.3x-5y=7
C. -7y=8D.2(x-y)= 3y
5.给方程 去分母,得().
A.1-2(2x-4)=-(x-7)
10.① ;②56;
11.8;
四、中考链接
12.(1)-3x2+18x-5,19;
(2)m9,-512;
13.(1)45;(2)57
14.(1)9;(2)1
15.
第3讲:分式检测
一、夯实基础
1.下列式子是分式的是( )
A. B. C. +yD.
2.如果把分式 中的x和y都扩大3倍,那么分式的值( )
三、课外拓展
8.若 +(y-2 012)2=0,则xy =__________.
9.当-1<x<3时,化简: + =__________.
10. 如果代数式 有意义,则x的取值范围是________.
11、比较大小:⑴3 2 ⑵ - -
12、若最简根式 与 是同类二次根式,则m=.
13、若 的整数部分是a,小数部分是b,则a- =。
中考数学总复习资料
中考数学总复习资料中考数学总复习资料数学是一门学科,也是中考必考科目之一。
为了帮助同学们更好地复习数学知识,我准备了以下总复习资料。
一、数与代数1. 自然数:自然数包括正整数和零,用于计数和排序。
2. 整数:整数包括自然数、0和负整数,用于表示有向量的数。
3. 分数:分数是两个整数的比值,包括真分数、假分数和整数。
4. 小数:小数是有限的或无限循环的十进制数。
5. 平方根和立方根:平方根是一个数的平方等于给定数,立方根是一个数的立方等于给定数。
6. 代数式:代数式是由数、变量和运算符号组成的式子,可通过运算得出结果。
7. 一元一次方程:一元一次方程是形如ax + b = 0的方程,其中a和b是已知数,x是未知数。
8. 二元一次方程组:二元一次方程组是形如ax + by = c和dx + ey = f的方程组。
9. 比例:比例是表示两个数相对大小的关系,可以写成a:b或a/b的形式。
二、几何与图形1. 点、线、面:点没有长度、宽度和高度,线是由点构成的,面是由线和点构成的。
2. 直线与曲线:直线是两个不同点之间的最短路径,曲线是不直的路径。
3. 角与三角形:角是由两条射线的公共起点形成的,三角形是由三条线段构成的。
4. 直角、钝角和锐角:直角是90度的角,钝角大于90度,锐角小于90度。
5. 圆与圆周:圆是由等距离于一个固定中心的点组成的,圆周是圆的边界。
6. 相似与全等:相似表示两个图形的形状和角度相等,但大小可以不同;全等表示两个图形的形状、角度和大小都相等。
7. 平行线与垂直线:平行线在平面上永远不相交,垂直线互相成直角。
8. 多边形:多边形是由直线段组成的封闭图形,包括三角形、四边形、五边形等。
三、函数与图像1. 函数:函数是有输入和输出的关系,输入称为自变量,输出称为因变量。
2. 函数的图像:函数的图像是自变量和因变量之间的关系在坐标平面上的表示。
3. 直线函数:直线函数是y = kx + b的形式,其中k是斜率,b是截距。
新人教版初中数学[中考总复习:数与式综合复习--知识点整理及重点题型梳理](基础)
新人教版初中数学中考总复习重难点突破知识点梳理及重点题型巩固练习中考总复习:数与式综合复习—知识讲解(基础)【考纲要求】(1) 借助数轴理解相反数和绝对值的意义,会求有理数的倒数、相反数与绝对值.理解有理数的运算律,并能运用运算律简化运算;(2)了解平方根、算术平方根、立方根的概念,了解无理数和实数的概念,知道实数与数轴上的点一一对应;会用根号表示数的平方根、立方根.了解二次根式的概念及其加、减、乘、除运算法则,会用它们进行有关实数的简单四则运算;(3)了解整式、分式的概念,会进行简单的整式加、减运算;会进行简单的整式乘法运算.会利用分式的基本性质进行约分和通分,会进行简单的分式加、减、乘、除运算.【知识网络】【考点梳理】考点一、实数的有关概念、性质1.实数及其分类实数可以按照下面的方法分类:实数还可以按照下面的方法分类:要点诠释:整数和分数统称有理数.无限不循环小数叫做无理数.有理数和无理数统称实数.2.数轴规定了原点、正方向和单位长度的直线叫做数轴.每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数.实数和数轴上的点是一一对应的关系.要点诠释:实数和数轴上的点的这种一一对应的关系是数学中把数和形结合起来的重要基础.3.相反数实数a和-a叫做互为相反数.零的相反数是零.一般地,数轴上表示互为相反数的两个点,分别在原点的两旁,并且离原点的距离相等.要点诠释:两个互为相反数的数的运算特征是它们的和等于零,即如果a和b互为相反数,那么a+b=0;反过来,如果a+b=0,那么a和b互为相反数.4.绝对值一个实数的绝对值就是数轴上表示这个数的点与原点的距离.一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;零的绝对值是零,即如果a>0,那么|a|=a;如果a<0,那么|a|=-a;如果a=0,那么|a|=0.要点诠释:从绝对值的定义可以知道,一个实数的绝对值是一个非负数.5.实数大小的比较在数轴上表示两个数的点,右边的点所表示的数较大.6.有理数的运算(1)运算法则(略).(2)运算律:加法交换律 a+b=b+a;加法结合律 (a+b)+c =a+(b+c); 乘法交换律 ab =ba ;乘法结合律 (ab)c =a(bc); 分 配 律 a(b+c)=ab+ac .(3)运算顺序:在加、减、乘、除、乘方、开方这六种运算中,加、减是第一级运算,乘、除是第二级运算,乘方、开方是第三级运算.在没有括号的算式中,首先进行第三级运算,然后进行第二级运算,最后进行第一级运算,也就是先算乘方、开方,再算乘、除,最后算加、减. 算式里如果有括号,先进行括号内的运算. 如果只有同一级运算,从左到右依次运算. 7.平方根如果x 2=a ,那么x 就叫做a 的平方根(也叫做二次方根). 要点诠释:正数的平方根有两个,它们互为相反数;零的平方根是零;负数没有平方根. 8.算术平方根正数a 的正的平方根,叫做a 的算术平方根.零的算术平方根是零. 要点诠释:从算术平方根的概念可以知道,算术平方根是非负数. 9.近似数及有效数字近似地表示某一个量准确值的数,叫做这个量准确值的近似数.一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.这时,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫这个数的有效数字. 10.科学记数法把一个数记成±a ×10n的形式(其中n 是整数,a 是大于或等于1而小于10的数),称为用科学记数法表示这个数.考点二、二次根式、分式的相关概念及性质 1.二次根式的概念≥0) 的式子叫做二次根式.2.最简二次根式和同类二次根式的概念最简二次根式是指满足下列条件的二次根式: (1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式. 