污垢热阻及导热系数数据
(完整版)换热器的传热系数K
介质不同,传热系数各不相同我们公司的经验是:1、汽水换热:过热部分为800~1000W/m2.℃饱和部分是按照公式K=2093+786V(V是管内流速)含污垢系数0.0003。
水水换热为:K=767(1+V1+V2)(V1是管内流速,V2水壳程流速)含污垢系数0.0003实际运行还少有保守。
有余量约10%冷流体热流体总传热系数K,W/(m2.℃)水水 850~1700水气体 17~280水有机溶剂 280~850水轻油 340~910水重油60~280有机溶剂有机溶剂115~340水水蒸气冷凝1420~4250气体水蒸气冷凝30~300水低沸点烃类冷凝 455~1140水沸腾水蒸气冷凝2000~4250轻油沸腾水蒸气冷凝455~1020不同的流速、粘度和成垢物质会有不同的传热系数。
K值通常在800~2200W/m2·℃范围内。
列管换热器的传热系数不宜选太高,一般在800-1000 W/m2·℃。
螺旋板式换热器的总传热系数(水—水)通常在1000~2000W/m2·℃范围内。
板式换热器的总传热系数(水(汽)—水)通常在3000~5000W/m2·℃范围内。
1.流体流径的选择哪一种流体流经换热器的管程,哪一种流体流经壳程,下列各点可供选择时参考(以固定管板式换热器为例)(1) 不洁净和易结垢的流体宜走管内,以便于清洗管子。
(2) 腐蚀性的流体宜走管内,以免壳体和管子同时受腐蚀,而且管子也便于清洗和检修。
(3) 压强高的流体宜走管内,以免壳体受压。
(4) 饱和蒸气宜走管间,以便于及时排除冷凝液,且蒸气较洁净,冷凝传热系数与流速关系不大。
(5) 被冷却的流体宜走管间,可利用外壳向外的散热作用,以增强冷却效果。
(6) 需要提高流速以增大其对流传热系数的流体宜走管内,因管程流通面积常小于壳程,且可采用多管程以增大流速。
(7) 粘度大的液体或流量较小的流体,宜走管间,因流体在有折流挡板的壳程流动时,由于流速和流向的不断改变,在低Re(Re>100)下即可达到湍流,以提高对流传热系数。
化工基础习题解答《传热过程及换热器》(张近主编)
传热过程及换热器1.燃烧炉的平壁是一层耐火砖和一层普通砖砌成,内层耐火砖厚度为230mm ,外层普通砖厚度为240mm ,当达到定态传热时,测得炉内壁温度是700℃,外表面温度是100℃,为了减少热量损失,在普通砖外面加砌一层厚度为40mm 的保温材料,当定态后测得内壁面温度为720℃,保温材料外表面温度为70℃。
求加保温材料前后每平方壁面热损失是多少?耐火砖、普通砖、保温材料的热导率分别为1.163W·m -1·℃-1,0.5815W·m -1·℃-1,0.07W·m -1·℃-1。
解:根据多层平壁热传导公式:i iit Q A δλΣΔ=Σ 加保温材料前:Σt i =t 1-t n+1=700-100=600℃0.230.241.1630.58150.6105i i δλΣ=+= 26000.6105982.8W/m Q A == 加保温材料后:Σt i =t 1-t n+1=720-70=650℃0.230.240.041.1630. 1.18581500720.i i δλΣ=++= 2545W/m 1.186250Q A == 2.如习题1加保温材料后测得内壁面温度为720℃,保温材料外表面温度为70℃。
计算耐火砖与普通砖、普通砖与保温材料间的交界面温度。
解:加保温材料后,传热速率为:2545W/m 1.186250Q A == 根据平壁热传导公式:1211545t t Q Aδλ−== t 1=720;λ1=1.163W·m -1·℃-1,δ1=0.24m 代入上式解得:t 2=1110.23720545 1.1636211.Q t A δλ−⋅=−×=℃ 同理得 t 3=3430.0470545031.74.08Q t A δλ+⋅=+×=℃ 3.平壁炉的炉壁内层为120mm 厚的耐火材料和外壁厚度为230mm 建筑材料砌成,两种材料的导热系数为未知,测得炉内壁面温度为800℃,外侧壁面温度113℃,后来在普通建筑材料外面又包一层厚度为50mm 的石棉以减少热损失,包扎后测得炉内壁面温度为800℃,耐火材料与建筑材料交界面温度为686℃,建筑材料与石棉交界面温度为405℃,石棉外侧温度为77℃,问包扎石棉后热损失比原来减少的百分数?解:包石棉材料前得传热速率1128001130.120.23tQ δλλλΣΔ−==Σ+ 包石棉材料后得传热速率2128004050.120.23tQ δλλλΣΔ−==Σ+ 包扎石棉后热损失比原来减少的百分数=21800405110.425=42.45%800113Q Q −−==−=− 4.φ50mm×5mm 的不锈钢管(λ1=16 W·m -1·K -1)外包扎厚度为30mm 的石棉(λ2=0.22 W·m -1·K -1),若管内壁温度为600℃,石棉外壁面温度100℃,求每米管线的热损失。