要点诠释:把分母中的根号化去,分式的值不变,叫做分母有理化.两个含有二次根式的代数式相乘,若它们的积不含二次根式,则这两个代数式互为有理化因式. 常用的二次根式的有理化因式:(1(2)a a +-互为有理化因式;一般地a a +-(3. 3.二次根式的主要性质(1)0(0)a a ≥≥; (2)()2(0)a a a =≥;(3)2(0)||(0)a a a a a a ≥⎧==⎨-<⎩;(4)积的算术平方根的性质:(00)ab a b a b =⋅≥≥,;(5)商的算术平方根的性质:(00)a aa b b b=≥>,. 4. 二次根式的运算(1)二次根式的加减二次根式相加减,先把各个二次根式化成最简二次根式,再把同类二次根式分别合并. (2)二次根式的乘除二次根式相乘除,把被开方数相乘除,根指数不变.要点诠释:二次根式的混合运算:1.明确运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的;2.在二次根式的混合运算中,原来学过的运算律、运算法则及乘法公式仍然适用;3.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能收到事半功倍的效果. 5.代数式的有关概念(1)代数式:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子,叫做代数式.用数值代替代数式里的字母,计算后所得的结果,叫做代数式的值.代数式的分类:(2)有理式:只含有加、减、乘、除、乘方运算(包含数字开方运算)的代数式,叫做有理式. (3)整式:没有除法运算或者虽有除法运算但除式里不含字母的有理式叫做整式. 整式包括单项式和多项式.(4)分式:除式中含有字母的有理式,叫做分式.分式的分母取值如果为零,分式没有意义. 6.整式的运算(1)整式的加减:整式的加减运算,实际上就是合并同类项.在运算时,如果遇到括号,根据去括号法则,先去括号,再合并同类项.(2)整式的乘法:①正整数幂的运算性质:m n m n a a a +=;()m n mn a a =;()m mm ab a b =;m n m n a a a -÷=(a ≠0,m >n).其中m 、n 都是正整数.②整式的乘法:单项式乘单项式,用它们的系数的积作为积的系数,对于相同字母,用它们的指数的和作为积里这个字母的指数,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式. 单项式乘多项式,用单项式去乘多项式的每一项,再把所得的积相加.多项式乘多项式,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.③乘法公式:22()()a b a b a b +-=-; 222()2a b a ab b ±=±+.④零和负整数指数:在mnm na a a-÷=(a ≠0,m ,n 都是正整数)中,当m =n 时,规定01a =;当m <n 时,如m-n =-p(p 是正整数),规定1pp a a-=. 7.因式分解(1)因式分解的概念把一个多项式化成几个整式的积的形式,叫做多项式的因式分解. 在因式分解时,应注意:①在指定数(有理数、实数)的范围内进行因式分解,一定要分解到不能再分解为止,题目中没有指定数的范围,一般是指在有理数范围内分解.②因式分解以后,如果有相同的因式,应写成幂的形式,并且要把各个因式化简. (2)因式分解的方法①提公因式法:ma+mb+mc =m(a+b+c).②运用公式法:22()()a b a b a b -=+-;2222()a ab b a b ±+=±;③十字相乘法:2()x a b x ab +++()()x a x b =++.(3)因式分解的步骤①多项式的各项有公因式时,应先提取公因式; ②考虑所给多项式是否能用公式法分解. 要点诠释:因式分解时应注意:①在指定数(有理数、实数)的范围内进行因式分解,一定要分解到不能再分解为止,若题目中没有指定数的范围,一般是指在有理数范围内因式分解;②因式分解后,如果有相同因式,应写成幂的形式,并且要把各个因式化简,同时每个因式的首项不含负号;③多项式的因式分解是多项式乘法的逆变形. 8.分式(1)分式的概念 形如AB的式子叫做分式,其中A 和B 均为整式,B 中含有字母,注意B 的值不能为零. (2)分式的基本性质分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变.A A MB B M ⨯=⨯,A A MB B M÷=÷.(其中M 是不等于零的整式) (3)分式的运算 ①加减法:a b a b c c c ±±=,a c ad bcb d bd ±±=. ②乘法:ac acb d bd=. ③除法:a c a d adb d bc bc÷==. ④乘方:nn n a a b b⎛⎫= ⎪⎝⎭(n 为正整数).要点诠释:解分式方程的注意事项:(1)去分母化成整式方程时不要与通分运算混淆;(2)解完分式方程必须进行检验,验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.列分式方程解应用题的基本步骤: (1)审——仔细审题,找出等量关系; (2)设——合理设未知数; (3)列——根据等量关系列出方程; (4)解——解出方程; (5)验——检验增根; (6)答——答题.【典型例题】类型一、实数的有关概念及运算1.实数2-,0.3,172,π-中,无理数的个数是( ) A .2 B .3 C .4 D .5【思路点拨】常见的无理数有以下几种形式:(1)字母型:如π是无理数,24ππ、等都是无理数,而不是分数; (2)构造型:如2.10100100010000…(每两个1之间依次多一个0)就是一个无限不循环的小数;(33256、、,…都是一些开方开不尽的数;(4)三角函数型:sin35°、tan27°、cos29°等.【答案】A ;【解析】本题主要考查无理数的概念.无理数是指无限不循环小数,2,π-都是无限不循环小数, 故共有2个无理数.【总结升华】无理数通常有以下几类:①开方开不尽的数;②含π的数;③看似循环但实际不循环的小数;④三角函数型:sin35°、tan27°、cos29°等.抓住这几类无理数特征,则可以轻松解决有关无理数的相关试题. 举一反三:【课程名称:数与式综合复习 402392 :例1—2】【变式】如图,数轴上A 、B 两点表示的数分别为-1和3,点B 关于点A 的对称点为C ,则点C 所表示的数为( ).A .32--B .-31-C .32+-D .31+【答案】A.2.计算:(1)23220.2549403⎡⎤⎛⎫-⨯-÷-⨯-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦; (2)85(2)25-⨯ .【思路点拨】注意在第(1)题中,32-与3(2)-的不同运算顺序和4499÷⨯的运算顺序. 【答案与解析】(1)23220.2549403⎡⎤⎛⎫-⨯-÷-⨯-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦480.2549409⎛⎫=-⨯-÷⨯- ⎪⎝⎭9249402(8140)4⎛⎫=--⨯⨯-=--- ⎪⎝⎭24143=--=-.(2)85(2)25-⨯444442525(425)25100252500000000=⨯⨯=⨯⨯=⨯=.【总结升华】在进行有理数运算时,要注意运算的顺序,要有灵活运用运算律、运算法则和相反数、倒数、0、1的运算特性的意识,寻求简捷的运算途径.举一反三: 【变式】2517( 2.4)58612⎛⎫-+-+⨯- ⎪⎝⎭;【答案】2517( 2.4)58612⎛⎫-+-+⨯- ⎪⎝⎭21.50.4 1.4 1.5 1.42.95=--+-=--=- .3. 若x-3+x-y+1=0,计算322x y+xy +4y .【思路点拨】几个非负数相加和为0,则这几个非负数必定同时为0,进而求出x 、y 的值. 【答案与解析】依题意得30,10,x x y -=⎧⎨-+=⎩解得3,4,x y =⎧⎨=⎩∴3222224x y+xy +y(x +xy+)y(x+)(x+)(3)410.44222y y y y y ====+⨯=【总结升华】2a ,(a 0)a a ≥,这三个非负数中任意几个相加得0,则每一个都得0.举一反三:【变式】已知|1|80a b ++-=,则a b -= .【答案】本题考查绝对值与算数平方根的非负性,两个非负数的和为0,所以这两数都为0.因为|1|80a b ++-=,所以a=-1,b=8. a b -=﹣9.类型二、分式的有关运算4.对于分式211x x -+,当x 取何值时,(1)分式有意义? (2)分式的值等于零?【思路点拨】当分母等于零时,分式没有意义,此外,分式都有意义;当分子等于零,并且分母不等于零时,分式的值等于零. 【答案与解析】(1)由分母x+1=0,得x =-1.∴ 当x ≠-1时,分式211x x -+有意义.(2)由分子210x -=,得1x =或1x =-. 而当x =-1时,分母x+1=0; 当x =1时,分母10x +=.∴ 当x =l 时,分式211x x -+的值等于零.【总结升华】讨论分式有无意义时,一定要对原分式进行讨论,而不能讨论化简后的分式.类型三、二次根式的运算5.(2014春•平泉县校级期中)已知a=,求﹣的值.【思路点拨】先利用因式分解原式进行化简,再进行约分和利用二次根式的性质计算,由于a==4﹣2,则a ﹣4<0,所以原式可化简为a ﹣3+,然后把a 的值代入计算即可. 【答案与解析】 解:原式=﹣=a ﹣3﹣, ∵a==4﹣2, ∴a ﹣4<0, ∴原式=a ﹣3+=a ﹣3+, =4﹣2﹣3+=2﹣.【总结升华】本题考查了二次根式的化简求值:一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.也考查了分式的混合运算.举一反三:【变式】计算:2(1848)(212)(23)+---;【答案】2(1848)(212)(23)+---(3243)(223)(2263)=+---+646662452623=+---+=-.6.当x 为何值时,下列式子有意义? (1)32x -; (2)125xx -+. 【思路点拨】第(1)题中,根号外的负号与根号是否有意义无关;第(2)题中,因为与分式有关,因此要综合考虑x 的取值范围.【答案与解析】(1)320x -≥,即32x ≤. ∴ 当32x ≤时,32x --有意义. (2)120x -≥,且x+5≠0,∴ 当12x ≤,且x ≠-5时,125x x -+有意义.【总结升华】要使偶次根式有意义,被开方数为非负数;分式有意义分母不为0.举一反三:【课程名称:数与式综合复习 402392 :例1—2】 【变式】下列说法中,正确的是( )A .3的平方根是3B .5的算术平方根是5C .-7的平方根是7-±D .a 的算术平方根是a【答案】B.类型四、数与式的综合运用7.(2014秋•崂山区校级期末)用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地面:(1)观察图形,填写下表:图形 (1) (2) (3)… 黑色瓷砖的块数 4 7… 黑白两种瓷砖的总块数 15 25… (2)依上推测,第n 个图形中黑色瓷砖的块数为 ;黑白两种瓷砖的总块数为 (都用含n 的代数式表示)(3)白色瓷砖的块数可能比黑色瓷砖的块数多2015块吗?若能,求出是第几个图形;若不能,请说明理由.【思路点拨】找规律题至少要推算出三个式子的值,再去寻求规律,考察了认真观察、分析、归纳、由特殊到一般,由具体到抽象的能力. 【答案与解析】解:(1)填表如下:图形 (1) (2) (3)… 黑色瓷砖的块数 4 7 10… 黑白两种瓷砖的总块数 15 25 35 …(2)第n 个图形中黑色瓷砖的块数为3n+1;黑白两种瓷砖的总块数为10n+5; (3)能,理由如下:10n+5﹣(3n+1)﹣(3n+1)=2015,精品文档 用心整理资料来源于网络 仅供免费交流使用 解得:n=503答:第503个图形.【总结升华】本题考查数形结合、整理信息,将图形转化为数据,猜想规律、探求结论.抓住其中的黑色瓷砖数目的变化规律,结合图形,观察其变化规律.举一反三:【变式】如图所示的是一块长、宽、高分别为7cm ,5cm 和3cm 的长方体木块,一只蚂蚁要从长方体木块的一个顶点A 处,沿着长方体的表面爬到和顶点A 相对的顶点B 处吃食物,那么它要爬行的最短路径的长是多少?22(57)3153++=(cm).【答案】路径①的长为路径②的长为22(37)5125++=22(35)7113++=(cm). 113。
人教版中考数学总复习资料完整版
数学中考总复习资料完整版一 有理数1、有理数的基本概念(1)正数和负数定义:大于0的数叫做正数。
在正数前加上符号“-”(负)的数叫做负数。
0既不是正数,也不是负数。
(2)有理数正整数、0、负整数统称整数。
正分数、负分数统称分数。
整数和分数统称为有理数。
2、数轴规定了原点、正方向和单位长度的直线叫做数轴。
3、相反数代数定义:只有符号不同的两个数叫做互为相反数。
几何定义:在数轴上原点的两旁,离开原点距离相等的两个点所表示的数,叫做互为相反数。
一般地,a 和-a 互为相反数。
0的相反数是0。
a =-a 所表示的意义是:一个数和它的相反数相等。
很显然,a =0。
4、绝对值定义:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作|a |。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