换热器污垢系数
Φ = hi Ai ( t fi − t fo )
Φ = ho A1 (t wo − t fo ) + hoη f A2 (t wo − t fo ) = hcη o Ao (t wo − t fo )
式中, 式中,ηo=(A1+ ηfA2)/Ao称为肋面总 效率。从以上三式易得: 效率。从以上三式易得:
19
1. 顺流换热器的平均温差 参看图9 参看图9-5,在微元换热面dA上,有 在微元换热面d
dΦ = k[t1 ( x) − t2 ( x)]dA = k∆t ( x)dA
传热量等于热流体放热量,于是有: 传热量等于热流体放热量,于是有:
dΦ = − qm1c1dt1 ( x )
同理,对于冷流体则有: 同理,对于冷流体则有:
4
由分析可知: 由分析可知: Φ = hiπ d i l ( t fi − t wi ) =
t fi − t wi 1 hiπ d i l
2π λ l (t wi - t wo ) t wi - t wo = = d d 1 ln o ln o di 2π λ l d i
经整理,可得: 经整理,可得:
20
式中, 是为简化表达引入的。分离变量并积分, 式中,µ 是为简化表达引入的。分离变量并积分,得:
d Φ = q m2 c 2 d t 2 ( x )
整理以上三式,可得: 整理以上三式,可得:
1 1 d[ ∆t ( x )] = dt1 ( x ) − dt 2 ( x ) = − q c + q c d Φ = − µ dΦ m2 2 m1 1 d[ ∆ t ( x )] = − µ k ∆ t ( x ) dA
kf '= 1 δ Ai + + hi λ h oη o Ao 1 = 1 δ 1 + + hi λ h oη oβ 1
导热系数表
金属导热系数表(W/mK):银429铜401金317铝237铁80锡67铅34.8常用材料导热系数(20℃)——λ(w/m.k)晨怡热管2008-5-2 15:03:49 名称λ(w/m.k) F4、F460.19~0.25聚苯乙烯0.04PVC0.14~0.15PP0.21~0.26PE0.42有机玻璃0.14~0.20泡沫0.045木材(横) 0.14~0.17(纵) 0.38散珍珠岩0.042~0.08水泥珍珠岩0.07~0.09石棉0.15混凝土 1.2885%MgO0.07玻璃0.52~1.01水垢 1.3~3.1搪瓷0.87~1.16耐火砖 1.06普通砖0.7~0.8银419锌112钛14.63锡64铅35镍90钢36~54铸铁42~90钝铜381黄铜118青铜71纯铝218+++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 铸铝138~147不锈钢17空气温度[10^-2(w/m.k)] 100K0.93 150K 1.38 200K 1.80 250K 2.21 300K 2.62 350K 3.00 400K 3.38水温度w/m.k0℃0.50 10℃0.58 20℃0.60 30℃0.62 40℃0.64 50℃0.65 60℃0.66 70℃0.67 80℃0.68水蒸汽0.023硫酸5~25%0.51~0.4725~50%0.47~0.41++++++++++++++++++++++++++++++++++++++++++++++++++++++++++导热系数导热系数是指在稳定传热条件下,1m厚的材料,两侧表面的温差为1度(K,°C),在1小时内,通过1平方米面积传递的热量,单位为瓦/米?度(W/m?K,此处的K可用°C代替)。
导热系数与材料的组成结构、密度、含水率、温度等因素有关。
(影响换热器总传热系数的原因
1L: 1、结构;2、介质;3、运行参数2L: 传热系数的大小与冷热流体的性质、换热的操作条件(如流速、温度等)、传热面的结垢状况以及换热器的结构和尺寸等许多因素有关。
对流传热十分复杂,垢层热阻又难以确定,因此传热系数的计算值与实际值往往相差较大。