即:如果a >0,那么|a |=a ;如果a =0,那么|a |=0;如果a <0,那么|a |=-a 。
a =|a |所表示的意义是:一个数和它的绝对值相等。
很显然,a ≥0。
5、倒数定义:乘积是1的两个数互为倒数。
1a a=所表示的意义是:一个数和它的倒数相等。
很显然,a =±1。
6、数的比较大小法则:正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小。
7、乘方定义:求n 个相同因数的积的运算,叫做乘方。
乘方的结果叫做幂。
如: an na a a a 个•••=读作a 的n 次方(幂),在a n 中,a 叫做底数,n 叫做指数。
性质:负数的奇次幂是负数,负数的偶次幂是正数;正数的任何次幂都是正数;0的任何正整数次幂都是0。
8、科学记数法定义:把一个大于10的数表示成a ×10n 的形式(其中a 大于或等于1且小于10,n 是正整数),这种记数方法叫做科学记数法。
小于-10的数也可以类似表示。
9、近似数一般地,一个近似数四舍五入到哪一位,就说这个数近似到哪一位,也叫做精确到哪一位。
中考数学总复习资料大全(精华版)
中考数学总复习资料大全第一章 实数★重点★ 实数的有关概念及性质,实数的运算 ☆内容提要☆ 一、 重要概念 1.数的分类及概念 数系表:说明:“分类”的原则:1)相称(不重、不漏) 2)有标准2.非负数:正实数与零的统称。
(表为:x ≥0) 常见的非负数有:性质:若干个非负数的和为0,则每个非负担数均为0。
3.倒数: ①定义及表示法②性质:A.a ≠1/a (a ≠±1);B.1/a 中,a ≠0;C.0<a <1时1/a >1;a >1时,1/a <1;D.积为1。
4.相反数: ①定义及表示法②性质:A.a ≠0时,a ≠-a;B.a 与-a 在数轴上的位置;C.和为0,商为-1。
5.数轴:①定义(“三要素”)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数(正整数—自然数) 定义及表示: 奇数:2n-1偶数:2n (n 为自然数) 7.绝对值:①定义(两种): 代数定义:实数 无理数(无限不循环小数)正分数 负分数 正整数0 负整数 (有限或无限循环性数) 整数分数正无理数负无理数0 实数 负数 整数 分数无理数 有理数正数整数分数无理数 有理数│a │ 2a a (a ≥0) (a 为一切实数) a(a≥0)-a(a<0)│a │=几何定义:数a 的绝对值顶的几何意义是实数a 在数轴上所对应的点到原点的距离。
②│a │≥0,符号“││”是“非负数”的标志;③数a 的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。
二、 实数的运算 1. 运算法则(加、减、乘、除、乘方、开方) 2. 运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]分配律) 3.运算顺序:A.高级运算到低级运算;B.(同级运算)从“左”到“右”(如5÷51×5);C.(有括号时)由“小”到“中”到“大”。
【精编】中考必备:人教版初中数学知识点总结(完整版)2023
【精编】中考必备:人教版初中数学知识点总结(完整版)2023一、数与式1.数的认识1.1 自然数自然数是人们最早形成的概念之一,即从1开始逐一加1的数字序列。
自然数包括正整数和零。
1.2 负数负数是小于零的整数。
负数在数轴上表示为向左移动。
1.3 整数整数由自然数、0和负数组成。
1.4 分数分数表示除法的一种形式。
分数由分子和分母组成,分子表示被除数,分母表示除数。
1.5 小数小数是不能化为整数比的数,可以写成分数的带分数形式或非循环小数和循环小数的形式。
2.有理数有理数是可以表示为两个整数之比的数,包括整数、分数和小数。
3.实数实数是有理数和无理数的统称。
4.函数函数是一种特殊的关系,它把一个数集的每个元素都对应到另一个数集的唯一元素上。
函数包括定义域、值域、图像等概念。
5.代数式及其计算代数式是用数和字母表示的式子。
代数式的计算包括合并同类项、提取公因式、配方法、乘法公式、因式分解等。
二、图形与几何1.平面图形平面图形包括点、线段、射线、直线、角、三角形、四边形、多边形和圆等。
2.三视图及等腰三角形三视图是一个物体分别在正、左、上三个方向上的投影图。
等腰三角形是指两边边长相等的三角形。
3.全等三角形及判断相似全等三角形是指对应的三边和三个内角全部相等的三角形。
相似三角形是指对应的两个角相等的三角形。
4.平行线及其性质平行线是指在同一个平面上不相交的直线。
平行线的性质包括平行公理、平行线性质、平行线定理等。
5.比例与分析比例是指两个数或两个量之间的相等关系。
比例的应用包括比例尺、比例方程、比例的四性质等。
6.圆与圆周角圆是指平面上任意一点与一个确定的点之间的距离相等的点的集合。
圆周角是指与圆心角对应的两条弧所夹的角。
7.计算器的使用计算器是辅助学习数学的工具之一,学生需要学会合理使用、读取和解读计算器上的数值。
三、数据与概率1.统计图及频数分布统计图用直方图、折线图、饼图等形式将数据进行可视化展示。
人教版初中数学中考复习专题复习 数与式(37张PPT)
知识回顾
五、实数的运算 1.包括加法、减法、乘法、除法、乘方、开方共六种,
运算时先确定___符__号___,再运算. 2.实数的运算顺序:先算乘方、开方,再算__乘__除____,
最后算_加__减_____;如果有括号,先算__括__号____里面的; 同级运算按照_从__左__到__右_的顺序依次计算. 六、整式的有关概念 1.整式:__单__项__式__和_多__项__式__统称为整式. 单项式中的_数__字__因__数_叫作单项式的系数,所有字母的 __指__数__和__叫作单项式的次数. 组成多项式的每一个单项式叫作多项式的__项______,多 项式的每一项都要带着前面的符号.
中考·数学
2020版
第一部分 系统复习
第一讲 数与式
知识回顾
一.按实数的定义分类:
负整数
分数
正分数
负无理数
知识回顾
二、实数的基本概念和性质 1.数轴 (1)定义:规定了 _原__点____ 、 _正__方__向__ 、 _单__位__长__度__的直
线叫作数轴. (2)性质: _实___数___和数轴上的点是一一对应的. 2.相反数 (1)定义:a的相反数是___-a____ ,0的相反数是__0___ . (2)性质:a,b互为相反数⇔ __a_+_ b_=__0__ .
2.整式的乘法
知识回顾
(1)单项式乘单项式:把它们的系数、相同字母分别 ___相__乘___,对于只在一个单项式里含有的字母,则连同 它的__指__数____作为积的一个因式.
(2)单项式乘多项式:பைடு நூலகம்单项式去乘多项式的每一项,再 把所得的积__相__加____.
即m(a+b+c)=___m__a_+_m_b_+_m__c__.