在设计换热器时,最好有实测值或生产中积累的经验数据作为参考。
3L: 换热器的总传热系数主要与换热管两侧的膜传热系数和换热管的热阻有关,因而换热器的总传热系数与下列参数有关:1.换热管、壳程流体的物性数据(粘度、表面张力、密度等);2.换热管、壳程流体的流速有关;3.换热管的热阻有关。
4L: 在传热基本方程式Q=KAΔtm中,传热量Q是生产任务所规定的,温度差Δtm之值由冷、热流体进、出换热器的始、终温度决定,也是由工艺要求给出的条件,则传热面积A之值与总传热系数K值密切相关,因此,如何合理地确定K值,是设计换热器中的一个重要问题。
目前,总传热系数K值有三个来源:一是选取经验值,即目前生产设备中所用的经过实践证实并总结出来的生产实践数据;二是实验测定K值;三是计算。
在传热计算中,如何合理地确定K值,是设计换热器中的一个重要问题。
而在设计中往往参照在工艺条件相仿、类似设备上所得较为成熟的生产数据作为设计依据。
工业生产用列管式换热器中总传热系数值的大致范围见表4-10列管式换热器中K值大致范围热流体冷流体总传热系数,KW/m2·K水水850~1700轻油水340~910重油水60~280气体水17~280水蒸汽冷凝水1420~4250水蒸汽冷凝气体30~300低沸点烃类蒸汽冷凝(常压)水455~1140高沸点烃类蒸汽冷凝(减压)水60~170水蒸汽冷凝水沸腾2000~4250水蒸汽冷凝轻油沸腾455~1020水蒸汽冷凝重油沸腾140~425总传热系数的计算前述确定K值的方法虽然简单,但往往会因具体条件不完全符合所设计的情况,而影响到设计的可靠性。
所以,还必须对传热过程进行理论上的分析,以了解各种因素对传热过程的影响,从而建立起计算总传热系数K的定量式。
从冷凝器端差的变化分析污垢热阻对冷水机组性能的影响
从冷凝器端差的变化分析污垢热阻对冷水机组性能的影响刘金平1、倪永刚张亚军21、华南理工大学电力学院2、深圳市勤达富节能技术有限公司 摘要:本文通过对逆卡诺循环、蒸气压缩理论制冷循环的性能计算、典型 冷水机组的性能指标、ARI 标准和采暖通风与空气调节设计规范的分析可知冷凝 温度每增加1 r ,压缩机单位制冷量的功耗约增加 3%〜4%。
当冷凝器冷却水 侧的换热表面有污垢形成后,导致冷凝器的对数平均传热温差和端差增加, 使冷 水机组的冷凝温度升高,冷水机组的性能下降。
分析了水处理和清洗等应对污垢 的措施,得出了橡胶海绵球清洗法是目前为止使冷凝器冷却水管始终保持在清洁 状态的最为有效的方法。
关键词:冷凝器端差;污垢热阻;冷水机组;橡胶海绵球清洗法1 )、冷凝温度对冷水机组性能的影响冷水机组的运行效率受蒸发温度和冷凝温度的影响, 蒸发温度一定时,冷凝温度越高,其运行效率越差。
逆卡诺循环的制冷系数为:—为制冷量,W —为耗功率,W 为蒸发温度,K ;'—为冷凝温度,K o根据目前空调工况冷水机组的设计参数,假设逆卡诺循环的低温热源(蒸发) 温度为5.5 r ,冷凝温度为36.5 r ,此时的制冷系数为8.99。
表1显示了冷 凝温度对逆卡诺循环制冷系数的影响,冷凝温度升高 1 r ,则制冷系数降低 2.94%〜2.33%,且冷凝温度越低,影响越显著。
表1.冷凝温度对逆卡诺循环制冷系数的影响36.5 37.538.539.5 40.5 41.542.5-为逆卡诺循环的制冷系数21a■叫「冷凝温度「C ) 中制冷系数8.99 8.718.448.207.967.747.53相对冷凝温度为36.5 C时制冷系数的降低百分数(%)3.13 6.068.8311.4313.8916.22冷凝温度升高1 C制冷系数降低百分数(%)2.94 2.76 2.60 2.46 2.33对图1所示的蒸气压缩理论制冷循环进行计算,制冷剂为R 134a,根据目前空调工况冷水机组的设计参数,设蒸发温度为5.5 C ,冷凝温度为36.5 C ,进压缩机前的制冷剂蒸气过热度为0C ,冷凝器出口制冷剂液体的过冷度为0C,取压缩过程的等熵绝热效率为0.9,此时的理论制冷系数为6.83,表2 显示了冷凝温度对理论制冷循环制冷系数的影响,冷凝温度升高 1 C,则制冷系数降低2.93%〜3.66%,且冷凝温度越低,影响越显著。
传热习题解答
3-29 平壁炉炉壁由两种材料构成。
内层为130mm 厚的某种耐火材料,外层为250mm 厚的某种普通建筑材料。
此条件下测得炉内壁温度为820℃,外壁温度为115℃。
为减少热损失,在普通建筑材料外面又包一层厚度为50mm 的石棉,其导热系数为m ℃。