初中数学知识点中考总复习总结归纳(人教版)
初中数学知识点中考总复习总结归纳(人教版)2023年初中数学知识点中考总复习总结归纳第一章有理数考点一、实数的概念及分类(3分)1、实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如7,32等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如(3)有特定结构的数,如0.1010010001…等;(4)一些三角函数,如sin60o等π+8等;3第二章整式的加减考点一、整式的有关概念(3分)1、代数式用运算符号把数或表示数的字母连接而成的式子叫做代数式。
单独的一个数或一个字母也是代数式。
2、单项式只含有数字与字母的积的代数式叫做单项式。
注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如?4ab,这种表示就是错误的,应写成?132132ab。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
如3?5a3b2c是6次单项式。
考点二、多项式(11分)1、多项式几个单项式的和叫做多项式。
其中每个单项式叫做这个多项式的项。
多项式中不含字母的项叫做常数项。
多项式中次数最高的项的次数,叫做这个多项式的次数。
单项式和多项式统称整式。
用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的值。
注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入。
(2)求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入。
2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。
几个常数项也是同类项。
3、去括号法则(1)括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都不变号。
(2)括号前是“﹣”,把括号和它前面的“﹣”号一起去掉,括号里各项都变号。
4、整式的运算法则整式的加减法:(1)去括号;(2)合并同类项。
(完整版)人教版初中数学总复习资料doc
(完整版)人教版初中数学总复习资料doc①已知三边作三角形②已知两边及其夹角作三角形③已知两角及其夹边作三角形④已知底边及底边上的高作等腰三角形⑹过一点、两点和不在同一条直线上的三点作圆⒏视图与投影⑴直棱柱、圆柱、圆锥、球的三视图⑵轴对称图形:等腰三角形、矩形、菱形、等腰梯形、正多边形、圆⑶中心对称图形:矩形、圆、⑷图形的平移和旋转⑸图形的相似:(三)概率与统计⒈统计⑴重要概念①总体:考察对象的全体。
②个体:总体中每一个考察对象。
③样本:从总体中抽出的一部分个体。
④样本容量:样本中个体的数目。
⑤众数:一组数据中,出现次数最多的数据。
⑥中位数:将一组数据按大小依次排列,处在最中间位置的一个数(或最中间位置的两个数据的平均数)。
⑵扇形统计图、条形统计图、折线统计图⑶计算方法①平均数:某1(某1某2某n)n某②加权平均数:kfk某某1f1某2f2f1f2fnkn)③样本方差:⑴s1[(某1某)2(某2某)2(某n某)2]n④样本标准差:ss2⑤极差:最大的数减去最小的数⒉概率①列表法、画树状图法93同角或等角的补角相等4同角或等角的余角相等5过一点有且只有一条直线和已知直线垂直6直线外一点与直线上各点连接的所有线段中,垂线段最短7平行公理经过直线外一点,有且只有一条直线与这条直线平行8如果两条直线都和第三条直线平行,这两条直线也互相平行9同位角相等,两直线平行10内错角相等,两直线平行11同旁内角互补,两直线平行12两直线平行,同位角相等13两直线平行,内错角相等14两直线平行,同旁内角互补15定理三角形两边的和大于第三边16推论三角形两边的差小于第三边17三角形内角和定理三角形三个内角的和等于180°18推论1直角三角形的两个锐角互余19推论2三角形的一个外角等于和它不相邻的两个内角的和20推论3三角形的一个外角大于任何一个和它不相邻的内角21全等三角形的对应边、对应角相等22边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等23角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等24推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等25边边边公理(SSS)有三边对应相等的两个三角形全等26斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等27定理1在角的平分线上的点到这个角的两边的距离相等28定理2到一个角的两边的距离相同的点,在这个角的平分线上29角的平分线是到角的两边距离相等的所有点的集合30等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31推论1等腰三角形顶角的平分线平分底边并且垂直于底边32等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33推论3等边三角形的各角都相等,并且每一个角都等于60°34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35推论1三个角都相等的三角形是等边三角形36推论2有一个角等于60°的等腰三角形是等边三角形37在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38直角三角形斜边上的中线等于斜边上的一半39定理线段垂直平分线上的点和这条线段两个端点的距离相等40逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41线段的垂直平分线可看作和线段两端点距离相等的所有点的集合1042定理1关于条直线对称的两个图形是全等形43定理2如果两个图形关于直线对称,那么对称轴是对应点连线的垂直平分线44定理3两个图形关于直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)某180°51推论任意多边的外角和等于360°52平行四边形性质定理1平行四边形的对角相等53平行四边形性质定理2平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3平行四边形的对角线互相平分56平行四边形判定定理1两组对角分别相等的四边形是平行四边形57平行四边形判定定理2两组对边分别相等的四边形是平行四边形58平行四边形判定定理3对角线互相平分的四边形是平行四边形59平行四边形判定定理4一组对边平行相等的四边形是平行四边形60矩形性质定理1矩形的四个角都是直角61矩形性质定理2矩形的对角线相等62矩形判定定理1有三个角是直角的四边形是矩形63矩形判定定理2对角线相等的平行四边形是矩形64菱形性质定理1菱形的四条边都相等65菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a某b)÷267菱形判定定理1四边都相等的四边形是菱形68菱形判定定理2对角线互相垂直的平行四边形是菱形69正方形性质定理1正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1关于中心对称的两个图形是全等的72定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过其中一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形1177角相等的梯形是等腰梯形78平行等分段定理如果一平行在一条直上截得的段相等,那么在其他直上截得的段也相等79推1梯形一腰的中点与底平行的直,必平分另一腰80推2三角形一的中点与另一平行的直,必平分第三81三角形中位定理三角形的中位平行于第三,并且等于它的一半82梯形中位定理梯形的中位平行于两底,并且等于两底和的一半L=(a+b)÷2S=L某h83 (1) 比例的基本性如果 a:b=c:d,那么 ad=bc 如果 ad=bc,那么a:b=c:d 84 (2) 合比性如果 a/ b=c/ d,那么(a ±b)/b=(c ±d)/d85(3)等比性如果a/b=c/d=?=m/n(b+d+?+n≠0),那么(a+c+?+m)/(b+d+?+n)=a/b86平行分段成比例定理三条平行截两条直,所得的段成比例87推平行于三角形一的直截其他两(或两的延),所得的段成比例88定理如果一条直截三角形的两(或两的延)所得的段成比例,那么条直平行于三角形的第三89平行于三角形的一,并且和其他两相交的直,所截得的三角形的三与原三角形三成比例90定理平行于三角形一的直和其他两(或两的延)相交,所构成的三角形与原三角形相似91相似三角形判定定理1两角相等,两三角形相似(ASA)92直角三角形被斜上的高分成的两个直角三角形和原三角形相似93判定定理2两成比例且角相等,两三角形相似(SAS)94判定定理3三成比例,两三角形相似(SSS)95定理如果一个直角三角形的斜和一条直角与另一个直角三角形的斜和一条直角成比例,那么两个直角三角形相似96性定理1相似三角形高的比,中的比与角平分的比都等于相似比97性定理2相似三角形周的比等于相似比98性定理3相似三角形面的比等于相似比的平方99任意角的正弦等于它的余角的余弦,任意角的余弦等于它的余角的正弦100任意角的正切等于它的余角的余切,任意角的余切等于它的余角的正切101是定点的距离等于定的点的集合102的内部可以看作是心的距离小于半径的点的集合12103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。
中考数学知识点复习总复习资料大全(精华版)
中考数学总复习资料大全第一章实数★重点★实数的有关概念及性质,实数的运算☆内容提要☆一、重要概念1.数的分类及概念数系表:整数正整数0有理数实数(有限或无限循环性数)分数正无理数负整数正分数负分数无理数(无限不循环小数)说明:“分类”的原则:1)相称(不重、不漏)2)有标准负无理数正数实数0负数整数有理数分数无理数整数有理数分数无理数2.非负数:正实数与零的统称。
(表为:x≥0)常见的非负数有:a 2│a│(a 为一切实数)a (a≥0)性质:若干个非负数的和为0,则每个非负担数均为0。
3.倒数:①定义及表示法②性质: A.a ≠1/a (a≠±1);B.1/a 中,a≠0;C.0 <a<1 时1/a >1;a >1 时,1/a <1;D. 积为1。
4.相反数:①定义及表示法②性质: A.a ≠0 时,a≠-a;B.a 与-a 在数轴上的位置;C. 和为0, 商为-1 。
5.数轴:①定义(“三要素”)②作用: A. 直观地比较实数的大小;B. 明确体现绝对值意义;C. 建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数(正整数—自然数)定义及表示:奇数:2n-1偶数:2n(n 为自然数)7.绝对值:①定义(两种):代数定义:│a│= a(a ≥0) -a(a<0)几何定义:数 a 的绝对值顶的几何意义是实数 a 在数轴上所对应的点到原点的距离。
②│a│≥0, 符号“││”是“非负数”的标志; ③数 a 的绝对值只有一个; ④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。
二、实数的运算1.运算法则(加、减、乘、除、乘方、开方)2.运算定律(五个—加法[ 乘法] 交换律、结合律;[ 乘法对加法的] 分配律)3.运算顺序: A. 高级运算到低级运算;B. (同级运算)从“左”到“右”(如5÷1 ×55);C.( 有括号时) 由“小”到“中”到“大”。
新人教版初中数学中考总复习:统计与概率--知识点整理及重点题型梳理
新人教版初中数学中考总复习重难点突破知识点梳理及重点题型巩固练习中考总复习:统计与概率—知识讲解【考纲要求】1.能根据具体的实际问题或者提供的资料,运用统计的思想收集、整理和处理一些数据,并从中发现有价值的信息,在中考中多以图表阅读题的形式出现;2.了解总体、个体、样本、平均数、加权平均数、中位数、众数、极差、方差、频数、频率等概念,并能进行有效的解答或计算;3.能够对扇形统计图、列频数分布表、画频数分布直方图和频数折线图等几种统计图表进行具体运用,并会根据实际情况对统计图表进行取舍;4.在具体情境中了解概率的意义;能够运用列举法(包括列表、画树状图)求简单事件发生的概率.能够准确区分确定事件与不确定事件;5.加强统计与概率的联系,这方面的题型以综合题为主,将逐渐成为新课标下中考的热点问题.【知识网络】「I 统计图表——।阅读图表提取信息T 集中程度I 怦均数中位教嬴【考点梳理】考点一、数据的收集及整理1 .一般步骤:调查收集数据的过程一般有下列六步:明确调查问题、确定调查对象、选择调查方法、展 开调查、记录结果、得出结论.2 .调查收集数据的方法:普查与抽样调查. 要点诠释:(1)通过调查总体的方式来收集数据的,抽样调查是通过调查样本方式来收集数据的.(2)一般地,当总体中个体数目较多,普查的工作量较大;受客观条件的限制,无法对所有个体进行 普查;或调查具有破坏性时,不允许普查,这时我们往往会用抽样调查来体现估计总体的思想 (3)用抽签的办法决定哪些个体进入样本.统计学家们称这种理想的抽样方法为简单的随机抽样 3 .数据的统计:条形统计图、折线统计图、扇形统计图是三种最常用的统计图. 要点诠释:这三种统计图各具特点:条形统计图可以直观地反映出数据的数量特征;折线统计图可以直观地反映出数据的数量变化规律;扇形统计图可以直观地反映出各部分数量在总量中所占的份额.收集数据媒体查询抽样调查-抽样的基本要求总体个体样本T 整理数据借助统计活动研究概率从概 率角度分析善数据特征离散程度限差方差标准差实验估计概必然事不可能事游戏的 公平与模拟等效实考点二.数据的分析 1 .基本概念:总体:把所要考查的对象的全体叫做总体; 个体:把组成总体的每一个考查对象叫做个体;样本:从总体中取出的一部分个体叫做总体的一个样本; 样本容量:样本中包含的个体的个数叫做样本容量;频数:在记录实验数据时,每个对象出现的次数称为频数;频率:每个对象出现的次数与总次数的比值(或者百分比)称为频率;平均数:在一组数据中,用数据的总和除以数据的总个数就得到这组数据的平均数;中位数:将一组数据从小到大依次排列,位于正中间位置的数(或正中间两个数据的平均数)叫做这组 数据的中位数;众数:在一组数据中,出现频数最多的数叫做这组数据的众数; 极差:一组数据中的最大值减去最小值所得的差称为极差;方差:我们可以用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的 情况,这个结果通常称为方差.计算方差的公式:设一组数据是/,无是这组数据的平均数。
中考数学知识点复习 总复习资料大全(精华版)
中考数学知识点复习总复习资料大全(精华版)第一章实数重要概念:1.数的分类及概念:数系表包括正整数、整数、有限或无限循环小数的负整数、正分数、分数、负分数、正无理数、无理数和负无理数。
分类的原则是相称且有标准。
2.非负数:指正实数和零的统称。
常见的非负数有a²(a为一切实数)、|a|和a(a≥0)。
若干个非负数的和为非负数。
3.倒数:①定义及表示法;②性质:A。