包石棉后测得的各层温度为:炉内壁820℃、耐火材料与普通建筑材料交界面为690℃,普通建筑材料与石棉交界面为415℃,石棉层外侧为80℃。
问包石棉层前后单位传热面积的热损失分别为多少? 解:加增石棉前后各界面处的温度符号如本题附图所示。
b 1l 1b 2l 2t 1t 2t 3加增石棉层之前t'1加增石棉层之后t'2t'3t'4b 3l 3耐火材料普通材料b 1l 1b 2l 2耐火材料普通材料石棉习题3-29附图导热过程达到定态时,加增石棉后热损失等于通过石棉的导热速率()()23433W/m 147405.08041522.0'''=-=-=b t t q l由此可求耐火材料和普通材料的导热系数:()KW/m 34.141569025.01474'''3222⋅=-⨯=-=t t b q l()K W/m 47.169082013.01474'''2111⋅=-⨯=-=t t b q l加增石棉前热损失速率:2221131W/m 256434.1/25.047.1/13.0115820//=+-=+-=l l b b t t q3-30如附图所示,炉壁由绝热砖A 和普通砖B 组成。
已知绝热砖导热系数A=m K ,其厚度为210mm ;普通砖导热系数B=m K 。
当绝热砖放在里层时,各处温度如下:t 1未知,t 2=210℃, t 3=60℃, t b =15℃。
其中t 1指内壁温度,t b 指外界大气温度。
外壁与大气的对流传热系数为=10W/m2K 。
第五章 习题解答
答:包括以下三个过程:
1热流体以对流传热方式将热量传给管内壁
2热量由内壁面以热传导方式传给外壁面
3热量由外壁面以对流传热的方式传给冷流体
6.简述何谓强化传热?有哪三个主要途径?
答:强化传热是指提高冷热流体间的传热速率。
1增大总传热系数K,这是强化传热的重点。
5.对流传热速率方程的表达式为,其中温度差代表。
流体与壁面(或反之)间温度差的平均值
6.在间壁式换热器中,间壁两边流体都变温时,两流体的流动方向有、、和四种。
并流逆流错流折流
7.对流传热系数的主要影响因素有(1)(2)(3)(4)(5)。
1、流体的种类和相变化的情况2、流体的性质3、流体流动的状态
4、流体流动的原因5、穿热面的形状、分布和大小
已知 ,故
(2)当导热系数小的材料包在里层时,热损失 为:
(3)当导热系数大的材料包在里层时,热损失 为:
(4)可求出: ,说明在圆筒壁当采用两种以上材料保温时,为减少热损失,应将 小的材料包在里层为好。
5.求绝压为140 ,流量为1000 的饱和水蒸汽冷凝后并降温到60℃时所放出的热量。用两种方法计算并比较结果。已知140 水蒸汽的饱和温度为109.2℃,冷凝热为2234.4 ,焓为2692.1 ;60℃的水的焓为251.21 。
解:(1)第一种方法
(2分)
(2)第二种方法
①冷凝水的平均温度为 (1分)
查出84.6℃下的水的比热容为: (1分)
②水蒸气冷凝并降温放出的热量为:
计算表明两种方法结果一样,但是第一种方法较简单。(1分)
6.将0.417 、80℃的有机苯,通过一换热器冷却到40℃;冷却水初温为30℃,出口温度不超过35℃。假设热损失可略,已查出在平均温度下,硝基苯和水的比热容分别为1.6 。求:(1)冷却水用量 ?
污垢热阻
污垢热阻垢热阻时的传热系数的0.85倍,比较设定一和设定三,可知气侧和水侧都取常规污垢热阻时的传热系数是没有考虑污垢热阻时的传热系数的0.84倍,这说明原来习惯上取的0.85的系数是合适的,同时还说明我们管片式热热器计算中气侧的污垢热阻比水侧的污垢热阻对传热系数的影响小,气侧污垢热阻对总体传热系数的影响可以忽略不计,也就是说管外污垢热阻比管内污垢热阻的影响小。
这就说明在过去我们常规设计中,取0.85倍的传热系数是得当的和可行的,也是考虑污垢热阻时最简便的一种经验方法了。
2污垢对传热的影响近几年随着我国换热器行业产品的快速发展,换热器产品使用条件和换热器产品客户发生了根本的改变,用户对换热器产品设计提出了更高、更严、更具体的要求,如产品压力、面积、体积和工艺介质方面都与以往大不相同。
最明显的一点,用户在水的污垢热阻都提出了更明确的要求,明确提出水的污垢热阻是0.000344m2.℃/W(是原来洁净自来水的2倍,这一般是用户的最低要求)、0.0004m2.℃/W,有的甚至提到了0.0005m2.℃/W。
气侧一般是压缩空气,用户一般没有明确提出要求,但按《换热器原理及计算》书中明确规定其污垢热与设定一比较,设定九传热系数是设定一传热系数0.69倍;与设定五比较,设定九传热系数是设定五传热系数0.99倍。
从上面几种污垢热阻组合计算比较,可以看出水侧取不同污垢热阻时,对传热系数的影响是不同的,并且都超过了原来的0.85的系数,当水侧污垢系数rl=0.000344m2.℃/W时,系数变为0.73;当水侧污垢系数rl=0.0004m2.℃/W时,系数变为0.70;当水侧污垢系数rl=0.0005m2.℃/W时,系数变为0.65;总之水侧的污垢热阻大大削弱了传热性能。
套片式换热器气侧污垢系数改变时,传热系数变化不大,也就是说气侧污垢热阻对传热系数影响仍然可以忽略不计。
显而易见,可知现在设计计算中仍按原来取0.85系数计算方法是不适用的,而应该在换热器设计中根据具体不同的污垢系数具体计算。
导热系数、传热系数、热阻值概念及热工计算方法简述实用版)
导热系数、传热系数、热阻值概念及热工计算方法导热系数λ[W/(m.k)]:导热系数是指在稳定传热条件下,1m厚的材料,两侧表面的温差为1度(K,℃),在1小时内,通过1平方米面积传递的热量,单位为瓦/米?度(W/m?K,此处的K可用℃代替)。
导热系数可通过保温材料的检测报告中获得或通过热阻计算。
传热系数K [W/(㎡?K)]:传热系数以往称总传热系数。
国家现行标准规范统一定名为传热系数。
传热系数K 值,是指在稳定传热条件下,围护结构两侧空气温差为1度(K,℃),1小时内通过1平方米面积传递的热量,单位是瓦/平方米?度(W/㎡?K,此处K可用℃代替)。
传热系数可通过保温材料的检测报告中获得。
热阻值R(m.k/w):热阻指的是当有热量在物体上传输时,在物体两端温度差与热源的功率之间的比值。
单位为开尔文每瓦特(K/W)或摄氏度每瓦特(℃/W)。
传热阻:传热阻以往称总热阻,现统一定名为传热阻。
传热阻R0是传热系数K的倒数,即R0=1/K,单位是平方米*度/瓦(㎡*K/W)围护结构的传热系数K值愈小,或传热阻R0值愈大,保温性能愈好。
(节能)热工计算:1、围护结构热阻的计算单层结构热阻: R=δ/λ式中:δ—材料层厚度(m);λ—材料导热系数[W/(m.k)]多层结构热阻: R=R1+R2+----Rn=δ1/λ1+δ2/λ2+----+δn/λn式中: R1、R2、---Rn—各层材料热阻(m.k/w)δ1、δ2、---δn—各层材料厚度(m)λ1、λ2、---λn—各层材料导热系数[W/(m.k)]2、围护结构的传热阻R0=Ri+R+Re式中: Ri —内表面换热阻(m.k/w)(一般取0.11)Re —外表面换热阻(m.k/w)(一般取0.04)R —围护结构热阻(m.k/w)3、围护结构传热系数计算K=1/ R0式中: R0—围护结构传热阻外墙受周边热桥影响条件下,其平均传热系数的计算Km=(KpFp+Kb1Fb1+Kb2Fb2+ Kb3Fb3 )/( Fp + Fb1+Fb2+Fb3)式中:Km—外墙的平均传热系数[W/(m.k)]Kp—外墙主体部位传热系数[W/(m.k)]Kb1、Kb2、Kb3—外墙周边热桥部位的传热系数[W/(m.k)]Fp—外墙主体部位的面积Fb1、Fb2、Fb3—外墙周边热桥部位的面积4、单一材料热工计算运算式①热阻值R(m.k/w) = 1 / 传热系数K [W/(㎡?K)]②导热系数λ[W/(m.k)] = 厚度δ(m) / 热阻值R(m.k/w)③厚度δ(m) = 热阻值R(m.k/w) * 导热系数λ[W/(m.k)]④厚度δ(m) = 导热系数λ[W/(m.k)] / 传热系数K [W/(㎡?K)]5、围护结构设计厚度的计算厚度δ(m) = 热阻值R(m.k/w) * 导热系数λ[W/(m.k)] *修正系数(见下表)R值和λ值是用于衡量建筑材料或装配材料热学性能的两个指标。
板换污垢系数
液体名称
污垢系数(㎡*K/W)
软化水或蒸馏水
0.000009
城市用软水
0.000017
城市用硬水(加热时)
0.000043
处理过的冷却水
0.000034
沿海或港湾水
0.000043
大洋的海水
0.000026
河水、运河水
0.000043
机器夹套水
0.000052
润滑油
0.000009-0.000043
140
有机酸、无机酸、浓碱液
乙丙橡胶(EPDM)
150
酸、碱、酮溶液、醇类
维通(Viton)
180
浓酸、有机溶剂、酒精
硅橡胶
175
食品、油、脂肪、酒精
海帕纶(CSM)
100
抗氧化剂、油酸
丁苯橡胶(SBR)
一般非油介质
氟塑料
177
有机溶剂