a≠1/a(a≠±1);B。
1/a中,a≠0;C。
0<a<1时1/a>1;a>1时,1/a<1;D。
积为1.4.相反数:①定义及表示法;②性质:A。
a≠时,a≠-a;B。
a与-a在数轴上的位置;C。
和为0,商为-1.5.数轴:①定义(“三要素”);②作用:A。
直观地比较实数的大小;B。
明确体现绝对值意义;C。
建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数(正整数—自然数):定义及表示:奇数为2n-1,偶数为2n(n为自然数)。
7.绝对值:①定义(两种):代数定义和几何定义;②│a│≥0,符号“││”是“非负数”的标志;③数a的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。
实数的运算:1.运算法则(加、减、乘、除、乘方、开方)。
2.运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]分配律)。
3.运算顺序:A。
高级运算到低级运算;B。
(同级运算)从“左”到“右”(如5÷1×5);C。
(有括号时)由“小”到“中”到“大”。
典型例题:1.已知:a、b、x在数轴上的位置如下图,求证:│x-a│+│x-b│=b-a。
2.已知:a-b=-2且ab<0,(a≠0,b≠0),判断a、b的符号。
第二章代数式重要概念:分类:单项式、整式、多项式、有理式、分式代数式和无理式。
代数式的运算:1.加减法:同类项相加减。
2.乘法:用分配律展开式子,然后合并同类项。
最新中考数学知识点梳理复习材料全套
最新中考数学知识点梳理复习材料全套
一、数的性质和运算
- 实数的性质
- 实数的四则运算
- 相反数和绝对值
- 平方和平方根
二、数的应用
- 通过相关数据进行数值计算和估算
- 运用比例解决实际问题
- 运用代数式求解实际问题
- 运用方程和不等式解决实际问题
三、图形的认识
- 点、线、面等基本图形的认识和特点
- 直线、射线、线段的认识和区别
- 角的认识,角的比较和运算
四、平面图形的性质和判断
- 平行线的性质和判断
- 特殊四边形的性质和分类
- 三角形的分类和判断
- 相似三角形的判断和性质
五、数的计算
- 分数的认识、比较和计算
- 有理数的认识、比较和计算
- 整数的认识、比较和计算
- 百分数的认识、比较和计算
六、数据的收集和表示
- 规整的表格和图表的制作和解读- 需求中的数据的收集和整理
- 信息的有效表达和转换
七、统计和概率
- 统计图表的制作和解读
- 统计问题的分析和解决
- 概率的认识和应用
八、代数式的认识和运算
- 代数式及其元素
- 代数式的计算和化简
- 一元一次方程及其应用
- 一元一次不等式及其应用
九、图形的变换
- 图形的移动、旋转、翻转和对称
- 图形的拼接和拆分
- 图形的相似
十、函数的认识和应用
- 函数的概念
- 函数的特征和变化规律
- 一次函数的性质和应用
- 二次函数的性质和应用
以上是最新中考数学知识点的梳理复习材料全套,希望对您的中考复习有所帮助。
人教版初中数学总复习资料
中考数学总复习资料㈠数与代数⒈数与式⑴有理数:有限或不限循环性数(无理数:无限不循环小数)⑵数轴:“三要素”⑶相反数⑷绝对值:│a │= a(a≥0) │a │=-a(a <0)⑸倒数⑹指数① 零指数:0a =1(a ≠0) ②负整指数: (a ≠0,n是正整数)⑺完全平方公式:2222)(b ab a b a +±=±⑻平方差公式:(a+b)(a -b )=22b a -⑼幂的运算性质:①m a ·n a =n m a + ②m a ÷n a =n m a - ③n m a )(=mn a ④n ab )(=n a nb ⑤n nn b ab a =)(⑽科学记数法:n a 10⨯(1≤a <10,n是整数)⑾算术平方根、平方根、立方根、 ⑿b an d b m c a n d b n m d cb a=++++++⇒≠+++=== :)0(等比性质⒉方程与不等式⑴一元二次方程①定义及一般形式:)0(02≠=++a c bx ax②解法:1.直接开平方法.2.配方法3.公式法:)04(24222,1≥--±-=ac b a acb b x4.因式分解法.③根的判别式:ac b 42-=∆>0,有两个解。
ac b 42-=∆<0,无解。
ac b 42-=∆=0,有1个解。
④维达定理:ac x x a b x x =⋅-=+2121, ⑤常用等式:2122122212)(x x x x x x -+=+ 212212214)()(x x x x x x -+=- ⑥应用题1.行程问题:相遇问题、追及问题、水中航行:水速船速顺+=v ;水速船速逆-=v2.增长率问题:起始数(1+X)=终止数3.工程问题:工作量=工作效率×工作时间(常把工作量看着单位“1”)。
4.几何问题⑵分式方程(注意检验)由增根求参数的值:①将原方程化为整式方程②将增根带入化间后的整式方程,求出参数的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学复习实数部分一、实数与数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴。
原点、正方向、单位长度是数轴的三要素。
2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。
实数和数轴上的点是一一对应的关系。
二、实数大小的比较1、在数轴上表示两个数,右边的数总比左边的数大。
2、正数大于0;负数小于0;正数大于一切负数;两个负数绝对值大的反而小。
三、实数的运算1、加法:(1)同号两数相加,取原来的符号,并把它们的绝对值相加;(2)异号两数相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。
可使用加法交换律、结合律。
2、减法:减去一个数等于加上这个数的相反数。
3、乘法:(1)两数相乘,同号取正,异号取负,并把绝对值相乘。
(2)n个实数相乘,有一个因数为0,积就为0;若n个非0的实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数为奇数个时,积为负。
(3)乘法可使用乘法交换律、乘法结合律、乘法分配律。
4、除法:(1)两数相除,同号得正,异号得负,并把绝对值相除。
(2)除以一个数等于乘以这个数的倒数。
(3)0除以任何数都等于0,0不能做被除数。
5、乘方与开方:乘方与开方互为逆运算。
6、实数的运算顺序:乘方、开方为三级运算,乘、除为二级运算,加、减是一级运算,如果没有括号,在同一级运算中要从左到右依次运算,不同级的运算,先算高级的运算再算低级的运算,有括号的先算括号里的运算。
无论何种运算,都要注意先定符号后运算。
四、有效数字和科学记数法1、科学记数法:设N>0,则N= a×10(其中1≤a<10,n为整数)。
2、有效数字:一个近似数,从左边第一个不是0的数,到精确到的数位为止,所有的数字,叫做这个数的有效数字。
精确度的形式有两种:(1)精确到那一位;(2)保留几个有效数字。