氯丁橡胶
100
矿物油、润滑油
石棉(Caf)
250-260
不同浓度、温度的CL–对金属板的腐蚀
氯离子含量
60℃
80℃
120℃
130℃
=10 ppm
304
304
304
316
=25 ppm
304
304
316
316
=50 ppm
304
316
316
Ti
=80 ppm
316
316
316
Ti
=150 ppm
316
316
Ti
Ti
Ti
>300ppm
Ti
Ti
Ti
常见材料导热系数
一、固体的导热系数常用的固体导热系数见表 4-1 。
在所有固体中,金属是最好的导热体。
纯金属的导热系数一般随温度升高而降低。
而金属的纯度对导热系数影响很大,如含碳为 1% 的普通碳钢的导热系数为45W/m · K ,不锈钢的导热系数仅为16 W/m · K 。
表 4-1 常用固体材料的导热系数固体温度,℃导热系数,λW/m · K铝300 230镉18 94铜100 377熟铁18 61铸铁53 48铅100 33镍100 57银100 412钢 (1%C) 18 45船舶用金属30 113青铜189不锈钢20 16石墨0 151石棉板50 0.17石棉0~100 0.15混凝土0~100 1.28耐火砖 1.04 ①保温砖0~100 0.12~0.21建筑砖20 0.69绒毛毯0~100 0.047棉毛30 0.050玻璃30 1.09云母50 0.43硬橡皮0 0.15锯屑20 0.052软木30 0.043玻璃毛-- 0.04185% 氧化镁-- 0.070二、液体的导热系数液体分成金属液体和非液体两类,前者导热系数较高,后者较低。
在非金属液体中,水的导热系数最大,除去水和甘油外,绝大多数液体的导热系数随温度升高而略有减小。
一般来说,溶液的导热系数低于纯液体的导热系数。
表 4-2 和图 4-6 列出了几种液体的导热系数值。
表 4-2 液体的导热系数液体温度,℃导热系数,λ W/m · K醋酸 50% 20 0.35丙酮30 0.17苯胺0~20 0.17苯30 0.16氯化钙盐水 30% 30 0.55乙醇 80% 20 0.24甘油 60% 20 0.38甘油 40% 20 0.45正庚烷30 0.14水银28 8.36硫酸 90% 30 0.36硫酸 60% 30 0.43水30 0.62三、气体的导热系数气体的导热系数随温度升高而增大。
在通常的压力范围内,其导热系数随压力变化很小,只有在压力大于 196200kN/m 2 ,或压力小于 2.67 kN/m 2 (20mmHg) 时,导热系数才随压力的增加而加大。
导热系数表
金属导热系数表(W/mK):银429铜401金317铝237铁80锡67铅34.8常用材料导热系数(20℃)-—λ(w/m.k)晨怡热管2008-5—2 15:03:49 名称λ(w/m。
k)F4、F460。
19~0。
25聚苯乙烯0.04PVC0.14~0。
15PP0。
21~0。
26PE0。
42有机玻璃0。
14~0。
20泡沫0。
045木材(横) 0。
14~0.17(纵)0。
38散珍珠岩0。
042~0。
08水泥珍珠岩0.07~0。
09石棉0。
15混凝土1。
2885%MgO0.07玻璃0。
52~1。
01水垢 1.3~3。
1搪瓷0.87~1.16耐火砖 1.06普通砖0。
7~0.8银419锌112钛14.63锡64铅35镍90钢36~54铸铁42~90钝铜381黄铜118青铜71纯铝218++++++++++++++++++++++++++++++++++++++++++++++++++ +++++++铸铝138~147不锈钢17空气温度[10^-2(w/m。
k)]100K0。
93150K1。
38200K1。
80250K 2.21300K2。
62350K3。
00400K 3.38水温度w/m。
k0℃0。
5010℃0。
5820℃0。
6030℃0。
6240℃0。
6450℃0.6560℃0.6670℃0.6780℃0.68水蒸汽0。
023硫酸5~25%0。
51~0。
4725~50%0。
47~0.41++++++++++++++++++++++++++++++++++++++++++++++++++ ++++++++导热系数导热系数是指在稳定传热条件下,1m厚的材料,两侧表面的温差为1度(K,°C),在1小时内,通过1平方米面积传递的热量,单位为瓦/米?度(W/m?K,此处的K可用°C代替).导热系数与材料的组成结构、密度、含水率、温度等因素有关.非晶体结构、密度较低的材料,导热系数较小.材料的含水率、温度较低时,导热系数较小.通常把导热系数较低的材料称为保温材料,而把导热系数在0。
污垢热阻法
---------- 污垢热阻法是最传统、最经典的污垢监测模型,其基本定义见下式。
清洁和污染的换热面热阻分布如图1所示。
首先测量洁净状态下的总传热系数Kc,然后在相同工况下,监测污染状态的总传热系数Kf,即可由式(8)和(12 计算得出对应工况下的污垢热阻。
如果可以在线测得K 随时间变化的关系,就可以得到污垢热阻随时间的变化特性。
4.2 压降测量法压降测量法是所有污垢监测方法中操作最为简便而又行之有效的一种监测手段。
只需测量换热管进、出口或换热器进、出口的压差,就可以通过污染前后压降的变化来反映污垢的积聚情况。
换热管进、出口的压差包括沿程阻力和局部阻力。
如图2所示,在一般的壳管式换热器中,污垢使换热管内径减小,粗糙度增加,分析式(13),(14)可得:1)由于管内侧的表面粗糙度增加,使得沿程阻力系数加大,引起沿程阻力增加;2)由于换热管内径减小而引起沿程阻力增加; 3)由于污物在管内进出口处的长期积聚,使得局部阻力系数加大,引起局部阻力增加。
5 换热器污垢监测的实验方法如前所述,污垢热阻的求取公式为式(8),式中污染状态下的总传热系数Kf可由设计工况下的传热方程求得。
由式(18)可以看出,只要测出流体的质量流量,冷热流体进、出口温度,便可以计算出换热器内的传热系数,也就可以得出换热器内的污垢热阻。
根据以上监测原理结合实验数据对实际工程中的换热器结构情况进行了监测。
6 实验过程及实验分析6.1 实验过程管内污垢生长特性实验的总体方案包括实验工况的确定、系统的运行和数据采集两个方面。
1)实验工况的确定本实验在实际工程中进行,污水流量为110 m3/h。
2)系统运行和数据采集系统全天间歇运行,实验数据的采集由测量仪器定期自动记录。
数据监测系统的采样周期为30 min,这样每30 min就可以计算出一个Kf,从而绘制出传热系数的变化曲线。
在实验后期由于污垢厚度已经趋于稳定,变化较缓慢, 所以将测量频率变为每2 min测量一次温度,以验证污垢是否达到稳态。
水冷机组污垢系数研究
水冷式冷水机组冷凝器污垢热阻的动态试验研究摘要本文提出了污垢热阻研究的动态试验方法,以珠江水(猎德段)作为冷却水并通过一系列试验得出了不同流速下的污垢热阻试验数据,并观察到了污垢老化现象。
这些数据比HTRI/TEMA推荐的数值更具体,可为冷水机组冷凝器的设计、监控和清洗提供参考。
关键词污垢热阻冷却水冷凝器冷水机组换热表面的污垢会使传热恶化,且随着强化换热技术的应用,污垢热阻对传热过程的影响更加明显,因此冷凝器冷却水侧污垢热阻值的选取便成了水冷式冷水机组优化设计的主要问题之一。
冷却水污垢热阻的数值通常是根据经验数值或是文献、规范等确定,如根据HTRI/TEMA Joint Committee 推荐的污垢热阻[1],河水的污垢热阻值是3.52× 10-4~5.28×10-4 m2·℃/W,而根据《工业循环水处理设计规范》(GB50050-95)[2],敞开式循环水系统的污垢热阻值为1.71× 10-4~3.44×10-4 m2·℃/W。
由于不同参考资料给出的污垢热阻的数值变化较大,给实际的设计工作带来了困难。
另外不同河流、不同区段、在不同季节时冷却水所形成的污垢也有所不同,因此我们拟采用试验方法,选用在珠江三角洲地区被广泛用作冷却水的珠江水为试验工质进行冷却水污垢热阻的试验,试验是在6月到10月期间进行。
冷却水污垢热阻的影响因素主要是温度、流速和水质。
由参考文献[1]分析,冷却水温度低于50℃时温度对污垢热阻的影响可忽略。
因此主要研究冷却水流速对污垢热阻的影响,为冷凝器的设计提供较具体的污垢热阻数据。
1 试验原理及试验装置1.1 试验原理由传热学法测量污垢热阻R f,即(1)(2)于是,(3)通过计算冷凝器换热管两侧的换热系数和总的传热系数,从分离出污垢热阻。
本试验采用实际的水冷式冷水机组,制冷量是30kW,制冷剂为HCFC-22。
冷凝器是两回程的管壳式换热器,管内径是0.0117m,铜管数目是38根。
换热器数据表
基础参数
流量(1) (t/a)
内侧污垢热阻 ㎡•C/W
(算数)平均传热温差 (5)
管子外径mm
管子排列方式
折流挡板间距m
结垢校正系数Ft
壳程数Ns
流通截面积(12) nc(16)
柴油流量(13) 流通截面积(17)