练习题:1.计算(-2)2-(-2) 3的结果是( )A. -4B. 2C. 4D. 12 2.下列计算错误的是()A.-(-2)=2 BC.2x+3x=5x D.(a222A.0.129×105 B. 1.2910 C.12.9103 D.129102 4.下列各式正确的是()A. 5.若43 32B.236 C.(3) 3 D.(π2)m3(n2)20,则m2n的值为()B. 1 B.6C.0 D.4D.9A. 4 A. 66.计算(3)的结果是()C.97.方程3x60的解的相反数是()A.2 B.-2 C.3 D.-3 8.下列实数中,无理数是()B.2C.1 3D.129.估计68的立方根的大小在( )A.2与3之间B.3与4之间C.4与5之间D.5与6之间10.扬州市旅游经济发展迅速,据扬州市统计局统计,2008年全年接待境)A.1.137×107 B.1.137×108 C.0.1137×108 D.1137×104 11.在下列实数中,无理数是()A.1 3B.CD.22 712.小明和小莉出生于1998年12月份,他们的出生日不是同一天,但都是星期五,且小明比小莉出生早,两人出生日期之和是22,那么小莉的出生日期是()A.15号B.16号C.17号D.18号13.如图,在数轴上表示到原点的距离为3个单位的点有题图第1214.n(1)2008+204_______.15.2008年5月26日下午,奥运圣火扬州站的传递在一路“中国加油”声中胜利结束,全程11.8千米,11.8千米用科学记数法表示是________米.16.计算:23;(2)(3) 17.若a2c40,则a b c18.在函数3223)a5y x的取值范围是.13.2008年5月27日,北京奥运会火炬接力传递活动在古城南京境)1101 3(3)(1)2(4)()(2)3921平方差公式:a2b2(a b)(a b);完全平方公式:a22ab b2(a b)22A.x24.若2x222y2(x y)(x y)B.x6x9(x3)C.x xy x(x y) D.x2y2(x y)2(3)十字相乘法:x(a b)x ab(x a)(x b)23,4y5,则2x-2y的值为(4)运用求根公式法:若axbx c0(a0)的两个根是x1、x2,则有:ax2bx c a(x x1)(x x2)3、因式分解的一般步骤:(1)如果多项式的各项有公因式,那么先提公因式;(2)提出公因式或无公因式可提,再考虑可否运用公式或十字相乘法;(3)对二次三项式,应先尝试用十字相乘法分解,不行的再用求根公式法。
(4)最后考虑用分组分解法。
四、分式1、分式定义:形如A的式子叫分式,其中A、B是整式,且B中含有字母。
BA.33B. -2C.55D.65(1)分式无意义:B=0时,分式无意义;B≠0时,分式有意义。
(2)分式的值为0:A=0,B≠0时,分式的值等于0。
(3)分式的约分:把一个分式的分子与分母的公因式约去叫做分式的约分。
方法是把分子、分母因式分解,再约去公因式。
(4)最简分式:一个分式的分子与分母没有公因式时,叫做最简分式。
分式运算的最终结果若是分式,一定要化为最简分式。
(5)通分:把几个异分母的分式分别化成与原来分式相等的同分母分式的过程,叫做分式的通分。
(6)最简公分母:各分式的分母所有因式的最高次幂的积。
2、分式的基本性质:(1)A A M(M是0的整式);(2)A A M(M是0的整式)BB Mb的结果为()ab b21 B.11 C.1 D.1 A.aba ba b2ab bm9的值为0,则m的值为()6.要使2m6m95.化简分式A.m=3 B.m=-3 C.m=±3 D.不存在7. 2的值(A.在1到2之间C.在3到4之间8.)B.在2到3之间D.在4到5之间C.D的倒数是()A.BBB M(3)分式的变号法则:分式的分子,分母与分式本身的符号,改变其中任何两个,分式的值不变。
3、分式的运算:(1)加、减:同分母的分式相加减,分母不变,分子相加减;异分母的分式相加减,先把它们通分成同分母的分式再相加减。
(2)乘:先对各分式的分子、分母因式分解,约分后再分子乘以分子,分母乘以分母。
(3)除:除以一个分式等于乘上它的倒数式。
(4)乘方:分式的乘方就是把分子、分母分别乘方。
五、二次根式1、二次根式的概念:式子9. 若xa b,y a b,则xy的值为( )A.2a B.2b C.a b D.a b10. )A.点P B.点Q C.点M D.点Na(a0)叫做二次根式。
11.下列根式中属最简二次根式的是()(1)最简二次根式:被开方数的因数是整数,因式是整式,被开方数中不含能开得尽方的因式的二次根式叫最简二次根式。
(2)同类二次根式:化为最简二次根式之后,被开方数相同的二次根式,叫做同类二次根式。
(3)分母有理化:把分母中的根号化去叫做分母有理化。
(4)有理化因式:把两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式(常用的有理化因式有:2、二次根式的性质:12.+y)2,则x-y的值为( )A.-1B.1C.2D.3 13.分解因式:2m3a与a;a cd与a cd)8m.4m3n16mn3=(a0);(1)(a)2a(a0)(2)a2a a(3)ab a b(a≥0,b≥0);(4)ab(a0) a3、运算:(1)二次根式的加减:将各二次根式化为最简二次根式后,合并同类二次根式。
(2)二次根式的乘法:练习题:1.计算:ab(a0,b0)x x3x2ax3y axy32ax2y2 431215.计算:3x3x=________;y922y5________.a b ab(a≥0,b≥0)。
(3)二次根式的除法:a(a0,b0) b16.当x时,分式x4的值为0.2x x 6217.先化简,再求值:(a2)(a2)a(a2),其中a1.18.已知x2ab6232()23265x14,求x12x1x11的值A.ab B.ab C.a2.下列计算正确的是()A.a22b D.ab619.当a=62时,求421的值.a21a2aa 12a2412,其中a是方程x2 2a4a42a a2aa a3B.212C.3x·2x236xD.π3120.先化简,再求值:3x10的根.3.下列因式分解错误的是( )第三章:方程和方程组2、一元二次方程(1)一元二次方程的一般形式:ax bx c0(其中x是未知数,a、b、c是已知数,a≠0)(2)一元二次方程的解法:直接开平方法、配方法、公式法、因式分解法(3)一元二次方程解法的选择顺序是:先特殊后一般,如没有要求,一般不用配方法。
(4)一元二次方程的根的判别式:b4ac当Δ>0时方程有两个不相等的实数根;当Δ=0时方程有两个相等的实数根;当Δ< 0时方程没有实数根,无解;当Δ≥0时方程有两个实数根 222一、一元方程1、一元一次方程(1)一元一次方程的标准形式:ax+b=0(其中x是未知数,a、b是已知数,a≠0)(2)一玩一次方程的最简形式:ax=b (其中x是未知数,a、b是已知数,a≠0)(3)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项和系数化为1。
(4)一元一次方程有唯一的一个解。
(5)一元二次方程根与系数的关系:若x1,x2是一元二次方程ax2bx c0的两个根,那么:x1bx2,a2x1x2c a(6)以两个数x1,x2为根的一元二次方程(二次项系数为1)是:x(x1x2)x x1x20三、分式方程(1)分式方程的解法:去分母法,方程两边都乘以最简公分母。
特殊方法:换元法。
(2)检验方法:一般把求得的未知数的值代入最简公分母,使最简公分母不为0的就是原方程的根;使得最简公分母为0的就是原方程的增根,增根必须舍去,也可以把求得的未知数的值代入原方程检验。
四、方程组1、一次方程组:(1)二元一次方程组:一般形式:a1x b1y c1(a,a,b,b,c,c不全为0)解法:代入消远法和加减消元法121212ax by c22 2解的个数:有唯一的解,或无解,当两个方程相同时有无数的解。
一、一元二次方程的解法1、(1)用直接开方法解;(2)用公式法;(3)用因式分解法2、(1);先化为一般形式,再用公式法解;(2)直接可以十字相乘法因式分解后可求解。
二、分式方程的解法:分析:(1)用去分母的方法;(2)用换元法解:略三、根的判别式及根与系数的关系四、方程组1分析:(1)用加减消元法消x较简单;(2)应该先用加减消元法消去y,变成二元一次方程组,较易求解。