管程对流传热系数 (要判断雷诺数范围Rei>10000,Pr=0.7~160)
Tm—有机液的定性温度 tm--水的定性温度 Q—热负荷 Wh—热流体的流量 WC—水耗量
CP—流体比热, kJ/kg.℃ T1—热流体进口温度, ℃ T2—热流体出口温度, ℃ t1—冷流体进口温度, ℃ t2—冷流体出口温度, ℃
△tm/—逆流温度, ℃ &—修正系数
K-传热系数, W/m2×0C A估—估计传热面积,m2
壳程流体的热导 率,
W/(m•C)
R值(6)
P值(7)
定压比热容Cpi [kJ/(kg·℃)]
2.46 2.2
热管管壁的热导率
由R和P查图得φ⊿t (8)
粘度μi (Pa·s)
0.00066 0.00665
导热系数λi (W·m-1·℃-1)
0.139 0.128
允许阻力降at
校正后平均温差 (9)
t1热流体进口温度修正系数k传热系数wm20ca估估计传热面积m2a实际实际传热面积m2n单程管数l单程管长np管程l标准管长md公称直径mmmmpn公称压力paa0换热器实际换热面积m2k0基于换热器外表面积的总传热系数wm20cai列管面积m2vc冷流体流量m3s流体密度kgm3ui冷流体流速re雷诺数pr普朗特数流体传热系数wm20ca0换热器外表面换热面积m2vh热流体流量m3sde当量直径mmrsi管内流体流体污垢热阻wm20crs0管外流体流体污垢热阻wm20cpi压强降pa粗糙度mm传热系数wm20cft结垢校正系数ns壳程数fs壳程压强降的结垢矫正系数无因次nb折流挡板数ntc横过管束中心线的管子数nt为管子总数进口温度流量kgh密度定压比热容cpikjkg粘度pas导热系数允许阻力降at传热热负荷kjh2柴油的定性温度估算传热面积11外壳直径dmm管子尺寸mm管子内径mm管子外径mm管中心距tmm折流挡板间距m结垢校正系数f管子排列方式对压强降的校正系数正三角形f05正方形转角45度f04正方形直列f03污垢校正系数f流通截面积12柴油流量13管内柴油流速14雷诺数1516流通截面积17壳内原油流速18当量直径19re20re21管程对流传热系数要判断雷诺数范围re10000pr0716022壳层的对流传热系数取23pr2425k26计算所需传热面积m27换热器实际传热面积m28裕度29查得摩擦系数3033与允许阻力降比较34壳程流体摩擦系数f022835挡板数n36p13739与允许阻力降比较40tm有机液的定性温度tm水的定性温度q热负荷wh热流体的流量wc水耗量cp流体比热kjkg
导热系数和热阻基本概念
导热系数和热阻一、定义导热系数λ:是指在稳定传热条件下,设在物体内部垂直于导热方向取两个相距1米,面积为1平方米的平行面,而这两个平面的温度相差1度,则在1秒内从一个平面传导到另一平面的热量就规定为该物质的热导率。
其单位为:瓦/(米·度), 导热系数在0.12瓦/(米·度)以下的材料称为绝热材料。
导热系数反应的是导热材料导热性,导热材料的导热系数越大,则其导热性越好。
热阻θ:就是热流量在通过物体时,在物体两端形成的温度差。
即:θ=(T2-T1)/P——(1)单位是:℃/W。
式中: T2是热源温度,T1是导热系统端点的温度,P是热源的功率。
(1)式是指在一维、稳态、无内热源的情况下的热阻。
热阻反应的是导热材料对热流传导的阻碍能力,导热材料的热阻越大,则其对热传导的阻碍能力越强。
一般可以通过下面公式计算导热系统端点的温度: (T2-T1)=Pθ,热源功率越小,热阻越小,其热流传导能力越好,热阻越大,热流传导能力越差。
热阻还可以由下式表达:θ=L/(λS)——(2)式中:λ是导热系数,L是材料厚度或长度,S是传热面积。
物体对热流传导的阻碍能力,与传导路径长度成正比,与通过的截面积成反比,与材料的导热系数成反比。
二、对导热系数与热阻的理解和应用场合导热系数反映的是物质在单位体积下的导热能力。
实际上它反映了物质导热的固有能力。
这种能力是由物质的原子或分子结构决定的。
它是评价物质之间导热能力的参数。
热阻其实是导热系数与物体的几何形状相结合而体现的该形状物体的导热能力。
对非均匀厚度的物体,均匀热流密度的热流通过物体后,两端任意两点的温度差可能是不同的,也就是说,任意两点间的热阻可能是不同的。
谈热阻,必须要明确这一点:热阻必须是指定的两个点之间的热阻,并且两点之间没有其它的热源。
它反映的是特定两点间的导热能力。
就是说,给定了热阻值,同时必须明确给出计量的起点和终点。
偏离了这两个位置点,这个热阻值就没有意义了。